KR102471855B1 - 포그 컴퓨팅 기반의 자율 군집 주행을 위한 태스크 오프로딩 방법 및 장치 - Google Patents

포그 컴퓨팅 기반의 자율 군집 주행을 위한 태스크 오프로딩 방법 및 장치 Download PDF

Info

Publication number
KR102471855B1
KR102471855B1 KR1020210134067A KR20210134067A KR102471855B1 KR 102471855 B1 KR102471855 B1 KR 102471855B1 KR 1020210134067 A KR1020210134067 A KR 1020210134067A KR 20210134067 A KR20210134067 A KR 20210134067A KR 102471855 B1 KR102471855 B1 KR 102471855B1
Authority
KR
South Korea
Prior art keywords
task
cluster
fog
offloading
fog node
Prior art date
Application number
KR1020210134067A
Other languages
English (en)
Inventor
박상오
곽수환
이재환
남상혁
조민규
Original Assignee
중앙대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 중앙대학교 산학협력단 filed Critical 중앙대학교 산학협력단
Priority to KR1020210134067A priority Critical patent/KR102471855B1/ko
Application granted granted Critical
Publication of KR102471855B1 publication Critical patent/KR102471855B1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/14Adaptive cruise control
    • B60W30/16Control of distance between vehicles, e.g. keeping a distance to preceding vehicle
    • B60W30/165Automatically following the path of a preceding lead vehicle, e.g. "electronic tow-bar"
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • B60W60/001Planning or execution of driving tasks
    • B60W60/0015Planning or execution of driving tasks specially adapted for safety
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/44Arrangements for executing specific programs
    • G06F9/445Program loading or initiating
    • G06F9/44594Unloading
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/46Multiprogramming arrangements
    • G06F9/48Program initiating; Program switching, e.g. by interrupt
    • G06F9/4806Task transfer initiation or dispatching
    • G06F9/4843Task transfer initiation or dispatching by program, e.g. task dispatcher, supervisor, operating system
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/22Platooning, i.e. convoy of communicating vehicles
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/10Protocols in which an application is distributed across nodes in the network
    • H04L67/1001Protocols in which an application is distributed across nodes in the network for accessing one among a plurality of replicated servers
    • H04L67/1004Server selection for load balancing
    • H04L67/1014Server selection for load balancing based on the content of a request
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/50Network services
    • H04L67/60Scheduling or organising the servicing of application requests, e.g. requests for application data transmissions using the analysis and optimisation of the required network resources
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0001Details of the control system
    • B60W2050/0002Automatic control, details of type of controller or control system architecture
    • B60W2050/0004In digital systems, e.g. discrete-time systems involving sampling
    • B60W2050/0005Processor details or data handling, e.g. memory registers or chip architecture

Landscapes

  • Engineering & Computer Science (AREA)
  • Software Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transportation (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Human Computer Interaction (AREA)
  • Traffic Control Systems (AREA)

Abstract

본 발명은 포그 컴퓨팅 기반의 자율 군집 주행을 위한 태스크 오프로딩 방법에 관한 것이다. 포그 컴퓨팅 기반의 자율 군집 주행을 위한 태스크 오프로딩 방법은, 복수의 차량으로 구성된 군집의 군집 리더로부터 군집 연산 작업 요청 및 복수의 차량과 연관된 BSM을 수신하는 단계, 수신된 군집 연산 작업 요청 및 BSM을 기초로 군집 연산 작업에 대한 태스크 오프로딩이 요구되는지 여부를 판정하는 단계, 태스크 오프로딩이 요구되는 것으로 판정된 경우, 군집 연산 작업을 분할하여, 분할된 군집 연산 작업의 적어도 일부를 적어도 하나의 다른 포그 노드로 전달하는 단계 및 포그 노드 및 적어도 하나의 다른 포그 노드에 의해 수행된 군집 연산 작업의 결과 정보를 군집 리더로 전송하는 단계를 포함한다.

Description

포그 컴퓨팅 기반의 자율 군집 주행을 위한 태스크 오프로딩 방법 및 장치{TASK OFFLOADING METHOD AND DEVICE FOR AUTONOMOUS PLATOONING BASED ON FOG COMPUTING}
본 발명은 포그 컴퓨팅 기반의 자율 군집 주행을 위한 태스크 오프로딩 방법 및 장치에 관한 것으로, 구체적으로, 군집이 요청한 작업에 대해 제한 시간을 만족하도록 스케줄링(scheduling)하는 포그 컴퓨팅 기반의 자율 군집 주행을 위한 태스크 오프로딩 방법 및 장치에 관한 것이다.
최근 여러 대의 차량이 군집을 이루어 같은 목적지로 함께 이동하는 자율 군집 주행 기술이 발전하고 있다. 군집 주행 기술은 차량간 간격을 좁혀 도로상의 통행량을 개선하며, 각 차량에 적용되는 공기저항을 줄임으로써 이로 인한 연료 소모를 줄이고 이산화탄소 저감 효과를 나타낼 수 있다. 또한, 자율 군집 주행은 차량 전체에 대한 동작 명령을 동시간에 전달하기 때문에 인간의 조작보다 더욱 빠르고 안전한 동작 수행이 가능하다. 그러나, 군집 주행 관련 작업은 일반적으로 계산 복잡도가 높아 자원의 제한이 있는 차량으로 빠르게 계산할 수 없는 단점이 있다.
한편, 군집 주행 관련 작업을 수행하기 위해 클라우드 컴퓨팅이 이용될 수 있다. 클라우드 컴퓨팅은 네트워크를 통해 원격으로 접근하는 공유된 고성능 컴퓨팅 자원 풀을 이용하여 빠르고 간편한 서비스 배포가 가능한 구조이다. 그러나, 클라우드 컴퓨팅은 사용자의 수가 증가함에 따라 클라우드의 작업 부하 또한 증가하면서 작업의 처리에 소요되는 연산 시간이 증가하고, 수많은 작업이 하나의 클라우드로 집중되는 병목 현상으로 인해 데이터 송수신 시 네트워크 지연이 증가한다는 단점이 있다.
본 발명은 상기와 같은 문제점을 해결하기 위한 포그 컴퓨팅 기반의 자율 군집 주행을 위한 태스크 오프로딩 방법, 컴퓨터 판독 가능 매체에 저장된 컴퓨터 프로그램 및 장치(시스템)를 제공한다.
본 발명은 방법, 장치(시스템) 또는 컴퓨터 판독 가능 매체에 저장된 컴퓨터 프로그램을 포함한 다양한 방식으로 구현될 수 있다.
본 발명의 일 실시예에 따르면, 포그 노드의 적어도 하나의 프로세서에 의해 수행되는 포그 컴퓨팅 기반의 자율 군집 주행을 위한 태스크 오프로딩 방법은, 복수의 차량으로 구성된 군집의 군집 리더로부터 군집 연산 작업 요청 및 복수의 차량과 연관된 BSM을 수신하는 단계, 수신된 군집 연산 작업 요청 및 BSM을 기초로 군집 연산 작업에 대한 태스크 오프로딩이 요구되는지 여부를 판정하는 단계, 태스크 오프로딩이 요구되는 것으로 판정된 경우, 군집 연산 작업을 분할하여, 분할된 군집 연산 작업의 적어도 일부를 적어도 하나의 다른 포그 노드로 전달하는 단계 및 포그 노드 및 적어도 하나의 다른 포그 노드에 의해 수행된 군집 연산 작업의 결과 정보를 군집 리더로 전송하는 단계를 포함한다.
본 발명의 일 실시예에 따르면, 태스크 오프로딩이 요구되는지 여부를 판정하는 단계는, 사전 결정된 시간 동안 포그 노드에 의해 군집 연산 작업의 수행이 가능한지 여부를 기초로 군집 연산 작업에 대한 태스크 오프로딩이 요구되는지 여부를 판정하는 단계를 포함한다.
본 발명의 일 실시예에 따르면, 태스크 오프로딩이 요구되는지 여부를 판정하는 단계는,
Figure 112021115749745-pat00001
를 이용하여 태스크 오프로딩이 요구되는지 여부를 판정하는 단계를 포함한다. 여기서,
Figure 112021115749745-pat00002
은 군집 연산 작업의 작업량이고, c는 포그 노드의 연산 능력이고,
Figure 112021115749745-pat00003
는 군집 연산 작업이 가능한 최대 시간이고,
Figure 112021115749745-pat00004
는 군집 연산 작업의 크기를 나타내고,
Figure 112021115749745-pat00005
는 군집 연산 작업 요청과 연관된 대역폭을 나타내고,
Figure 112021115749745-pat00006
는 포그 노드와 연관된 작업 큐에 사전 저장된 작업량을 나타낸다.
본 발명의 일 실시예에 따르면, 태스크 오프로딩이 요구되는 것으로 판정된 경우, 군집 연산 작업의 적어도 일부를 수행하기 위한 다른 포그 노드의 개수를 결정하는 단계를 더 포함한다.
본 발명의 일 실시예에 따르면, 다른 포그 노드의 개수를 결정하는 단계는, 다른 포그 노드의 태스크 오프로딩 시간의 최댓값을 이용하여 다른 포그 노드의 개수를 결정하는 단계를 포함한다. 태스크 오프로딩 시간의 최댓값은,
Figure 112021115749745-pat00007
에 의해 산출된다. 여기서,
Figure 112021115749745-pat00008
는 다른 포그 노드의 태스크 오프로딩 시간의 최댓값이고,
Figure 112021115749745-pat00009
는 포그 노드가 다른 포그 노드로 군집 연산 작업의 적어도 일부를 전달하는데 소요되는 전달 시간이고,
Figure 112021115749745-pat00010
는 다른 포그 노드가 군집 연산 작업의 적어도 일부를 수행하는데 소요되는 작업 수행 시간이고,
Figure 112021115749745-pat00011
은 시간 보정 변수이고,
Figure 112021115749745-pat00012
은 다른 포그 노드가 포그 노드로 군집 연산 작업의 처리 결과를 반환하는데 소요되는 반환 시간이다.
본 발명의 일 실시예에 따르면, 포그 노드와 군집 리더는 미리 정해진 주기로 스위칭되는 DSRC 채널을 이용하여 통신한다. 복수의 차량과 연관된 BSM을 수신하는 단계는, DSRC 채널에 포함된 CCH의 업링크 주기에 복수의 차량과 연관된 BSM을 수신하는 단계를 포함한다. 군집 연산 작업의 결과 정보를 군집 리더로 전송하는 단계는, DSRC 채널에 포함된 CCH의 다운링크 주기에 군집 연산 작업의 결과 정보를 군집 리더로 전송하는 단계를 포함한다.
본 발명의 일 실시예에 따르면, 군집 리더는 군집에 포함된 차량들로부터, DSRC 채널에 포함된 SCH의 업링크 주기에 차량들과 연관된 BSM을 수신한다.
본 발명의 일 실시예에 따른 상술한 방법을 컴퓨터에서 실행하기 위해 컴퓨터 판독 가능한 기록 매체에 저장된 컴퓨터 프로그램이 제공된다.
본 발명의 다양한 실시예에서 포그 컴퓨팅에 의해 군집 연산 작업이 처리됨으로써, 차량의 낮은 연산 능력이 보완될 수 있으며, 클라우드에서 연산을 수행하여 발생하는 병목 현상이 줄어들어 낮은 지연 시간이 유지되고, 실시간 처리가 수행될 수 있다.
본 발명의 다양한 실시예에서 태스크 오프로딩 스케줄링을 통해 군집이 요청한 작용에 대하여 제한 시간 내에 처리를 수행할 수 있으며, 이에 따른 도로 상황에 대한 빠른 대처로 자율 군집 주행의 안전성을 향상시킬 수 있다.
본 발명의 효과는 이상에서 언급한 효과로 제한되지 않으며, 언급되지 않은 다른 효과들은 청구범위의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자("통상의 기술자"라 함)에게 명확하게 이해될 수 있을 것이다.
본 발명의 실시예들은, 이하 설명하는 첨부 도면들을 참조하여 설명될 것이며, 여기서 유사한 참조 번호는 유사한 요소들을 나타내지만, 이에 한정되지는 않는다.
도 1은 본 발명의 일 실시예에 따른 차량들이 자율 군집 주행을 수행하는 예시를 나타내는 도면이다.
도 2는 본 발명의 일 실시예에 따른 컴퓨팅 장치의 내부적인 구성을 나타내는 기능적인 블록도이다.
도 3은 본 발명의 일 실시예에 따른 DSRC 채널의 예시를 나타내는 도면이다.
도 4는 본 발명의 일 실시예에 따른 포그 컴퓨팅 기반의 자율 군집 주행을 위한 태스크 오프로딩 방법의 예시를 나타내는 흐름도이다.
도 5는 본 발명의 일 실시예에 따른 태스크 오프로딩을 수행하기 위한 포그 노드의 개수 산출 방법의 예시를 나타내는 흐름도이다.
도 6은 본 발명의 일 실시예에 따른 자율 군집 주행을 위한 통신 방법의 예시를 나타내는 흐름도이다.
도 7은 본 발명의 일 실시예에 따른 컴퓨팅 장치의 내부 구성을 나타내는 블록도이다.
이하, 본 발명의 실시를 위한 구체적인 내용을 첨부된 도면을 참조하여 상세히 설명한다. 다만, 이하의 설명에서는 본 발명의 요지를 불필요하게 흐릴 우려가 있는 경우, 널리 알려진 기능이나 구성에 관한 구체적 설명은 생략하기로 한다.
첨부된 도면에서, 동일하거나 대응하는 구성요소에는 동일한 참조부호가 부여되어 있다. 또한, 이하의 실시예들의 설명에 있어서, 동일하거나 대응되는 구성요소를 중복하여 기술하는 것이 생략될 수 있다. 그러나, 구성요소에 관한 기술이 생략되어도, 그러한 구성요소가 어떤 실시예에 포함되지 않는 것으로 의도되지는 않는다.
개시된 실시예의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나, 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시예들은 본 발명이 완전하도록 하고, 본 발명이 통상의 기술자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것일 뿐이다.
본 명세서에서 사용되는 용어에 대해 간략히 설명하고, 개시된 실시예에 대해 구체적으로 설명하기로 한다. 본 명세서에서 사용되는 용어는 본 발명에서의 기능을 고려하면서 가능한 현재 널리 사용되는 일반적인 용어들을 선택하였으나, 이는 관련 분야에 종사하는 기술자의 의도 또는 판례, 새로운 기술의 출현 등에 따라 달라질 수 있다. 또한, 특정한 경우는 출원인이 임의로 선정한 용어도 있으며, 이 경우 해당되는 발명의 설명 부분에서 상세히 그 의미를 기재할 것이다. 따라서, 본 발명에서 사용되는 용어는 단순한 용어의 명칭이 아닌, 그 용어가 가지는 의미와 본 발명의 전반에 걸친 내용을 토대로 정의되어야 한다.
본 명세서에서의 단수의 표현은 문맥상 명백하게 단수인 것으로 특정하지 않는 한, 복수의 표현을 포함한다. 또한, 복수의 표현은 문맥상 명백하게 복수인 것으로 특정하지 않는 한, 단수의 표현을 포함한다. 명세서 전체에서 어떤 부분이 어떤 구성요소를 포함한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있음을 의미한다.
본 발명에서, "포함하다", "포함하는" 등의 용어는 특징들, 단계들, 동작들, 요소들 및/또는 구성 요소들이 존재하는 것을 나타낼 수 있으나, 이러한 용어가 하나 이상의 다른 기능들, 단계들, 동작들, 요소들, 구성 요소들 및/또는 이들의 조합이 추가되는 것을 배제하지는 않는다.
본 발명에서, 특정 구성 요소가 임의의 다른 구성 요소에 "결합", "조합", "연결" 되거나, "반응" 하는 것으로 언급된 경우, 특정 구성 요소는 다른 구성 요소에 직접 결합, 조합 및/또는 연결되거나, 반응할 수 있으나, 이에 한정되지 않는다. 예를 들어, 특정 구성 요소와 다른 구성 요소 사이에 하나 이상의 중간 구성 요소가 존재할 수 있다. 또한, 본 발명에서 "및/또는"은 열거된 하나 이상의 항목의 각각 또는 하나 이상의 항목의 적어도 일부의 조합을 포함할 수 있다.
본 발명에서, "제1", "제2" 등의 용어는 특정 구성 요소를 다른 구성 요소와 구별하기 위해 사용되는 것으로, 이러한 용어에 의해 상술된 구성 요소가 제한되진 않는다. 예를 들어, "제1" 구성 요소는 "제2" 구성 요소와 동일하거나 유사한 형태의 요소일 수 있다.
도 1은 본 발명의 일 실시예에 따른 차량들(110, 120, 130)이 자율 군집 주행(autonomous platooning)을 수행하는 예시를 나타내는 도면이다. 도시된 예에서, 차량들(110, 120, 130)은 자율 군집 주행을 수행할 수 있다. 여기서, 자율 군집 주행은 복수의 차량을 하나의 군집으로 묶어, 군집에 포함된 복수의 차량이 서로 일정한 간격을 유지하며 주행하는 기술을 지칭할 수 있다. 일 실시예에 따르면, 자율 군집 주행을 위한 군집은 군집의 선두를 이끄는 군집 리더(platoon leader)와 군집에 속하여 군집 리더의 경로를 따라가는 복수의 군집 멤버(platoon member)를 포함할 수 있다. 예를 들어, 도로의 가장 앞에 위치한 제1 차량(110)이 군집 리더일 수 있으며, 제2 차량(120) 및 제3 차량(130)은 군집 멤버일 수 있다. 군집 리더는 자신의 군집에 속해 있는 군집 멤버와 통신하며 도로의 상황 정보와 군집 주행 명령, 급제동 등의 긴급 명령 등을 송수신할 수 있다.
상술한 바와 같이, 군집 리더는 긴급 명령 등을 송수신하기 위해, 군집 연산 작업을 처리할 수 있다. 예를 들어, 군집 리더는 도로의 상황 정보 등을 기초로 급제동이 요구되는지 여부 등의 연산을 처리할 수 있다. 이와 같은 군집 연산 작업은 실시간으로 변화하는 도로 상황을 반영해야 하기 때문에 빠른 처리가 요구된다. 그러나, 군집 리더와 같은 차량은 일반적으로 컴퓨팅 자원의 한계가 있으므로 군집 연산 작업을 신속히 처리하기 어렵다.
일 실시예에 따르면, 군집 연산 작업은 포그 컴퓨팅(fog computing)에 의해 처리되거나 수행될 수 있다. 여기서, 포그 컴퓨팅은 클라우드(cloud) 시스템과 말단 장치(예: 차량) 사이에 위치한 포그 노드(fog node)를 이용하여 연산 작업 등을 처리하고 이에 대한 결과를 반환하는 기법을 나타낼 수 있다. 이와 같이, 포그 컴퓨팅을 이용하는 경우, 말단 장치의 군집 연산 작업 요청을 더욱 빠르게 처리할 수 있고, 연산 및 통신 노드를 분산시켜 클라우드 컴퓨팅의 중앙집중형 구조에 의해 발생하는 병목현상을 줄일 수 있다.
일 실시예에 따르면, 노변 장치(RSU: road side unit)(140)는 군집 연산 작업을 처리하거나 수행하는 포그 노드(fog node)로서 기능할 수 있다. 예를 들어, 노변 장치(140)는 복수의 차량(110, 120, 130)으로 구성된 군집의 군집 리더로부터 군집 연산 작업 요청 및 복수의 차량과 연관된 BSM(basic safety message)을 수신할 수 있다. 이 경우, 노변 장치(140)는 수신된 군집 연산 작업을 처리하고, 그 결과를 군집 리더에게 반환할 수 있다.
추가적으로 또는 대안적으로, 군집 리더로부터 군집 연산 작업 요청을 수신하는 경우, 노변 장치(140)는 수신된 군집 연산 작업 요청 및 BSM을 기초로 군집 연산 작업에 대한 태스크 오프로딩(task offloading)이 요구되는지 여부를 판정할 수 있다. 일 실시예에 따르면, 노변 장치(140)는 사전 결정된 시간 동안 군집 연산 작업의 수행이 가능한지 여부를 기초로 군집 연산 작업에 대한 태스크 오프로딩이 요구되는지 여부를 판정할 수 있다. 예를 들어, 안전한 자율 군집 주행을 위해서는 최소 100ms 간격으로 연산이 처리되고, 브로드캐스트(broadcast) 하는 것이 요구되므로, 노변 장치(140)는 100ms 내에 군집 연산 작업을 처리할 수 있는지 판정할 수 있다. 100ms 내에 군집 연산 작업을 처리할 수 없는 경우, 노변 장치(140)는 태스크 오프로딩이 요구되는 것으로 판정할 수 있다.
태스크 오프로딩이 요구되는 것으로 판정된 경우, 노변 장치(140)는 군집 연산 작업을 분할하여, 분할된 군집 연산 작업의 적어도 일부를 다른 노변 장치들(150)으로 전달할 수 있다. 예를 들어, 노변 장치(140)는 다른 노변 장치들(150)과 함께 군집 연산 작업을 처리하거나 수행하여 100ms 내에, 그 결과를 반환할 수 있다. 즉, 노변 장치(140)는 노변 장치(140) 및 다른 노변 장치들(150)에 의해 수행된 군집 연산 작업의 결과 정보를, 요청을 전송한 군집 리더로 전송할 수 있다.
도 1에서는 세 대의 차량(110, 120, 130)이 하나의 군집을 구성하는 것으로 도시되었으나, 이에 한정되지 않으며, 임의의 개수의 차량이 하나의 군집을 구성하거나 형성할 수 있다. 이와 같은 구성에 의해, 포그 컴퓨팅에 의해 군집 연산 작업이 처리됨으로써, 차량의 낮은 연산 능력이 보완될 수 있으며, 클라우드에서 연산을 수행하여 발생하는 병목 현상이 줄어들어 낮은 지연 시간이 유지되고, 실시간 처리가 수행될 수 있다.
도 2는 본 발명의 일 실시예에 따른 컴퓨팅 장치(200)의 내부적인 구성을 나타내는 기능적인 블록도이다. 컴퓨팅 장치(200)는 상술한 노변 장치(도 1의 140 등)를 포함할 수 있다. 도시된 바와 같이, 컴퓨팅 장치(200)는 통신부(210), 태스크 오프로딩 스케줄링부(220), 태스크 오프로딩 수행부(230) 등을 포함할 수 있다. 예를 들어, 컴퓨팅 장치(200)는 차량, 노변 장치 등과 통신하며 군집 연산 작업과 연관된 데이터 및/또는 정보를 주고받을 수 있다.
통신부(210)는 군집을 구성하는 차량들 및 포그 노드를 형성하는 다른 노변 장치와 통신을 수행할 수 있다. 일 실시예에 따르면, 통신부(210)는 군집 리더와 통신하며, 군집 연산 작업 요청 및 복수의 차량과 연관된 BSM을 수신하거나, 군집 연산 작업의 결과 정보를 전송할 수 있다. 이 경우, 통신부(210)는 군집 리더와 미리 정해진 주기로 스위칭되는 DSRC(Dedicated Short Range Communication) 채널을 이용하여 통신할 수 있다. 여기서, DSRC 채널은 차량을 위한 단방향 또는 양방향의 단거리 무선 통신 채널을 지칭할 수 있으며, 예를 들어, DSRC 채널은 1개의 CCH(Control Channel) 및 6개의 SCH(Service Channel)로 구성될 수 있다. 즉, DSRC에서 무선 통신을 수행할 때, CCH와 SCH 간 채널 스위칭이 주기적으로 진행될 수 있으며, 예를 들어, 채널 스위칭 주기는 100ms일 수 있다. 이 경우, 군집 간의 통신 간섭을 최소화하기 위해 각 군집에 대하여 서로 다른 SCH 채널 번호가 할당될 수 있으며, 군집의 길이는 특정 길이로 제한될 수 있다. 추가적으로, 양방향 도로의 경우, 도로 방향에 따라 특정 방향으로 이동하는 군집이 SCH 채널을 이용하는 동안, 반대 방향으로 이동하는 군집은 CCH 채널을 이용하도록 하여, 양방향 통신 간섭이 최소화될 수 있다.
일 실시예에 따르면, 군집 리더는 SCH의 업링크(uplink) 주기에 군집을 구성하는 복수의 차량들로부터 BSM을 수신할 수 있다. 이 경우, 통신부(210)는 DSRC 채널에 포함된 CCH의 업링크 주기에, 군집 리더로부터 복수의 차량과 연관된 군집 연산 작업 요청 및 BSM을 수신할 수 있다. 요청을 수신하는 경우, 컴퓨팅 장치(200)는 수신된 요청과 연관된 작업을 수행하고, CCH의 다운링크(downlink) 주기에 군집 연산 작업의 결과 정보를 군집 리더로 전송할 수 있다. 결과 정보를 전달받은 군집 리더는 SCH의 다운링크 주기에 해당 결과 정보를 군집을 구성하는 복수의 차량으로 전달할 수 있으며, 이에 따라, 전체 군집은 결과 정보를 공유할 수 있다.
또한, 통신부(210)는 주변의 다른 노변 장치와 주기적으로 통신을 수행할 수 있다. 일 실시예에 따르면, 통신부(210)는 주변의 다른 노변 장치와 통신하며, 연산 능력, 앞으로 수행해야 할 작업량 등의 정보를 주고받을 수 있다. 예를 들어, 통신부(210)는 이더넷(Ethernet) 유선 네트워크를 통해 주기적으로 다른 노변 장치와 통신을 수행할 수 있다.
태스크 오프로딩 스케줄링부(220)는 수신된 군집 연산 작업 요청 및 BSM을 기초로 군집 연산 작업에 대한 태스크 오프로딩이 요구되는지 여부를 판정할 수 있다. 예를 들어, 태스크 오프로딩 스케줄링부(220)는 사전 결정된 시간(예: 100ms) 동안 포그 노드에 의해 군집 연산 작업의 수행이 가능한지 여부를 기초로 군집 연산 작업에 대한 태스크 오프로딩이 요구되는지 여부를 판정할 수 있다. 이 경우, 태스크 오프로딩 스케줄링부(220)는 군집 리더가 컴퓨팅 장치(200)로 군집 연산 작업 요청을 전송하는 시간, 컴퓨팅 장치(200)가 작업을 실제로 수행하는 시간 및 결과 정보를 군집 리더에게 전달하는 시간의 합이 사전 결정된 시간 이내인지 여부를 판정할 수 있다.
태스크 오프로딩 스케줄링부(220)는 다음의 수학식 1을 이용하여 태스크 오프로딩이 요구되는지 여부를 판정할 수 있다.
Figure 112021115749745-pat00013
여기서,
Figure 112021115749745-pat00014
은 군집 연산 작업의 작업량이고, c는 포그 노드(컴퓨팅 장치(200))의 연산 능력이고,
Figure 112021115749745-pat00015
는 군집 연산 작업이 가능한 최대 시간이고,
Figure 112021115749745-pat00016
는 군집 연산 작업의 크기를 나타내고,
Figure 112021115749745-pat00017
는 군집 연산 작업 요청과 연관된 대역폭을 나타내고,
Figure 112021115749745-pat00018
는 포그 노드와 연관된 작업 큐(queue)에 사전 저장된 작업량을 나타낼 수 있다. 또한,
Figure 112021115749745-pat00019
는 다음의 수학식 2에 의해 산출될 수 있다.
Figure 112021115749745-pat00020
여기서,
Figure 112021115749745-pat00021
는 DSRC 무선 통신의 업링크 및 다운링크 주기를 나타내며,
Figure 112021115749745-pat00022
는 DSRC 무선 통신의 가드 타임(guard time) 주기를 나타낼 수 있다. 즉, 상술된 수학식 1에 의한 결과가 참일 경우, 군집 리더로부터 전달받은 군집 연산을 시간 내에 수행할 수 있으므로, 컴퓨팅 장치(200)는 군집 연산 작업을 직접 수행한 후 결과 정보를 반환할 수 있다. 반면에, 상술된 수학식 1에 의한 결과가 거짓일 경우, 해당 군집 연산 작업은 주변의 노변 장치에게 분할되어 태스크 오프로딩이 수행될 수 있다.
일 실시예에 따르면, 태스크 오프로딩 스케줄링부(220)는 태스크 오프로딩이 요구되는 것으로 판정된 경우, 군집 연산 작업의 적어도 일부를 수행하기 위한 다른 포그 노드의 개수를 결정할 수 있다. 여기서, 다른 포그 노드의 개수는 사전 결정된 시간 이내에 처리 가능한 것으로 산출된 다른 포그 노드의 개수 중 최소 개수로 결정될 수 있다. 다른 포그 노드의 최소 개수를 결정하기 위해, 태스크 오프로딩 스케줄링부(220)는 다른 포그 노드의 태스크 오프로딩 시간의 최댓값을 이용하여 다른 포그 노드의 개수를 결정할 수 있다. 예를 들어, 다른 포그 노드 각각의 태스크 오프로딩 시간의 최댓값은 다음의 수학식 3에 의해 산출될 수 있다.
Figure 112021115749745-pat00023
여기서,
Figure 112021115749745-pat00024
는 다른 포그 노드의 태스크 오프로딩 시간의 최댓값이고,
Figure 112021115749745-pat00025
는 포그 노드(컴퓨팅 장치(200))가 다른 포그 노드로 군집 연산 작업의 적어도 일부를 전달하는데 소요되는 전달 시간이고,
Figure 112021115749745-pat00026
는 다른 포그 노드가 군집 연산 작업의 적어도 일부를 수행하는데 소요되는 작업 수행 시간이고,
Figure 112021115749745-pat00027
은 시간 보정 변수이고,
Figure 112021115749745-pat00028
은 다른 포그 노드가 포그 노드로 군집 연산 작업의 처리 결과를 반환하는데 소요되는 반환 시간일 수 있다. 이 경우,
Figure 112021115749745-pat00029
는 다음의 수학식 4에 의해 산출될 수 있다.
Figure 112021115749745-pat00030
여기서,
Figure 112021115749745-pat00031
는 이더넷 무선 통신의 대역폭을 나타내고,
Figure 112021115749745-pat00032
는 군집 리더로부터 전달받은 군집 작업의 양(byte)을 나타내고,
Figure 112021115749745-pat00033
은 다른 포그 노드 r로부터 전달받은 군집 작업에 필요한 데이터의 양(byte)을 나타낼 수 있다. 또한,
Figure 112021115749745-pat00034
는 다음의 수학식 5에 의해 산출될 수 있다.
Figure 112021115749745-pat00035
여기서, l은 군집 연산 작업의 연산량으로,
Figure 112021115749745-pat00036
로 산출될 수 있으며,
Figure 112021115749745-pat00037
는 작업의 연산 밀도로서, 해당 작업이 얼마나 연산 집약적인지를 나타내는 상수일 수 있다. 또한,
Figure 112021115749745-pat00038
는 다음의 수학식 6에 의해 산출될 수 있다.
Figure 112021115749745-pat00039
여기서,
Figure 112021115749745-pat00040
는 작업 결과 데이터의 크기를 나타내며, 연산 작업 요청 데이터에 따라 크기가 달라질 수 있다. 또한,
Figure 112021115749745-pat00041
Figure 112021115749745-pat00042
로 산출될 수 있으며, 이 경우,
Figure 112021115749745-pat00043
는 연산 작업 요청 데이터에 따른 결과 데이터의 크기의 비율로, 0 이상의 실수의 값을 가질 수 있다.
한편, 주변 포그 노드들의 상태 정보는 태스크 오프로딩을 수행하기 위해 DSRC 주기가 시작하기 전 CCH 채널 다운링크 주기에 전송되기 때문에, 실제 태스크 오프로딩이 진행되는 CCH 채널 업링크 주기에서는 최소
Figure 112021115749745-pat00044
이전에 수신된 작업 큐(queue) 정보를 이용하게 된다. 또한, 도로 환경에서 포그 노드들은 자신의 범위 내의 군집 연산을 수행하기 때문에, 포그 노드가 현재 다른 군집의 작업을 수행하고 있을 경우 다른 포그 노드로부터 전달받은 작업은 작업 큐에 저장한 후, 먼저 수행하고 있던 작업이 완료될 때 큐에 저장된 작업을 불러와 작업을 진행한다. 이로 인해 포그 노드가 태스크 오프로딩을 수행한 후 결과를 받기까지 추가적인 시간 지연이 발생할 수 있다. 오래된 정보 및 작업 큐에 대기중인 작업들로 인해 발생하는 시간 오차를 해소하기 위해서는 시간 보정이 필요하다. 이 경우,
Figure 112021115749745-pat00045
은 다음의 수학식 7에 의해 산출될 수 있다.
Figure 112021115749745-pat00046
여기서,
Figure 112021115749745-pat00047
은 포그 노드 r이 지닌 작업 큐의 현재 잔여 작업량을 나타내며,
Figure 112021115749745-pat00048
은 잔여 작업량의 수행 시간을 나타낼 수 있다. 또한,
Figure 112021115749745-pat00049
은 포그 노드 r이 이전 CCH 채널 다운링크 주기에 자신의 정보를 전송한 시점부터 태스크 오프로딩을 수행하는 포그 노드가 태스크 오프로딩 알고리즘을 수행하기 시작할 때까지의 시간을 나타낼 수 있다.
Figure 112021115749745-pat00050
은 다음의 수학식 8에 의해 산출될 수 있다.
Figure 112021115749745-pat00051
또한, 각각의 포그 노드가 시간 내에 수행할 수 있는 작업량은 다음의 수학식 9에 의해 산출될 수 있다.
Figure 112021115749745-pat00052
여기서, c는 각각의 포그 노드 r의 연산 능력일 수 있다. 이에 따라, 요청된 군집 연산 작업을 사전 결정된 시간 이내에 수행하여 전파할 수 있도록 하는 포그 노드의 개수 n은 다음의 수학식 10에 의해 결정될 수 있다.
Figure 112021115749745-pat00053
이와 같은 수학식 10을 통해, 태스크 오프로딩 스케줄링부(220)는 군집 연산 작업 수행이 가능한 n의 최소값을 결정하여, 군집 연산 작업의 적어도 일부를 수행하기 위한 다른 포그 노드의 개수를 결정할 수 있다.
태스크 오프로딩 수행부(230)는 태스크 오프로딩 스케줄링부(220)에 의해 결정된 n개의 다른 포그 노드에 군집 연산 작업을 전달할 수 있다. 즉, 태스크 오프로딩 수행부(230)는 군집 연산 작업을 분할하여, 분할된 군집 연산 작업의 적어도 일부를 적어도 하나의 다른 포그 노드로 전달하고, 포그 노드 및 적어도 하나의 다른 포그 노드에 의해 수행된 군집 연산 작업의 결과 정보를 군집 리더로 전송할 수 있다.
도 2에서는 컴퓨팅 장치(200)에 포함된 각각의 기능적인 구성이 구분되어 상술되었으나, 이는 발명의 이해를 돕기 위한 것일 뿐이며, 하나의 연산 장치에서 둘 이상의 기능을 수행할 수도 있다. 이와 같은 구성에 의해, 컴퓨팅 장치(200)는 태스크 오프로딩 스케줄링을 통해 군집이 요청한 작용에 대하여 제한 시간 내에 처리를 수행할 수 있으며, 이에 따른 도로 상황에 대한 빠른 대처로 자율 군집 주행의 안전성을 향상시킬 수 있다.
도 3은 본 발명의 일 실시예에 따른 DSRC 채널(300)의 예시를 나타내는 도면이다. 일 실시예에 따르면, DSRC 채널(300)에 할당된 주파수는 5.9GHz 대역으로, 5.85~5.855GHz의 가드 밴드와 10MHz로 나뉜 7개의 채널로 구성될 수 있다. 채널은 1개의 CCH와 6개의 SCH로 나뉘며, CCH는 높은 우선순위의 제어 및 관리 메시지를, SCH는 이를 제외한 메시지를 송수신하도록 설계되었다.
상술된 바와 같이, DSRC 채널(300)은 미리 정해진 주기로 스위칭될 수 있다. 다시 말해, DSRC 채널(300)에서 무선 통신을 수행할 때 CCH와 SCH간 채널 스위칭을 주기적으로 진행하여 각 메시지를 종류별로 송수신하도록 지원한다. 예를 들어, 군집 리더는 SCH의 업링크 주기에 군집을 구성하는 복수의 차량들로부터 BSM을 수신할 수 있다. 이 경우, 노변 장치는 CCH의 업링크 주기에, 군집 리더로부터 복수의 차량과 연관된 군집 연산 작업 요청 및 BSM을 수신할 수 있다. 요청을 수신하는 경우, 노변 장치는 수신된 요청과 연관된 작업을 수행하고, CCH의 다운링크 주기에 군집 연산 작업의 결과 정보를 군집 리더로 전송할 수 있다. 결과 정보를 전달받은 군집 리더는 SCH의 다운링크 주기에 해당 결과 정보를 군집을 구성하는 복수의 차량으로 전달할 수 있으며, 이에 따라, 전체 군집은 결과 정보를 공유할 수 있다. 이와 같이 채널 스위칭이 수행되는 경우, 도로를 주행하는 복수의 군집 간에 채널이 중첩되는 문제가 효과적으로 예방될 수 있다.
도 4는 본 발명의 일 실시예에 따른 포그 컴퓨팅 기반의 자율 군집 주행을 위한 태스크 오프로딩 방법(400)의 예시를 나타내는 흐름도이다. 자율 군집 주행을 위한 태스크 오프로딩 방법(400)은 프로세서(예를 들어, 컴퓨팅 장치의 적어도 하나의 프로세서)에 의해 수행될 수 있다. 도시된 바와 같이, 자율 군집 주행을 위한 태스크 오프로딩 방법(400)은 프로세서가 복수의 차량으로 구성된 군집의 군집 리더로부터 군집 연산 작업 요청 및 복수의 차량과 연관된 BSM을 수신함으로써 개시될 수 있다(S410).
프로세서는 수신된 군집 연산 작업 요청 및 BSM을 기초로 군집 연산 작업에 대한 태스크 오프로딩이 요구되는지 여부를 판정할 수 있다(S420). 예를 들어, 프로세서는 사전 결정된 시간 동안 포그 노드에 의해 군집 연산 작업의 수행이 가능한지 여부를 기초로 군집 연산 작업에 대한 태스크 오프로딩이 요구되는지 여부를 판정할 수 있다.
프로세서는 태스크 오프로딩이 요구되는 것으로 판정된 경우, 군집 연산 작업을 분할하여, 분할된 군집 연산 작업의 적어도 일부를 적어도 하나의 다른 포그 노드로 전달할 수 있다(S430). 이 경우, 프로세서는 태스크 오프로딩이 요구되는 것으로 판정된 경우, 군집 연산 작업의 적어도 일부를 수행하기 위한 다른 포그 노드의 개수를 결정할 수 있다. 또한, 프로세서는 포그 노드 및 적어도 하나의 다른 포그 노드에 의해 수행된 군집 연산 작업의 결과 정보를 군집 리더로 전송할 수 있다(S440).
도 5는 본 발명의 일 실시예에 따른 태스크 오프로딩을 수행하기 위한 포그 노드의 개수 산출 방법(500)의 예시를 나타내는 흐름도이다. 포그 노드의 개수 산출 방법(500)은 프로세서(예를 들어, 컴퓨팅 장치의 적어도 하나의 프로세서)에 의해 수행될 수 있다. 도시된 바와 같이, 포그 노드의 개수 산출 방법(500)은 프로세서가 군집 연산 작업에 필요한 포그 노드의 개수 N을 1로 결정함으로써 개시될 수 있다(S510).
프로세서는 N개의 포그 노드의 최대 수행 가능 작업량을 산출할 수 있다(S520). 또한, 프로세서는 N개의 포그 노드로 군집 연산 작업 수행이 가능한지 여부를 판정할 수 있다(S530). N개의 포그 노드로 군집 연산 작업 수행이 불가능하다고 판정되는 경우, 프로세서는 N의 값을 1 증가시킬 수 있다(S540). 즉, 프로세서는 상술한 과정을 반복적으로 수행하여, N개의 포그 노드로 작업 수행이 가능할 때까지 N의 값을 1씩 증가시켜, 태스크 오프로딩을 수행할 N의 최소값을 결정할 수 있다.
N개의 포그 노드로 군집 연산 작업 수행이 가능하다고 판정되는 경우, 프로세서는 N을 태스크 오프로딩을 수행할 포그 노드의 개수로 결정할 수 있다(S550). 그리고 나서, 프로세서는 군집 연산 작업을 분할하여, 분할된 군집 연산 작업의 적어도 일부를 N개의 다른 포그 노드로 전달하고, 포그 노드 및 N개의 다른 포그 노드에 의해 수행된 군집 연산 작업의 결과 정보를 군집 리더로 전송할 수 있다.
도 6은 본 발명의 일 실시예에 따른 자율 군집 주행을 위한 통신 방법(600)의 예시를 나타내는 흐름도이다. 자율 군집 주행을 위한 통신 방법(600)은 프로세서(예를 들어, 컴퓨팅 장치의 적어도 하나의 프로세서)에 의해 수행될 수 있다. 도시된 바와 같이, 자율 군집 주행을 위한 통신 방법(600)은 프로세서가 DSRC 채널에 포함된 CCH의 업링크 주기에 복수의 차량과 연관된 BSM을 수신함으로써 개시될 수 있다(S610).
상술한 바와 같이, BSM을 수신하는 경우 프로세서는 수신된 군집 연산 작업 요청 및 BSM을 기초로 군집 연산 작업에 대한 태스크 오프로딩이 요구되는지 여부를 판정하고, 태스크 오프로딩이 요구되는 것으로 판정된 경우, 군집 연산 작업을 분할하여, 분할된 군집 연산 작업의 적어도 일부를 적어도 하나의 다른 포그 노드로 전달하여 태스크 오프로딩을 수행할 수 있다. 그리고 나서, 프로세서는 DSRC 채널에 포함된 CCH의 다운링크 주기에 군집 연산 작업의 결과 정보를 군집 리더로 전송할 수 있다(S620).
도 7은 본 발명의 일 실시예에 따른 컴퓨팅 장치(700)의 내부 구성을 나타내는 블록도이다. 일 실시예에 따르면, 컴퓨팅 장치(700)는 상술한 노변 장치(예: 포그 노드)를 포함할 수 있다. 도시된 예에서, 컴퓨팅 장치(700)는 메모리(710), 프로세서(720), 통신 모듈(730) 및 입출력 인터페이스(740)를 포함할 수 있다. 도 7에 도시된 바와 같이, 컴퓨팅 장치(700)는 통신 모듈(730)을 이용하여 네트워크를 통해 정보 및/또는 데이터를 통신할 수 있도록 구성될 수 있다.
메모리(710)는 비-일시적인 임의의 컴퓨터 판독 가능한 기록매체를 포함할 수 있다. 일 실시예에 따르면, 메모리(710)는 RAM(random access memory), ROM(read only memory), 디스크 드라이브, SSD(solid state drive), 플래시 메모리(flash memory) 등과 같은 비소멸성 대용량 저장 장치(permanent mass storage device)를 포함할 수 있다. 다른 예로서, ROM, SSD, 플래시 메모리, 디스크 드라이브 등과 같은 비소멸성 대용량 저장 장치는 메모리와는 구분되는 별도의 영구 저장 장치로서 컴퓨팅 장치(700)에 포함될 수 있다. 또한, 메모리(710)에는 운영체제와 적어도 하나의 프로그램 코드가 저장될 수 있다.
이러한 소프트웨어 구성요소들은 메모리(710)와는 별도의 컴퓨터에서 판독 가능한 기록매체로부터 로딩될 수 있다. 이러한 별도의 컴퓨터에서 판독 가능한 기록매체는 이러한 컴퓨팅 장치(700)에 직접 연결가능한 기록 매체를 포함할 수 있는데, 예를 들어, 플로피 드라이브, 디스크, 테이프, DVD/CD-ROM 드라이브, 메모리 카드 등의 컴퓨터에서 판독 가능한 기록매체를 포함할 수 있다. 다른 예로서, 소프트웨어 구성요소들은 컴퓨터에서 판독 가능한 기록매체가 아닌 통신 모듈(730)을 통해 메모리(710)에 로딩될 수도 있다. 예를 들어, 적어도 하나의 프로그램은 개발자들 또는 어플리케이션의 설치 파일을 배포하는 파일 배포 시스템이 통신 모듈(730)을 통해 제공하는 파일들에 의해 설치되는 컴퓨터 프로그램에 기반하여 메모리(710)에 로딩될 수 있다.
프로세서(720)는 기본적인 산술, 로직 및 입출력 연산을 수행함으로써, 컴퓨터 프로그램의 명령을 처리하도록 구성될 수 있다. 명령은 메모리(710) 또는 통신 모듈(730)에 의해 사용자 단말(미도시) 또는 다른 외부 시스템으로 제공될 수 있다.
통신 모듈(730)은 네트워크를 통해 사용자 단말(미도시)과 컴퓨팅 장치(700)가 서로 통신하기 위한 구성 또는 기능을 제공할 수 있으며, 컴퓨팅 장치(700)가 외부 시스템(일례로 별도의 클라우드 시스템 등)과 통신하기 위한 구성 또는 기능을 제공할 수 있다. 일례로, 컴퓨팅 장치(700)의 프로세서(720)의 제어에 따라 제공되는 제어 신호, 명령, 데이터 등이 통신 모듈(730)과 네트워크를 거쳐 사용자 단말 및/또는 외부 시스템의 통신 모듈을 통해 사용자 단말 및/또는 외부 시스템으로 전송될 수 있다.
또한, 컴퓨팅 장치(700)의 입출력 인터페이스(740)는 컴퓨팅 장치(700)와 연결되거나 컴퓨팅 장치(700)가 포함할 수 있는 입력 또는 출력을 위한 장치(미도시)와의 인터페이스를 위한 수단일 수 있다. 도 7에서는 입출력 인터페이스(740)가 프로세서(720)와 별도로 구성된 요소로서 도시되었으나, 이에 한정되지 않으며, 입출력 인터페이스(740)가 프로세서(720)에 포함되도록 구성될 수 있다. 컴퓨팅 장치(700)는 도 7의 구성요소들보다 더 많은 구성요소들을 포함할 수 있다. 그러나, 대부분의 종래기술적 구성요소들을 명확하게 도시할 필요성은 없다.
컴퓨팅 장치(700)의 프로세서(720)는 복수의 사용자 단말 및/또는 복수의 외부 시스템으로부터 수신된 정보 및/또는 데이터를 관리, 처리 및/또는 저장하도록 구성될 수 있다.
상술된 방법 및/또는 다양한 실시예들은, 디지털 전자 회로, 컴퓨터 하드웨어, 펌웨어, 소프트웨어 및/또는 이들의 조합으로 실현될 수 있다. 본 발명의 다양한 실시예들은 데이터 처리 장치, 예를 들어, 프로그래밍 가능한 하나 이상의 프로세서 및/또는 하나 이상의 컴퓨팅 장치에 의해 실행되거나, 컴퓨터 판독 가능한 기록 매체 및/또는 컴퓨터 판독 가능한 기록 매체에 저장된 컴퓨터 프로그램으로 구현될 수 있다. 상술된 컴퓨터 프로그램은 컴파일된 언어 또는 해석된 언어를 포함하여 임의의 형태의 프로그래밍 언어로 작성될 수 있으며, 독립 실행형 프로그램, 모듈, 서브 루틴 등의 임의의 형태로 배포될 수 있다. 컴퓨터 프로그램은 하나의 컴퓨팅 장치, 동일한 네트워크를 통해 연결된 복수의 컴퓨팅 장치 및/또는 복수의 상이한 네트워크를 통해 연결되도록 분산된 복수의 컴퓨팅 장치를 통해 배포될 수 있다.
상술된 방법 및/또는 다양한 실시예들은, 입력 데이터를 기초로 동작하거나 출력 데이터를 생성함으로써, 임의의 기능, 함수 등을 처리, 저장 및/또는 관리하는 하나 이상의 컴퓨터 프로그램을 실행하도록 구성된 하나 이상의 프로세서에 의해 수행될 수 있다. 예를 들어, 본 발명의 방법 및/또는 다양한 실시예는 FPGA(Field Programmable Gate Array) 또는 ASIC(Application Specific Integrated Circuit)과 같은 특수 목적 논리 회로에 의해 수행될 수 있으며, 본 발명의 방법 및/또는 실시예들을 수행하기 위한 장치 및/또는 시스템은 FPGA 또는 ASIC와 같은 특수 목적 논리 회로로서 구현될 수 있다.
컴퓨터 프로그램을 실행하는 하나 이상의 프로세서는, 범용 목적 또는 특수 목적의 마이크로 프로세서 및/또는 임의의 종류의 디지털 컴퓨팅 장치의 하나 이상의 프로세서를 포함할 수 있다. 프로세서는 읽기 전용 메모리, 랜덤 액세스 메모리의 각각으로부터 명령 및/또는 데이터를 수신하거나, 읽기 전용 메모리와 랜덤 액세스 메모리로부터 명령 및/또는 데이터를 수신할 수 있다. 본 발명에서, 방법 및/또는 실시예들을 수행하는 컴퓨팅 장치의 구성 요소들은 명령어들을 실행하기 위한 하나 이상의 프로세서, 명령어들 및/또는 데이터를 저장하기 위한 하나 이상의 메모리 디바이스를 포함할 수 있다.
일 실시예에 따르면, 컴퓨팅 장치는 데이터를 저장하기 위한 하나 이상의 대용량 저장 장치와 데이터를 주고받을 수 있다. 예를 들어, 컴퓨팅 장치는 자기 디스크(magnetic disc) 또는 광 디스크(optical disc)로부터 데이터를 수신하거나/수신하고, 자기 디스크 또는 광 디스크로 데이터를 전송할 수 있다. 컴퓨터 프로그램과 연관된 명령어들 및/또는 데이터를 저장하기에 적합한 컴퓨터 판독 가능한 저장 매체는, EPROM(Erasable Programmable Read-Only Memory), EEPROM(Electrically Erasable PROM), 플래시 메모리 장치 등의 반도체 메모리 장치를 포함하는 임의의 형태의 비 휘발성 메모리를 포함할 수 있으나, 이에 한정되지 않는다. 예를 들어, 컴퓨터 판독 가능한 저장 매체는 내부 하드 디스크 또는 이동식 디스크와 같은 자기 디스크, 광 자기 디스크, CD-ROM 및 DVD-ROM 디스크를 포함할 수 있다.
사용자와의 상호 작용을 제공하기 위해, 컴퓨팅 장치는 정보를 사용자에게 제공하거나 디스플레이하기 위한 디스플레이 장치(예를 들어, CRT (Cathode Ray Tube), LCD(Liquid Crystal Display) 등) 및 사용자가 컴퓨팅 장치 상에 입력 및/또는 명령 등을 제공할 수 있는 포인팅 장치(예를 들어, 키보드, 마우스, 트랙볼 등)를 포함할 수 있으나, 이에 한정되지 않는다. 즉, 컴퓨팅 장치는 사용자와의 상호 작용을 제공하기 위한 임의의 다른 종류의 장치들을 더 포함할 수 있다. 예를 들어, 컴퓨팅 장치는 사용자와의 상호 작용을 위해, 시각적 피드백, 청각 피드백 및/또는 촉각 피드백 등을 포함하는 임의의 형태의 감각 피드백을 사용자에게 제공할 수 있다. 이에 대해, 사용자는 시각, 음성, 동작 등의 다양한 제스처를 통해 컴퓨팅 장치로 입력을 제공할 수 있다.
본 발명에서, 다양한 실시예들은 백엔드 구성 요소(예: 데이터 서버), 미들웨어 구성 요소(예: 애플리케이션 서버) 및/또는 프론트 엔드 구성 요소를 포함하는 컴퓨팅 시스템에서 구현될 수 있다. 이 경우, 구성 요소들은 통신 네트워크와 같은 디지털 데이터 통신의 임의의 형태 또는 매체에 의해 상호 연결될 수 있다. 예를 들어, 통신 네트워크는 LAN(Local Area Network), WAN(Wide Area Network) 등을 포함할 수 있다.
본 명세서에서 기술된 예시적인 실시예들에 기반한 컴퓨팅 장치는, 사용자 디바이스, 사용자 인터페이스(UI) 디바이스, 사용자 단말 또는 클라이언트 디바이스를 포함하여 사용자와 상호 작용하도록 구성된 하드웨어 및/또는 소프트웨어를 사용하여 구현될 수 있다. 예를 들어, 컴퓨팅 장치는 랩톱(laptop) 컴퓨터와 같은 휴대용 컴퓨팅 장치를 포함할 수 있다. 추가적으로 또는 대안적으로, 컴퓨팅 장치는, PDA(Personal Digital Assistants), 태블릿 PC, 게임 콘솔(game console), 웨어러블 디바이스(wearable device), IoT(internet of things) 디바이스, VR(virtual reality) 디바이스, AR(augmented reality) 디바이스 등을 포함할 수 있으나, 이에 한정되지 않는다. 컴퓨팅 장치는 사용자와 상호 작용하도록 구성된 다른 유형의 장치를 더 포함할 수 있다. 또한, 컴퓨팅 장치는 이동 통신 네트워크 등의 네트워크를 통한 무선 통신에 적합한 휴대용 통신 디바이스(예를 들어, 이동 전화, 스마트 전화, 무선 셀룰러 전화 등) 등을 포함할 수 있다. 컴퓨팅 장치는, 무선 주파수(RF; Radio Frequency), 마이크로파 주파수(MWF; Microwave Frequency) 및/또는 적외선 주파수(IRF; Infrared Ray Frequency)와 같은 무선 통신 기술들 및/또는 프로토콜들을 사용하여 네트워크 서버와 무선으로 통신하도록 구성될 수 있다.
본 발명에서 특정 구조적 및 기능적 세부 사항을 포함하는 다양한 실시예들은 예시적인 것이다. 따라서, 본 발명의 실시예들은 상술된 것으로 한정되지 않으며, 여러 가지 다른 형태로 구현될 수 있다. 또한, 본 발명에서 사용된 용어는 일부 실시예를 설명하기 위한 것이며 실시예를 제한하는 것으로 해석되지 않는다. 예를 들어, 단수형 단어 및 상기는 문맥상 달리 명확하게 나타내지 않는 한 복수형도 포함하는 것으로 해석될 수 있다.
본 발명에서, 달리 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함하여 본 명세서에서 사용되는 모든 용어는 이러한 개념이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 갖는다. 또한, 사전에 정의된 용어와 같이 일반적으로 사용되는 용어들은 관련 기술의 맥락에서의 의미와 일치하는 의미를 갖는 것으로 해석되어야 한다.
본 명세서에서는 본 발명이 일부 실시예들과 관련하여 설명되었지만, 본 발명의 발명이 속하는 기술분야의 통상의 기술자가 이해할 수 있는 본 발명의 범위를 벗어나지 않는 범위에서 다양한 변형 및 변경이 이루어질 수 있다. 또한, 그러한 변형 및 변경은 본 명세서에 첨부된 특허청구의 범위 내에 속하는 것으로 생각되어야 한다.
110, 120, 130: 차량
140, 150: 노변 장치

Claims (8)

  1. 포그 노드(fog node)의 적어도 하나의 프로세서에 의해 수행되는 포그 컴퓨팅 기반의 자율 군집 주행을 위한 태스크 오프로딩 방법으로서,
    복수의 차량으로 구성된 군집의 군집 리더로부터 군집 연산 작업 요청 및 상기 복수의 차량과 연관된 BSM(basic safety message)을 수신하는 단계;
    상기 수신된 군집 연산 작업 요청 및 BSM을 기초로 군집 연산 작업에 대한 태스크 오프로딩이 요구되는지 여부를 판정하는 단계;
    상기 태스크 오프로딩이 요구되는 것으로 판정된 경우, 상기 군집 연산 작업을 분할하여, 분할된 군집 연산 작업의 적어도 일부를 적어도 하나의 다른 포그 노드로 전달하는 단계; 및
    상기 포그 노드 및 상기 적어도 하나의 다른 포그 노드에 의해 수행된 상기 군집 연산 작업의 결과 정보를 상기 군집 리더로 전송하는 단계;
    를 포함하고,
    상기 태스크 오프로딩이 요구되는지 여부를 판정하는 단계는,
    사전 결정된 시간 동안 상기 포그 노드에 의해 상기 군집 연산 작업의 수행이 가능한지 여부를 기초로 상기 군집 연산 작업에 대한 태스크 오프로딩이 요구되는지 여부를 판정하는 단계;
    를 포함하고,
    상기 태스크 오프로딩이 요구되는지 여부를 판정하는 단계는,
    Figure 112022115658486-pat00073
    를 이용하여 상기 태스크 오프로딩이 요구되는지 여부를 판정하는 단계를 포함하고,
    여기서,
    Figure 112022115658486-pat00074
    은 상기 군집 연산 작업의 작업량이고, c는 상기 포그 노드의 연산 능력이고,
    Figure 112022115658486-pat00075
    는 상기 군집 연산 작업이 가능한 최대 시간이고,
    Figure 112022115658486-pat00076
    는 상기 군집 연산 작업의 크기를 나타내고,
    Figure 112022115658486-pat00077
    는 상기 군집 연산 작업 요청과 연관된 대역폭을 나타내고,
    Figure 112022115658486-pat00078
    는 상기 포그 노드와 연관된 작업 큐(queue)에 사전 저장된 작업량을 나타내는, 포그 컴퓨팅 기반의 자율 군집 주행을 위한 태스크 오프로딩 방법.
  2. 삭제
  3. 삭제
  4. 제1항에 있어서,
    상기 태스크 오프로딩이 요구되는 것으로 판정된 경우, 상기 군집 연산 작업의 적어도 일부를 수행하기 위한 다른 포그 노드의 개수를 결정하는 단계;
    를 더 포함하는, 포그 컴퓨팅 기반의 자율 군집 주행을 위한 태스크 오프로딩 방법.
  5. 제1항에 있어서,
    상기 다른 포그 노드의 개수를 결정하는 단계는,
    상기 다른 포그 노드의 태스크 오프로딩 시간의 최댓값을 이용하여 상기 다른 포그 노드의 개수를 결정하는 단계를 포함하고,
    상기 태스크 오프로딩 시간의 최댓값은,
    Figure 112022115658486-pat00079
    에 의해 산출되고,
    여기서,
    Figure 112022115658486-pat00080
    는 상기 다른 포그 노드의 태스크 오프로딩 시간의 최댓값이고,
    Figure 112022115658486-pat00081
    는 상기 포그 노드가 상기 다른 포그 노드로 상기 군집 연산 작업의 적어도 일부를 전달하는데 소요되는 전달 시간이고,
    Figure 112022115658486-pat00082
    는 상기 다른 포그 노드가 상기 군집 연산 작업의 적어도 일부를 수행하는데 소요되는 작업 수행 시간이고,
    Figure 112022115658486-pat00083
    은 시간 보정 변수이고,
    Figure 112022115658486-pat00084
    은 상기 다른 포그 노드가 상기 포그 노드로 상기 군집 연산 작업의 처리 결과를 반환하는데 소요되는 반환 시간인, 포그 컴퓨팅 기반의 자율 군집 주행을 위한 태스크 오프로딩 방법.
  6. 제1항에 있어서,
    상기 포그 노드와 상기 군집 리더는 미리 정해진 주기로 스위칭되는 DSRC(Dedicated Short Range Communication) 채널을 이용하여 통신하며,
    상기 복수의 차량과 연관된 BSM을 수신하는 단계는,
    상기 DSRC 채널에 포함된 CCH(control channel)의 업링크(uplink) 주기에 상기 복수의 차량과 연관된 BSM을 수신하는 단계;
    를 포함하고,
    상기 군집 연산 작업의 결과 정보를 상기 군집 리더로 전송하는 단계는,
    상기 DSRC 채널에 포함된 CCH(control channel)의 다운링크(downlink) 주기에 상기 군집 연산 작업의 결과 정보를 상기 군집 리더로 전송하는 단계;
    를 포함하는, 포그 컴퓨팅 기반의 자율 군집 주행을 위한 태스크 오프로딩 방법.
  7. 제6항에 있어서,
    상기 군집 리더는 상기 군집에 포함된 차량들로부터, 상기 DSRC 채널에 포함된 SCH(service channel)의 업링크 주기에 상기 차량들과 연관된 BSM을 수신하는, 포그 컴퓨팅 기반의 자율 군집 주행을 위한 태스크 오프로딩 방법.
  8. 제1항 및 제4항 내지 제7항 중 어느 한 항에 따른 방법을 컴퓨터에서 실행하기 위해 컴퓨터 판독 가능한 기록 매체에 저장된 컴퓨터 프로그램.
KR1020210134067A 2021-10-08 2021-10-08 포그 컴퓨팅 기반의 자율 군집 주행을 위한 태스크 오프로딩 방법 및 장치 KR102471855B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020210134067A KR102471855B1 (ko) 2021-10-08 2021-10-08 포그 컴퓨팅 기반의 자율 군집 주행을 위한 태스크 오프로딩 방법 및 장치

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210134067A KR102471855B1 (ko) 2021-10-08 2021-10-08 포그 컴퓨팅 기반의 자율 군집 주행을 위한 태스크 오프로딩 방법 및 장치

Publications (1)

Publication Number Publication Date
KR102471855B1 true KR102471855B1 (ko) 2022-11-29

Family

ID=84235361

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210134067A KR102471855B1 (ko) 2021-10-08 2021-10-08 포그 컴퓨팅 기반의 자율 군집 주행을 위한 태스크 오프로딩 방법 및 장치

Country Status (1)

Country Link
KR (1) KR102471855B1 (ko)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018095550A1 (en) * 2016-11-28 2018-05-31 Huawei Technologies Co., Ltd. Transmitter and relay communication devices for d2d communication
KR20200027446A (ko) * 2018-09-04 2020-03-12 폭스바겐 악티엔 게젤샤프트 적어도 2 개의 이동 통신 파트너 간의 통신을 위한 서비스 품질을 예측하기 위한 방법, 이러한 방법의 단계들을 수행하기 위한 장치, 차량, 백엔드 서버 및 컴퓨터 프로그램
KR20210073638A (ko) * 2019-12-10 2021-06-21 엘지전자 주식회사 군집 주행 차량의 제어

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018095550A1 (en) * 2016-11-28 2018-05-31 Huawei Technologies Co., Ltd. Transmitter and relay communication devices for d2d communication
KR20200027446A (ko) * 2018-09-04 2020-03-12 폭스바겐 악티엔 게젤샤프트 적어도 2 개의 이동 통신 파트너 간의 통신을 위한 서비스 품질을 예측하기 위한 방법, 이러한 방법의 단계들을 수행하기 위한 장치, 차량, 백엔드 서버 및 컴퓨터 프로그램
KR20210073638A (ko) * 2019-12-10 2021-06-21 엘지전자 주식회사 군집 주행 차량의 제어

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
박상오, 포그 컴퓨팅 패러다임과 소프트웨어 정의 네트워크를 활용한 자율 군집주행 지원 프레임워크, 과학기술정보통신부(중앙대학교 개인기초연구), 19.9.27.* *

Similar Documents

Publication Publication Date Title
Chen et al. Deep reinforcement learning for computation offloading in mobile edge computing environment
KR102245247B1 (ko) 트리거된 동작을 이용하는 gpu 원격 통신
CN110389816B (zh) 用于资源调度的方法、装置以及计算机可读介质
EP3920615B1 (en) Method to dynamically change the minimum candidate resources ratio in mode 2 resource selection procedure of nr v2x
US11601848B2 (en) Method and apparatus for offloading data in wireless communication system
US12101792B2 (en) Communication method and apparatus, computer-readable medium, and electronic device
CN110430142B (zh) 用于控制流量的方法和装置
KR102350195B1 (ko) 모바일 엣지 컴퓨팅을 활용하는 모바일 증강현실 서비스의 모바일 단말 에너지 최적화 방법 및 시스템
Liu et al. RtDS: real-time distributed strategy for multi-period task offloading in vehicular edge computing environment
CN112527509A (zh) 一种资源分配方法、装置、电子设备及存储介质
US11972184B2 (en) Method and system for designing a robotic system architecture with optimized system latency
Mohanty et al. Dynamic resource allocation in vehicular cloud computing systems using game theoretic based algorithm
Wang et al. Joint optimization of resource allocation and computation offloading based on game coalition in C-V2X
KR102471855B1 (ko) 포그 컴퓨팅 기반의 자율 군집 주행을 위한 태스크 오프로딩 방법 및 장치
CN112418389A (zh) 数据处理方法、装置、电子设备及计算机可读存储介质
Saranya et al. An efficient computational offloading framework using HAA optimization-based deep reinforcement learning in edge-based cloud computing architecture
US10901491B2 (en) Sleep management method and device, and computer storage medium
WO2023246757A1 (zh) 算力服务方法、装置及终端
US10849087B2 (en) Coexistence of WiFi and TDMA communications within an access point in an IoT network
US11895531B2 (en) Method and device for regulating flow of data transmission in a wireless network
CN115904259A (zh) 非易失性存储器标准NVMe指令的处理方法及相关装置
CN114095907A (zh) 蓝牙连接的控制方法、装置及设备
Wang et al. Task offloading for edge computing in industrial Internet with joint data compression and security protection
KR102502769B1 (ko) 지능형 교통 시스템에서 데이터 송수신 방법 및 장치
Wang et al. An energy-efficient multi-stage alternating optimization scheme for UAV-mounted mobile edge computing networks

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant