KR102467132B1 - Method for fault diagnosis of engine emission aftertreatment system - Google Patents

Method for fault diagnosis of engine emission aftertreatment system Download PDF

Info

Publication number
KR102467132B1
KR102467132B1 KR1020200157256A KR20200157256A KR102467132B1 KR 102467132 B1 KR102467132 B1 KR 102467132B1 KR 1020200157256 A KR1020200157256 A KR 1020200157256A KR 20200157256 A KR20200157256 A KR 20200157256A KR 102467132 B1 KR102467132 B1 KR 102467132B1
Authority
KR
South Korea
Prior art keywords
exhaust gas
reaction
catalyst
scr
abnormality
Prior art date
Application number
KR1020200157256A
Other languages
Korean (ko)
Other versions
KR20220070365A (en
Inventor
이종민
임산하
배신영
김연수
Original Assignee
서울대학교산학협력단
광운대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울대학교산학협력단, 광운대학교 산학협력단 filed Critical 서울대학교산학협력단
Priority to KR1020200157256A priority Critical patent/KR102467132B1/en
Publication of KR20220070365A publication Critical patent/KR20220070365A/en
Application granted granted Critical
Publication of KR102467132B1 publication Critical patent/KR102467132B1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • F01N11/002Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity the diagnostic devices measuring or estimating temperature or pressure in, or downstream of the exhaust apparatus
    • F01N11/005Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity the diagnostic devices measuring or estimating temperature or pressure in, or downstream of the exhaust apparatus the temperature or pressure being estimated, e.g. by means of a theoretical model
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/06Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being a temperature sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/07Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas flow rate or velocity meter or sensor, intake flow meters only when exclusively used to determine exhaust gas parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/04Methods of control or diagnosing
    • F01N2900/0406Methods of control or diagnosing using a model with a division of the catalyst or filter in several cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

배기가스 후처리 시스템의 이상 진단 방법이 제공된다. 상기 배기가스 후처리 시스템의 이상 진단 방법은, 촉매로 유입되는 배기가스의 유량, 농도 및 온도를 측정하여 제1 측정값을 구하는 단계, 상기 제1 측정값과 요소수 분사량을 SCR 1차원 모델에 적용하여 상기 촉매의 후단에서 상기 배기가스의 농도 및 온도를 계산하여 모델값을 구하는 단계, 상기 촉매의 후단에서 배출되는 상기 배기가스의 농도 및 온도를 측정하여 제2 측정값을 구하는 단계, 및 상기 모델값과 상기 제2 측정값의 차이를 계산하여 배기가스 후처리 시스템의 이상을 진단하는 단계를 포함한다.A method for diagnosing an abnormality in an exhaust gas aftertreatment system is provided. The abnormal diagnosis method of the exhaust gas post-treatment system may include obtaining a first measurement value by measuring the flow rate, concentration, and temperature of the exhaust gas flowing into the catalyst, and converting the first measurement value and the injection amount of urea water into the SCR one-dimensional model. calculating the concentration and temperature of the exhaust gas at the rear end of the catalyst to obtain a model value, measuring the concentration and temperature of the exhaust gas discharged at the rear end of the catalyst to obtain a second measured value, and and diagnosing an abnormality in an exhaust gas aftertreatment system by calculating a difference between a model value and the second measurement value.

Description

배기가스 후처리 시스템의 이상 진단 방법{METHOD FOR FAULT DIAGNOSIS OF ENGINE EMISSION AFTERTREATMENT SYSTEM}Method for diagnosing abnormalities in exhaust gas post-treatment system {METHOD FOR FAULT DIAGNOSIS OF ENGINE EMISSION AFTERTREATMENT SYSTEM}

본 발명은 배기가스 후처리 시스템의 이상 진단 방법에 관한 것이다.The present invention relates to a method for diagnosing an abnormality in an exhaust gas aftertreatment system.

최근 환경 문제에 관한 이슈로 디젤 엔진에서 배출된 배기 가스에 포함되어 있는 질소 산화물(NOx), 일산화 탄소(CO), 입자상 물질(particle matters) 등을 저감하기 위한 다양한 기술이 개발되고 있다. 일반적으로 엔진과 근접하게 설치되어 비메탄 탄화수소의 변환 기능을 수행하는 DOC(Diesel Oxidation Catalyst), 입자상 물질을 포집하는 DPF(Diesel Particulate Filter), 환원작용을 통해 질소 산화물(NOx)을 정화하는 SCR(Selective Catalytic Reduction) 촉매가 이용되고 있다. 이 가운데 SCR 촉매는 대기 오염물질의 하나인 질소 산화물(NOx)의 제거를 위해 암모니아(NH3)를 환원제로 이용하여 무해한 질소(N2) 및 물(H2O)로 전환하는 기술이다. SCR 촉매는 높은 탈질효율을 나타내고, 운전 및 유지보수가 용이하하여 질소산화물(NOx)을 저감시키는 기술로 널리 사용되고 있다. 그러나 SCR 시스템에 이상이 발생하면 질소산화물 저감 효율이 떨어져 오염물질 배출양이 늘어나는 문제점이 있다. Recently, as an issue related to environmental problems, various technologies for reducing nitrogen oxides (NOx), carbon monoxide (CO), and particle matters included in exhaust gas discharged from diesel engines have been developed. Generally installed close to the engine, DOC (Diesel Oxidation Catalyst), which performs the conversion function of non-methane hydrocarbons, DPF (Diesel Particulate Filter), which collects particulate matter, and SCR (which purifies nitrogen oxides (NOx) through reduction) Selective Catalytic Reduction) catalysts are used. Among them, the SCR catalyst is a technology that converts nitrogen oxides (NOx), one of air pollutants, into harmless nitrogen (N 2 ) and water (H 2 O) by using ammonia (NH 3 ) as a reducing agent. The SCR catalyst exhibits high denitrification efficiency and is widely used as a technology for reducing nitrogen oxides (NOx) because it is easy to operate and maintain. However, if an abnormality occurs in the SCR system, there is a problem in that the reduction efficiency of nitrogen oxides decreases and the amount of pollutants discharged increases.

본 발명은 배기가스 후처리 시스템의 이상을 진단할 수 있는 방법을 제공한다.The present invention provides a method for diagnosing abnormalities in an exhaust gas aftertreatment system.

본 발명의 다른 목적들은 다음의 상세한 설명과 첨부한 도면으로부터 명확해 질 것이다.Other objects of the present invention will become apparent from the following detailed description and accompanying drawings.

본 발명의 실시예들에 따른 배기가스 후처리 시스템의 이상 진단 방법은, 촉매로 유입되는 배기가스의 유량, 농도 및 온도를 측정하여 제1 측정값을 구하는 단계, 상기 제1 측정값과 요소수 분사량을 SCR 1차원 모델에 적용하여 상기 촉매의 후단에서 상기 배기가스의 농도 및 온도를 계산하여 모델값을 구하는 단계, 상기 촉매의 후단에서 배출되는 상기 배기가스의 농도 및 온도를 측정하여 제2 측정값을 구하는 단계, 및 상기 모델값과 상기 제2 측정값의 차이를 계산하여 배기가스 후처리 시스템의 이상을 진단하는 단계를 포함한다.A method for diagnosing an abnormality in an exhaust gas post-treatment system according to embodiments of the present invention includes obtaining a first measurement value by measuring the flow rate, concentration, and temperature of exhaust gas flowing into the catalyst, the first measurement value and the number of elements. Calculating the concentration and temperature of the exhaust gas at the rear end of the catalyst by applying the injection amount to the SCR one-dimensional model to obtain a model value, and measuring the concentration and temperature of the exhaust gas discharged at the rear end of the catalyst to obtain a second measurement. The method includes obtaining a value, and diagnosing an abnormality in an exhaust gas aftertreatment system by calculating a difference between the model value and the second measurement value.

상기 배기가스 후처리 시스템의 이상을 진단하는 단계는, 상기 모델값과 상기 제2 측정값의 차이를 계산하여 레지듀얼을 구하는 단계 및 상기 레지듀얼을 쓰레숄드과 비교하는 단계를 포함할 수 있다.The diagnosing the abnormality of the exhaust gas aftertreatment system may include calculating a difference between the model value and the second measured value to obtain a residual and comparing the residual with a threshold.

상기 SCR 1차원 모델은, 암모니아 저장 반응, 암모니아 산화 반응, 일산화질소 산화 반응, 및 질소산화물 환원 반응(SCR 반응)을 포함할 수 있다.The SCR one-dimensional model may include an ammonia storage reaction, an ammonia oxidation reaction, a nitrogen monoxide oxidation reaction, and a nitrogen oxide reduction reaction (SCR reaction).

상기 SCR 1차원 모델은, 하기 R1 반응 내지 R12 반응을 포함할 수 있다.The SCR one-dimensional model may include the following R1 to R12 reactions.

Figure 112020125281599-pat00001
Figure 112020125281599-pat00001

상기 R1 반응 내지 R12 반응에서, S1 및 S2는 상기 촉매의 활성 사이트를 나타낸다.In the above R1 to R12 reactions, S1 and S2 represent active sites of the catalyst.

상기 SCR 1차원 모델의 지배 방정식은 물질 수지와 에너지 수지로부터 유도될 수 있다.The governing equation of the SCR one-dimensional model can be derived from the material balance and the energy balance.

본 발명의 실시예들에 따르면, 배기가스 후처리 시스템의 이상을 진단할 수 있다. 배기가스 후처리 시스템의 문제점을 파악할 수 있고, 촉매 시스템의 교체 시기를 결정하거나 제어 로직 변경에 활용하여 디젤 자동차의 오염물질 배출을 줄일 수 있다.According to embodiments of the present invention, it is possible to diagnose an abnormality in an exhaust gas aftertreatment system. Problems in the exhaust gas aftertreatment system can be identified, and pollutant emissions from diesel vehicles can be reduced by determining the replacement timing of the catalyst system or using it to change the control logic.

도 1은 요소-SCR의 1차원 모델을 나타낸다.
도 2는 디젤 엔진 차량의 배기가스 후처리 시스템을 나타낸다.
도 3은 본 발명의 일 실시예에 따른 배기가스 후처리 시스템의 이상 진단 방법을 나타낸다.
도 4는 요소수 분사 이상 시나리오 발생 시 나타나는 레지듀얼(Residual) 그래프이다.
도 5는 촉매 이상 시나리오 발생 시 나타나는 레지듀얼(Residual) 그래프이다.
Figure 1 shows a one-dimensional model of element-SCR.
2 shows an exhaust gas aftertreatment system of a diesel engine vehicle.
3 shows a method for diagnosing an abnormality in an exhaust gas post-treatment system according to an embodiment of the present invention.
4 is a residual graph that appears when an abnormal urea injection scenario occurs.
5 is a residual graph that appears when a catalyst failure scenario occurs.

이하, 실시예들을 통하여 본 발명을 상세하게 설명한다. 본 발명의 목적, 특징, 장점은 이하의 실시예들을 통해 쉽게 이해될 것이다. 본 발명은 여기서 설명되는 실시예들에 한정되지 않고, 다른 형태로 구체화될 수도 있다. 여기서 소개되는 실시예들은 개시된 내용이 철저하고 완전해질 수 있도록 그리고 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 제공되는 것이다. 따라서, 이하의 실시예들에 의하여 본 발명이 제한되어서는 안 된다.Hereinafter, the present invention will be described in detail through examples. Objects, features and advantages of the present invention will be easily understood through the following examples. The present invention is not limited to the embodiments described herein and may be embodied in other forms. The embodiments introduced herein are provided so that the disclosed contents may be thorough and complete and the spirit of the present invention may be sufficiently conveyed to those skilled in the art to which the present invention belongs. Therefore, the present invention should not be limited by the following examples.

물질 수지식과 에너지 수지식을 지배방정식으로 삼아 매트랩(MATLAB) 프로그램으로 선택적 환원 촉매(SCR, Selective Catalytic Reduction) 시스템을 모델링한다. 선택적 환원 촉매에서 일어나는 반응은 총 12개로 산정하였으며, 크게 NH3 저장 반응, NH3 산화 반응, NO 산화 반응, SCR 반응으로 세분화된다. 정확성이 검증된 모델을 기반으로, 유전 알고리즘(GA, Genetic Algorithm)과 입자 무리 최적화(PSO, Particle Swarm Optimization)를 이용해 촉매 파라미터를 찾는다. 유전 알고리즘은 자연 선택과 유전자의 개념을 이용한 최적화 기법으로, 매 세대마다 각 개체를 목적 함수에 의해 평가(evaluation)하고, 선택(selection)을 통해 우수한 개체(elite)를 선별하고 나머지 선택되지 않은 개체는 제거된다. 선별된 개체는 교차(crossover)와 변이(mutation)을 통해 다음 세대를 생성하고, 계속해서 평가와 선택, 교차와 변이를 거치며 주어진 목적함수에 더욱 적합한 개체로 진화한다. 입자 무리 최적화의 알고리즘은 물고기나 새와 같은 집단생활을 하는 동물들의 움직임을 본 딴 것이다. 초기에 무작위로 입자들을 생성하고, 각 입자들을 주어진 목적함수에 따라 평가한다. 이때 전역 최적화의 목적 함수는 실제 실험 측정값과 모델 예측값의 차이를 최소화하는 것으로 한다. 단순히 질소산화물 전환 효율을 비교하는 것이 아닌 측정 가능한 모든 물질들(NH3, NO, NO2 등)의 농도를 모두 비교하여 실제 시스템을 잘 모사하는 반응 파라미터를 찾는다. 실제 촉매 평가에 활용하는 Rig 평가 데이터를 활용하여 다양한 실험 조건을 반영할 수 있어 신뢰도가 더욱 높다. SCR 촉매에서 일어나는 반응은 크게 NH3 저장 반응, NH3 산화 반응, NO 산화 반응, SCR 반응으로 나눌 수 있는데, 특정 종류의 반응 파라미터를 찾는데 해당 Rig 평가 데이터를 활용하여 찾는 파라미터 수를 줄이고, 그 정확도를 높일 수 있다.A selective catalytic reduction (SCR) system is modeled with the MATLAB program using the material balance and energy balance equations as the governing equations. A total of 12 reactions occurred in the selective reduction catalyst were calculated, and they were largely subdivided into NH 3 storage reaction, NH 3 oxidation reaction, NO oxidation reaction, and SCR reaction. Based on the model whose accuracy has been verified, the catalytic parameters are found using a genetic algorithm (GA, Genetic Algorithm) and particle swarm optimization (PSO, Particle Swarm Optimization). The genetic algorithm is an optimization technique using the concepts of natural selection and genes. Each individual is evaluated by an objective function in each generation, and elite individuals are selected through selection, and the remaining unselected individuals are evaluated. is removed. The selected individual generates the next generation through crossover and mutation, and evolves into an individual more suitable for the given objective function through continuous evaluation, selection, crossover, and mutation. The particle swarm optimization algorithm is modeled after the movements of animals that live in groups such as fish and birds. Initially, particles are randomly generated, and each particle is evaluated according to a given objective function. At this time, the objective function of the global optimization is to minimize the difference between the actual experimental measurement value and the model predicted value. Rather than simply comparing the nitrogen oxide conversion efficiency, the concentrations of all measurable substances (NH 3 , NO, NO 2 , etc.) are compared to find reaction parameters that well simulate the actual system. Reliability is higher because it can reflect various experimental conditions by utilizing Rig evaluation data used for actual catalyst evaluation. The reaction occurring in the SCR catalyst can be largely divided into NH 3 storage reaction, NH 3 oxidation reaction, NO oxidation reaction, and SCR reaction. In order to find a specific type of reaction parameter, the number of parameters to be found is reduced by using the Rig evaluation data, and the accuracy of the reaction parameter is reduced. can increase

[SCR 1차원 모델][SCR 1D model]

도 1은 요소-SCR의 1차원 모델을 나타낸다. SCR 촉매 시스템은 여러 채널이 있는 원통형 모노리스이다. 단일 채널에 대한 1차원 모델은 요소-SCR 시스템을 시뮬레이션하는 데 사용된다. 이 모델링 접근 방식은 모델의 정확도를 거의 손상시키지 않으면서 2D 또는 3D 모델보다 계산 시간이 훨씬 적다. Figure 1 shows a one-dimensional model of element-SCR. The SCR catalyst system is a cylindrical monolith with several channels. A one-dimensional model for a single channel is used to simulate the element-SCR system. This modeling approach takes much less computational time than 2D or 3D models with little loss of model accuracy.

도 1을 참조하면, 디젤 엔진의 벌크 가스는 요소 용액이 주입된 모듈의 단일 채널로 들어간다. 벌크 가스가 워시코트의 기공으로 확산된 후 반응물은 촉매 표면에 흡착된다. 화학 종은 일련의 반응을 거쳐 채널 밖으로 배출된다. 미분 반응기 부피를 기반으로 하는 SCR 1차원 모델의 지배 방정식은 물질 수지와 에너지 수지로부터 유도된다.Referring to Figure 1, the bulk gas of the diesel engine enters a single channel of the module into which the urea solution is injected. After the bulk gas diffuses into the pores of the washcoat, the reactants are adsorbed on the catalyst surface. Chemical species are discharged out of the channel through a series of reactions. The governing equations of the SCR one-dimensional model based on the differential reactor volume are derived from the mass balance and energy balance.

물질 수지식mass balance

[식 1] Bulk Gas :[Equation 1] Bulk Gas:

Figure 112020125281599-pat00002
Figure 112020125281599-pat00002

[식 2] Surface: [Equation 2] Surface:

Figure 112020125281599-pat00003
Figure 112020125281599-pat00003

[식 3] Intermediate:[Equation 3] Intermediate:

Figure 112020125281599-pat00004
Figure 112020125281599-pat00004

에너지 수지식energy balance

[식 4] Bulk Gas:[Equation 4] Bulk Gas:

Figure 112020125281599-pat00005
Figure 112020125281599-pat00005

[식 5] Surface:[Equation 5] Surface:

Figure 112020125281599-pat00006
Figure 112020125281599-pat00006

표 1은 화학 반응과 반응 속도식을 보여준다. 탈착 반응을 제외한 반응 속도 상수 ki는 식 6의 아레니우스(Arrhenius) 방정식을 따른다.Table 1 shows chemical reactions and reaction rate equations. The reaction rate constant k i , excluding the desorption reaction, follows the Arrhenius equation in Equation 6.

[식 6][Equation 6]

Figure 112020125281599-pat00007
Figure 112020125281599-pat00007

[표 1][Table 1]

Figure 112020125281599-pat00008
Figure 112020125281599-pat00008

R1 반응에서 R4 반응까지는 암모니아 저장 반응으로 촉매의 두 활성 사이트에서 암모니아가 흡착 및 탈착된다. 암모니아는 촉매에 흡착될 뿐만 아니라 고온의 배기가스에 의해 산화된다. 반응 속도는 각 활성 사이트의 암모니아 저장 용량 ψ에 비례한다. 식 7에 나타난 바와 같이 암모니아 탈착 공정의 경우 커버리지 분율 θ는 활성화 에너지에 영향을 준다.Reaction R1 to R4 is an ammonia storage reaction, in which ammonia is adsorbed and desorbed from the two active sites of the catalyst. Ammonia is adsorbed on the catalyst as well as oxidized by the hot exhaust gas. The reaction rate is proportional to the ammonia storage capacity ψ of each active site. As shown in Equation 7, in the case of the ammonia desorption process, the coverage fraction θ affects the activation energy.

[식 7][Equation 7]

Figure 112020125281599-pat00009
Figure 112020125281599-pat00009

R5 반응에서 R7 반응까지는 암모니아 산화 반응으로 암모니아가 산화되어 질소 산화물을 생성한다. R8 반응은 일산화질소 산화 반응으로 일산화질소 산화와 이산화질소 환원 사이의 평형 반응이다. 식 8의 Kp는 R8 반응에 대한 평형 상수이다.From the R5 reaction to the R7 reaction, ammonia is oxidized through the ammonia oxidation reaction to produce nitrogen oxide. The R8 reaction is a nitric oxide oxidation reaction, which is an equilibrium reaction between nitric oxide oxidation and nitrogen dioxide reduction. Kp in Equation 8 is the equilibrium constant for the R8 reaction.

[식 8][Equation 8]

Figure 112020125281599-pat00010
Figure 112020125281599-pat00010

R9 반응에서 R12 반응까지는 질소산화물 환원 반응(SCR 반응)으로 질소 산화물은 흡착된 암모니아에 의해 제거된다. SCR 반응에는 표준 SCR, 고속 SCR 및 NO2 SCR의 세 가지 유형이 있다. R9 반응은 NO만 제거하는 표준 SCR이고, R10 반응은 NO와 NO2를 모두 제거하는 고속 SCR이며, R11 반응 및 R12 반응은 NO2 만 사용하는 NO2 SCR이다. 모든 반응은 지배 방정식의 식 1 내지 식 5에 ri로 삽입된다. 본 발명에서 추정되는 매개 변수는 12개의 반응에 대하여 A와 Ea이고, 두 활성 사이트에 대하여 γ와 ψ이다.From the R9 reaction to the R12 reaction, the nitrogen oxide is removed by the adsorbed ammonia through the nitrogen oxide reduction reaction (SCR reaction). There are three types of SCR reactions: standard SCR, fast SCR and NO 2 SCR. Reaction R9 is a standard SCR that removes only NO, reaction R10 is a high-speed SCR that removes both NO and NO 2 , and reactions R11 and R12 are NO 2 SCRs using only NO 2 . All reactions are inserted as r i into equations 1 to 5 of the governing equations. The parameters estimated in the present invention are A and E a for 12 reactions, and γ and ψ for two active sites.

상기 식과 반응 속도식의 기호에 대한 설명은 다음과 같다. An explanation of the symbols of the above equation and the reaction rate equation is as follows.

Figure 112020125281599-pat00011
= Gas layer fraction of cell (gas layer volume)/(gas + washcoat layer volume)
Figure 112020125281599-pat00011
= Gas layer fraction of cell (gas layer volume)/(gas + washcoat layer volume)

Figure 112020125281599-pat00012
= Washcoat layer fraction of solid layer (washcoat layer volume)/(washcoat + substrate layer volume)
Figure 112020125281599-pat00012
= Washcoat layer fraction of solid layer (washcoat layer volume)/(washcoat + substrate layer volume)

Figure 112020125281599-pat00013
= Washcoat porosity
Figure 112020125281599-pat00013
= Washcoat porosity

Figure 112020125281599-pat00014
= Mole fraction of species j in gas phase
Figure 112020125281599-pat00014
= Mole fraction of species j in gas phase

Figure 112020125281599-pat00015
= Mole fraction of species j in washcoat phase
Figure 112020125281599-pat00015
= Mole fraction of species j in washcoat phase

Figure 112020125281599-pat00016
= Bulk gas velocity [
Figure 112020125281599-pat00017
]
Figure 112020125281599-pat00016
= Bulk gas velocity [
Figure 112020125281599-pat00017
]

Figure 112020125281599-pat00018
= Mass transfer coefficient of species j [
Figure 112020125281599-pat00019
]
Figure 112020125281599-pat00018
= Mass transfer coefficient of species j [
Figure 112020125281599-pat00019
]

Figure 112020125281599-pat00020
= Geometric surface area to catalyst volume ratio [
Figure 112020125281599-pat00021
]
Figure 112020125281599-pat00020
= Geometric surface area to catalyst volume ratio [
Figure 112020125281599-pat00021
]

Figure 112020125281599-pat00022
= Temperature of monolith [
Figure 112020125281599-pat00023
]
Figure 112020125281599-pat00022
=Temperature of monolith [
Figure 112020125281599-pat00023
]

Figure 112020125281599-pat00024
= Temperature of bulk gas [
Figure 112020125281599-pat00025
]
Figure 112020125281599-pat00024
= Temperature of bulk gas [
Figure 112020125281599-pat00025
]

Figure 112020125281599-pat00026
= Gas constant, [
Figure 112020125281599-pat00027
]
Figure 112020125281599-pat00026
= Gas constant, [
Figure 112020125281599-pat00027
]

Figure 112020125281599-pat00028
= Reaction coefficient of species j in ith reaction
Figure 112020125281599-pat00028
= Reaction coefficient of species j in ith reaction

Figure 112020125281599-pat00029
= Reaction rate of ith reaction [
Figure 112020125281599-pat00030
]
Figure 112020125281599-pat00029
= Reaction rate of ith reaction [
Figure 112020125281599-pat00030
]

Figure 112020125281599-pat00031
= Coverage fraction of kth site
Figure 112020125281599-pat00031
= coverage fraction of kth site

Figure 112020125281599-pat00032
= Storage capacity of kth site, mole of active site per unit reactor volume [
Figure 112020125281599-pat00033
]
Figure 112020125281599-pat00032
= Storage capacity of kth site, mole of active site per unit reactor volume [
Figure 112020125281599-pat00033
]

Figure 112020125281599-pat00034
= Gas density [
Figure 112020125281599-pat00035
]
Figure 112020125281599-pat00034
= Gas density [
Figure 112020125281599-pat00035
]

Figure 112020125281599-pat00036
= Heat capacity of gas [
Figure 112020125281599-pat00037
]
Figure 112020125281599-pat00036
= Heat capacity of gas [
Figure 112020125281599-pat00037
]

Figure 112020125281599-pat00038
= Overall heat transfer coefficient between bulk gas and surface gas [
Figure 112020125281599-pat00039
]
Figure 112020125281599-pat00038
= Overall heat transfer coefficient between bulk gas and surface gas [
Figure 112020125281599-pat00039
]

Figure 112020125281599-pat00040
= Heat capacity of monolith [
Figure 112020125281599-pat00041
]
Figure 112020125281599-pat00040
= Heat capacity of monolith [
Figure 112020125281599-pat00041
]

Figure 112020125281599-pat00042
= Enthalpy of formation of species j [
Figure 112020125281599-pat00043
]
Figure 112020125281599-pat00042
= Enthalpy of formation of species j [
Figure 112020125281599-pat00043
]

Figure 112020125281599-pat00044
= Equilibrium constant
Figure 112020125281599-pat00044
= equilibrium constant

Figure 112020125281599-pat00045
= Inhibition factor
Figure 112020125281599-pat00045
= inhibition factor

Figure 112020125281599-pat00046
= Reaction rate constant of ith reaction
Figure 112020125281599-pat00046
= reaction rate constant of ith reaction

Figure 112020125281599-pat00047
= Pre-exponential factor of ith reaction
Figure 112020125281599-pat00047
= Pre-exponential factor of ith reaction

Figure 112020125281599-pat00048
= Activation energy of ith reaction
Figure 112020125281599-pat00048
= Activation energy of ith reaction

Figure 112020125281599-pat00049
= Parameter for surface coverage dependence for kth site
Figure 112020125281599-pat00049
= Parameter for surface coverage dependence for kth site

SCR 1차원 모델은 다음과 같은 가정이 필요하다.The SCR one-dimensional model requires the following assumptions.

- 단일 채널의 모양과 크기가 균일하고 채널 간의 가스 분포가 균일함- The shape and size of a single channel are uniform and the gas distribution between channels is uniform

- 압력 강하는 무시할 수 있음- Pressure drop is negligible

- 방사형 기울기가 없는 플러그 흐름임- Plug flow with no radial gradient

- 가스는 비압축성이므로 밀도가 일정하고 축 방향의 가스 속도가 일정함- Gas is incompressible, so the density is constant and the gas velocity in the axial direction is constant

- 엔탈피 변화는 오로지 반응에만 기인함- Enthalpy change is due solely to the reaction

- 복사열에 의한 열전달은 미미하고 워시코트 기공의 가스 온도는 워시코트와 동일함- Heat transfer by radiant heat is insignificant and the gas temperature of the pores of the washcoat is the same as that of the washcoat

- 전도 기간은 생략됨- The conduction period is omitted

- 촉매 모듈과 외부 공기 사이의 대류로 인한 열 전달은 생략됨- Heat transfer due to convection between the catalyst module and the outside air is omitted

[배기가스 후처리 시스템 이상 진단][diagnosis of exhaust gas post-processing system abnormalities]

본 발명은 SCR 1차원 모델을 이용하여 촉매 시스템의 이상을 진단한다. 제어기가 요소 분사량을 결정하여 촉매 앞단의 분사부로 요소수를 분사하면, 분사된 요소수는 배기가스의 열로 인해 암모니아로 변환된다. 이후 암모니아는 암모니아 저장 반응에 의해 촉매에 흡착되는데, 배기가스의 높은 온도로 인해 암모니아 산화 반응이 일어나 산화되어 소모되기도 한다. 촉매로 들어온 배기가스 중 일산화질소와 이산화질소는 흡착된 암모니아와 반응하여 질소로 한원된다. 본 발명의 이상 진단 방법에서는 이러한 일련의 반응식을 포함하는 가상의 SCR 1차원 모델을 기반으로 모델값을 구하고, 이 모델값과 센서로 측정된 실제 측정값의 차이를 통해 촉매 시스템의 이상을 진단한다. In the present invention, an abnormality in a catalyst system is diagnosed using a one-dimensional SCR model. When the controller determines the amount of urea injection and injects the urea solution to the injection unit in front of the catalyst, the injected urea solution is converted into ammonia due to the heat of the exhaust gas. Thereafter, ammonia is adsorbed on the catalyst by an ammonia storage reaction, and due to the high temperature of the exhaust gas, an ammonia oxidation reaction occurs and is oxidized and consumed. Nitrogen monoxide and nitrogen dioxide in the exhaust gas entering the catalyst react with the adsorbed ammonia and are reduced to nitrogen. In the abnormal diagnosis method of the present invention, a model value is obtained based on a virtual SCR one-dimensional model including a series of reaction equations, and the abnormality of the catalyst system is diagnosed through the difference between the model value and the actual measurement value measured by the sensor. .

도 2는 디젤 엔진 차량의 배기가스 후처리 시스템을 나타낸다.2 shows an exhaust gas aftertreatment system of a diesel engine vehicle.

도 2를 참조하면, 배기가스 후처리 시스템은 엔진과 근접하게 설치되어 비메탄 탄화수소의 변환 기능을 수행하는 DOC(Diesel Oxidation Catalyst), 입자상 물질을 포집하는 DPF(Diesel Particulate Filter), 환원 작용을 통해 질소 산화물(NOx)을 정화하는 SCR(Selective Catalytic Reduction) 촉매로 구성된다. 본 발명의 실시예들에 따른 배기가스 후처리 시스템의 이상 진단 방법은 SCR 촉매로 들어가는 배기가스의 유량, 농도, 및 온도를 측정하고 이를 SCR 1차원 모델에 적용하여 계산된 모델값을 기반으로 촉매 시스템의 이상을 진단한다.Referring to FIG. 2, the exhaust gas aftertreatment system is installed close to the engine and performs a conversion function of non-methane hydrocarbons through a DOC (Diesel Oxidation Catalyst), a DPF (Diesel Particulate Filter) that collects particulate matter, and a reduction action. It consists of a SCR (Selective Catalytic Reduction) catalyst that purifies nitrogen oxides (NOx). A method for diagnosing an abnormality in an exhaust gas post-treatment system according to embodiments of the present invention measures the flow rate, concentration, and temperature of exhaust gas entering the SCR catalyst and applies it to the SCR one-dimensional model, based on the calculated model value. Diagnose system errors.

도 3은 본 발명의 일 실시예에 따른 배기가스 후처리 시스템의 이상 진단 방법을 나타낸다. 상기 배기가스 후처리 시스템의 이상 진단 방법은 촉매의 특성을 반영한 1차원 모델을 이용한다. 3 shows a method for diagnosing an abnormality in an exhaust gas post-treatment system according to an embodiment of the present invention. The method for diagnosing an abnormality in the exhaust gas aftertreatment system uses a one-dimensional model reflecting characteristics of a catalyst.

도 3을 참조하면, 촉매 전단의 센서를 이용하여 촉매 전단으로 유입되는 배기가스의 유량, 농도 및 온도를 측정하여 제1 측정값을 구한다. 상기 제1 측정값과 요소수 분사량을 SCR 1차원 모델에 적용하여 촉매 후단에서 배기가스의 농도 및 온도를 계산하여 모델값을 구한다. 촉매 후단의 선세를 이용하여 촉매 후단에서 배출되는 배기가스의 농도 및 온도를 측정하여 제2 측정값을 구한다. 상기 모델값과 상기 제2 측정값의 차이를 계산하고, 그 값을 레지듀얼(Residual)로 정의한다. 상기 레지듀얼(Residual)이 쓰레숄드(Threshold) 보다 커지면 촉매 시스템에 이상이 있는 것으로 판단할 수 있다. 쓰레숄드(Threshold)는 배기가스 후처리 시스템에 이상이 없는 것으로 볼 수 있는 한계 값을 나타내며 미리 정해진다. Referring to FIG. 3 , a first measurement value is obtained by measuring the flow rate, concentration, and temperature of the exhaust gas flowing into the front of the catalyst using a sensor in front of the catalyst. A model value is obtained by applying the first measured value and the injection amount of urea water to the SCR one-dimensional model to calculate the concentration and temperature of the exhaust gas at the rear end of the catalyst. A second measured value is obtained by measuring the concentration and temperature of the exhaust gas discharged from the rear end of the catalyst using the line direction at the rear end of the catalyst. A difference between the model value and the second measurement value is calculated, and the value is defined as a residual. If the residual is greater than the threshold, it can be determined that there is an abnormality in the catalyst system. The threshold indicates a limit value at which the exhaust gas aftertreatment system can be considered to be free of abnormalities and is predetermined.

선택적 환원 촉매(Selective Catalytic Reduction, SCR)의 이상 시나리오로는 요소수 분사 이상과 촉매 이상이 있다. 요소수 분사기 자체에 문제가 생기거나 분사구 입구가 좁아져 요소수가 제어 명령보다 적게 분사될 수 있다. 또, 배기가스 내 황 성분에 의해 촉매가 피독되기도 하며, 배기가스의 열에 의해 촉매 기능이 떨어지기도 한다. 이때 촉매의 활성 사이트(active site)가 줄어들어 암모니아 저장 능력이 떨어지게 되며, 배기가스 정화 능력이 저하된다. The abnormal scenarios of the Selective Catalytic Reduction (SCR) include urea water injection abnormality and catalyst abnormality. A problem may occur in the urea water injector itself or the inlet of the injection hole may be narrowed, so that less urea water may be injected than the control command. In addition, the catalyst may be poisoned by the sulfur component in the exhaust gas, and the catalyst function may be deteriorated due to the heat of the exhaust gas. At this time, the active site of the catalyst is reduced, and the ammonia storage capacity is lowered, and the exhaust gas purification capacity is lowered.

도 4는 요소수 분사 이상 시나리오 발생 시 나타나는 레지듀얼(Residual) 그래프이고, 도 5는 촉매 이상 시나리오 발생 시 나타나는 레지듀얼(Residual) 그래프이다. 시뮬레이션 실행 후 10분(빨간 점선)에 이상을 발생시켰으며, 검은 점선은 쓰레숄드(Threshold)를 나타낸다.4 is a residual graph appearing when an abnormal urea water injection scenario occurs, and FIG. 5 is a residual graph appearing when an abnormal catalyst scenario occurs. An anomaly occurred 10 minutes after the simulation run (red dotted line), and the black dotted line represents the threshold.

도 4를 참조하면, 이상 발생 이후 질소산화물 농도가 점차 증가하여 레지듀얼(Residual)이 쓰레숄드(Threshold)를 넘어가지만, 암모니아 농도는 큰 변화 없이 약간 줄어든다. 요소수 분사기 이상으로 요소수 분사량이 작아지면, 그에 따라 암모니아의 양이 줄어들게 되고, 질소산화물의 환원반응이 감소하여 질소산화물 배출양이 증가한다. Referring to FIG. 4 , after the occurrence of the abnormality, the nitrogen oxide concentration gradually increases and the residual exceeds the threshold, but the ammonia concentration slightly decreases without a significant change. When the injection amount of urea water is smaller than that of the urea water injector, the amount of ammonia is reduced accordingly, and the reduction reaction of nitrogen oxide is reduced, thereby increasing the amount of nitrogen oxide discharged.

도 5를 참조하면, 이상 발생 직후 질소산화물 농도와 암모니아 농도 모두 높게 나타난다. SCR의 암모니아 저장 능력이 감소하면, 촉매에 흡착될 수 있는 암모니아 양이 줄어들고, 그에 따라 질소산화물의 환원반응이 감소하여 질소산화물 배출양이 증가한다. 또, 요소수에서 변환된 암모니아가 저장되지 않고 그대로 배출되어 촉매 후단 암모니아 배출양 역시 증가한다. Referring to FIG. 5, immediately after the occurrence of the abnormality, both the nitrogen oxide concentration and the ammonia concentration appear high. When the ammonia storage capacity of the SCR decreases, the amount of ammonia that can be adsorbed to the catalyst decreases, and accordingly, the reduction reaction of nitrogen oxide decreases, increasing the amount of nitrogen oxide emission. In addition, since ammonia converted from urea water is not stored and discharged as it is, the amount of ammonia discharged after the catalyst also increases.

이와 같이, SCR 1차원 모델을 이용하여 계산된 모델값과 센서로 측정된 측정값을 비교하여 이상을 검출하고 배기가스 후처리 시스템의 어느 부분에서 이상이 발생했는지 진단할 수 있다.In this way, by comparing the model value calculated using the SCR one-dimensional model with the measurement value measured by the sensor, it is possible to detect an abnormality and diagnose which part of the exhaust gas aftertreatment system has occurred.

이제까지 본 발명에 대한 구체적인 실시예들을 살펴보았다. 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 실시예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.So far, we have looked at specific embodiments of the present invention. Those skilled in the art to which the present invention pertains will be able to understand that the present invention can be implemented in a modified form without departing from the essential characteristics of the present invention. Therefore, the disclosed embodiments should be considered from an illustrative rather than a limiting point of view. The scope of the present invention is shown in the claims rather than the foregoing description, and all differences within the equivalent scope will be construed as being included in the present invention.

Claims (5)

촉매로 유입되는 배기가스의 유량, 농도 및 온도를 측정하여 제1 측정값을 구하는 단계;
상기 제1 측정값과 요소수 분사량을 SCR 1차원 모델에 적용하여 상기 촉매의 후단에서 상기 배기가스의 농도 및 온도를 계산하여 모델값을 구하는 단계;
상기 촉매의 후단에서 배출되는 상기 배기가스의 농도 및 온도를 측정하여 제2 측정값을 구하는 단계; 및
상기 모델값과 상기 제2 측정값의 차이를 계산하여 배기가스 후처리 시스템의 이상을 진단하는 단계를 포함하고,
상기 SCR 1차원 모델은,
하기 R1 반응 내지 R12 반응을 포함하는 것을 특징으로 하는 배기가스 후처리 시스템의 이상 진단 방법.
Figure 112022056558625-pat00056

(상기 R1 반응 내지 R12 반응에서, S1 및 S2는 상기 촉매의 활성 사이트를 나타냄)
Obtaining a first measured value by measuring the flow rate, concentration and temperature of the exhaust gas flowing into the catalyst;
calculating the concentration and temperature of the exhaust gas at a rear end of the catalyst by applying the first measurement value and the injection amount of urea water to a one-dimensional SCR model to obtain a model value;
obtaining a second measured value by measuring the concentration and temperature of the exhaust gas discharged from the rear end of the catalyst; and
Diagnosing an abnormality in an exhaust gas aftertreatment system by calculating a difference between the model value and the second measured value;
The SCR one-dimensional model,
A method for diagnosing an abnormality in an exhaust gas aftertreatment system, comprising the following R1 to R12 reactions.
Figure 112022056558625-pat00056

(In the above R1 reaction to R12 reaction, S1 and S2 represent the active site of the catalyst)
제 1 항에 있어서,
상기 배기가스 후처리 시스템의 이상을 진단하는 단계는,
상기 모델값과 상기 제2 측정값의 차이를 계산하여 레지듀얼을 구하는 단계 및
상기 레지듀얼을 쓰레숄드과 비교하는 단계를 포함하는 것을 특징으로 하는 배기가스 후처리 시스템의 이상 진단 방법.
According to claim 1,
The step of diagnosing the abnormality of the exhaust gas post-treatment system,
obtaining a residual by calculating a difference between the model value and the second measured value; and
A method for diagnosing an abnormality in an exhaust gas aftertreatment system, comprising the step of comparing the residual with a threshold.
제 1 항에 있어서,
상기 SCR 1차원 모델은,
암모니아 저장 반응, 암모니아 산화 반응, 일산화질소 산화 반응, 및 질소산화물 환원 반응(SCR 반응)을 포함하는 것을 특징으로 하는 배기가스 후처리 시스템의 이상 진단 방법.
According to claim 1,
The SCR one-dimensional model,
A method for diagnosing an abnormality in an exhaust gas aftertreatment system comprising an ammonia storage reaction, an ammonia oxidation reaction, a nitrogen monoxide oxidation reaction, and a nitrogen oxide reduction reaction (SCR reaction).
삭제delete 제 1 항에 있어서,
상기 SCR 1차원 모델의 지배 방정식은 물질 수지와 에너지 수지로부터 유도되는 것을 특징으로 하는 배기가스 후처리 시스템의 이상 진단 방법.
According to claim 1,
The method for diagnosing abnormality in an exhaust gas aftertreatment system, characterized in that the governing equation of the SCR one-dimensional model is derived from the material balance and the energy balance.
KR1020200157256A 2020-11-22 2020-11-22 Method for fault diagnosis of engine emission aftertreatment system KR102467132B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200157256A KR102467132B1 (en) 2020-11-22 2020-11-22 Method for fault diagnosis of engine emission aftertreatment system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200157256A KR102467132B1 (en) 2020-11-22 2020-11-22 Method for fault diagnosis of engine emission aftertreatment system

Publications (2)

Publication Number Publication Date
KR20220070365A KR20220070365A (en) 2022-05-31
KR102467132B1 true KR102467132B1 (en) 2022-11-15

Family

ID=81779594

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200157256A KR102467132B1 (en) 2020-11-22 2020-11-22 Method for fault diagnosis of engine emission aftertreatment system

Country Status (1)

Country Link
KR (1) KR102467132B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240104771A (en) 2022-12-28 2024-07-05 (주) 포원시스템 Monitoring and control system for selective catalyst reduction

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112420133B (en) * 2020-11-19 2024-01-26 华北电力大学 Modeling method and system for SCR denitration system of thermal power generating unit

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10156175B1 (en) * 2018-02-15 2018-12-18 GM Global Technology Operations LLC Method and system for rationalizing a delta pressure sensor for a gasoline particulate filter in a vehicle propulsion system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101542976B1 (en) * 2013-12-23 2015-08-07 현대자동차 주식회사 Method of determining correcting logic for reacting model of selective catalytic reduction catalyst, method of correcting parameters of reacting model of selective catalytic reduction catalyst and exhaust system using the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10156175B1 (en) * 2018-02-15 2018-12-18 GM Global Technology Operations LLC Method and system for rationalizing a delta pressure sensor for a gasoline particulate filter in a vehicle propulsion system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240104771A (en) 2022-12-28 2024-07-05 (주) 포원시스템 Monitoring and control system for selective catalyst reduction

Also Published As

Publication number Publication date
KR20220070365A (en) 2022-05-31

Similar Documents

Publication Publication Date Title
EP2126306B1 (en) On-board-diagnosis method for an exhaust aftertreatment system and on-board-diagnosis system for an exhaust aftertreatment system
US10060845B2 (en) Systems and methods for reducing secondary emissions from catalyst components
US10621291B2 (en) Approach for aftertreatment system modeling and model identification
CN106014568A (en) Systems and methods for monitoring the health of a selective catalytic reduction catalyst
CN110821621B (en) Method for monitoring an SCR catalyst
KR102467132B1 (en) Method for fault diagnosis of engine emission aftertreatment system
US9616387B2 (en) Exhaust gas treatment apparatus functionality check
WO2017023766A1 (en) Sensor configuration for aftertreatment system including scr on filter
Lee et al. Evaluation of Cu-based SCR/DPF technology for diesel exhaust emission control
CN110177924B (en) RF sensor based architecture
WO2021183322A1 (en) Controller and method for controlling operation of an aftertreatment system based on short-term and long-term cumulative degradation estimates
Pla et al. Model-based simultaneous diagnosis of ammonia injection failure and catalyst ageing in deNOx engine after-treatment systems
US9228468B2 (en) Targeted regeneration of a catalyst in an aftertreatment system
Haga et al. Optimized NH3 storage control for next generation urea-SCR system
US9523974B2 (en) Method of controlling operation of an exhaust fluid treatment apparatus
Beatrice et al. Emission reduction technologies for the future low emission rail diesel engines: EGR vs SCR
Asadzadeh et al. Model-based fault diagnosis of selective catalytic reduction for a smart cogeneration plant running on fast pyrolysis bio-oil
JP5862497B2 (en) Catalyst deterioration judgment device
Surenahalli et al. A Kalman filter estimator for a diesel oxidation catalyst during active regeneration of a CPF
Lim et al. Model-based fault detecting strategy of urea-selective catalytic reduction (SCR) for diesel vehicles
Piqueras et al. Control-Oriented Reduced-Order Modelling of Conversion Efficiency in Dual-Layer Washcoat Catalysts With Accumulation and Oxidation Functions
KR102506271B1 (en) SELECTIVE CATALYTIC REDUCTION SYSTEM AND NOx REDUCTION METHOD
Nagar et al. Real time implementation of DOC-DPF models on a production-intent ECU for controls and diagnostics of a PM emission control system
Blakeman et al. Optimization of an SCR Catalyst System to Meet EUIV Heavy Duty Diesel Legislation
McKinley et al. A switched, controls-oriented SCR catalyst model using on-line eigenvalue estimation

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant