KR102466543B1 - Method for preparing turanose - Google Patents

Method for preparing turanose Download PDF

Info

Publication number
KR102466543B1
KR102466543B1 KR1020180129298A KR20180129298A KR102466543B1 KR 102466543 B1 KR102466543 B1 KR 102466543B1 KR 1020180129298 A KR1020180129298 A KR 1020180129298A KR 20180129298 A KR20180129298 A KR 20180129298A KR 102466543 B1 KR102466543 B1 KR 102466543B1
Authority
KR
South Korea
Prior art keywords
leu
asp
ala
arg
gly
Prior art date
Application number
KR1020180129298A
Other languages
Korean (ko)
Other versions
KR20200047176A (en
Inventor
류경헌
박지원
박성원
최은수
배재훈
유상호
Original Assignee
주식회사 삼양사
세종대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 삼양사, 세종대학교산학협력단 filed Critical 주식회사 삼양사
Priority to KR1020180129298A priority Critical patent/KR102466543B1/en
Publication of KR20200047176A publication Critical patent/KR20200047176A/en
Application granted granted Critical
Publication of KR102466543B1 publication Critical patent/KR102466543B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/12Disaccharides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/14Preparation of compounds containing saccharide radicals produced by the action of a carbohydrase (EC 3.2.x), e.g. by alpha-amylase, e.g. by cellulase, hemicellulase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y204/00Glycosyltransferases (2.4)
    • C12Y204/01Hexosyltransferases (2.4.1)
    • C12Y204/01004Amylosucrase (2.4.1.4)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01003Glucan 1,4-alpha-glucosidase (3.2.1.3), i.e. glucoamylase

Landscapes

  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biotechnology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

본 발명은 투라노스 생산 효소 및 이를 이용하여 투라노스를 효율적으로 생산하는 방법에 관한 것이다.The present invention relates to an enzyme for producing turanose and a method for efficiently producing turanose using the same.

Description

투라노스의 제조방법{Method for preparing turanose}Method for preparing turanose {Method for preparing turanose}

본 발명은 투라노스 생산 효소 및 이를 이용하여 투라노스를 효율적으로 생산하는 방법에 관한 것이다.The present invention relates to an enzyme for producing turanose and a method for efficiently producing turanose using the same.

투라노스는 자연적으로 벌에서 생기는 환원성 이당류로서 설탕 단맛의 약 50%에 해당하는 단맛을 나타내는 설탕의 유사체이며 3-O-α-D-글루코피라노실-D-프락토즈의 화학적 구조를 지닌다. 투라노스는 치아 우식 유발 미생물에 의해 발효되지 않기 때문에 충치 예방에 도움이 되며, 칼로리 없는 감미료로서 사용될 수 있으며, 따라서 음식, 화장품 및 약학 산업계에서 중요한 역할을 수행할 수 있다. Turanose is a reducing disaccharide naturally occurring in bees, which is an analog of sugar with a sweetness equivalent to about 50% of that of sugar, and has the chemical structure of 3-O-α-D-glucopyranosyl-D-fructose. Since turanose is not fermented by dental caries-causing microorganisms, it helps prevent tooth decay and can be used as a calorie-free sweetener, thus playing an important role in the food, cosmetic and pharmaceutical industries.

한국특허 제10-11772184호는 아밀로수크라제를 이용하여 설탕과 프럭토스를 기질로 투라노스를 제조하는 방법을 포함한다. 그러나, 기존 효소들은 고열에서 활성을 나타내지 못하거나 유지하지 못하여, 공정에 적합한 최적 온도인 50℃에서 투라노스 전환반응 시 수크로스가 모두 소모되기 전에 활성을 잃는다. 결과적으로 아밀로수크라제에 의한 투라노스 전환 반응 시 최종 전환액에 설탕이 남게 되어 추후 투라노스 고순도 분리를 하는 데 결정적 방해 요인이 된다. 또한 기존의 효소에 의한 투라노스 제조는 반응 속도가 매우 느려서 상업화에 적합하지 않다. 따라서 50℃이상의 온도에서 투라노스 전환반응 시에 수크로스를 모두 소모하며, 반응 속도가 개선된 아밀로수크라제를 개발하는 것이 매우 중요하다.Korean Patent No. 10-11772184 includes a method for producing turanose using sugar and fructose as substrates using amylosucrase. However, existing enzymes fail to show or maintain activity at high temperatures, and lose activity before sucrose is completely consumed during the turanose conversion reaction at 50° C., which is the optimum temperature suitable for the process. As a result, during the conversion reaction of turanose by amylosucrase, sugar remains in the final conversion solution, which becomes a decisive obstacle to high-purity separation of turanose later. In addition, the production of turanose by conventional enzymes is not suitable for commercialization because the reaction rate is very slow. Therefore, it is very important to develop an amylosucrase having an improved reaction rate and consuming all sucrose during the turanose conversion reaction at a temperature of 50° C. or higher.

투라노스 생산 활성을 갖는 아밀로수크라제는 미생물 Neisseria polysaccharea, Deinococcus geothermalis 및 Alteromonas macleodii 등에서 유래된 것이 알려져 있다.Amylosucrases having turanose-producing activity are known to be derived from microorganisms such as Neisseria polysaccharea, Deinococcus geothermalis, and Alteromonas macleodii.

투라노스 생산 활성을 갖는 아밀로수크라제를 이용하여, 수크로스 함유 당류를 기질로 사용하여 투라노스를 제조하는 경우, 반응 생성물에는 투라노스 뿐만 아니라 다양한 당류를 포함하며, 고순도 및 고수율로 투라노스를 생산하기 위해서는, 높은 전환율로 투라노스를 생산하는 효소를 포함하는 촉매 조성물이 필요하지만, 또한 분리 및 정제 단계에서 반응생성물에 포함된 투라노스 이외의 당류의 존재로 인한 영향을 최소화하고 고순도로 투라노스를 얻을 필요가 있다. When turanose is prepared using sucrose-containing saccharides as a substrate using amylosucrase having turanose-producing activity, the reaction product includes not only turanose but also various saccharides, and the reaction product contains turanose in high purity and high yield. In order to produce lanose, a catalyst composition containing an enzyme that produces turanose at a high conversion rate is required, but also minimizes the effect of the presence of saccharides other than turanose contained in the reaction product in the separation and purification steps and achieves high purity. You need to get Turanos.

본 발명은 높은 전환율로 투라노스를 생산하고 기타 당류의 생산을 최소화하는, 비피도박테리움 터모필럼 유래의 아밀로수크라제 효소 단백질 또는 이의 변이체를 제공하는 것을 목적으로 한다.An object of the present invention is to provide an amylosucrase enzyme protein derived from Bifidobacterium thermophilum or a variant thereof, which produces turanose at a high conversion rate and minimizes the production of other sugars.

본 발명의 또 다른 목적은 상기 아밀로수크라제 효소 단백질 또는 이의 변이체를 이용하여 투라노스를 생산하는 방법에 관한 것이다.Another object of the present invention relates to a method for producing turanose using the amylosucrase enzyme protein or a variant thereof.

본 발명의 추가 목적은, 상기 아밀로수크라제 효소 단백질 또는 이의 변이체를 이용하여 투라노스를 생산하는 단계 및 모사이동층 크로마토그래피를 이용하여 고순도의 투라노스를 얻은 단계를 포함하는 고순도 투라노스를 생산하는 방법에 관한 것이다. A further object of the present invention is to produce high-purity turanose, including the step of producing turanose using the amylosucrase enzyme protein or a variant thereof and obtaining high-purity turanose using simulated homogeneous layer chromatography. It's about how to produce.

본 발명의 일 예는 높은 전환율로 투라노스를 생산하고 기타 당류의 생산을 최소화하는, 비피도박테리움 터모필럼 유래의 아밀로수크라제 효소 단백질 또는 이의 변이체, 및 상기 효소 단백질 또는 이의 변이체를 이용하여 투라노스를 생산하는 방법에 관한 것이다. An example of the present invention is an amylosucrase enzyme protein or variant thereof derived from Bifidobacterium thermophilum, which produces turanose at a high conversion rate and minimizes the production of other saccharides, and the enzyme protein or variant thereof It relates to a method for producing turanose using

본 발명의 일 예는 비피도박테리움 터모필럼에서 유래되며 투라노스의 전환 활성을 갖는 효소 단백질 또는 변이형 효소 단백질, 이를 발현하는 재조합 미생물, 상기 재조합 미생물의 배양물 또는 상기 재조합 미생물의 파쇄물(또는 파쇄물의 상등액)로 이루어진 군에서 선택된 1 이상을 포함하는 투라노스 생산용 조성물을 제공한다. An example of the present invention is an enzyme protein or mutant enzyme protein derived from Bifidobacterium thermophilum and having turanose conversion activity, a recombinant microorganism expressing the same, a culture of the recombinant microorganism, or a lysate of the recombinant microorganism ( Or a supernatant of the lysate) provides a composition for producing turanose comprising at least one selected from the group consisting of.

본 발명의 또 다른 일 예로서, 투라노스를 생성하는 것을 특징으로 하는 비피도박테리움 터모필럼 유래의 효소 단백질, 이를 발현하는 재조합 미생물, 상기 재조합 미생물의 배양물 또는 상기 재조합 미생물의 파쇄물(또는 파쇄물의 상등액)로 이루어진 군에서 선택된 1 이상을 포함하는 투라노스 생산용 조성물을 기질과 반응시키는 단계를 포함하는 투라노스 생산 방법을 제공한다. 상기 효소 단백질에 관한 사항은 상기 투라노스 생산용 조성물 및 제조 방법에 동일하게 적용될 수 있다.As another example of the present invention, an enzyme protein derived from Bifidobacterium thermophilum, characterized in that it produces turanose, a recombinant microorganism expressing the same, a culture of the recombinant microorganism, or a lysate of the recombinant microorganism (or Supernatant of lysate) provides a method for producing turanose comprising reacting a composition for producing turanose containing at least one selected from the group consisting of a substrate with a substrate. Matters concerning the enzyme protein may be equally applied to the composition and manufacturing method for producing turanose.

또한, 본 발명의 일 예는, 상기 아밀로수크라제 효소 단백질 또는 이의 변이체를 이용하여 투라노스를 생산하는 단계 및 모사이동층 크로마토그래피를 이용하여 고순도의 투라노스를 얻은 단계를 포함하는 고순도 투라노스를 생산하는 방법에 관한 것이다. In addition, an example of the present invention is a high-purity solution comprising the steps of producing turanose using the amylosucrase enzyme protein or a variant thereof and obtaining high-purity turanose using simulated homogeneous layer chromatography. It's about how to produce Lanos.

본 발명에 따른 투라노스 생산 활성을 갖는 아밀로수크라제는 수크로스 함유 당류를 기질로 사용하여 투라노스를 제조하는 경우, 높은 전환율로 투라노스를 생산할 뿐만 아니라, 반응 생성물에는 투라노스 이외의 당류들, 예를 들면 트레할룰로스 및 올리고당의 함량이 낮아 분리 및 정제 단계에서 반응생성물에 포함된 투라노스 이외의 당류의 존재로 인한 영향을 최소화하고 고순도로 투라노스를 얻을 수 있다. When turanose is prepared using sucrose-containing saccharides as a substrate, the amylosucrase having turanose-producing activity according to the present invention not only produces turanose at a high conversion rate, but also saccharides other than turanose in the reaction product. For example, since the content of trehalulose and oligosaccharides is low, it is possible to obtain turanose with high purity while minimizing the effect of the presence of saccharides other than turanose contained in the reaction product in the separation and purification steps.

이하, 본 발명을 더욱 자세히 설명하고자 한다. Hereinafter, the present invention will be described in more detail.

본 발명의 일 예는 비피도박테리움 터모필럼에서 유래되며 투라노스의 전환 활성을 갖는 효소 단백질 또는 변이형 효소 단백질, 이를 발현하는 재조합 미생물, 상기 재조합 미생물의 배양물 또는 상기 재조합 미생물의 파쇄물(또는 파쇄물의 상등액)로 이루어진 군에서 선택된 1 이상을 포함하는 투라노스 생산용 조성물을 제공한다. An example of the present invention is an enzyme protein or mutant enzyme protein derived from Bifidobacterium thermophilum and having turanose conversion activity, a recombinant microorganism expressing the same, a culture of the recombinant microorganism, or a lysate of the recombinant microorganism ( Or a supernatant of the lysate) provides a composition for producing turanose comprising at least one selected from the group consisting of.

본 발명의 일 예는 비피도박테리움 터모필럼에서 유래되며 투라노스의 전환 활성을 갖는 효소 단백질 또는 변이형 효소 단백질, 이를 발현하는 재조합 미생물, 상기 재조합 미생물의 배양물 또는 상기 재조합 미생물의 파쇄물(또는 파쇄물의 상등액)로 이루어진 군에서 선택된 1 이상을 포함하는 투라노스 생산용 조성물과 수크로스 또는 수크로스와 프럭토스를 포함하는 기질과 반응하여 투라노스를 생산하는 방법에 관한 것이다. An example of the present invention is an enzyme protein or mutant enzyme protein derived from Bifidobacterium thermophilum and having turanose conversion activity, a recombinant microorganism expressing the same, a culture of the recombinant microorganism, or a lysate of the recombinant microorganism ( or a supernatant of a lysate) reacting with a composition for producing turanose containing at least one selected from the group consisting of sucrose or a substrate containing sucrose and fructose to produce turanose.

또한, 본 발명은 비피도박테리움 터모필럼 유래의 아밀로수크라제 효소 단백질 또는 이의 변이체를 이용하여 투라노스를 생산하는 단계를 포함하는 투라노스 제조방법에 관한 것으로서, 또한, 투라노스를 생산하는 단계에 더하여 모사이동층 크로마토그래피를 이용하여 분리하는 단계를 포함한다. 생물학적 방법으로 설탕을 이용하여 투라노스를 제조하는 경우, 반응산물에는 분리컬럼 상에서 투라노스를 기준으로 앞뒤로 밀접하게 붙어있는 올리고머와 트레할룰로스 때문에 투라노스만 선택적으로 분리하기 어려운 단점이 있다. 특히 올리고머, 투라노스, 트레할룰로스가 크로마토그램 상에서 연속적으로 인접하여 피크를 형성하게 되어 분리가 어렵다는 문제점이 있다.In addition, the present invention relates to a method for producing turanose comprising the step of producing turanose using an amylosucrase enzyme protein derived from Bifidobacterium thermophilum or a variant thereof, and also to produce turanose. In addition to the step of doing, a step of separating using simulated homogeneous layer chromatography is included. When turanose is prepared using sugar by a biological method, it is difficult to selectively separate only turanose on a separation column because of oligomers and trehalulose that are closely attached back and forth with respect to turanose in the reaction product. In particular, there is a problem in that oligomer, turanose, and trehalulose are continuously adjacent to each other to form peaks on the chromatogram, making separation difficult.

본 발명에 적용되는 투라노스 생산용 조성물은 비피도박테리움 터모필럼에서 유래되며 투라노스의 전환 활성을 갖는 효소 단백질 또는 변이형 효소 단백질, 이를 발현하는 재조합 미생물, 상기 재조합 미생물의 배양물 또는 상기 재조합 미생물의 파쇄물(또는 파쇄물의 상등액)로 이루어진 군에서 선택된 1 이상을 포함할 수 있다. 상기 조성물은, 비피도박테리움 터모필럼 유래의 효소 단백질을 발현하는 재조합 미생물의 배양물을 원심분리하는 단계; 및 상기 원심분리된 농축물을 포함할 수 침전물을 파쇄하는 단계; 및 상기 파쇄물의 상등액을 얻는 단계를 포함하여 제조된 세포일 수 있다.The composition for producing turanose applied in the present invention is an enzyme protein or mutant enzyme protein derived from Bifidobacterium thermophilum and having turanose conversion activity, a recombinant microorganism expressing the same, a culture of the recombinant microorganism, or the above It may include at least one selected from the group consisting of a lysate of a recombinant microorganism (or a supernatant of the lysate). The composition comprises the steps of centrifuging a culture of a recombinant microorganism expressing an enzyme protein derived from Bifidobacterium thermophilum; And crushing the precipitate, which may include the centrifuged concentrate; and obtaining a supernatant of the lysate.

본 발명의 효소는 비피도박테리움 터모필럼(Bifidobacterium thermophilum) 유래의 효소 단백질일 수 있다. 본 발명의 효소 단백질은 투라노스를 생산하는 아밀로수크라제(amylosucrase)로서, 수크로스 단독 또는 수크로스 및 프럭토스를 포함하는 기질 용액으로부터 투라노스를 생성할 수 있다. The enzyme of the present invention may be an enzyme protein derived from Bifidobacterium thermophilum. The enzyme protein of the present invention is an amylosucrase that produces turanose, and can produce turanose from sucrose alone or a substrate solution containing sucrose and fructose.

본 발명에 따른 투라노스 제조방법에 적용 가능한 투라노스 생성 특성을 갖는 아밀로수크라제 효소 및 이의 변이 효소 단백질은 생산조건을 만족하는 한 사용될 수 있다. 상기 비피도박테리움 터모필럼 유래의 효소 단백질은 서열번호 1의 아미노산 서열을 갖는 단백질일 수 있으나, 투라노스를 생성할 수 있는 활성이 있는 한 이에 한정되지 않고 상기 서열번호 1의 아미노산 서열 중에서 1 이상의 아미노산이 치환, 삽입 또는 결실된 변이 단백질을 모두 포함할 수 있다. 예를 들어, 상기 효소 단백질 또는 이의 변이형 효소는, 서열번호 1의 아미노산 서열과 70% 이상, 바람직하게는 80% 이상, 더욱 바람직하게는 90% 이상, 93% 이상 또는 95% 이상, 더욱 바람직하게는 98% 이상, 99%이상 또는 99.5%이상의 상동성 있는 아미노산 서열을 갖는 효소 단백질일 수 있다. The amylosucrase enzyme and its mutant enzyme protein having turanose production characteristics applicable to the turanose production method according to the present invention can be used as long as the production conditions are satisfied. The enzyme protein derived from Bifidobacterium thermophilum may be a protein having the amino acid sequence of SEQ ID NO: 1, but is not limited thereto as long as it has an activity capable of producing turanose, and 1 of the amino acid sequence of SEQ ID NO: 1 It may include all mutant proteins in which the above amino acids are substituted, inserted, or deleted. For example, the enzyme protein or its variant enzyme is 70% or more, preferably 80% or more, more preferably 90% or more, 93% or more or 95% or more, more preferably 90% or more, more preferably 90% or more of the amino acid sequence of SEQ ID NO: 1 Preferably, it may be an enzyme protein having an amino acid sequence with 98% or more, 99% or more, or 99.5% or more homology.

본 발명에서 적용되는 투라노스 생산용 조성물은 비피도박테리움 터모필럼에서 유래되며 투라노스의 전환 활성을 가지는 치환 변이에 의한 변이형 효소 단백질의 예는, 서열번호 1를 갖는 아미노산 서열의 200번째, 202번째, 265번째, 305번째, 393번째, 414번째, 420번째 및 542번째 위치로 이루어진 군에서 선택된 1 이상의 위치의 아미노산이 치환된 것일 수 있다. 예를 들어, 서열번호 1를 갖는 아미노산 서열의 200번째, 202번째, 265번째, 305번째, 393번째, 414번째, 420번째 및 542번째 위치로 이루어진 군에서 선택된 1 이상의 위치의 아미노산이, 아르기닌, 히스티딘, 아스파르트산, 글루탐산, 이소루신, 페닐알라닌 및 트레오닌으로 이루어진 군에서 선택된 적어도 1종의 아미노산으로 치환된 것일 수 있다. The composition for producing turanose applied in the present invention is derived from Bifidobacterium thermophilum, and an example of a mutant enzyme protein by substitution mutation having turanose conversion activity is the 200th amino acid sequence having SEQ ID NO: 1 , 202nd, 265th, 305th, 393rd, 414th, 420th and 542th position may be one or more amino acids selected from the substituted. For example, at least one amino acid selected from the group consisting of positions 200, 202, 265, 305, 393, 414, 420 and 542 of the amino acid sequence having SEQ ID NO: 1 is arginine, It may be substituted with at least one amino acid selected from the group consisting of histidine, aspartic acid, glutamic acid, isoleucine, phenylalanine, and threonine.

구체적인 일예에서, 상기 치환 변이에 의한 변이형 효소 단백질의 예는, 상기 서열번호 1를 갖는 아미노산 서열의 200번째, 202번째, 265번째, 305번째, 393번째, 414번째 및 420번째 위치로 이루어진 군에서 선택된 1 이상의 위치의 아미노산이 아르기닌, 이소루신, 페닐알라닌 및 트레오닌으로 이루어진 군에서 선택된 1종의 아미노산으로 치환된 것일 수 있다. 서열번호 1를 갖는 아미노산 서열의 아미노산이 아래의 아미노산 치환 중 하나 이상을 포함할 수 있다:In a specific example, the example of the mutant enzyme protein by the substitution mutation is the group consisting of the 200th, 202nd, 265th, 305th, 393rd, 414th and 420th positions of the amino acid sequence having SEQ ID NO: 1 One or more amino acids selected from may be substituted with one amino acid selected from the group consisting of arginine, isoleucine, phenylalanine, and threonine. The amino acids of the amino acid sequence having SEQ ID NO: 1 may contain one or more of the following amino acid substitutions:

200번째 아미노산이 아르기닌으로 치환,The 200th amino acid is substituted with arginine.

202번째 아미노산이 이소루신으로 치환,The 202nd amino acid is substituted with isoleucine,

265번째 아미노산이 페닐알라닌으로 치환, The 265th amino acid is substituted with phenylalanine,

305번째 아미노산이 이소루신으로 치환, The 305th amino acid is substituted with isoleucine,

393번째 아미노산이 아르기닌으로 치환, The 393rd amino acid is substituted with arginine,

414번째 아미노산이 페닐알라닌으로 치환, 및The 414th amino acid is substituted with phenylalanine, and

420번째 아미노산이 트레오닌으로 치환.The 420th amino acid is substituted with threonine.

예를 들어, 상기 변이형 효소 단백질은 아미노산 변이 1개를 갖는 서열번호 2 내지 10의 아미노산 서열 중 어느 하나의 서열을 갖는 것일 수 있으며, 또는 서열번호 1를 갖는 아미노산 서열의 200번째, 202번째, 265번째, 305번째, 393번째, 414번째 및 420번째 위치로 이루어진 군에서 선택된 2 이상의 위치의 아미노산이 아르기닌, 이소루신, 페닐알라닌 및 트레오닌으로 이루어진 군에서 선택된 적어도 1종 이상의 아미노산으로 치환된 아미노산 변이 2개 이상을 포함하는 변이형 효소일 수 있으며, 예를 들면 서열번호 1를 갖는 아미노산 서열의 200번째, 202번째, 265번째, 305번째, 393번째, 414번째 및 420번째 위치로 이루어진 군에서 선택된 2 개 위치에서, 아미노산이 아르기닌, 이소루신, 페닐알라닌 및 트레오닌으로 이루어진 군에서 선택된 적어도 1종 이상의 아미노산으로 치환된 2개 변이를 포함하는 변이형 효소, 구체적으로 서열번호 11 내지 13의 아미노산 서열 중에서 선택될 수 있다.For example, the variant enzyme protein may have any one of the amino acid sequences of SEQ ID NOs: 2 to 10 having one amino acid mutation, or the 200th, 202nd, Amino acid variation 2 in which amino acids at two or more positions selected from the group consisting of positions 265, 305, 393, 414, and 420 are substituted with at least one amino acid selected from the group consisting of arginine, isoleucine, phenylalanine, and threonine. It may be a mutant enzyme comprising 2 or more, for example, 2 selected from the group consisting of the 200th, 202nd, 265th, 305th, 393rd, 414th and 420th positions of the amino acid sequence having SEQ ID NO: 1 A mutant enzyme comprising two mutations in which an amino acid is substituted with at least one amino acid selected from the group consisting of arginine, isoleucine, phenylalanine, and threonine, specifically selected from the amino acid sequences of SEQ ID NOs: 11 to 13 can

구체적으로, 본 발명의 효소 단백질은 서열번호 2 (변이효소 V542K) 또는 서열번호 3 (변이효소 V542D)의 아미노산 서열을 포함하는 아미노산 서열 중 선택된 어느 하나의 아미노산 서열을 포함하는 효소 단백질일 수 있다. 서열번호 1의 효소는 야생형 효소, 서열번호 2는 서열번호 1의 야생형 효소의 아미노산 서열에서 V542D 변이를 갖는 효소, 서열번호 3은 서열번호 1의 야행형 효소의 아미노산 서열에서 V542K 변이를 갖는 효소를 의미한다. 상기 V542D 변이 또는 V542K 변이를 갖는 변이형 효소 단백질은 활성이 2배 이상 증가하였기 때문에 원가절감과 직결되는 생산성 문제를 개선하는 효과를 기대할 수 있다.Specifically, the enzyme protein of the present invention may be an enzyme protein comprising any one amino acid sequence selected from an amino acid sequence comprising the amino acid sequence of SEQ ID NO: 2 (mutant enzyme V542K) or SEQ ID NO: 3 (mutant enzyme V542D). The enzyme of SEQ ID NO: 1 is a wild-type enzyme, SEQ ID NO: 2 is an enzyme having a V542D mutation in the amino acid sequence of the wild-type enzyme of SEQ ID NO: 1, and SEQ ID NO: 3 is an enzyme having a V542K mutation in the amino acid sequence of the night-type enzyme of SEQ ID NO: 1. it means. Since the activity of the mutant enzyme protein having the V542D mutation or the V542K mutation is increased by more than two times, an effect of improving productivity problems directly related to cost reduction can be expected.

본 발명에 따른 야생형 효소 및 변이 효소의 일 예를 하기 표 1에 나타낸다. Examples of wild-type enzymes and mutant enzymes according to the present invention are shown in Table 1 below.

구분division 서열 종류sequence type 서열번호sequence number 야생형 효소wild type enzyme 아미노산 서열amino acid sequence 1One 변이효소 V542KMutase V542K 아미노산 서열amino acid sequence 22 변이효소 V542DMutase V542D 아미노산 서열amino acid sequence 33 변이효소 P200RMutase P200R 아미노산 서열amino acid sequence 44 변이효소 V202IMutase V202I 아미노산 서열amino acid sequence 55 변이효소 Y265FMutase Y265F 아미노산 서열amino acid sequence 66 변이효소 V305IMutase V305I 아미노산 서열amino acid sequence 77 변이효소 K393RMutase K393R 아미노산 서열amino acid sequence 88 변이효소 S420TMutase S420T 아미노산 서열amino acid sequence 99 변이효소 Y414FMutase Y414F 아미노산 서열amino acid sequence 1010 변이효소 Y414F*P200RMutase Y414F*P200R 아미노산 서열amino acid sequence 1111 변이효소 Y414F*V202IMutase Y414F*V202I 아미노산 서열amino acid sequence 1212 변이효소 Y414F*Y265FMutase Y414F*Y265F 아미노산 서열amino acid sequence 1313 야생형 효소wild type enzyme 뉴클레오타이드 서열nucleotide sequence 1414 변이효소 V542KMutase V542K 뉴클레오타이드 서열nucleotide sequence 1515 변이효소 V542DMutase V542D 뉴클레오타이드 서열nucleotide sequence 1616 변이효소 P200RMutase P200R 뉴클레오타이드 서열nucleotide sequence 1717 변이효소 V202IMutase V202I 뉴클레오타이드 서열nucleotide sequence 1818 변이효소 Y265FMutase Y265F 뉴클레오타이드 서열nucleotide sequence 1919 변이효소 V305IMutase V305I 뉴클레오타이드 서열nucleotide sequence 2020 변이효소 K393RMutase K393R 뉴클레오타이드 서열nucleotide sequence 2121 변이효소 S420TMutase S420T 뉴클레오타이드 서열nucleotide sequence 2222 변이효소 Y414FMutase Y414F 뉴클레오타이드 서열nucleotide sequence 2323 변이효소 Y414F*P200RMutase Y414F*P200R 뉴클레오타이드 서열nucleotide sequence 2424 변이효소 Y414F*V202IMutase Y414F*V202I 뉴클레오타이드 서열nucleotide sequence 2525 변이효소 Y414F*Y265FMutase Y414F*Y265F 뉴클레오타이드 서열nucleotide sequence 2626

종래 알려진 아밀로수크라제는 최적 활성 온도가 35℃ 내외이고, 50℃에서 전환반응을 실행할 경우 낮은 활성과 내열성의 부재로 인하여 전환액에 수크로스를 모두 소진하고 투라노스를 포함한 생성물만 남을 때 까지 효소의 활성이 유지가 되지 않았기 때문에 산업화에 어려움이 있었다. 그러나 본 발명의 효소 단백질은 50℃에서 수크로스가 모두 분해가 될 때까지 반응이 유지가 가능하기 때문에 산업화의 조건을 만족한다고 할 수 있다. Conventionally known amylosucrases have an optimal activity temperature of around 35 ° C, and when the conversion reaction is performed at 50 ° C, all sucrose is consumed in the conversion solution due to low activity and lack of heat resistance, leaving only products containing turanose. Since the activity of the enzyme was not maintained until then, there was difficulty in industrialization. However, the enzyme protein of the present invention can be said to satisfy the conditions for industrialization because it is possible to maintain the reaction until all sucrose is decomposed at 50 ° C.

본 발명의 효소 단백질은 최적 온도가 30 내지 65℃, 최적 pH가 5.0 내지 9.0 및 설탕 함유 기질로부터 투라노스 생성하는 활성을 가지며, 바람직하게는 (i) pH 6.0 및 50℃의 온도에서 기질 2M 수크로스를 반응 시, 기질 농도 100%에 대한 생성된 투라노스 농도로 산출되는 투라노스 전환율이 10 내지 60% 및/또는 (ii) pH 6.0 및 50℃의 온도에서 기질 2M 수크로스를 반응 시 시간 당 생성되는 투라노스가 3 내지 80g/L/h로 생산하는 특성을 가질 수 있다. The enzyme protein of the present invention has an optimum temperature of 30 to 65°C, an optimum pH of 5.0 to 9.0, and an activity to generate turanose from a sugar-containing substrate, preferably (i) pH 6.0 and a substrate of 2M water at a temperature of 50°C. When cross is reacted, the turanose conversion rate calculated as the concentration of turanose produced with respect to 100% of the substrate concentration is 10 to 60% and/or (ii) per hour when the substrate 2M sucrose is reacted at pH 6.0 and a temperature of 50 ° C. The produced turanose may have a characteristic of producing 3 to 80 g/L/h.

상기 최적 온도는 효소의 투라노스 생산 활성이 최대가 되는 온도로서, 30 내지 65℃, 바람직하게는 40 내지 65℃, 41 내지 65℃, 42 내지 65℃, 또는 41 내지 60℃, 더욱 바람직하게는 45 내지 55℃, 더욱 바람직하게는 50℃일 수 있다. 종래 알려진 아밀로수크라제는 최적 활성 온도가 35℃내외이고, 40℃ 이상, 예를 들면 45℃ 또는 50℃ 의 온도에서 전환반응을 실행 할 경우 낮은 활성과 내열성의 부재로 인하여 전환액에 수크로스가 남지 않고 투라노스를 포함한 생성물만 남을 때 까지 효소의 활성이 유지가 되지 않았기 때문에 산업화에 어려움이 있었다. 그러나 본 발명의 효소 단백질은 40℃ 이상 또는 40℃ 초과하는 온도, 예를 들면 41℃, 42℃?, 43℃?, 45℃? 또는 50℃ 의 온도에서 수크로스가 모두 분해가 될 때까지 반응이 유지되기 때문에 내열성이 우수하여 산업화에 바람직하다.The optimum temperature is the temperature at which the enzyme's turanose production activity is maximized, and is preferably 30 to 65°C, preferably 40 to 65°C, 41 to 65°C, 42 to 65°C, or 41 to 60°C, more preferably It may be 45 to 55 °C, more preferably 50 °C. Conventionally known amylosucrases have an optimal activity temperature of around 35 ℃, and when the conversion reaction is carried out at a temperature of 40 ℃ or more, for example, 45 ℃ or 50 ℃, due to low activity and lack of heat resistance, it can be in the conversion solution. There was difficulty in industrialization because the activity of the enzyme was not maintained until only the product including turanose remained without cross. However, the enzyme protein of the present invention is prepared at a temperature of 40 ° C or higher or higher than 40 ° C, for example, 41 ° C, 42 ° C?, 43 ° C?, 45 ° C? Alternatively, since the reaction is maintained at a temperature of 50° C. until all sucrose is decomposed, it has excellent heat resistance and is preferable for industrialization.

변이형 효소 P200R, Y265F, V305I, K393R, S420T, Y414F, Y414F*P200R, Y414F*V202I 또는 Y414F*Y265F는 상기 최적 pH는 효소의 투라노스 생산 활성이 최대가 되는 pH로서, pH 5.0 내지 9.0 또는 pH 5.0 내지 7.0, 바람직하게는 pH 5.5 내지 6.5, 더욱 바람직하게는 pH 6.0일 수 있다. The optimal pH of the mutant enzyme P200R, Y265F, V305I, K393R, S420T, Y414F, Y414F*P200R, Y414F*V202I or Y414F*Y265F is a pH at which the enzyme's turanose production activity is maximized, and is pH 5.0 to 9.0 or pH 5.0 to 7.0, preferably pH 5.5 to 6.5, more preferably pH 6.0.

본 발명의 효소 단백질의 투라노스 전환율은 pH 6.0 및 50℃의 온도에서 기질 2M 수크로스를 반응 시, 기질 농도 100%에 대한 생성된 투라노스 농도로 산출되는 투라노스 전환율이 10 내지 70%, 바람직하게는 20 내지 40% 또는 35 내지 60%, 더욱 바람직하게는 45% 내지 55%일 수 있다. 본 발명의 효소 단백질은, pH6 및 50℃의 온도에서 기질 2M 수크로스를 반응 시, 시간 당 생성되는 투라노스가 3 내지 80g/L/h, 바람직하게는 10 내지 30 g/L/h 또는 20 내지 60 g/L/h, 더욱 바람직하게는 50 g/L/h 내지 60 g/L/h 일 수 있다. The turanose conversion rate of the enzyme protein of the present invention is 10 to 70%, preferably turanose conversion calculated by the concentration of turanose produced with respect to 100% of the substrate concentration when the substrate 2M sucrose is reacted at pH 6.0 and a temperature of 50 ° C. Preferably it may be 20 to 40% or 35 to 60%, more preferably 45% to 55%. When the enzyme protein of the present invention reacts with the substrate 2M sucrose at pH 6 and a temperature of 50 ° C, the amount of turanose produced per hour is 3 to 80 g / L / h, preferably 10 to 30 g / L / h or 20 to 60 g/L/h, more preferably 50 g/L/h to 60 g/L/h.

기존에 많은 연구가 선행된 아밀로수크라제 효소 중 투라노스 생산율이 높은 효소로 NpAS(Neisseria polysaccharea) 가 알려져 있다. NpAS는 최적 pH는 pH 7.0, 최적 온도는 35℃, 기질 2 M 수크로스 기준으로 투라노스 전환율은 50.9%으로 알려져 있다. 본 발명의 신규 아밀로수크라제 야생형 효소는 내열성이 높아 보다 더 안정적이고 투라노스의 전환 수율이 높아 산업적으로 유용하다.NpAS (Neisseria polysaccharea) is known as an enzyme with a high turanose production rate among amylosucrase enzymes that have been preceded by many studies. NpAS is known to have an optimum pH of 7.0, an optimum temperature of 35°C, and a turanose conversion rate of 50.9% based on 2 M sucrose as a substrate. The novel amylosucrase wild-type enzyme of the present invention is more stable due to its high heat resistance and is industrially useful due to its high conversion yield of turanose.

본 명세서에서 효소 단백질에 의해 설탕을 포함하는 기질로부터 생성되는 당 시럽 조성물 내 투라노스 함량은 50℃의 온도 및 pH 6.0에서 기질과 1 내지 48시간, 바람직하게는 3 내지 48시간, 더욱 바람직하게는 12 내지 48시간 반응하여 수크로스가 반응액에 남아있지 않게 되는 시점의 생성물에 포함된 투라노스 양, 즉 상기 기질로부터 상대적으로 전환된 투라노스의 중량%로 정의된다. 예를 들어, 서열번호 1의 아미노산 서열을 갖는 효소 단백질의 투라노스 전환율은 35 내지 45 중량%, 바람직하게는 40 내지 43 중량%일 수 있으며, 서열번호 2 또는 서열번호 3의 아미노산 서열을 갖는 효소 단백질의 투라노스 전환율은 40 내지 50 중량%, 바람직하게는 43 내지 49 중량%일 수 있다.In the present specification, the turanose content in the sugar syrup composition produced from the substrate containing sugar by the enzyme protein is 1 to 48 hours, preferably 3 to 48 hours, more preferably 3 to 48 hours with the substrate at a temperature of 50 ° C. and pH 6.0. It is defined as the amount of turanose contained in the product at the time when sucrose does not remain in the reaction solution after 12 to 48 hours of reaction, that is, the weight% of turanose relatively converted from the substrate. For example, the turanose conversion rate of the enzyme protein having the amino acid sequence of SEQ ID NO: 1 may be 35 to 45% by weight, preferably 40 to 43% by weight, and the enzyme having the amino acid sequence of SEQ ID NO: 2 or SEQ ID NO: 3 The turanose conversion rate of the protein may be 40 to 50% by weight, preferably 43 to 49% by weight.

또한 본 발명의 효소 단백질은 GRAS(Generally Recognized as Safe) 균주에서 발현하여 활성을 나타내며, 예를 들어 서열번호 1의 아미노산 서열을 갖는 야생형 효소 단백질뿐 아니라, 변이된 효소 단백질, 예를 들어 서열번호 2 또는 서열번호 3의 아미노산 서열을 갖는 변이 효소 단백질로의 변형에 따른 활성 증가 효과가 GRAS 균주에서도 재현된다. 따라서 본 발명은 투라노스를 GRAS 균주에서 발현하여 안전한 식품원료로 제공할 수 있을 뿐만 아니라, 효소 개량을 통해 높은 반응 안정성과 활성을 가지고 있는 효소를 확보함으로써 산업에 적용하기에 적합하다.In addition, the enzyme protein of the present invention is expressed in a GRAS (Generally Recognized as Safe) strain to show activity, for example, a wild-type enzyme protein having the amino acid sequence of SEQ ID NO: 1, as well as a mutated enzyme protein such as SEQ ID NO: 2 Alternatively, the effect of increasing activity due to modification with the mutant enzyme protein having the amino acid sequence of SEQ ID NO: 3 is also reproduced in the GRAS strain. Therefore, the present invention can express turanose in a GRAS strain to provide it as a safe food raw material, and secure an enzyme having high reaction stability and activity through enzyme improvement, so it is suitable for industrial application.

본 발명의 또 다른 예는, 상기 효소 단백질을 암호화하는 폴리뉴클레오티드, 상기 단백질을 암호화하는 폴리뉴클레오티드를 포함하는 재조합 벡터, 또는 상기 단백질을 발현하는 재조합 미생물을 제공한다.Another example of the present invention provides a polynucleotide encoding the enzyme protein, a recombinant vector containing the polynucleotide encoding the protein, or a recombinant microorganism expressing the protein.

상기 효소 단백질에 관한 사항은 효소 단백질을 암호화하는 폴리뉴클레오티드, 이를 포함하는 재조합 벡터 또는 이를 발현하는 재조합 미생물에 동일하게 적용될 수 있다.Matters concerning the enzyme protein may be equally applied to a polynucleotide encoding the enzyme protein, a recombinant vector containing the same, or a recombinant microorganism expressing the same.

본 발명의 효소 단백질을 암호화하는 폴리뉴클레오티드는, 서열번호 1 내지 서열번호 13의 아미노산 서열 중 선택된 어느 하나의 아미노산 서열을 암호화하는 폴리뉴클레오티드일 수 있으며, 바람직하게는 상기 아미노산 서열을 암호화하는 폴리뉴클레오티드는 서열번호 14 내지 서열번호 26 중 어느 하나일 수 있으나, 상기한 염기 서열에 대하여 실질적인 동일성을 나타내는 서열도 포함하는 것이다. 상기의 실질적인 동일성은, 상기한 본 발명의 염기 서열과 임의의 다른 서열을 최대한 대응되도록 배열하고, 그 서열을 분석한 경우, 서열번호 14 내지 서열번호 26의 염기 서열과 70% 이상, 보다 바람직하게는 80% 이상, 더욱 바람직하게는 90% 이상, 가장 바람직하게는 98% 이상 상동성이 있는 염기 서열을 포함한다.The polynucleotide encoding the enzyme protein of the present invention may be a polynucleotide encoding any one amino acid sequence selected from the amino acid sequences of SEQ ID NO: 1 to SEQ ID NO: 13, and preferably the polynucleotide encoding the amino acid sequence It may be any one of SEQ ID NO: 14 to SEQ ID NO: 26, but also includes a sequence showing substantial identity to the above nucleotide sequence. The above substantial identity is, when the nucleotide sequence of the present invention and any other sequence described above are arranged to correspond as much as possible, and the sequence is analyzed, 70% or more of the nucleotide sequence of SEQ ID NO: 14 to SEQ ID NO: 26, more preferably contains a nucleotide sequence with 80% or more, more preferably 90% or more, most preferably 98% or more homology.

예를 들어 본 발명의 효소 단백질을 암호화하는 폴리뉴클레오티드는 서열번호 1 내지 서열번호 13의 아미노산 서열 중 선택된 어느 하나의 아미노산 서열을 암호화하는 폴리뉴클레오티드일 수 있으며, 상기 폴리뉴클레오티드는 서열번호 14 내지 26의 염기서열로 이루어진 군에서 선택된 1 이상일 수 있다.For example, the polynucleotide encoding the enzyme protein of the present invention may be a polynucleotide encoding any one amino acid sequence selected from the amino acid sequences of SEQ ID NOs: 1 to 13, and the polynucleotides of SEQ ID NOs: 14 to 26 It may be one or more selected from the group consisting of nucleotide sequences.

본 발명의 재조합 발현 벡터는 예를 들어 서열번호 1 내지 13의 아미노산 서열 중 선택된 어느 하나의 아미노산 서열을 암호화하는 폴리뉴클레오티드를 포함할 수 있으며, 상기 서열번호 1의 아미노산 서열을 암호화하는 폴리뉴클레오티드를 포함하는 재조합 발현 벡터는 도 1의 개열지도를 갖는 것일 수 있다. 본 발명의 재조합 미생물은 예를 들어 서열번호 1 내지 13의 아미노산 서열 중 선택된 어느 하나의 아미노산 서열을 암호화하는 폴리뉴클레오티드를 포함하는 재조합 발현벡터로 형질전환된 아밀로수크라제 효소 단백질을 발현하는 재조합 균주일 수 있다.The recombinant expression vector of the present invention may include, for example, a polynucleotide encoding any one amino acid sequence selected from among the amino acid sequences of SEQ ID NOs: 1 to 13, and includes the polynucleotide encoding the amino acid sequence of SEQ ID NO: 1. The recombinant expression vector to be may have a cleavage map of FIG. The recombinant microorganism of the present invention is, for example, a recombinant expression vector containing a polynucleotide encoding any one amino acid sequence selected from among the amino acid sequences of SEQ ID NOs: 1 to 13 and expressing an amylosucrase enzyme protein. It may be a strain.

상기 투라노스 생산 방법에 있어서, 효율적인 투라노스 생산을 위하여, 사용되는 기질은 수크로스 단독 또는 상기 수크로스에 프럭토스를 추가적으로 사용할 수 있다. In the turanose production method, for efficient production of turanose, sucrose alone or fructose may be additionally used as the substrate used for the sucrose.

본 발명에 따른 투라노스 생산 방법에서 프럭토스를 기질에 첨가하여 수크로스 및 프럭토스의 혼합 기질로 사용하는 경우에, 기질 중에서 설탕 대비 과당의 중량을 높이면 올리고머의 생성이 줄어들고 상대적으로 설탕의 비율이 적어지므로 투라노스의 생성양은 감소한다. 본 발명의 구체적인 예에서, 반응 생성물에 포함된 트레할룰로스는 설탕 대비 과당 비율에 크게 영향을 받지 않으며 비교적 낮은 수준으로 유지한다. 따라서, 본 발명에 따른 투라노스 생산 방법에서 수크로스 및 프럭토스의 혼합 기질을 사용하는 경우에, 반응 생성물에 포함된 전체 당류 중에서 목적 생성물인 투라노스 함량은 높이고, 바람직하지 않는 부산물인 트레할룰로스 함량과 올리고당 함량을 낮추도록 기질의 조성을 적절히 조절할 수 있다. 본 발명에 따른 투라노스 생산에서 얻어지는 반응 생성물의 전체 당류 고형분 함량을 기준으로 바람직한 당조성은, 올리고당 함량이 20 중량%이하, 18중량%이하, 17중량%이하, 15중량%이하, 13중량%이하, 11중량%이하, 또는 10 중량%이하이고 트레할룰로스 함량이 7중량%이하, 6중량%이하, 5 중량%, 4.5중량%이하, 또는 4.0 중량%이하인 조건을 만족하고, 투라노스 함량은 높을수록 좋으며 예를 들면, 30중량%이상, 35중량%이상, 40중량%이상, 41중량%이상, 43중량%이상, 45중량%이상, 47중량%이상, 49중량%이상 또는 50 중량%이상일 수 있다. 상기 올리고당의 대부분은 포도당이 알파 1-4 결합으로 연결된 DP3 및 DP4이상의 중합도를 가지며, DP3 구성당이 주성분이다. 상기 올리고당의 80~85 중량% 정도는 glucoamylase 효소 처리하면 포도당으로 분해될 수 있다. In the method for producing turanose according to the present invention, when fructose is added to a substrate and used as a mixed substrate of sucrose and fructose, when the weight of fructose relative to sugar in the substrate is increased, the production of oligomers is reduced and the sugar ratio is relatively increased. As it decreases, the amount of turanose produced decreases. In a specific example of the present invention, trehalulose contained in the reaction product is not greatly affected by the fructose to sugar ratio and is kept at a relatively low level. Therefore, in the case of using a mixed substrate of sucrose and fructose in the method for producing turanose according to the present invention, the content of turanose, which is the target product, is increased among the total sugars included in the reaction product, and the undesirable by-product, trehalul The composition of the substrate can be appropriately adjusted to lower the loss content and the oligosaccharide content. Based on the total saccharide solid content of the reaction product obtained in the production of turanose according to the present invention, the preferred sugar composition is 20% by weight or less, 18% by weight or less, 17% by weight or less, 15% by weight or less, 13% by weight or less. or less, 11% by weight or less, or 10% by weight or less, and the condition that the trehalulose content is 7% by weight or less, 6% by weight or less, 5% by weight, 4.5% by weight or less, or 4.0% by weight or less is satisfied, and turanose The higher the content, the better, for example, 30% by weight or more, 35% by weight or more, 40% by weight or more, 41% by weight or more, 43% by weight or more, 45% by weight or more, 47% by weight or more, 49% by weight or more, or 50 may be greater than or equal to weight percent. Most of the oligosaccharides have a degree of polymerization higher than DP3 and DP4 in which glucose is linked by an alpha 1-4 linkage, and DP3 is the main component. About 80 to 85% by weight of the oligosaccharide can be decomposed into glucose by glucoamylase enzyme treatment.

본 발명의 일예에서, 반응 생성물에서 투라노스 생성량 대비 올리고당 함량이 줄어드는 기질의 조성은, 설탕 100중량부를 기준으로 과당 5 내지 250중량부, 5 내지 200중량부, 5 내지 175중량부, 5 내지 150중량부, 5 내지 125중량부, 5 내지 100중량부, 5 내지 90중량부, 5 내지 80중량부, 5 내지 75중량부, 5 내지 70중량부, 10 내지 250중량부, 10 내지 200중량부, 10 내지 175중량부, 10 내지 150중량부, 10 내지 125중량부, 10 내지 100중량부, 10내지 90중량부, 10 내지 80중량부, 10 내지 75중량부, 10 내지 70중량부, 15 내지 250중량부, 15 내지 200중량부, 15 내지 175중량부, 15 내지 150중량부, 15 내지 125중량부, 15 내지 100중량부, 15 내지 90중량부, 15 내지 80중량부, 15 내지 75중량부, 15 내지 70중량부, 20 내지 250중량부, 20 내지 200중량부, 20 내지 175중량부, 20 내지 150중량부, 20 내지 125중량부, 20 내지 100중량부, 20 내지 90중량부, 20 내지 80중량부, 20 내지 75중량부, 20 내지 70중량부, 30 내지 250중량부, 30 내지 200중량부, 30 내지 175중량부, 30 내지 150중량부, 30 내지 125중량부, 30 내지 100중량부, 30 내지 90중량부, 30 내지 80중량부, 또는 30 내지 75중량부, 30 내지 70중량부, 35 내지 250중량부, 35 내지 200중량부, 35 내지 175중량부, 35 내지 150중량부, 35 내지 125중량부, 35 내지 100중량부, 35 내지 90중량부, 35 내지 80중량부, 35 내지 75중량부, 또는 35 내지 70중량부 일 수 있으며, 예를 들면 50 중량부이다. In one example of the present invention, the composition of the substrate in which the oligosaccharide content is reduced relative to the amount of turanose produced in the reaction product is 5 to 250 parts by weight, 5 to 200 parts by weight, 5 to 175 parts by weight, 5 to 150 parts by weight of fructose based on 100 parts by weight of sugar 5 to 125 parts by weight, 5 to 100 parts by weight, 5 to 90 parts by weight, 5 to 80 parts by weight, 5 to 75 parts by weight, 5 to 70 parts by weight, 10 to 250 parts by weight, 10 to 200 parts by weight , 10 to 175 parts by weight, 10 to 150 parts by weight, 10 to 125 parts by weight, 10 to 100 parts by weight, 10 to 90 parts by weight, 10 to 80 parts by weight, 10 to 75 parts by weight, 10 to 70 parts by weight, 15 to 250 parts by weight, 15 to 200 parts by weight, 15 to 175 parts by weight, 15 to 150 parts by weight, 15 to 125 parts by weight, 15 to 100 parts by weight, 15 to 90 parts by weight, 15 to 80 parts by weight, 15 to 75 parts by weight 15 to 70 parts by weight, 20 to 250 parts by weight, 20 to 200 parts by weight, 20 to 175 parts by weight, 20 to 150 parts by weight, 20 to 125 parts by weight, 20 to 100 parts by weight, 20 to 90 parts by weight , 20 to 80 parts by weight, 20 to 75 parts by weight, 20 to 70 parts by weight, 30 to 250 parts by weight, 30 to 200 parts by weight, 30 to 175 parts by weight, 30 to 150 parts by weight, 30 to 125 parts by weight, 30 to 100 parts by weight, 30 to 90 parts by weight, 30 to 80 parts by weight, or 30 to 75 parts by weight, 30 to 70 parts by weight, 35 to 250 parts by weight, 35 to 200 parts by weight, 35 to 175 parts by weight, 35 to 150 parts by weight, 35 to 125 parts by weight, 35 to 100 parts by weight, 35 to 90 parts by weight, 35 to 80 parts by weight, 35 to 75 parts by weight, or 35 to 70 parts by weight, for example, 50 parts by weight to be.

본 발명에 따른 투라노스 제조방법은 투라노즈 제조 반응의 반응 생성물에서 투라노스 생성량 대비 DP3이상의 올리고당 함량이 감소하며, 이에 SMB 크로마토그래피에 적합하다. 설탕에 첨가하는 과당 함량이 지나치게 높으면 반응 생성물의 올리고당 함량은 낮으나 투라노스 함량이 낮아 수율도 낮고 분리 및 정제도 용이하지 않다. 따라서, 반응 생성물에 포함된 투라노스 함량이 높고, 올리고당, 트레할룰로스 및 과당으로 이루어지는 군에서 선택된 1종 이상의 함량이 낮으며, 바람직하게는 올리고당 함량이 낮도록 혼합 기질의 당조성을 적절히 설정할 수 있다.The method for preparing turanose according to the present invention reduces the content of oligosaccharides of DP3 or higher relative to the amount of turanose produced in the reaction product of the reaction for preparing turanose, and is therefore suitable for SMB chromatography. If the content of fructose added to sugar is too high, the content of oligosaccharide in the reaction product is low, but the content of turanose is low, so the yield is low and separation and purification are not easy. Therefore, the sugar composition of the mixed matrix can be appropriately set so that the content of turanose contained in the reaction product is high and the content of one or more selected from the group consisting of oligosaccharide, trehalulose and fructose is low, and preferably the content of oligosaccharide is low. have.

예를 들면, 본 발명의 투라노스 제조를 위한 기질 반응의 수크로스(설탕) 농도는 0.1M 내지 2.5M, 바람직하게는 0.5M 내지 2.0M을 포함할 수 있다. 또한 본 발명의 투라노스 제조를 위한 기질이 수크로스와 프럭토스를 포함하는 경우, 기질 용액 중 프럭토스 농도는 0.1 내지 4M, 또는 0.75 내지 3M을 추가로 포함할 수 있다. For example, the concentration of sucrose (sugar) in the substrate reaction for preparing turanose of the present invention may include 0.1M to 2.5M, preferably 0.5M to 2.0M. In addition, when the substrate for preparing turanose of the present invention includes sucrose and fructose, the concentration of fructose in the substrate solution may further include 0.1 to 4M, or 0.75 to 3M.

본 발명의 효소 단백질은 기질 반응의 수크로스 농도는 0.1 내지 2.5M, 0.25 내지 2.5M, 0.75 내지 2.5M, 1.0 내지 2.5M, 0.1 내지 2.25M, 0.25 내지 2.25M, 0.75 내지 2.25M, 1.0 내지 2.25M, 0.1 내지 2.0M, 0.25 내지 2.0M, 0.75 내지 2.0M, 1.0 내지 2.0M, 0.1 내지 1.5M, 0.25 내지 1.5M, 0.75 내지 1.5M, 1.0 내지 1.5M, 0.1 내지 1.25M, 0.25 내지 1.25M, 0.75 내지 1.25M, 또는 1.0 내지 1.25M일 수 있다. The enzyme protein of the present invention has a sucrose concentration of 0.1 to 2.5M, 0.25 to 2.5M, 0.75 to 2.5M, 1.0 to 2.5M, 0.1 to 2.25M, 0.25 to 2.25M, 0.75 to 2.25M, 1.0 to 2.5M in the substrate reaction. 2.25M, 0.1 to 2.0M, 0.25 to 2.0M, 0.75 to 2.0M, 1.0 to 2.0M, 0.1 to 1.5M, 0.25 to 1.5M, 0.75 to 1.5M, 1.0 to 1.5M, 0.1 to 1.25M, 0.25 to 0.25M 1.25 M, 0.75 to 1.25 M, or 1.0 to 1.25 M.

상기 효소 단백질을 기질과 반응시키는 단계는 상기 단백질을 기질과 접촉시키는 단계에 의하여 수행될 수 있다. 상기 효소 단백질을 기질과 접촉시키는 단계는, 예컨대, 상기 효소 단백질 등을 기질과 혼합하는 단계 또는 상기 효소 단백질 등이 고정화된 담체에 기질을 접촉시키는 단계에 의하여 수행될 수 있다. 또 다른 예에서 상기 효소 단백질 등을 기질과 반응시키는 단계는 상기 재조합 균주의 균체를 기질이 포함된 배양 배지에서 배양하는 단계에 의하여 수행될 수 있다. 이와 같이 상기 효소 단백질은 수크로스 또는 프럭토스를 투라노스로 전환하여 수크로스 또는 프럭토스로부터 투라노스를 생산할 수 있다.The step of reacting the enzyme protein with the substrate may be performed by contacting the protein with the substrate. The step of contacting the enzyme protein with the substrate may be performed, for example, by mixing the enzyme protein with the substrate or contacting the substrate with a carrier on which the enzyme protein or the like is immobilized. In another example, the step of reacting the enzyme protein with the substrate may be performed by culturing the cells of the recombinant strain in a culture medium containing the substrate. As such, the enzyme protein can convert sucrose or fructose into turanose to produce turanose from sucrose or fructose.

상기 생산 방법은 서열번호 1 내지 서열번호 13 중에서 선택된 1종 이상의 아미노산 서열을 갖는 효소 단백질을 발현하는 재조합 미생물을 배양하는 단계; 및 상기 재조합 미생물 또는 상기 재조합 미생물로부터 분리된 효소 단백질을 기질과 반응시키는 단계를 포함할 수 있다.The production method comprises culturing a recombinant microorganism expressing an enzyme protein having at least one amino acid sequence selected from SEQ ID NO: 1 to SEQ ID NO: 13; and reacting the recombinant microorganism or an enzyme protein isolated from the recombinant microorganism with a substrate.

상기 재조합 미생물의 배양 단계는, 사용되는 미생물, 예를 들어 균주의 특성에 따라 본 발명이 속하는 기술 분야의 당업자에 의해 용이하게 선택되는 배지 및 배양 조건 하에서 이루어질 수 있다. 예를 들어, 상기 배지로서는 대장균을 비롯한 임의의 숙주 세포, 및 세포 내용물을 지지하거나 또는 함유할 수 있는 임의의 배양 배지, 용액, 고체, 반고체 또는 강성 지지체를 포함하며, 바람직하게는 2YT 배지, LB 배지, SOB 배지 또는 TB 배지 등이 될 수 있다. 상기 배양은 연속, 반연속, 또는 회분식 배양일 수 있다.The step of culturing the recombinant microorganism may be performed under a medium and culture conditions easily selected by a person skilled in the art according to the characteristics of the microorganism used, for example, a strain. For example, the medium includes any culture medium, solution, solid, semi-solid or rigid support capable of supporting or containing any host cells, including E. coli, and cell contents, preferably 2YT medium, LB medium, SOB medium or TB medium, etc. The culture may be continuous, semi-continuous, or batch culture.

상기 균체는 상기 미생물의 배양물에 대해 원심분리, 여과 등을 수행하여 얻을 수 있으며, 또한 상기 얻어진 균체를 균질화시키고 원심분리하여 수득된 상층액 또는 상기 상층액을 분획화하거나, 크로마토그래피 등을 통해 분리 정제하여 효소 단백질을 얻을 수 있다. 예컨대, 회수된 균체를 50mM 인산 완충용액으로 현탁한 후 파쇄하여 원심분리 한 후, 상등액만 Ni-NTA 컬럼 (Qiagen) 에서 흡착시킨 후 20mM, 200mM 이미다졸의 농도로 목적 단백질을 회수할 수 있다.The cells can be obtained by performing centrifugation, filtration, etc. on the culture of the microorganisms, and the supernatant obtained by homogenizing and centrifuging the obtained cells or fractionating the supernatant, or through chromatography, etc. Enzyme proteins can be obtained by separation and purification. For example, the recovered cells are suspended in 50 mM phosphate buffer, disrupted and centrifuged, and only the supernatant is adsorbed on a Ni-NTA column (Qiagen), and then the target protein can be recovered at a concentration of 20 mM or 200 mM imidazole.

상기 투라노스 생산 방법에 있어서, 효율적인 투라노스 생산을 위하여, 사용되는 효소 단백질의 양은 전체 반응물(기질 및 단백질 모두을 포함) 기준으로 50 U/ml 내지 1500 U/ml 일 수 있다. 효소의 사용량이 상기 농도보다 낮으면 투라노스 전환 효율이 낮아질 수 있고, 상기 농도보다 높으면 산업에서의 경제성이 낮아지므로 상기 범위가 적당하다.In the turanose production method, for efficient production of turanose, the amount of enzyme protein used may be 50 U/ml to 1500 U/ml based on total reactants (including both substrate and protein). If the amount of enzyme used is lower than the above concentration, turanose conversion efficiency may be lowered, and if the concentration is higher than the above concentration, economic feasibility in the industry is lowered, so the above range is suitable.

또한, 상기 기질과 반응시키는 단계는 바람직하게는 본 발명의 효소 단백질의 최적 활성화 조건 하에 이루어질 수 있다. 즉, 상기 반응은 30 내지 65℃, 바람직하게는 40 내지 60℃, 더욱 바람직하게는 45 내지 55℃, 더욱 바람직하게는 50℃의 온도에서 이루어질 수 있다. 상기 기질과 반응시키는 단계는 pH 5.0 내지 9.0, 바람직하게는 pH 5.5 내지 8.0, 또는 pH 5.5 내지 6.5에서 이루어질 수 있다. In addition, the step of reacting with the substrate may be preferably performed under optimal activation conditions of the enzyme protein of the present invention. That is, the reaction may be performed at a temperature of 30 to 65°C, preferably 40 to 60°C, more preferably 45 to 55°C, and more preferably 50°C. The reacting with the substrate may be performed at pH 5.0 to 9.0, preferably pH 5.5 to 8.0, or pH 5.5 to 6.5.

본 발명의 방법에 의하여 수득된 투라노스는 모사이동층 크로마토그래피를 이용하여 투라노스를 고순도로 분리할 수 있다. 상기 분리방법에서. 예를 들어 원심분리, 여과, 이온정제 및 이들의 조합으로 이루어진 군으로부터 선택된 하나 이상의 단계를 추가로 수행할 수 있다. Turanose obtained by the method of the present invention can be separated with high purity using simulated homogeneous layer chromatography. In the separation method. For example, one or more steps selected from the group consisting of centrifugation, filtration, ion purification, and combinations thereof may be further performed.

본 발명에 따른 투라노스 제조방법에 있어서, 투라노스를 함유하는 당 조성물을 모사 이동층(simulated moving bed, SMB) 크로마토그래피로 분리하여 투라노스 분획과 라피네이트를 얻는 단계를 포함하는 고순도 투라노스의 제조방법에 관한 것이다. In the method for preparing turanose according to the present invention, a turanose-containing sugar composition is separated by simulated moving bed (SMB) chromatography to obtain a turanose fraction and a raffinate. It's about manufacturing methods.

본 발명에 따른 투라노스의 제조 공정은 연속식과 배치식 모두 사용 가능하며, 바람직하게는 연속식 공정이다. The production process of turanose according to the present invention can be used both in a continuous process and in a batch process, and is preferably a continuous process.

본 명세서에서, 용어 "라피네이트(raffinate)"라 함은 추잔액이라고도 하며, 분리공정에 투입된 원료가 분리공정을 통과하여 얻어지는 산물에는 분리공정으로 함량을 높이고자 하는 목적 물질을 포함하는 목적 분획과, 분리공정에서 제거 또는 함량을 감소하고자 하는 물질등을 포함하는 잔류액을 포함하며, 상기 잔류액 라피네이트라고 한다. 본 발명의 일 예에서 투라노스 전환 공정에서 얻어지는 산물은 원료 기질인 설탕 및/또는 과당과 생산물인 투라노스를 포함하는 혼합물이며, 고순도 분리공정을 거치면서 목적 물질인 투라노스의 함량이 증가된 투라노스 분획과 잔류액을 얻으며, 잔류액에는 투라노스 전환 반응의 기질 또는 산물인 과당이 다량 포함되므로 과당 라피네이트를 의미할 수 있다.In the present specification, the term "raffinate" is also referred to as raffinate, and the product obtained by passing the raw material introduced into the separation process through the separation process includes a target fraction including the target substance to be increased in content by the separation process and , It includes a residual liquid containing substances to be removed or reduced in content in the separation process, and the residual liquid is called raffinate. In one example of the present invention, the product obtained in the turanose conversion process is a mixture containing sucrose and/or fructose as a raw material substrate and turanose as a product. A lanose fraction and a residual liquid are obtained, and since the residual liquid contains a large amount of fructose, which is a substrate or product of the turanose conversion reaction, it may mean fructose raffinate.

본 발명의 일 예에서, SMB 크로마토그래피를 이용한 고순도 분리 공정은 분리과정에서 상 변화가 없어 물질의 안정성 확보에 용이한 분리방법이다. 이러한 흡착 분리방법 중에서 액상 흡착 분리방법으로는 크로마토그래피 분리방법이 많이 사용되고 있다. 이중, 모사 이동층 흡착 분리 방법(simulated moving bed, SMB)은 1961년 미국특허 제2,985,589호 에서 제안된 분리 기술로, 다수의 컬럼을 이용하여 연속적으로 분리함으로써 기존의 회분식 크로마토그라피에 비해 순도 및 생산성이 우수하고, 적은 용매의 사용이 가능하다는 장점을 지닌다. 상기 모사 이동층(SMB) 흡착 분리 공정은 분리대상 혼합물의 주입과 라피네이트 및 추출물의 생산이 연속적으로 이루어지는 공정이다.In one example of the present invention, the high-purity separation process using SMB chromatography is a separation method that is easy to secure the stability of the material because there is no phase change during the separation process. Among these adsorption separation methods, a chromatographic separation method is widely used as a liquid phase adsorption separation method. Among them, the simulated moving bed adsorption separation method (simulated moving bed, SMB) is a separation technique proposed in US Patent No. 2,985,589 in 1961, which uses multiple columns to continuously separate the purity and productivity compared to conventional batch chromatography. It is excellent and has the advantage of being able to use a small amount of solvent. The simulated moving bed (SMB) adsorption separation process is a process in which the injection of the mixture to be separated and the production of raffinate and extract are continuously performed.

SMB 분리 후 이온 정제 공정으로서, 이온교환수지가 충진된 분리탑을 1개 또는 3개 사용하며, 이온교환수지는 강산성 양이온교환수지와 약염기성 음이온교환수지를 사용하여 35~50℃에서 수행할 수 있다.As an ion purification process after SMB separation, one or three separation towers filled with ion exchange resin are used, and the ion exchange resin can be carried out at 35 to 50 ° C using strong acid cation exchange resin and weakly basic anion exchange resin. have.

본 발명의 또 다른 일 예로서, 상기 투라노스 생산 방법으로 생산된 투라노스 함유 당 조성물을 제공한다. 상기 효소 단백질 및 투라노스 생산 방법에 관한 사항은 상기 투라노스 함유 당 조성물에 동일하게 적용될 수 있다. As another example of the present invention, a turanose-containing sugar composition produced by the turanose production method is provided. The enzyme protein and the method for producing turanose may be equally applied to the turanose-containing sugar composition.

상기 효소 단백질을 수크로스 단독 또는 수크로스 및 프럭토스를 포함하는 기질과 반응하여 생성된 투라노스를 함유하는 당 조성물, 예를 들어, 투라노스, 수크로스, 프럭토스, 트레할룰로스, 포도당 및 올리고당, 희소당(알룰로스, 알로스 등)으로 이루어진 군에서 선택된 1종 이상의 당류를 포함하는 당 조성물을 제조할 수 있다. A sugar composition containing turanose produced by reacting the enzyme protein with sucrose alone or with a substrate comprising sucrose and fructose, for example, turanose, sucrose, fructose, trehalulose, glucose and A sugar composition comprising at least one saccharide selected from the group consisting of oligosaccharides and rare saccharides (allulose, allose, etc.) may be prepared.

상기 반응 생성물을 목적 산물인 투라토스를 높은 함량으로 포함하고, 불순물인 올리고당 및 트레할룰로스를 낮은 함량을 포함하는 것이 바람직하다. 예를 들면, 반응생성물에 포함된 당류 고형분 함량 100중량%를 기준으로, 투라노스는 30중량%이상, 35중량%이상, 40중량%이상, 41중량%이상, 43중량%이상, 45중량%이상, 47중량%이상, 49중량%이상 또는 50 중량%이상일 수 있다. 상기 본 발명에 따른 투라노스 생산에서 얻어지는 반응 생성물의 전체 당류 고형분 함량을 기준으로 바람직한 당조성은, 올리고당 함량이 20 중량%이하, 18중량%이하, 17중량%이하, 15중량%이하, 13중량%이하, 11중량%이하, 또는 10 중량%이하이고 트레할룰로스 함량이 7중량%이하, 6중량%이하, 5 중량%, 4.5중량%이하, 또는 4.0 중량%이하인 조건을 만족할 수 있다. It is preferable that the reaction product contains a high content of turatose as a target product and a low content of oligosaccharide and trehalulose as impurities. For example, based on 100% by weight of the saccharide solid content contained in the reaction product, turanose is 30% by weight or more, 35% by weight or more, 40% by weight or more, 41% by weight or more, 43% by weight or more, 45% by weight or more. It may be more than 47% by weight, more than 49% by weight or more than 50% by weight. Based on the total saccharide solid content of the reaction product obtained in the production of turanose according to the present invention, the preferred sugar composition is 20% by weight or less, 18% by weight or less, 17% by weight or less, 15% by weight or less, 13% by weight or less. % or less, 11 wt% or less, or 10 wt% or less, and the trehalulose content is 7 wt% or less, 6 wt% or less, 5 wt%, 4.5 wt% or less, or 4.0 wt% or less.

구체적인 일예에서, 본 발명에 따른 아밀로수크라제 효소를, 반응 기질과 50℃의 온도 및 pH 6.0에서 24시간 동안 반응하여 얻어진 반응생성물 고형분 100중량%를 기준으로 투라노스 30 중량%이상, 올리고당 20중량%이하, 및 트레할룰로스 7중량%이하로 포함하는 반응생성물을 제조할 수 있다. In a specific example, the amylosucrase enzyme according to the present invention is reacted with a reaction substrate at a temperature of 50 ° C. and pH 6.0 for 24 hours, based on 100% by weight of the solid content of the reaction product, 30% by weight or more of turanose, oligosaccharide A reaction product containing 20% by weight or less and 7% by weight or less of trehalulose can be prepared.

본 발명에 따른 비피도박테리움 터모필럼(Bifidobacterium thermophilum) 유래 효소 단백질은 수크로스로부터 투라노스를 고수율로 생성할 수 있어 투라노스의 산업적 이용에 유용하다.The enzyme protein derived from Bifidobacterium thermophilum according to the present invention can produce turanose from sucrose in high yield and is useful for industrial use of turanose.

도 1은 본 발명의 일 예에 따라 재조합 투라노스 3-에피머화 효소 발현용 재조합 DNA를 포함하는 발현벡터 pRSet(A)를 나타내는 도면이다.
도 2는 본 발명의 일 예에 따라 비피도박테리움 터모필럼 아밀로수크라제 발현을 나타내는 SDS-PAGE 도면이다.
도 3는 야생형 아밀로수크라제의 온도에 따른 상대 활성을 나타낸 결과이다.
도 4은 야생형 아밀로수크라제의 pH에 따른 상대 효소 활성을 나타낸 결과이다.
도 5는 야생형 아밀로수크라제의 온도에 따른 상대 효소 활성을 나타낸 결과이다.
도 6는 본 발명의 일 예에 따라 기질인 수크로스 및 프럭토스 농도에 따른 투라노스 전환율을 나타낸 결과이다.
도 7은 본 발명의 일 예에 따라 정제된 비피도박테리움 터모필럼 아밀로수크라제의 돌연변이체 V542D(서열번호6)의 효소 농도에 따른 시간당 생성하는 투라노스의 농도 측정량을 나타내는 도면이다.
도 8는 본 발명의 일 예에 따라 정제된 비피도박테리움 터모필럼 아밀로수크라제의 돌연변이체 V542K(서열번호5)의 효소 농도에 따른 시간당 생성하는 투라노스의 농도 측정량을 나타내는 도면이다.
도 9는 본 발명의 일 예에 따라 pH 6 및 50℃의 온도에서, 기질 2 M 수크로스와 400 U/L 및 1600 U/L로 반응시킨 후 산출된 투라노스 전환율을 나타낸 결과이다.
도 10은 본 발명의 일 예에 따라 pH 6 및 50℃의 온도에서, 기질 2 M 수크로스와 400 U/L 및 1600 U/L로 반응시킨 후 산출된 기질 수크로스 소비량을 나타낸 결과이다.
1 is a view showing an expression vector pRSet (A) containing recombinant DNA for expressing recombinant turanose 3-epimerase according to an embodiment of the present invention.
Figure 2 is an SDS-PAGE diagram showing the expression of Bifidobacterium thermophilum amylosucrase according to an example of the present invention.
Figure 3 is a result showing the relative activity according to the temperature of wild-type amylosucrase.
Figure 4 is a result showing the relative enzyme activity according to the pH of wild-type amylosucrase.
5 is a result showing the relative enzyme activity according to the temperature of wild-type amylosucrase.
6 is a result showing the turanose conversion rate according to the concentration of sucrose and fructose as substrates according to an example of the present invention.
7 is a view showing the measured amount of concentration of turanose produced per hour according to the enzyme concentration of the mutant V542D (SEQ ID NO: 6) of bifidobacterium thermophilum amylosucrase purified according to an example of the present invention. to be.
8 is a view showing the measured amount of concentration of turanose produced per hour according to the enzyme concentration of the mutant V542K (SEQ ID NO: 5) of bifidobacterium thermophilum amylosucrase purified according to an example of the present invention. to be.
9 is a result showing the conversion of turanose calculated after reacting with a substrate 2 M sucrose at 400 U/L and 1600 U/L at pH 6 and a temperature of 50° C. according to an example of the present invention.
10 is a result showing the consumption of the substrate sucrose calculated after reacting with the substrate 2 M sucrose at 400 U / L and 1600 U / L at pH 6 and a temperature of 50 ° C. according to an example of the present invention.

이하 본 발명을 구체적인 실시예에 의해 더 상세히 설명하고자 한다. 하지만 본 발명은 하기 실시예에 한정된 것이 아니다. Hereinafter, the present invention will be described in more detail by specific examples. However, the present invention is not limited to the following examples.

실시예 1. 야생형 아밀로수크라제 제조 Example 1. Production of wild-type amylosucrase

발현균주로 사용될 대장균에 최적화되도록 비피도박테리움 터모필럼으로부터 유래된 아밀로수크라제(서열번호 4)를 암호화하는 폴리뉴클레오타이드(서열번호 1)를 바이오니아(Bioneer.Co.Korea)에 의뢰하여 합성하였다. 합성된 서열번호 1의 폴리뉴클레오타이드를 제한효소 NheI과 XhoI(NEB)을 사용하여 발현 벡터인 pRSet(A)(Invitrogen)의 동일한 제한효소 부위에 삽입하여 재조합 벡터 pRSet(A)-아밀로수크라제(pRSet(A)-BtAS)를 제조하였다(도 1). A polynucleotide (SEQ ID NO: 1) encoding amylosucrase (SEQ ID NO: 4) derived from Bifidobacterium thermophilum was requested from Bioneer.Co.Korea to be optimized for E. coli to be used as an expression strain. synthesized. The synthesized polynucleotide of SEQ ID NO: 1 was inserted into the same restriction enzyme site of the expression vector pRSet(A) (Invitrogen) using restriction enzymes NheI and XhoI (NEB) to recombinant vector pRSet(A)-amylosucrasase. (pRSet(A)-BtAS) was prepared (FIG. 1).

이후 제조된 재조합 벡터로 heat shock 방법(Sambrook and Russell: Molecular Cloning)에 의하여 대장균 BL21(DE3)(Invitrogen)를 형질전환하여 서열번호 4의 아미노산 서열을 암호화하는 폴리뉴클레오타이드를 포함하는 재조합 균주를 제조하였다. Thereafter, E. coli BL21 (DE3) (Invitrogen) was transformed with the prepared recombinant vector by the heat shock method (Sambrook and Russell: Molecular Cloning) to prepare a recombinant strain containing a polynucleotide encoding the amino acid sequence of SEQ ID NO: 4. .

형질전환된 재조합 균주를 5ml LB-ampicillin 배지(Difco)에 접종한 후 600nm에서의 흡광도(OD)가 1.5에 도달할 때까지 37℃의 온도 및 200rpm에서 진탕배양 한 후, 이 배양액을 500ml LB-ampicillin 배지에 접종, 37 ℃의 온도 및 200rpm에서 진탕배양하였다. 이 배양액의 600nm에서 흡광도가 0.5일 때 0.1mM의 IPTG를 첨가하여 목적 효소의 과발현을 유도하였다. (이때 과발현 유도시점부터 배양조건은 16℃의 온도 및 150rpm으로 전환하여 16시간 동안 유지하는 것이 바람직하나, 30℃의 온도에서 실험을 해도 무관하다. The transformed recombinant strain was inoculated into 5ml LB-ampicillin medium (Difco) and cultured with shaking at 37°C and 200rpm until the absorbance (OD) at 600nm reached 1.5. Inoculation into ampicillin medium, shaking culture at a temperature of 37 ℃ and 200rpm. When the absorbance at 600 nm of the culture medium was 0.5, 0.1 mM IPTG was added to induce overexpression of the target enzyme. (At this time, it is preferable to maintain the culture conditions for 16 hours by switching to a temperature of 16 ° C and 150 rpm from the time of induction of overexpression, but it is irrelevant to experiment at a temperature of 30 ° C.

이후, 원심분리기 6000rpm에서 20분간 원심분리하여 균체를 회수하였다. 회수한 균체는 0.85%(w/v) NaCl로 2회 세척 후 lysis buffer(PBS buffer, 10mM imidazole)에 혼탁시킨 후 Bead beater를 20초 3회 회전으로 작동으로 파쇄하였다. 파쇄액을 13000rpm에서 20분 동안 원심분리하여 상등액만을 모은 후, 미리 lysis buffer로 평형시킨 Ni-NTA컬럼(Ni-NTA Superflow. Qiagen)에 적용시킨 다음 PBS 버퍼에 40 mM imidazole이 함유된 완충용액을 순차적으로 흘려주었다. 마지막 과정인 PBS 버퍼에 200 mM imidazole을 흘려줌으로써 목적 단백질을 용출하였다. 용출된 단백질은 효소 활성 측정용 완충용액(50 mM Tris-HCl pH 7.0)으로 전환하여 다음 실험에 사용하였다.Thereafter, cells were recovered by centrifugation at 6000 rpm for 20 minutes in a centrifuge. The recovered cells were washed twice with 0.85% (w/v) NaCl, turbid in lysis buffer (PBS buffer, 10 mM imidazole), and disrupted by rotating the bead beater three times for 20 seconds. After collecting only the supernatant by centrifuging the lysate at 13000 rpm for 20 minutes, it was applied to a Ni-NTA column (Ni-NTA Superflow. Qiagen) equilibrated with lysis buffer in advance, and then a buffer solution containing 40 mM imidazole in PBS buffer was applied. flowed sequentially. The target protein was eluted by flowing 200 mM imidazole into PBS buffer, which was the last step. The eluted protein was converted into a buffer solution for measuring enzyme activity (50 mM Tris-HCl pH 7.0) and used in the next experiment.

이 방법으로 부분 정제된 아밀로수크라제를 얻었으며, SDS-PAGE를 통하여 단량체의 크기가 약 68 킬로달톤(kDa)인 것을 확인하였다(도 2).Partially purified amylosucrase was obtained in this way, and it was confirmed through SDS-PAGE that the size of the monomer was about 68 kilodaltons (kDa) (FIG. 2).

실시예 2. 변이형 아밀로수크라제 제조Example 2. Preparation of mutant amylosucrase

2.1 PCR에 의한 돌연변이 작제 및 클로닝2.1 Mutant Construction and Cloning by PCR

아밀로수크라제 돌연변이체는 Stratagene사의 Quikchange 부위-지향성 돌연변이 유발법을 사용하여 제작되었다. 구체적으로 insert만을 PCR을 통해 증폭하고 플라스미드 DNA로 subcloning하는 방식이 아닌, plasmid DNA 전체를 PCR을 통해 증폭하고, template DNA는 DpnI 효소로 분해하는 방식을 사용하였다. Quikchange 부위-지향성 돌연변이 유발법은 보다 빠르게 돌연변이를 유발할 수 있다는 장점이 있다. Amylosucrase mutants were constructed using Stratagene's Quikchange site-directed mutagenesis method. Specifically, instead of amplifying only the insert through PCR and subcloning it into plasmid DNA, a method of amplifying the entire plasmid DNA through PCR and digesting the template DNA with the DpnI enzyme was used. Quikchange site-directed mutagenesis has the advantage of being able to induce mutations more quickly.

야생형 아밀로수크라제 효소를 암호화하는 DNA pET21a의 벡터 DNA에 클로닝되어 있는 플라스미드 DNA를 복제를 하는 주형으로 사용하였다. 제조된 변이형 아밀로수크라제 발현용 재조합 DNA를 포함하는 발현벡터는, 도 1에 도식화된 백터에서 insert에 해당하는 서열, 즉 각각 하나의 뉴클레오타이드가 치환된 pRSet(A)-BtAS V542D, pRSet(A)-BtAS V542K이다.Plasmid DNA cloned into the vector DNA of DNA pET21a encoding the wild-type amylosucrase enzyme was used as a template for replication. The expression vector containing the prepared recombinant DNA for expressing the mutant amylosucrase is a sequence corresponding to the insert in the vector shown in Figure 1, that is, pRSet (A) -BtAS V542D, pRSet in which one nucleotide is substituted. (A) -BtAS V542K.

V542D 돌연변이체를 제작하기 위하여 주형 DNA 250ng, V542D 정방향 프라이머 125ng, V542D 역방향 프라이머 125ng, pfu ultra high fidelity DNA polymerase 2.5ul, 10X 반응 버퍼 5ul, 10mM dNTP 1ul를 포함하는 최종부피 50ul에 PCR을 세팅하였다. 상기 반응은 GeneAmp PCR system 9700 에서 95 ℃(1분)에서 1회의 사이클, [95℃(50초), 60 ℃(50초), 68 ℃(6분)]의 18회의 사이클, 68 ℃(7분)에서 1회의 사이클을 포함한다. 돌연변이가 유발되지 않은 주형 DNA를 인식하여 분해하는 DpnI 효소를 PCR이 끝난 50ul 부피의 반응액에 500U(10U/ul) 넣고 37 ℃에서 1 시간 동안 처리하였다.To prepare the V542D mutant, PCR was set in a final volume of 50 ul containing 250 ng of template DNA, 125 ng of V542D forward primer, 125 ng of V542D reverse primer, 2.5 ul of pfu ultra high fidelity DNA polymerase, 5 ul of 10X reaction buffer, and 1 ul of 10 mM dNTP. The reaction was performed in the GeneAmp PCR system 9700, 1 cycle at 95 ° C (1 minute), 18 cycles of [95 ° C (50 seconds), 60 ° C (50 seconds), 68 ° C (6 minutes)], 68 ° C (7 minutes) minutes) in one cycle. 500 U (10 U/ul) of DpnI enzyme, which recognizes and degrades unmutated template DNA, was added to a reaction solution in a volume of 50 ul after PCR, and treated at 37° C. for 1 hour.

또한, V5425K 돌연변이체를 제작하기 위하여 주형 DNA 250ng, V5425K 정방향 프라이머 125ng, V5425K 역방향 프라이머 125ng, pfu ultra high fidelity DNA polymerase 2.5ul, 10X 반응 버퍼 5ul, 10mM dNTP 1ul를 포함하는 최종부피 50ul에 PCR을 세팅하였다. 상기 반응에 필요한 프라이머 염기 서열은 표1과 같다. 상기 반응은 GeneAmp PCR system 9700 에서 95℃(1분)에서 1회의 사이클, [95℃(50초), 60℃(50초), 68℃(7분)]의 18회의 사이클, 68℃(7분)에서 1회의 사이클을 포함한다. 돌연변이가 유발되지 않은 주형 DNA를 인식하여 분해하는 DpnI 효소를 PCR이 끝난 50ul 부피의 반응액에 500U(10U/ul) 넣고 37℃에서 1 시간 동안 처리하였다. In addition, to prepare the V5425K mutant, PCR was set in a final volume of 50 ul containing 250 ng of template DNA, 125 ng of V5425K forward primer, 125 ng of V5425K reverse primer, 2.5 ul of pfu ultra high fidelity DNA polymerase, 5 ul of 10X reaction buffer, and 1 ul of 10 mM dNTP. did Primer base sequences required for the reaction are shown in Table 1. The reaction was performed in the GeneAmp PCR system 9700, 1 cycle at 95 ° C (1 minute), 18 cycles of [95 ° C (50 seconds), 60 ° C (50 seconds), 68 ° C (7 minutes)], 68 ° C (7 minutes) minutes) in one cycle. 500 U (10 U/ul) of DpnI enzyme, which recognizes and degrades unmutated template DNA, was added to a reaction solution in a volume of 50 ul after PCR, and treated at 37° C. for 1 hour.

돌연변이체 작제에 사용된 프라이머의 서열은 아래 표에 나타내었으며, PCR 과정을 아래 표에 정리하였다. The sequences of the primers used to construct the mutants are shown in the table below, and the PCR process is summarized in the table below.

명칭designation 서열 order TmTm V542D_FWD (서열번호 27)V542D_FWD (SEQ ID NO: 27) 5'- CGCCCCTGACGCTTGGGACACGACGTGGGACGCGC -3'5′-CGCCCCTGACGCTTGGGACACGACGTGGGACGCGC-3′ 73℃73℃ V542D_RVS (서열번호 28)V542D_RVS (SEQ ID NO: 28) 5'- GCGCGTCCCACGTCGTGTCCCAAGCGTCAGGGGCG -3'5′-GCGCGTCCCACGTCGTGTCCCAAGCGTCAGGGGCG-3′ 72℃72℃ V542K_FWD (서열번호 29)V542K_FWD (SEQ ID NO: 29) 5'- CGCCCCTGACGCTTGGAAGACGACGTGGGACGCGC -3'5′-CGCCCCTGACGCTTGGAAGACGACGTGGGACGCGC-3′ 73℃73℃ V542K_RVS (서열번호 30)V542K_RVS (SEQ ID NO: 30) 5'- GCGCGTCCCACGTCGTCTTCCAAGCGTCAGGGGCG -3'5′-GCGCGTCCCACGTCGTCTTCCAAGCGTCAGGGGCG-3′ 72℃72℃

segmentsegment stepstep cyclescycles temperature(℃)temperature(℃) timetime 1One initializationinitialization 1One 9595 1 min1min 22 denaturationdenaturation 1818 9595 50 sec50 seconds annealingannealing 118118 6060 50 sec50 seconds elongationelongation 1818 6868 7 min7min 33 final elongationfinal elongation 1One 6868

2.2 형질 전환 및 발현2.2 Transformation and expression

E.coli DH10B를 최초 숙주로 사용하였다. 실시예 2.1 에서 기술한 PCR 반응액에 DpnI이 첨가 된 혼합액을 바로 DH10B에 형질 전환한다. PCR 반응액과 DpnI의 혼합 용액을 5ul 피펫팅 하여 초저온 냉동고에 보관되어 있던 CaCl2법으로 제작된 competent cell인 DH10B 50ul에 heat shock 방법으로 형질 전환한다. LB-ampicillin 고체 배지에 도말하고 37 ℃에서 배양한다. 고체 배지 상에 생성된 콜로니 중에서 3개를 선별하여 3ml LB-ampicillin 액체 배지에서 배양한 후 miniprep kit(Quiagen) 을 이용하여 plasmid DNA를 추출한다. 시퀀싱은 외부기관(마크로젠, 한국)에서 실시하였으며, 그 결과 투라노스 생성용 아밀로수크라제 효소를 암호화 하는 DNA 부위에 돌연변이가 유발되었으며, 구체적으로 아미노산 서열 V542D 변이(서열번호 2) 및 아미노산 서열 V542K 변이(서열번호 3)가 유발되었음을 확인하였다. 돌연변이 유발이 확인된 plasmid DNA는 냉동고에 보관 되어있던 CaCl2법으로 제작된 competent cell인 E.coli BL21 solu (DE3) 50ul에 heat shock 방법으로 형질전환 하였다. LB-ampicillin 고체 배지에 도말하고 37℃에서 배양하였다.E. coli DH10B was used as the initial host. DpnI was added to the PCR reaction described in Example 2.1, and the mixture was immediately transformed into DH10B. Pipette 5ul of the mixed solution of the PCR reaction solution and DpnI, and transform 50ul of DH10B, a competent cell prepared by the CaCl 2 method, stored in a cryogenic freezer by the heat shock method. Plated on LB-ampicillin solid medium and incubated at 37 °C. Three colonies were selected from the colonies formed on the solid medium, cultured in 3ml LB-ampicillin liquid medium, and plasmid DNA was extracted using a miniprep kit (Quiagen). Sequencing was performed by an external institution (Macrogen, Korea), and as a result, mutations were induced in the DNA region encoding the amylosucrase enzyme for turanose production. Specifically, the amino acid sequence V542D mutation (SEQ ID NO: 2) and the amino acid sequence It was confirmed that the V542K mutation (SEQ ID NO: 3) was induced. The plasmid DNA for which mutagenesis was confirmed was transformed into 50ul of E.coli BL21 solu (DE3), a competent cell prepared by the CaCl 2 method stored in a freezer, by the heat shock method. Plated on LB-ampicillin solid medium and incubated at 37°C.

형질전환으로 획득한 아밀로수크라제 돌연변이를 암호화 하는 plasmid DNA를 포함하고 있는 E.coli BL21 solu (DE3)의 콜로니를 피킹하여 3ml LB-ampicillin 액체 배지에 접종하고 37 ℃에서 12시간 배양하였다. 뿌옇게 자란 3ml 배양볼륨의 미생물을 1ml 피펫팅 하여 250ml 삼각 플라스크에 담긴 50ml의 LB-ampicillin 액체배지에 접종하여 37 ℃에서 배양하였다. 600nm에서 흡광도가 0.6이 될 때 IPTG가 0.1mM 되도록 induction을 한 후 16℃에서 배양하였다. 모든 배양은 200 rpm 교반 인큐베이터에서 이루어졌다. 16℃에서 배양한 지 12시간 후에 3500gX의 원심분리기에서 30분 동안 원심분리 하여 미생물 균체를 회수하였다. Colonies of E.coli BL21 solu (DE3) containing the plasmid DNA encoding the amylosucrase mutation obtained by transformation were picked and inoculated into 3 ml LB-ampicillin liquid medium and incubated at 37 °C for 12 hours. 1 ml of the microorganisms in the 3 ml culture volume that had grown cloudy was pipetted and inoculated into 50 ml of LB-ampicillin liquid medium contained in a 250 ml Erlenmeyer flask and cultured at 37 °C. When the absorbance at 600 nm was 0.6, IPTG was inducted to 0.1 mM, followed by incubation at 16°C. All cultures were performed in a 200 rpm agitated incubator. After 12 hours of incubation at 16° C., microbial cells were recovered by centrifugation for 30 minutes in a 3500 gX centrifuge.

상기 회수된 균체를 lysis buffer(PBS buffer, 10 mM imidazole)에 혼탁시킨후 Bead beater를 20초 3회 회전으로 작동으로 파쇄한다. 파쇄액을 13000rpm에서 20분 동안 원심분리하여 상등액만을 모은 후, 미리 lysis buffer로 평형시킨 Ni-NTA컬럼(Ni-NTA Superflow. Qiagen)에 적용시킨 다음 PBS 버퍼에 40 mM imidazole이함유된 완충용액을 순차적으로 흘려주었다. 마지막 과정인 PBS 버퍼에 200 mM imidazole을 흘려줌으로써 목적 단백질을 용출하였다. 용출된 단백질은 효소 활성 측정용 완충용액(50 mM Tris-HCl pH 7.0)으로 전환하여 이후 실험에 사용하였다.After turbidity of the recovered cells in lysis buffer (PBS buffer, 10 mM imidazole), the bead beater is disrupted by rotating the bead beater three times for 20 seconds. The lysate was centrifuged at 13000 rpm for 20 minutes to collect only the supernatant, applied to a Ni-NTA column (Ni-NTA Superflow. Qiagen) equilibrated with lysis buffer in advance, and then a buffer solution containing 40 mM imidazole in PBS buffer. flowed sequentially. The target protein was eluted by flowing 200 mM imidazole into PBS buffer, which was the last step. The eluted protein was converted into a buffer solution (50 mM Tris-HCl pH 7.0) for measuring enzyme activity and used in subsequent experiments.

실시예 3. 변이형 아밀로수크라제 제조Example 3. Preparation of mutant amylosucrase

단일 점(single point) 돌연변이 효소를 제작하기 위하여 아래 표의 프라이머와 Quickchange site-directed mutagenesis kit를 이용하여 돌연변이를 유발하여 재조합 벡터 pBT7-N-His/아밀로수크라제를 제작하였다.To prepare a single point mutant enzyme, a recombinant vector pBT7-N-His/amylosucrasse was prepared by mutagenesis using the primers shown in the table below and a Quickchange site-directed mutagenesis kit.

유전자gene 방향direction 서열번호sequence number 서열order BtAS P200RBtAS P200R ForwardForward 3131 5'-GCCGTCGTCCGCCAAGTCTTC-3'5′-GCCGTCGTCCGCCAAGTCTTC-3′ ReverseReverse 3232 5'-GAAGACTTGGCGGACGACGGC-3'5′-GAAGACTTGGCGGACGACGGC-3′ BtAS V202IBtAS V202I ForwardForward 3333 5'-GTCCCGCAAATCTTCCCGACC-3'5′-GTCCCGCAAATCTTCCCGACC-3′ ReverseReverse 3434 5'-GGTCGGGAAGATTTGCGGGAC-3'5′-GGTCGGGAAGATTTGCGGGAC-3′ BtAS Y265FBtAS-Y265F ForwardForward 3535 5'-GACGCGGTGCCGTTCATCTGGAAGCAA-3'5′-GACGCGGTGCCGTTCATCTGGAAGCAA-3′ ReverseReverse 3636 5'-TTGCTTCCAGATGAACGGCACCGCGTC-3'5'-TTGCTTCCAGATGAACGGCACCGCGTC-3' BtAS V305IBtAS V305I ForwardForward 3737 5'-AAAGGTGAAGTCATCATGGCTCCCAAG-3'5′-AAAGGTGAAGTCATCATGGCTCCCAAG-3′ ReverseReverse 3838 5'-CTTGGGAGCCATGATGACTTCACCTTT-3'5′-CTTGGGAGCCATGATGACTTCACCTTT-3′ BtAS K393RBtAS K393R ForwardForward 3939 5'-CCGCTCAAGCACAGGGAATTCCTCTAC-3'5′-CCGCTCAAGCACAGGGAATTCCTCTAC-3 ReverseReverse 4040 5'-GTAGAGGAATTCCCTGTGCTTGAGCGG-3'5′-GTAGAGGAATTCCCTGTGCTGAGCGG-3′ BtAS S420TBtAS S420T ForwardForward 4141 5'-TATGATCCGGCGACGGGTGACGCGCGC -3'5′-TATGATCCGGCGACGGGTGACGCGCGC-3′ ReverseReverse 4242 5'-GCGCGCGTCACCCGTCGCCGGATCATA-3'5′-GCGCGCGTCACCCGTCGCCGGATCATA-3′ BtAS Y414FBtAS-Y414F ForwardForward 4343 5'-ATGGGCGAGCTGTTCAACTATGATCCG-3'5′-ATGGGCGAGCTGTTCAACTATGATCCG-3′ ReverseReverse 4444 5'-CGGATCATAGTTGAACAGCTCGCCCAT-3'5'-CGGATCATAGTTGAACAGCTCGCCCAT-3'

상기 유발된 점 돌연변이는, 야생형 아밀로수크라제 효소의 200번째 프롤린을 아르기닌으로(서열번호 4), 202번째 발린은 이소루신으로(서열번호 5), 265번째 티로신은 페닐알라닌으로(서열번호 6) 305번째 발린은 이소루신으로(서열번호 7) 393번째 리신은 아르기닌으로(서열번호 8), 414번째 티로신은 페닐알라닌으로(서열번호 9), 420번째 세린은 트레오닌으로(서열번호 10) 치환시킨 것이다.In the induced point mutation, the 200th proline of the wild-type amylosucrase enzyme is arginine (SEQ ID NO: 4), the 202nd valine is isoleucine (SEQ ID NO: 5), and the 265th tyrosine is phenylalanine (SEQ ID NO: 6 ) Valine at position 305 is replaced with isoleucine (SEQ ID NO: 7), lysine at position 393 is replaced with arginine (SEQ ID NO: 8), tyrosine at position 414 is replaced with phenylalanine (SEQ ID NO: 9), and serine at position 420 is replaced with threonine (SEQ ID NO: 10) will be.

상기 플라스미드를 형질전환 방법에 의하여 대장균 BL21(DE3)에 형질전환 하였고, 상기 실시예 2.2와 동일한 방법으로 변이형 아밀로수크라제 효소를 분리하였다.The plasmid was transformed into E. coli BL21 (DE3) by the transformation method, and the mutant amylosucrase enzyme was isolated in the same manner as in Example 2.2.

실시예 4. 변이형 아밀로수크라제 효소 제조Example 4. Preparation of mutant amylosucrase enzymes

이중 점(double point) 돌연변이를 갖는 변이형 효소를 제작하기 위하여 Y414F 변이체와 야생형 효소보다 반응종결 시간이 빨라진 변이체의 이중 점 변이 (P200R를 Y414F에 적용)를 접목시켰다. In order to prepare a mutant enzyme having a double point mutation, the Y414F mutant and the double point mutation (applying P200R to Y414F) of the mutant with a faster reaction completion time than the wild type enzyme were grafted.

pBT7-N-His/아밀로수크라제 Y414F 돌연변이 효소 벡터에 P200R 프라이머를 이용하여 이중 점 변이형 아밀로수크라제 효소, Y414F*P200R(서열번호9)를 제작하였다. 상기 플라스미드를 형질전환 방법에 의하여 대장균 BL21(DE3)에 형질전환하였고, 아밀로수크라제를 대량생산하기 위하여 상기 재조합 E.coli BL21의 스탁 배양물을 LB배지 5mL에 접종하고 온도 37℃ 12시간 동안 180rpm에서 전 배양시킨 후, 전 배양물을 120℃에서 15분 동안 멸균시킨 2 L 플라스크에 들어있는 1 L LB배지에 접종한 후 0.01%(w/v) 암피실린의 존재 하 배양온도는 37℃, 교반 속도는 180rpm에서 배양하였다. 600nm에서의 흡광도가 0.6에 도달했을 때, 최종 농도 0.2mM의 이소프로필-β-D-치오갈락토피라노사이드를 첨가하여 효소의 대량 발현을 유도하였다. 이소프로필-β-D-치오갈락토피라노사이드를 첨가한 후에는 배양온도를 16℃로 낮춰 20시간 배양하였다. 과발현 된 아밀로수크라제 효소 배양물을 4℃에서 10분 동안 3,000 x g에서 원심분리하여 침전물을 수확하였다. 상기 침전물을 50 mM Tris-HCl 완충 용액(pH 7) 45mL에서 볼텍싱하여 완전하게 재현탁 시킨 후에 세포 용액을 초음파 분쇄기(Sonic Dismembrator 550, Fisher Scientific Co.) Model D100을 이용하여 세포를 파괴하였다. 세포 파쇄물은 4℃에서 20분 동안 11,000 x g에서 원심분리하여 침전물인 세포 잔해물은 제외하고 상등액 만을 얻는다. 이 과정에서 얻은 반응물을 세포 추출물(Cell extract)라고 명명하였다.A double point mutant amylosucrase enzyme, Y414F*P200R (SEQ ID NO: 9), was prepared using the P200R primer in the pBT7-N-His/amylosucrase Y414F mutant enzyme vector. The plasmid was transformed into Escherichia coli BL21 (DE3) by a transformation method, and the stock culture of the recombinant E.coli BL21 was inoculated into 5 mL of LB medium at a temperature of 37 ° C for 12 hours to mass-produce amylosucrase. After pre-incubation at 180 rpm for 15 minutes, the entire culture was inoculated into 1 L LB medium contained in a 2 L flask sterilized at 120 ° C for 15 minutes, and then in the presence of 0.01% (w / v) ampicillin, the culture temperature was 37 ° C. , The stirring speed was incubated at 180 rpm. When the absorbance at 600 nm reached 0.6, mass expression of the enzyme was induced by adding isopropyl-β-D-thiogalactopyranoside at a final concentration of 0.2 mM. After adding isopropyl-β-D-thiogalactopyranoside, the culture temperature was lowered to 16° C. and cultured for 20 hours. Cultures of the overexpressed amylosucrase enzyme were centrifuged at 3,000 x g for 10 min at 4 °C to harvest the precipitate. The precipitate was completely resuspended by vortexing in 45 mL of 50 mM Tris-HCl buffer solution (pH 7), and then the cell solution was disrupted using a sonicator (Sonic Dismembrator 550, Fisher Scientific Co.) Model D100. The cell lysate is centrifuged at 11,000 x g for 20 minutes at 4° C. to obtain only the supernatant excluding cell debris as a precipitate. The reaction product obtained in this process was named cell extract.

수확한 세포 추출물은 효소 정제 수율을 알기 위하여 소량 채취해 보관한다. 이 세포 상등액을 멸균된 0.45 μm 시린지 필터를 통해 여과시킨 후, 45 mL의 여과액을 니켈-니트릴로트리아세트산(Ni-NTA) 친화성 칼럼을 통해 통과시켜 재조합 히스 텍(His-tag)된 아밀로수크라제를 통과시켜 정제된 아밀로수크라제 효소를 얻었다. 컬럼을 40mL 세정 완충액(Lysis buffer) (50mM Tris-HCl, 300mM 염화나트륨, 20mM 이미다졸, pH 7.0)으로 먼저 세정한 후, 40mL의 용출 완충액 (Elution buffer) (50mM Tris-HCl, 300mM 염화나트륨, 250mM 이미다졸, pH 7.0)을 이용하여 원하는 단백질을 얻는다. 정제한 단백질은 4℃에서 Amicon Centrifugal Filter Devices (Millipore Corporation, Billerica, USA)를 이용하여 농축하여 투라노스 생산에 사용되는 아밀로수크라제 효소로서 분리하였다.A small amount of the harvested cell extract is collected and stored to determine the yield of enzyme purification. After filtering the cell supernatant through a sterile 0.45 μm syringe filter, 45 mL of the filtrate was passed through a nickel-nitrilotriacetic acid (Ni-NTA) affinity column to obtain recombinant His-tagged amylase. Purified amylosucrase enzyme was obtained by passing through sucrase. The column was washed first with 40 mL Lysis buffer (50 mM Tris-HCl, 300 mM NaCl, 20 mM imidazole, pH 7.0), then with 40 mL Elution buffer (50 mM Tris-HCl, 300 mM NaCl, 250 mM imidazole). dazole, pH 7.0) to obtain the desired protein. The purified protein was concentrated at 4° C. using Amicon Centrifugal Filter Devices (Millipore Corporation, Billerica, USA) and isolated as an amylosucrase enzyme used in the production of turanose.

비교예 1. 네이세리아 서브플라바 유래 아밀로수크라제 제조Comparative Example 1. Preparation of Neisseria subflava-derived amylosucrase

발현균주로 사용될 대장균에 최적화되도록 네이세리아 서브플라바로부터 유래된 아밀로수크라제(서열번호 1)를 암호화하는 폴리뉴클레오타이드(서열번호 4)를 바이오니아(Bioneer.Co.Korea)에 의뢰하여 합성하였다. Polynucleotide (SEQ ID NO: 4) encoding amylosucrase (SEQ ID NO: 1) derived from Neisseria subflava was synthesized by commissioning Bioneer.Co.Korea to be optimized for E. coli to be used as an expression strain. .

합성된 서열번호 4의 폴리뉴클레오타이드를 제한효소 NheI과 XhoI(NEB)을 사용하여 발현 벡터인 pRSet(A)(invitrogen)의 동일한 제한효소 부위에 삽입하여 재조합 벡터 pRSet(A)-아밀로수크라제(pRSet(A)-NsAS)를 제조하였다. 이후 제조된 재조합 벡터로 heat shock 방법(Sambrook and Russell MolecularCloning.)에 의하여 대장균 BL21(DE3)(invitrogen)를 형질전환하여 서열번호 1의 아미노산 서열을 암호화하는 폴리뉴클레오타이드를 포함하는 재조합 균주를 제조하였다. The synthesized polynucleotide of SEQ ID NO: 4 was inserted into the same restriction enzyme site of the expression vector pRSet(A) (invitrogen) using restriction enzymes NheI and XhoI (NEB) to recombinant vector pRSet(A)-amylosucrase. (pRSet(A)-NsAS) was prepared. Thereafter, E. coli BL21 (DE3) (invitrogen) was transformed with the prepared recombinant vector by the heat shock method (Sambrook and Russell Molecular Cloning.) to prepare a recombinant strain containing a polynucleotide encoding the amino acid sequence of SEQ ID NO: 1.

형질전환된 재조합 균주를 5ml LB-ampicilline 배지(Difco)에 접종한 후 600nm에서의 흡광도(OD)가 1.5에 도달할 때까지 37℃의 온도 및 200rpm에서 진탕 배양한 후, 이 배양액을 500ml LB-ampicilline 배지에 접종, 37℃ 의 온도 및 200rpm에서 진탕 배양하였다. 이 배양액의 600nm에서 흡광도가 0.5일 때 0.1mM의 IPTG를 첨가하여 목적 효소의 과발현을 유도하였다. (이때 과발현 유도시점부터 배양조건은 16℃ 의 온도 및 150rpm으로 전환하여 16시간 동안 유지하였다. 이후 원심분리기 6000rpm에서 20분간 원심분리하여 균체를 회수하였다. 회수한 균체는 0.85%(w/v) NaCl로 2회 세척 후 균체를 이용한 투라노스 생산 및 효소정제에 사용하였다. The transformed recombinant strain was inoculated into 5ml LB-ampicilline medium (Difco), cultured with shaking at 37°C and 200rpm until the absorbance (OD) at 600nm reached 1.5, and then the culture medium was incubated in 500ml LB-ampicillin medium. Inoculated in ampicilline medium, and cultured with shaking at a temperature of 37 ° C and 200 rpm. When the absorbance at 600 nm of the culture medium was 0.5, 0.1 mM IPTG was added to induce overexpression of the target enzyme. (At this time, from the time of overexpression induction, the culture conditions were switched to a temperature of 16 ° C and 150 rpm and maintained for 16 hours. Then, the cells were recovered by centrifugation at 6000 rpm for 20 minutes. The recovered cells were 0.85% (w / v) After washing twice with NaCl, the cells were used for production of turanose and purification of enzymes.

실시예 5. 야생형 아밀로수크라제의 활성 분석Example 5. Activity assay of wild-type amylosucrase

5.1 온도에 따른 효소 활성5.1 Enzyme activity as a function of temperature

실시예 1에서 얻어진 아밀로수크라제 효소의 효소 활성에 대한 온도의 영향은 25 ~ 65℃ 의 범위에서 결정되었다. 0.1M 수크로스, 50mM Tris-HCl 완충액 (pH 7.0) 및 희석된 효소를 함유하는 총 부피가 0.5mL 인 반응 혼합물을 25, 30, 35, 40, 45, 50, 55, 60 및 65℃ 의 온도에서 배양 하였다. BtAS 활성의 온도 의존성은 다양한 온도에서 환원당의 방출량을 결정하기 위한 DNS 방법으로서, 즉, DNS 용액을 이용한 환원당량 측정법을 통해 온도별 효소활성을 구하고 상대활성도로 표시하였으며 그 결과를 도 3에 나타내었다. 구체적으로, 상기 DNS 방법에 의한 효소 활성 측정은, 기질인 100mM 수크로스에 상기 아밀로수크라제 0.02mg/ml을 처리하고 상기 pH 및 온도 조건에서 30분간 반응하고, DNS 시약을 넣어 반응을 중지하고, 100℃ 의 온도에서 5분간 가열하여 DNS의 환원당 발색 반응을 유도하고 얼음 위에서 식힌 후, 575nm에서 ABS를 측정 한 후 프럭토스 스탠다드와 비교하여 계산하였다.The effect of temperature on the enzymatic activity of the amylosucrase enzyme obtained in Example 1 was determined in the range of 25 to 65°C. The reaction mixture in a total volume of 0.5 mL containing 0.1 M sucrose, 50 mM Tris-HCl buffer (pH 7.0) and diluted enzyme was incubated at 25, 30, 35, 40, 45, 50, 55, 60 and 65 °C. was cultured in The temperature dependence of BtAS activity is a DNS method for determining the amount of reducing sugar released at various temperatures, that is, the enzyme activity at each temperature was obtained through a reducing equivalent measurement method using a DNS solution and expressed as a relative activity. The results are shown in FIG. 3 . Specifically, in the measurement of enzyme activity by the DNS method, 100 mM sucrose as a substrate is treated with 0.02 mg/ml of amylosucrase, reacted at the pH and temperature conditions for 30 minutes, and DNS reagent is added to stop the reaction. After heating at 100 ° C. for 5 minutes to induce a color reaction of reducing sugar in DNS, cooling on ice, ABS was measured at 575 nm, and then calculated by comparing with fructose standard.

도 3의 결과에서 확인할 수 있듯이, 기질인 수크로스를 가수분해하는 능력은 50℃에서 최대로 나타냈다. 55℃에서는 98%의 상대활성을 보이며, 60℃에서 약 85 %의 잔여활성을 보인다. 65℃에서는 대부분 활성이 감소하는 것을 확인 하였다. 따라서 야생형 아밀로수크라제 BtAS는 50℃에서도 안정하면서도 최대활성을 보이므로 50℃를 최적온도로 확인하였다.As can be seen from the results of FIG. 3, the ability to hydrolyze sucrose, which is a substrate, was maximized at 50 °C. It shows 98% relative activity at 55℃ and about 85% residual activity at 60℃. It was confirmed that most of the activity decreased at 65 ° C. Therefore, wild-type amylosucrase BtAS showed maximum activity while being stable even at 50 ° C, so 50 ° C was confirmed as the optimum temperature.

5.2 pH에 따른 활성 분석5.2 Assay of activity according to pH

실시예 1에서 정제된 아밀로수크라제 효소에 대한 최적 pH를 확인하기 위하여, 효소 활성에 대한 최적 pH는 4.0 내지 10.0의 범위에서 측정하였다. 효소 활성에 대한 pH 효과를 분석하기 위해 4 개의 완충 시스템을 사용하였다: 50 mM 소듐 아세테이트 완충액 (pH 4.0 내지 6.0); 50 mM 인산 나트륨 완충액 (pH6.0 - 7.5); 50 mM Tris - HCl 완충액 (pH 7.0 - 9.0); 50 mM 글리신 -수산화나트륨 (pH 8.0 - 10.0) 0.1M 의 기질인 수크로스, pH가 다른 50mM의 각 완충액 및 희석된 효소를 함유한 반응 혼합물을 50℃ 에서 30 분 동안 수행 하였다. 효소 활성은 실시예 5-1에 제시된 DNS 법을 이용하여 측정하고 결과를 도 4에 나타내었다. In order to confirm the optimal pH for the amylosucrase enzyme purified in Example 1, the optimal pH for enzyme activity was measured in the range of 4.0 to 10.0. Four buffer systems were used to analyze the effect of pH on enzyme activity: 50 mM sodium acetate buffer (pH 4.0 to 6.0); 50 mM sodium phosphate buffer (pH6.0 - 7.5); 50 mM Tris-HCl buffer (pH 7.0 - 9.0); A reaction mixture containing 50 mM glycine-sodium hydroxide (pH 8.0 - 10.0) 0.1 M sucrose as a substrate, 50 mM each buffer at different pH and diluted enzyme was carried out at 50°C for 30 minutes. Enzyme activity was measured using the DNS method presented in Example 5-1 and the results are shown in FIG. 4 .

그 결과, 야생형 효소의 가장 큰 상대 활성은 pH 6.0의 50 mM 소듐 아세테이트 완충용액에서 관찰되었다. pH가 최적 pH 6.0에서 산성 (pH 5.5-4.0) 및 알칼리 (pH 7.0-9.0) 범위로 이동하면, 그 상대 활성은 현저하게 감소하였다. 완충 시스템은 효소 활성에 영향을 주어서는 안 되지만, 본 발명에서는 동일한 pH에서도 완충 성분의 유형에 따라 효소 활성이 유의하게 영향을 받았다. 따라서, 50mM 소듐아세테이트 완충용액 중 pH 6.0 를 이후의 실험에 사용하였다.As a result, the highest relative activity of the wild-type enzyme was observed in 50 mM sodium acetate buffer at pH 6.0. When the pH was moved from the optimum pH 6.0 to the acidic (pH 5.5-4.0) and alkaline (pH 7.0-9.0) ranges, their relative activity decreased significantly. The buffer system should not affect the enzyme activity, but in the present invention, the enzyme activity was significantly affected by the type of buffer component even at the same pH. Therefore, pH 6.0 in 50 mM sodium acetate buffer was used for further experiments.

최적 온도와 최적 pH인 6.0에서 비피도박테리움 터모필럼 아밀로수크라제 변이주 V542D 유래 아밀로수크라제는 1.7U/mg, 비피도박테리움 터모필럼 아밀로수크라제 변이주 V542K 유래 아밀로수크라제는 1.4U/mg, 비피도박테리움 터모필럼 아밀로수크라제 변이주 Y414F*P200R 유래 아밀로수크라제는 2.6U/mg의 최적 활성을 지닌다.At the optimal temperature and optimal pH of 6.0, amylosucrasase derived from Bifidobacterium thermophilum amylosucrase mutant strain V542D was 1.7 U/mg, and amylsucrase derived from bifidobacterium thermophilum amylosucrase mutant strain V542K Rosucrase has an optimal activity of 1.4 U/mg, and bifidobacterium thermophilum amylosucrase mutant strain Y414F*P200R-derived amylosucrasase has an optimal activity of 2.6 U/mg.

5.3. 아밀로수크라제의 내열성 및 효소실활상수(Kd) 평가 5.3. Evaluation of heat resistance and enzyme inactivation constant (Kd) of amylosucrase

야생형 아밀로수크라제의 내열성, 효소실활상수를 평가하기 위하여 상기 실시예 1에서 정제된 야생형 아밀로수크라제를 항온 진탕 수조에서 최대 120시간동안 열처리하였다. 45, 50, 55 및 60℃ 의 온도에서 열처리 후, 잔류 효소 활성을 측정하기 위하여 0.1 M 수크로스가 함유된 50 mM 완충액 490 ㎕에 상기 열처리한 효소를 적당히 희석한 희석액 10 ㎕를 넣고 35℃에서 30분간 반응시킨 후 반응 종결액에 500 ㎕의 DNS 용액을 첨가하고 100℃에서 5분간 끓인 뒤 5분간 얼음물에 방랭 시켰다. Abs575에서 흡광도를 측정해 Standard curve로부터 환원 당량을 측정하여 온도에 따른 효소활성의 상대 값을 도출하고 그 결과를 도 5(A, 45℃; B, 50℃?; C, 55℃?; D, 60℃?) 에 나타내었다. 이 값을 바탕으로 온도 별 시간에 따른 상대 활성도를 함수로 표기하고, 이를 다시 자연로그 함수로 변환시켜 kd 및 온도 반감기를 구하여 아래 표에 나타내었다.In order to evaluate the heat resistance and enzyme deactivation constant of wild-type amylosucrase, the wild-type amylosucrase purified in Example 1 was heat-treated in a constant-temperature shaking water bath for up to 120 hours. After heat treatment at temperatures of 45, 50, 55, and 60 ° C, 10 μl of a dilution of the heat-treated enzyme was added to 490 μl of 50 mM buffer containing 0.1 M sucrose to measure the residual enzyme activity, and then at 35 ° C. After reacting for 30 minutes, 500 μl of DNS solution was added to the reaction solution, boiled at 100 ° C for 5 minutes, and then cooled in ice water for 5 minutes. By measuring the absorbance at Abs575 and measuring the reducing equivalent from the standard curve, the relative value of the enzyme activity according to the temperature was derived, and the results are shown in Figure 5 (A, 45 ℃; B, 50 ℃?; C, 55 ℃?; D, 60°C?). Based on this value, the relative activity according to temperature and time was expressed as a function, and converted into a natural logarithmic function to obtain kd and temperature half-life, which are shown in the table below.

온도(℃)Temperature (℃) Kd(h-1)Kd(h -1 ) t1/2(h)t 1/2 (h) 4545 0.000030.00003 23104.923104.9 5050 0.00120.0012 577.6577.6 5555 0.00980.0098 70.770.7 6060 0.7620.762 0.90.9

상기 표에서 확인할 수 있는 바와 같이, 야생형 아밀로수크라제 BtAS는 45℃에서 온도 반감기가 약 23,104시간, 50℃에서 온도반감기가 약 577시간으로 최대 120시간 동안의 효소 반응 시 매우 우수한 온도 안정성을 보였다. 이 온도 보다 5℃가 높은 55℃에서는 온도 반감기가 약 70시간으로 급격히 감소하는 경향을 보였으나, 전체적으로 열에 대한 안정성이 우수하였다.As can be seen from the table above, the wild-type amylosucrase BtAS has a temperature half-life of about 23,104 hours at 45 ° C and a temperature half-life of about 577 hours at 50 ° C. seemed At 55 ° C, which is 5 ° C higher than this temperature, the temperature half-life tended to decrease rapidly to about 70 hours, but the overall stability to heat was excellent.

실시예 6. 아밀로수크라제의 투라노스 전환 반응Example 6. Turanose Conversion Reaction of Amylosucrase

6.1 비피도박테리움 터모필럼 유래 아밀로수크라제 투라노스 전환율6.1 Bifidobacterium thermophilum-derived amylosucrase turanose conversion rate

실시예 1 내지 4의 아밀로수크라제의 투라노스 전환율을 검토하기 위하여, 설탕과 과당을 1:0.2의 중량 비율로 혼합하여 농도가 63.5bx가 되도록 용해시켜 기질을 준비하고 pH는 6.0으로 조정하였다. 실시예 1의 비피도박테리움 터모필럼 유래 투라노스 전환 효소 (BtAS)의 야생형을 700U/L 투입하였고 50℃에서 24시간 반응을 진행하였다. 실시예 2의 BtAS의 변이형1(V542D) 및 변이형2(V542K), 실시예 4에 따른 변이형3(Y414F*P200R)을 야생형과 같이 동일한 조건에서 반응시켰다. 각 효소의 전환반응 후 당조성 분석은 아래 표의 조건으로 HPLC 분석하였다.In order to examine the turanose conversion rate of amylosucrase of Examples 1 to 4, a substrate was prepared by mixing sucrose and fructose at a weight ratio of 1:0.2 and dissolving them to a concentration of 63.5bx, and adjusting the pH to 6.0. did 700 U/L of the wild type of Bifidobacterium thermophilum-derived turanose converting enzyme (BtAS) of Example 1 was added, and the reaction was performed at 50° C. for 24 hours. Variants 1 (V542D) and 2 (V542K) of BtAS of Example 2, and variant 3 (Y414F*P200R) of Example 4 were reacted under the same conditions as the wild type. After the conversion reaction of each enzyme, the sugar composition was analyzed by HPLC under the conditions shown in the table below.

컬럼column Bio-rad Aminex HPX-87CBio-rad Aminex HPX-87C 주입량injection volume 10㎕10 μl 유속flow rate 0.6ml/min0.6ml/min 컬럼온도column temperature 80℃80℃ 이동상mobile phase Water 100%Water 100%

상기 비피도박테리움 터모필럼 유래 BtAS 효소에 따른 전환반응 후 당조성 결과를 아래 표에 나타내었다. 상기 표에서 전환결과 얻어진 산물의 당조성 분석은, 반응 생성물에 포함된 전체 당류 고형분 함량(중량)을 기준으로, 각 구성 당류의 고형분 함량(중량)을 백분율로 나타낸 것이다(하기 표의 단위는 중량%이다). 상기 올리고당은 주로 포도당이 알파 1-4 결합으로 연결된 포도당 올리고머이며, 대부분은 DP3 및 DP4이상의 당류로 구성된다.The sugar composition results after the conversion reaction according to the BtAS enzyme derived from Bifidobacterium thermophilum are shown in the table below. In the above table, the sugar composition analysis of the product obtained as a result of conversion shows the solid content (weight) of each constituent saccharide as a percentage based on the total saccharide solid content (weight) contained in the reaction product (the unit of the table below is % by weight to be). The oligosaccharide is mainly a glucose oligomer in which glucose is linked by an alpha 1-4 linkage, and most of the oligosaccharide is composed of DP3 and DP4 or higher saccharides.

구분division 올리고당oligosaccharide 설탕sugar 투라노스Turanos 트레할룰로스trehalulose 과당fruit sugar BtAS 야생형BtAS wild type 16.116.1 00 46.746.7 3.33.3 33.933.9 BtAS V542DBtAS V542D 18.518.5 00 46.946.9 3.43.4 31.231.2 BtAS V542KBtAS V542K 18.118.1 00 46.146.1 4.24.2 31.631.6 BtAS Y414F*P200RBtAS Y414F*P200R 15.815.8 00 50.050.0 3.23.2 31.031.0

상기 표에서 확인한 바와 같이, 비피도박테리움 유래의 아밀로수크라제는 반응온도가 50℃로 높아 반응속도가 빠르며 24시간 내 700U/L의 효소로 설탕 기질을 모두 소모하고 투라노스를 최대 생성하며 반응을 종결시킬 수 있었다.As confirmed in the table above, bifidobacterium-derived amylosucrases has a fast reaction rate as the reaction temperature is as high as 50°C, consumes all sugar substrates and produces maximum turanose with 700 U/L of enzyme within 24 hours. and the reaction could be terminated.

6.2 나이세리아 서브플라바 유래 아밀로수크라제 투라노스 전환율6.2 Neisseria subflava-derived amylosucrase turanose conversion rate

비교예 1의 나이세리아 서브플라바 유래 아밀로수크라제의 투라노스 전환율을 검토하기 위하여, 상기 실시예 6.1과 동일한 조건 및 방법으로 분석하되 나이세리아 서브플라바 유래 투라노스 전환효소(NsAS)는 500, 700, 1000, 1400, 1900U/L를 투입하였고 35℃에서 48시간 반응을 진행하고 그 결과를 아래 표에 나타내었다.In order to examine the turanose conversion rate of the Neisseria subflava-derived amylosucrasase of Comparative Example 1, the analysis was performed under the same conditions and methods as in Example 6.1, but the Neisseria subflava-derived turanose converting enzyme (NsAS) 500, 700, 1000, 1400, and 1900 U/L were added, and the reaction was conducted at 35° C. for 48 hours, and the results are shown in the table below.

구분division 올리고머oligomer 설탕sugar 투라노스Turanos 트레할룰로스trehalulose 과당fruit sugar NsAS 500U/LNSAS 500U/L 1.91.9 41.841.8 25.225.2 8.88.8 22.322.3 NsAS 700U/LNSAS 700U/L 3.53.5 29.729.7 35.335.3 8.88.8 22.722.7 NsAS 1000U/LNSAS 1000U/L 6.56.5 16.616.6 47.747.7 7.77.7 21.521.5 NsAS 1400U/LNSAS 1400U/L 13.013.0 00 55.955.9 7.77.7 23.423.4 NsAS 1900U/LNSAS 1900U/L 12.612.6 00 56.756.7 7.97.9 22.822.8

상기 표에서 확인한 바와 같이, NsAS는 반응온도가 35℃로 낮아 반응속도가 느리며 1000U/L의 효소 투입으로는 48시간 내 반응을 완료시키기 어려웠으며, 48시간 내에 설탕 기질을 모두 소진하고 투라노스를 최대로 생산하기 위해서는 1400U/L이상의 많은 효소가 필요한 것을 확인하였다. 나이세리아 서브플라바 유래 아밀로수크라제를 이용한 투라노스 생산 결과를 보면, 트레할룰로스 함량이 높아 투라노스 분리 정제에 바람직하지 않음을 확인하였다.As confirmed in the table above, NsAS has a slow reaction rate as the reaction temperature is as low as 35°C, and it is difficult to complete the reaction within 48 hours with the input of 1000 U/L of enzyme. It was confirmed that many enzymes of 1400 U/L or more are required for maximum production. Looking at the results of turanose production using Neisseria subflava-derived amylosucrase, it was confirmed that the trehalulose content was high, which was not preferable for separation and purification of turanose.

따라서, 비피도박테리움 유래의 아밀로수크라제가 나이세리아 서브플라바 유래의 아밀로수크라제 대비 적은 양의 효소 투입량으로 기질을 빠르게 소진하여 전체 전환 반응을 빠르게 종결시킬 수 있어, 효소 투입량 절감 및 반응속도를 단축함을 확인하였다.Therefore, compared to the amylosucrase derived from Neisseria subflava, Bifidobacterium-derived amylosucrase rapidly consumes the substrate with a smaller amount of enzyme input and can quickly terminate the entire conversion reaction, thereby reducing the amount of enzyme input. And it was confirmed that the reaction rate was shortened.

실시예 7. 변이형 아밀로수크라제의 전환반응Example 7. Conversion reaction of mutant amylosucrase

7.1 야생형 아밀로수크라제의 투라노스 전환반응7.1 Wild-type amylosucrase turanose conversion reaction

50 mM 소듐아세테이트 완충용액 (pH 6.0)에서 수크로스를 1.0, 1.5, 2.0 및 2.5M의 농도(각각 1.0S, 1.5S, 2.0S 및 2.5S)로, 프럭토즈를 0.25, 0.5, 0.75 및 1M의 농도(각각 0.25F, 0.5F, 0.75F 및 1F)로 포함하는 기질로부터 투라노스를 합성시켰다. 효소 반응은 400 U/L의 야생형 효소로 48 시간 동안 수행되었다. 배양 후, 반응 혼합물을 끓는 물에서 10 분 동안 열처리하여 효소를 불 활성화시켰다. 불 활성화된 반응 용액을 0.2 ㎛ 주사기 필터로 여과하고 가용성 분획을 HPAEC로 분석 하였다. 가용성 분획은 CarboPacTM PA1 분석 칼럼 (4 x 250mm, DIONEX, SUNNYVALE, CA, USA)에서 pulsed amperometric detection (HPAEC-PAD)과 결합 된 고성능 음이온 교환 크로마토그램으로 분석하여 적은 양의 포도당, 과당, 자당 및 투라노스를 정량화하였다. 반응물의 상층 액을 증류수로 적절히 희석하고 0.2 μm 주사기 필터로 여과하였다. 주입 부피는 50 μl이고 100 mM NaOH 용액으로 1.0 mL/min의 유속으로 분석했다. 당류의 함량 조성은 표준 물질과의 면적 비교에 의해 결정되었다. Sucrose at concentrations of 1.0, 1.5, 2.0 and 2.5 M (1.0S, 1.5S, 2.0S and 2.5S, respectively) and fructose at 0.25, 0.5, 0.75 and 1M in 50 mM sodium acetate buffer (pH 6.0). Turanose was synthesized from a substrate containing at concentrations of (0.25F, 0.5F, 0.75F and 1F, respectively). Enzymatic reactions were performed for 48 hours with 400 U/L of wild-type enzyme. After incubation, the reaction mixture was heat-treated in boiling water for 10 min to inactivate the enzyme. The inactivated reaction solution was filtered through a 0.2 μm syringe filter and the soluble fraction was analyzed by HPAEC. The soluble fraction was analyzed by high-performance anion exchange chromatogram coupled with pulsed amperometric detection (HPAEC-PAD) on a CarboPacTM PA1 analytical column (4 x 250 mm, DIONEX, SUNNYVALE, CA, USA) to detect low amounts of glucose, fructose, sucrose and oxalate. Lanose was quantified. The supernatant of the reaction was appropriately diluted with distilled water and filtered through a 0.2 μm syringe filter. The injection volume was 50 μl and analyzed at a flow rate of 1.0 mL/min with 100 mM NaOH solution. The content composition of saccharides was determined by area comparison with standard materials.

투라노스 전환율에 대한 기질 조성의 영향은 400 U/L의 BtAS로 50℃ 의 온도 및 50 mM 소듐아세테이트 완충액으로 pH 6.0에서 수행되었었으며, 분석된 결과를 도 6에 나타내었다. 투라노스 전환율은 기질(수크로스)로부터 전환된 투라노스의 생성량을 의미하는 것으로, 기질 농도 대비 생성된 투라노스 농도의 비(%)로 나타낸다.The effect of the substrate composition on the turanose conversion rate was performed at a temperature of 50° C. with 400 U/L of BtAS and a 50 mM sodium acetate buffer at pH 6.0, and the analyzed results are shown in FIG. 6 . The turanose conversion rate means the production amount of turanose converted from a substrate (sucrose), and is expressed as a ratio (%) of the turanose concentration produced to the substrate concentration.

실험 결과에서 확인할 수 있듯이, 48 시간 동안의 효소 반응 후, 최종 투라노스 전환율은 프럭토스 농도가 1.0 M까지 증가함에 따라 유의하게 증가 하였다. 이는 co-substrate로서 외인성 프럭토스이 투라노스 생산을 촉진함을 시사했다. 반응 혼합물 중에 1.0 M의 과당을 첨가함으로써, 투라노스 전환율은 1.0 M의 수크로스로 22.7 %에서 43.3 %로 증가하였고, 1.5 M의 수크로스에서 23.7 %에서 39.4 %로 증가 하였다. 따라서, 투라노스 수확량은 BtAS 생체 전환 시스템의 초기 프럭토스 농도에 크게 의존하는 것을 확인하였다. As can be seen from the experimental results, after the enzymatic reaction for 48 hours, the final turanose conversion significantly increased as the fructose concentration increased up to 1.0 M. This suggested that exogenous fructose as a co-substrate promotes turanose production. By adding 1.0 M fructose in the reaction mixture, the turanose conversion increased from 22.7% to 43.3% with 1.0 M sucrose and from 23.7% to 39.4% with 1.5 M sucrose. Therefore, it was confirmed that the yield of turanose was highly dependent on the initial fructose concentration of the BtAS biotransformation system.

즉, 수크로스로부터 유래된 과당 부분이 효소로부터 방출되지 않고서 투라노스를 생산하기 위한 수용체로 직접 이용되고 외인과적인 과당 첨가가 투라노스 생산 수율을 더욱 향상 시키는 것으로 보인다. 최적의 기질 조건은 수크로스와 과당 각각 1.0 M이었고, 이 때 투라노스 전환율은 43.3 %이었다.That is, it seems that the fructose portion derived from sucrose is directly used as an acceptor for producing turanose without being released from the enzyme, and the exogenous addition of fructose further improves the yield of turanose production. Optimal substrate conditions were 1.0 M each of sucrose and fructose, and the turanose conversion rate was 43.3%.

7.2. 실시예 2의 변이형 효소의 투라노스 생산성7.2. Turanose productivity of the mutant enzyme of Example 2

실시예 2의 2종의 변이형 아밀로수크라제의 투라노스 생산성을 살펴보기 위하여, 2M 설탕, 0.75M 과당의 기질에 아밀로수크라제 100U/L~500U/L(여기서 Unit은 가수분해 활성으로, 100mM의 설탕에 1mg의 아밀로수크라제를 처리하여 50℃에서 30분 간 반응했을 때 분당 생성되는 과당의 양 μmole을 의미한다.)을 넣고 투라노스 전환반응을 시작했다. In order to examine the turanose productivity of the two mutant amylosucrases of Example 2, 100 U / L to 500 U / L of amylosucrase in substrates of 2 M sugar and 0.75 M fructose (where Unit is hydrolysis As an activity, it means the amount of fructose produced per minute when 100 mM sugar is treated with 1 mg of amylosucrase and reacted at 50 ° C. for 30 minutes.) was added to start the turanose conversion reaction.

도 7 및 도 8은 효소의 농도와 시간당 생성하는 투라노스의 농도의 상관 관계를 나타내는 그래프이다. 도 7 및 도 8 의 수식 모두 x값은 넣어준 효소의 농도 (U/L)를 의미하며, y값은 시간당 생성되는 투라노스의 농도를 g/L로 나타낸 것으로서 단위는 g/L/hr이다. 수식은 y = 0.082x + 7.3862 이고, 변이 아밀로수크라제 V542D를 2M 설탕과 0.75M의 과당에 첨가 했을 때 시간당 생성되는 투라노스를 계산하였다. 그 결과, 비피도박테리움 터모필럼 유래의 아밀로수크라제 V542D의 투라노스 생산성은 8.9 U/mg임을 확인하였다. 7 and 8 are graphs showing the correlation between the concentration of enzyme and the concentration of turanose produced per hour. In both the formulas of FIGS. 7 and 8, the x value means the concentration (U / L) of the enzyme added, and the y value represents the concentration of turanose produced per hour in g / L, and the unit is g / L / hr . The formula is y = 0.082x + 7.3862, and the turanose produced per hour was calculated when the mutant amylosucrase V542D was added to 2M sugar and 0.75M fructose. As a result, it was confirmed that the turanose productivity of amylosucrase V542D derived from Bifidobacterium thermophilum was 8.9 U/mg.

동일한 방법으로 아밀로수크라제 V542K를 2M설탕과 0.75M의 과당에 100U/L~500U/L만큼 넣고 시간대 별로 시료를 채취하여 분석한 결과, 도 8에서 보는 효소 농도와 투라노스 생성에 관한 상관 관계는 y = 0.1879x + 8.0043이었다. 이를 통하여 비피도박테리움 터모필럼 유래의 변이 아밀로수크라제 V542K의 투라노스 생산성은 9.9U/mg임을 확인하였다. In the same way, 100 U/L to 500 U/L of amylosucrase V542K was added to 2M sugar and 0.75M fructose, and samples were taken and analyzed at each time point. As a result, the correlation between enzyme concentration and turanose production as shown in FIG. The relationship was y = 0.1879x + 8.0043. Through this, it was confirmed that the turanose productivity of the mutant amylosucrase V542K derived from Bifidobacterium thermophilum was 9.9 U/mg.

2M 설탕 또는 0.75M 과당을 기질로 하여 50℃에서 반응 할 때, 변이 아밀로수크라제 V542D는 8.9U/mg, 변이 아밀로수크라제 V542K는 9.9U/mg의 활성을 지녀, 야생형 아밀로수크라제 3.0U/mg의 두 배 이상에 해당하는 수치로, DNA돌연변이법으로 효소 활성을 상당한 수준으로 개선한 것이라고 할 수 있다.When reacted at 50°C with 2M sugar or 0.75M fructose as a substrate, the activity of mutant amylosucrase V542D was 8.9 U/mg and that of mutant amylosucrase V542K was 9.9 U/mg. It is a value that is more than twice that of sucrase 3.0U/mg, and it can be said that the enzyme activity has been significantly improved by DNA mutation method.

7.3 실시예 3의 변이형 효소의 활성도 및 생산성7.3 Activity and productivity of the mutant enzyme of Example 3

실시예 3의 단일 점 변이형 아밀로수크라제 효소의 효소 활성도를 실시예 5.1과 동일한 방법으로 측정하고, 상기 단일 점 변이형 아밀로수크라제 효소의 투라노스 전환율을 pH 6 및 50℃의 온도에서, 기질 2M 수크로스와 400U/L 반응시킨 후 기질의 농도 대비 생성된 투라노스 농도의 비(%)를 산출하였다. 또한 기질로부터 생성된 투라노스의 농도를 반응 종결 시간으로 나눈, 기질로부터 투라노스 전환 시 시간 당 생성되는 투라노스(농도)를 산출하고 아래 표에 나타내었다. The enzyme activity of the single point mutation type amylosucrase enzyme of Example 3 was measured in the same manner as in Example 5.1, and the turanose conversion rate of the single point mutation type amylosucrase enzyme was measured at pH 6 and 50 ° C. At this temperature, the ratio (%) of the concentration of turanose produced to the concentration of the substrate after reacting with 2M sucrose as a substrate at 400 U/L was calculated. In addition, the concentration of turanose produced from the substrate was divided by the reaction completion time to calculate the turanose (concentration) produced per hour when turanose was converted from the substrate, and is shown in the table below.

Y414F는 400 U/L로 반응시켰을 때, 수크로스를 완전하게 소비하지 못하고 속도가 느려졌으며, 이는 상대적으로 단백질 양이 적게 들어가서 반응을 못한 것이라 예측하여 동일 조건에서 단백질 양을 4배 늘려 1600U/L로 반응시켰다. 상기 측정 및 산출된 결과를 아래 표에 나타내었다.When Y414F reacted at 400 U/L, sucrose was not completely consumed and the rate slowed down. reacted with The measured and calculated results are shown in the table below.

정제후After purification 반응 효소 양
(unit/L)
amount of reaction enzyme
(unit/L)
단백질량
(mg/10ml)
protein amount
(mg/10ml)
효소 비활성
(unit/mg)
enzyme inactivity
(unit/mg)
투라노스 전환율
(%)
Turanose Conversion Rate
(%)
반응 종결 시간(h)Reaction completion time (h) 시간 당 생성되는 투라노스 (g/L/h)Turanose produced per hour (g/L/h)
야생형 효소(BtAS)Wild-type enzyme (BtAS) 400400 33 1.3±0.11.3±0.1 25±2.525±2.5 1212 14.2514.25 P200RP200R 400400 88 0.5±0.00.5±0.0 27±1.527±1.5 1212 15.3915.39 V202IV202I 400400 77 0.9±0.00.9±0.0 29±2.029±2.0 1212 16.5316.53 Y265FY265F 400400 66 0.6±0.20.6±0.2 23±1.023±1.0 66 26.2226.22 V305IV305I 400400 33 1.6±0.11.6±0.1 21±1.021±1.0 2424 66 K393RK393R 400400 44 1.0±0.01.0±0.0 22±0.022±0.0 1212 12.5412.54 S420TS420T 400400 44 1.5±0.31.5±0.3 2020 2424 5.75.7 Y414FY414F 400400 1One 4.1±0.84.1±0.8 12.5±2.512.5±2.5 >24>24 -- Y414FY414F 16001600 44 4.1±0.84.1±0.8 35±1.435±1.4 1212 19.9519.95

상기 결과에 나타낸 바와 같이, 야생형 효소와 비교하면 비활성은 414번째 티로신을 페닐알라닌으로 치환시킨 변이체가 특이적으로 4배가 높아졌다. 모든 변이체들의 투라노스 전환율을 확인하기 위하여 스크리닝 개념으로 400 U/L로 효소 양을 맞춰 반응을 시킨 결과, P200R, V202I가 야생형 효소보다 투라노스 전환율이 높게 나왔으며, 반응속도는 Y265F가 빨라진 것을 확인 할 수 있었다. 또한 1600 U/L로 Y414F를 반응시킨 결과, 수크로스를 완전하게 소비하고 12시간 만에 반응이 종결되었으며 투라노스 전환율이 약 35%로, 변이체 중에서 1600 U/L로 반응시킨 Y414F 돌연변이 효소가 투라노스 전환율이 가장 높다는 것을 확인 할 수 있었다.As shown in the above results, compared to the wild-type enzyme, the specific activity of the mutant in which the 414th tyrosine was substituted with phenylalanine was specifically 4-fold higher. In order to confirm the turanose conversion rate of all mutants, as a screening concept, the reaction was performed by adjusting the amount of enzyme to 400 U / L. As a result, P200R and V202I showed higher turanose conversion rates than wild-type enzymes, and Y265F confirmed that the reaction rate was faster. Could. In addition, as a result of reacting Y414F at 1600 U/L, sucrose was completely consumed and the reaction was terminated in 12 hours, and the conversion rate of turanose was about 35%. It was confirmed that the Lanose conversion rate was the highest.

7.4. 이중 점 변이형 효소의 활성도 및 생산성7.4. Activity and productivity of double-point mutant enzymes

실시예 4의 이중 점 변이형 아밀로수크라제 효소를 상기 7.3의 실험과 동일한 방법으로 pH 6 및 50℃의 온도에서, 기질 2 M 수크로스와 400 U/L 및 1600 U/L로 반응시킨 후 투라노스 전환율 및 수크로스 소비량을 산출하여 도 9 및 도 10에 나타내었다.The double-point mutant amylosucrase enzyme of Example 4 was reacted with the substrate 2 M sucrose at 400 U/L and 1600 U/L at pH 6 and a temperature of 50° C. in the same manner as in the experiment of 7.3 above. After turanose conversion and sucrose consumption were calculated, they are shown in FIGS. 9 and 10 .

정제후After purification 반응 효소 양
(unit/L)
amount of reaction enzyme
(unit/L)
단백질량
(mg/10ml)
protein amount
(mg/10ml)
효소 비활성
(unit/mg)
enzyme inactivity
(unit/mg)
투라노스 전환율(%)Turanose Conversion Rate (%) 반응 종결 시간(h)Reaction completion time (h) 시간 당 생성되는 투라노스 (g/L/h)Turanose produced per hour (g/L/h)
야생형 효소(BtAS)Wild-type enzyme (BtAS) 400400 33 1.3±0.11.3±0.1 25±2.525±2.5 1212 14.2514.25 Y414F*P200RY414F*P200R 400400 1.51.5 2.6±0.52.6±0.5 17±0.517±0.5 >24>24 -- Y414F*V202IY414F*V202I 400400 1One 4.0±0.24.0±0.2 14±2.514±2.5 >24>24 -- Y414F*Y265FY414F*Y265F 400400 1One 4.2±0.14.2±0.1 13±2.013±2.0 >24>24 -- Y414F*P200RY414F*P200R 16001600 66 2.6±0.52.6±0.5 50±450±4 66 5757 Y414F*V202IY414F*V202I 16001600 44 4.0±0.24.0±0.2 41.5±4.941.5±4.9 66 4747 Y414F*Y265FY414F*Y265F 16001600 44 4.2±0.14.2±0.1 40.5±2.140.5±2.1 66 4646

Y414F 기반의 더블포인트 돌연변이 변이체도 Y414F 싱글포인트 돌연변이 변이체와 마찬가지로 400 U/L로 반응시켰을 때 수크로스 소비를 완전하게 하지 못하여 최대 투라노스 전환율을 확인하지 못했다. 다만 1600U/L로 반응시킨 결과, 투라노스 전환율이 높게 나왔으며 그 중에서도 Y414F 변이체와 P200R을 접목시킨 Y414F*P200R 더블 포인트 돌연변이 변이체가 투라노스 전환율이 50%로 가장 높은 투라노스 전환율을 보였다.Like the Y414F single-point mutant mutant, the Y414F-based double-point mutant mutant did not completely consume sucrose when reacted at 400 U/L, so the maximum turanose conversion rate was not confirmed. However, as a result of the reaction at 1600 U / L, the turanose conversion rate was high, and among them, the Y414F * P200R double point mutation mutant grafted with the Y414F mutant and P200R showed the highest turanose conversion rate at 50%.

실시예 8. 이중 점 변이형 효소를 함유하는 (세포 추출물) 투라노스 생성Example 8. Production of Turanose (Cell Extract) Containing Double Point Mutant Enzyme

2M 수크로스와, 2M 수크로스와 0.75M 프럭토스의 혼합 기질이 각각 함유된 50mM 소듐 아세테이트 완충액(pH 6.0) 10 ml을 10분간 pre-heat해준 뒤 실시예 4의 Y414F*P200R 변이체 효소 Cell extract 상태에서 16 unit/10ml의 농도가 되도록 앞서 정제한 신규 아밀로수크라제 16 unit을 수크로스 완충용액에 첨가하였다. 실시예 4에서 수확한 침전물을 50mM Tris-HCl 완충 용액(pH 7) 45mL에서 볼텍싱하여 완전하게 재 현탁 시킨 후에 세포 용액을 초음파 분쇄기(Sonic Dismembrator 550, Fisher Scientific Co.) Model D100을 이용하여 세포를 파괴하였다. 세포 파쇄물을 4에서 20분 동안 11,000 x g에서 원심분리하여 침전물인 세포 잔해물은 제외하고 상등액, 세포 추출물을 얻었다.After pre-heating 10 ml of 50 mM sodium acetate buffer (pH 6.0) containing 2 M sucrose and a mixed substrate of 2 M sucrose and 0.75 M fructose, respectively, for 10 minutes, Y414F*P200R mutant enzyme cell extract state of Example 4 16 units of the previously purified novel amylosucrase were added to the sucrose buffer solution to a concentration of 16 units/10ml. The precipitate harvested in Example 4 was completely resuspended by vortexing in 45 mL of 50 mM Tris-HCl buffer solution (pH 7), and then the cell solution was sonicated using a sonicator (Sonic Dismembrator 550, Fisher Scientific Co.) Model D100. destroyed. The cell lysate was centrifuged at 11,000 x g for 20 minutes at 4 to obtain a supernatant and cell extract except for cell debris as a precipitate.

50℃에서 12시간 동안 효소반응을 수행하고 10분간 끓는 물에 가열하여 효소반응을 종결시킨 후 얻어진 반응물을 10000배 희석하여 UltiMate 3000 HPLC system(Dionex, USA)을 이용하여 분석하였다. 이때, 글루코스, 프락토스, 수크로스, 투라노스, 말토오스(Sigma-Aldrich Chemical Co., St. Louis, MO), 트레할룰로스(Samyang, Seongnam, Korea)를 표준물질로 이용하여 효소반응물을 분석하였으며, 투라노스의 전환율은 여러 가지 농도의 투라노스 표준물질을 분석하여 얻은 Standard curve를 이용하여 계산하였다.Enzymatic reaction was performed at 50° C. for 12 hours, and after heating in boiling water for 10 minutes to terminate the enzymatic reaction, the obtained reaction product was diluted 10000 times and analyzed using an UltiMate 3000 HPLC system (Dionex, USA). At this time, the enzyme reaction was analyzed using glucose, fructose, sucrose, turanose, maltose (Sigma-Aldrich Chemical Co., St. Louis, MO), and trehalulose (Samyang, Seongnam, Korea) as standard materials. The conversion rate of turanose was calculated using a standard curve obtained by analyzing turanose standards at various concentrations.

투라노스를 분석하기 전에 샘플은 수크로스를 제거하기 위하여 Invertase 로 전처리한 후에 분석한다. 수크로스를 제거하는 이유는 투라노스와 수크로스의 피크가 겹쳐 투라노스의 정량에 영향을 미치기 때문이다. 투라노스 분석조건으로 HPLC 칼럼은 Bio-rad Aminex HPX-87C를 사용하였고, 샘플 주입량(Injection volume)은 10ul로 Column oven 온도는 80℃에서 이동상 용매는 100% 물로 분석하였다.Before analysis of turanose, the sample is analyzed after pre-treatment with Invertase to remove sucrose. The reason for removing sucrose is that the peaks of turanose and sucrose overlap and affect the quantification of turanose. As the turanose analysis conditions, Bio-rad Aminex HPX-87C was used for the HPLC column, the sample injection volume was 10 ul, the column oven temperature was 80 ° C, and the mobile phase solvent was 100% water.

2M의 수크로스를 기질로 사용한 반응 후 6시간이 경과한 샘플의 당 분석 결과 및, 2M 수크로스 및 0.75M 프럭토스를 기질로 사용한 반응 후 6시간이 경과한 샘플의 당 분석 결과를 아래 표에 정리하였다.The sugar analysis results of the samples 6 hours after the reaction using 2M sucrose as substrates and the sugar analysis results of the samples after 6 hours of reaction using 2M sucrose and 0.75M fructose as substrates are shown in the table below. Organized.

기질temperament 올리고머
(중량%)
oligomer
(weight%)
투라노스
(중량%)
Turanos
(weight%)
글루코스+트레할룰로스
(중량%)
Glucose + Trehalulose
(weight%)
2M 수크로스2M sucrose 30.0230.02 42.0142.01 0.160.16 2M 수크로스 +0.75M 프럭토스2M sucrose +0.75M fructose 17.0517.05 51.1251.12 0.950.95

상기 결과에 나타낸 바와 같이, 기질을 2M 수크로스만 반응시키면 투라노스는 42.01%이고 기질을 2M 수크로스 뿐만 아니라 0.75M의 프럭토스를 첨가하여 반응시킨 결과 51.1%로 더 높은 수준으로 투라노스를 생성하는 것을 확인하였다.As shown in the above results, when the substrate is reacted with only 2M sucrose, turanose is 42.01%, and when the substrate is reacted with 2M sucrose as well as 0.75M fructose, turanose is produced at a higher level of 51.1%. confirmed that.

실시예 9. 기질 조성에 따른 아밀로수크라제의 전환반응Example 9. Amylosucrase Conversion Reaction According to Substrate Composition

아밀로수크라제의 전환 반응에서 기질 조성에 따른 반응성을 검토하기 위하여, 기질로 쓰이는 설탕과 과당의 고형분 중량비를 1:0, 1:0.2, 1:0.5, 1:0.75, 1:1, 1:1.5로 하여 물을 첨가하여 농도가 63.5bx가 되도록 용해시켜 기질을 준비하고 pH는 6로 조정하였다. 상기 설탕 고형분 함량은 2M에 해당되며 구체적인 설탕, 및 과당의 중량은 하기 표 12에 나타냈다. In order to examine the reactivity according to the substrate composition in the conversion reaction of amylosucrase, the solid weight ratio of sugar and fructose used as substrate was 1:0, 1:0.2, 1:0.5, 1:0.75, 1:1, 1 : 1.5 and water was added to prepare a substrate by dissolving to a concentration of 63.5bx, and the pH was adjusted to 6. The sugar solid content corresponds to 2M, and the specific weight of sugar and fructose is shown in Table 12 below.

설탕:과당의 혼합비율Sugar:fructose mixing ratio 설탕(g/L)Sugar (g/L) 설탕 몰농도(M)Sugar molarity (M) 과당(g/L)Fructose (g/L) 과당 몰농도(M)Fructose molarity (M) 1:0.01:0.0 685685 22 00 00 1:0.21:0.2 685685 22 135135 0.750.75 1:0.51:0.5 685685 22 342342 1.91.9 1:0.71:0.7 685685 22 513513 2.82.8 1:1.01:1.0 685685 22 685685 3.83.8 1:1.51:1.5 685685 22 10271027 5.75.7

설탕과 과당의 조성이 다른 기질에 실시예 4의 BtAS(Y414F*P200R) 효소를 700U/L 투입하였고 50℃에서 24시간 반응을 진행하였다. 각 기질에서의 효소 전환반응 후 당조성 분석은 상기 실시예 6과 같은 조건으로 수행하였다. 700 U/L of the BtAS (Y414F*P200R) enzyme of Example 4 was added to substrates having different compositions of sugar and fructose, and the reaction was performed at 50° C. for 24 hours. After enzymatic conversion of each substrate, analysis of sugar composition was performed under the same conditions as in Example 6 above.

기질 조성에 따른 BtAS(Y414F*P200R) 효소의 전환반응 후 당조성 결과는 아래 표에 나타내었다. 하기 표 13에서 함량은 반응산물 내 전체 당류 고형분 100중량%에 포함된 각각 당류의 함량을 중량%로 표시한 것이다.The sugar composition results after the conversion reaction of the BtAS (Y414F*P200R) enzyme according to the substrate composition are shown in the table below. In Table 13 below, the contents of each saccharide contained in 100% by weight of the total saccharide solid content in the reaction product are expressed in weight%.

설탕:과당의 혼합비율Sugar:fructose mixing ratio 올리고당oligosaccharide 올리고당/투라노스 비율Oligosaccharide/Turanose Ratio 설탕sugar 투라노스Turanos 트레할룰로스trehalulose 과당fruit sugar 1:0.01:0.0 32.432.4 82.2%82.2% 00 39.439.4 2.92.9 25.325.3 1:0.21:0.2 16.516.5 33.0%33.0% 00 50.050.0 3.53.5 30.030.0 1:0.51:0.5 8.28.2 16.5%16.5% 00 49.749.7 3.53.5 38.638.6 1:0.71:0.7 5.85.8 12.8%12.8% 00 45.245.2 3.33.3 45.745.7 1:1.01:1.0 4.04.0 9.7%9.7% 00 41.341.3 3.13.1 51.651.6 1:1.51:1.5 2.42.4 7.0%7.0% 00 34.434.4 2.52.5 60.760.7

상기 결과에서 확인한 바와 같이, 기질에서 설탕 대비 과당의 중량을 높이면 올리고당의 생성이 감소하고 상대적으로 설탕의 비율이 적어지므로 투라노스의 생성양은 줄어드는 것을 확인하였다. 트레할룰로스는 과당 비율에 크게 영향을 받지 않고 3~4 중량% 수준을 유지하였다. 투라노스 생성량 대비 올리고당이 현저히 줄어드는 기질의 조성은 설탕:과당=1:0.2 부터 시작하여 1:0.5에서 크게 감소하며 이후 과당함이 증가할수록 점진적으로 감소하였다. 설탕과 과당의 혼합비를 살펴보면, 동일 설탕 고형분 함량 대비 혼합되는 과당의 함량이 증가할수록, 투라노스 생성량 대비 올리고당 함량이 적어지며, SMB 크로마토그래피에 적합한 당조성으로 판단되었다. 다만, 설탕 기질 대비 첨가되는 과당 함량이 지나치게 높은 경우, 투라노스 생성량이 감소하므로, 투라노스의 생성량을 특정 ?t량이상으로 확보하면서, 투라노스 함량 대비 불순물인 올리고당의 함량의 비율이 낮은 생성물을 얻을 수 있도록 설탕과 과당의 혼합 비율을 적절히 선택하는 것이 바람직하다.As confirmed from the above results, it was confirmed that when the weight of fructose relative to sugar in the substrate is increased, the production of oligosaccharide decreases and the ratio of sugar decreases, so the amount of turanose produced decreases. Trehalulose was maintained at a level of 3 to 4% by weight without being significantly affected by the fructose ratio. The composition of the substrate, in which oligosaccharides significantly decreased compared to the amount of turanose production, started from sugar:fructose = 1:0.2 and greatly decreased at 1:0.5, and then gradually decreased as the fructose content increased. Looking at the mixing ratio of sugar and fructose, as the content of fructose mixed with the same sugar solid content increased, the oligosaccharide content compared to the amount of turanose produced decreased, and it was determined that the sugar composition was suitable for SMB chromatography. However, if the fructose content added to the sugar substrate is too high, the amount of turanose produced decreases, so a product with a low ratio of oligosaccharide content as an impurity to turanose content while securing the amount of turanose produced above a certain ?t amount It is desirable to appropriately select the mixing ratio of sugar and fructose to obtain.

실시예 10. 아밀로수크라제의 전환반응 조성물의 투라노스 고순도 분리Example 10. High-purity separation of turanose from amylosucrase conversion reaction composition

10.1 비피도박테리움 터모필럼 유래 아밀로수크라제의 전환반응 조성물10.1 Bifidobacterium thermophilum-derived amylosucrase conversion reaction composition

비피도박테리움 터모필럼 유래 아밀로수크라제 효소의 전환반응 조성물은 기질의 조성을 설탕:과당=1:0.5로 하고 실시예 4의 BtAS(Y414F*P200R) 효소 700U/L 투입하여 실시예 9와 동일한 방법으로 전환 반응하여 얻었다. Bifidobacterium thermophilum-derived amylosucrase conversion reaction composition of Example 9 by adding 700 U / L of the BtAS (Y414F * P200R) enzyme of Example 4 with the composition of the substrate as sugar: fructose = 1: 0.5 It was obtained by conversion reaction in the same way as in

상기 아밀로수크라제에 의한 전환반응 조성물은 SMB 크로마토그래피를 원활하게 진행하게 위해 Glucoamlyase(노보자임 사)를 투라노스 전환 반응 후에 얻어진 반응 생성물의 고형분 함량(중량) 대비 0.3 중량%, PH 4.5, 60℃에서 반응하여 올리고당을 포도당으로 분해하였다. 그 후 Na+ 타입의 양이온 교환수지를 사용하여 투라노스 분획을 분리하였다. SMB 크로마토그래피에 의한 투라노스 분획 분리 전 후 조성물의 당조성을 아래 표에 나타내었다.The conversion reaction composition by amylosucrase contains 0.3% by weight, PH 4.5, pH 4.5, Oligosaccharide was decomposed into glucose by reacting at 60 °C. Thereafter, the turanose fraction was separated using a Na+ type cation exchange resin. The sugar composition of the composition before and after separation of the turanose fraction by SMB chromatography is shown in the table below.

구분division 올리고당oligosaccharide 설탕sugar 투라노스Turanos 트레할룰로스trehalulose 포도당glucose 과당fruit sugar 분리 전before separation 1.51.5 00 52.252.2 2.82.8 7.07.0 36.536.5 분리 후after separation 4.04.0 00 91.691.6 3.83.8 0.60.6 00

SMB 크로마토그래피를 활용한 투라노스 고순도 분리 결과, 91.6% 함량의 투라노스 조성물을 수율 65%로 얻을 수 있었다. SMB 크로마토그래피는 2상 분리에 적합하게 설계되어 있어 글루코아밀라제 효소 처리로 올리고당을 포도당으로 분해시키고, SMB 크로마토그램 상에서 투라노스 피크와 트레할룰로스 피크 사이를 기점으로 양쪽 두 개의 분획을 얻고자 투라노스와 트레할룰로스 사이를 분리하였으며, 그 결과 좌측 분획은 투라노스와 일부 올리고머만 존재하기 때문에 좌측 분획에서 투라노스의 순도는 상승하게 되어 투라노스 분획을 얻고, 우측 분획은 투라노스가 거의 없기 때문에 라피네이트가 되어 결국, 투라노스 고순도 분획을 얻었다. As a result of high-purity separation of turanose using SMB chromatography, a 91.6% content of turanose composition was obtained in a yield of 65%. SMB chromatography is designed to be suitable for two-phase separation, so oligosaccharides are decomposed into glucose by glucoamylase enzyme treatment, and two fractions on both sides are obtained based on the point between the turanose peak and the trehalulose peak on the SMB chromatogram. Separation was made between lanose and trehalulose, and as a result, since only turanose and some oligomers exist in the left fraction, the purity of turanose in the left fraction increases to obtain a turanose fraction, and the right fraction has almost no turanose Therefore, it became a raffinate, and eventually, a high-purity turanose fraction was obtained.

BtAS 효소의 전환반응 조성물은 SMB 분리 전 조성물의 트레할룰로스 함량이 적어 SMB 크로마토그래피에 의한 분리 후의 투라노스 순도 및 수율을 높일 수 있었다. 즉, 투라노스 피크와 트레할룰로스 피크는 약간 겹쳐 있어 둘 사이를 기점으로 양쪽 분획을 얻을 때, 완벽하게 두 물질이 분리되지 않고 양쪽 분획에 각각 조금씩 딸려가게 된다. 그렇기 때문에 트레할룰로스 함량이 적으면 투라노스 분획쪽으로 분리되는 트레할룰로스가 그만큼 적어지기 때문에 투라노스쪽 분획에서 좀 더 높은 함량 및 순도로 투라노스를 얻을 수 있다.The BtAS enzyme conversion reaction composition had a low trehalulose content before SMB separation, so the purity and yield of turanose after separation by SMB chromatography could be increased. That is, the turanose peak and the trehalulose peak overlap slightly, so when both fractions are obtained from between the two, the two substances are not completely separated and each of the two fractions is accompanied little by little. Therefore, when the trehalulose content is small, the amount of trehalulose separated toward the turanose fraction decreases, so that turanose can be obtained with a higher content and purity from the turanose fraction.

10.2 나이세리아 서브플라바 유래 아밀로수크라제의 전환반응 조성물10.2 Conversion reaction composition of Neisseria subflava-derived amylosucrase

나이세리아 서브플라바 유래 효소의 전환반응 조성물은 비교예 1의 NsAS 효소를 1400U/L 투입하고 실시예 10.1과 동일한 방법으로 전환 반응하여 얻었다. 전환반응 조성물은 SBM 크로마토그래피를 원활하게 진행하게 위해 Glucoamlyase(노보자임 사)를 투라노스 전환 반응 후에 얻어진 반응 생성물의 고형분 함량(중량) 대비 0.3 중량%, pH4.5, 60℃에서 반응하여 올리고머를 포도당으로 분해하였다. A composition for the conversion reaction of Neisseria subflava-derived enzyme was obtained by inputting 1400 U/L of the NsAS enzyme of Comparative Example 1 and performing the conversion reaction in the same manner as in Example 10.1. In order to facilitate SBM chromatography, the conversion reaction composition reacts Glucoamlyase (Novozyme) at 0.3% by weight, pH 4.5, based on the solid content (weight) of the reaction product obtained after the turanose conversion reaction at 60 ° C to form oligomers. broken down into glucose.

그 후 Na+ 타입의 양이온 교환수지를 사용하여 투라노스 분획을 분리하였다. SMB 크로마토그래피에 의한 투라노스 분획 분리 전과 후 조성물의 당조성은 아래 표에 나타내었다.Thereafter, a turanose fraction was separated using a Na+ type cation exchange resin. The sugar composition of the composition before and after separation of the turanose fraction by SMB chromatography is shown in the table below.

구분division 올리고당oligosaccharide 설탕sugar 투라노스Turanos 트레할룰로스trehalulose 포도당glucose 과당fruit sugar 분리 전before separation 1.61.6 00 60.660.6 8.08.0 7.47.4 22.422.4 분리 후after separation 4.84.8 00 87.287.2 7.37.3 0.70.7 00

나이세리아 서브플라바 유래 아밀로수크라제의 전환 반응 생성물의 경우, SMB 크로마토그래피를 이용한 고순도 분리 후 87.2% 함량의 투라노스 조성물을 수율 38%로 얻을 수 있었다. 투라노스와 근접하여 함께하는 트레할룰로스의 함량이 높아 투라노스 분리 순도는 90%이상 도달하지 못하였다.In the case of the conversion reaction product of Neisseria subflava-derived amylosucrase, a turanose composition having an 87.2% content was obtained in a yield of 38% after high-purity separation using SMB chromatography. The purity of turanose separation did not reach 90% or more due to the high content of trehalulose, which is closely associated with turanose.

<110> SAMYANG CORPORATION INDUSTRY ACADEMY COOPERATION FOUNDATION OF SEJONG UNIVERSITY <120> Method ofproducing turanose <130> DPP20173326KR <160> 44 <170> KoPatentIn 3.0 <210> 1 <211> 603 <212> PRT <213> Artificial Sequence <220> <223> amylosucrase BtAS wild type <400> 1 Met Glu Ala Thr Tyr Arg Asp Ser Val Phe Ala Glu Arg Leu Ala Pro 1 5 10 15 Arg Cys Ala Glu Leu Glu Gln Leu Phe Arg Ser Leu Tyr Gly Asp Ser 20 25 30 Pro Glu Phe Asp His Phe Glu Gln Val Met Ala Lys Ala His Ala Asp 35 40 45 Arg Pro Ala Asp Leu Lys Arg Leu Asp Ala Ala Arg Glu His Asp Pro 50 55 60 Gln Trp Tyr Arg Arg Gly Asp Met Phe Gly Met Thr Met Tyr Thr Asp 65 70 75 80 Leu Phe Ala Gly Lys Leu Thr Asp Leu Ala Lys His Ile Asp Tyr Leu 85 90 95 Lys Glu Gln His Leu Thr Tyr Leu His Leu Met Pro Leu Leu Thr Met 100 105 110 Pro His Pro Asp Asn Asp Gly Gly Tyr Ala Ile Glu Asp Phe Asp Thr 115 120 125 Val Asp Pro Thr Ile Gly Thr Asn Glu Asp Leu Ala Asp Leu Thr Ala 130 135 140 Lys Leu Arg Glu Ala Gly Ile Ser Leu Cys Leu Asp Phe Val Met Asn 145 150 155 160 His Thr Ala Ser Thr His Arg Trp Ala Lys Ala Ala Gln Ala Gly Asp 165 170 175 Pro Glu Tyr Gln Asp Tyr Tyr Phe Cys Tyr Asp Asp Arg Thr Ile Pro 180 185 190 Asp Gln Tyr Asp Ala Val Val Pro Gln Val Phe Pro Thr Ala Ala Pro 195 200 205 Gly Asn Phe Thr Trp Asn Glu Gln Met Gly Lys Trp Val Met Thr Gln 210 215 220 Phe Tyr Pro Phe Gln Trp Asp Leu Asn Tyr Arg Asn Pro Lys Val Phe 225 230 235 240 Val Val Met Met Ser Ser Leu Leu His Leu Ala Asn Leu Gly Val Glu 245 250 255 Val Phe Arg Ile Asp Ala Val Pro Tyr Ile Trp Lys Gln Leu Gly Thr 260 265 270 Asn Cys Arg Asn Leu Pro Gln Val His Thr Ile Val Arg Met Met Arg 275 280 285 Ile Met Ser Glu Ile Val Cys Pro Ala Val Val Phe Lys Gly Glu Val 290 295 300 Val Met Ala Pro Lys Glu Leu Ala Ala Tyr Phe Gly Thr Pro Glu Lys 305 310 315 320 Pro Glu Cys His Met Leu Tyr Asn Val Ser Val Met Val Asn Leu Trp 325 330 335 Ser Ala Leu Ala Asn Gly Asp Thr Arg Leu Leu Lys Thr Gln Ile Asp 340 345 350 Lys Leu Asp Ala Leu Pro Asp Asn Cys Trp Phe Val Asn Tyr Leu Arg 355 360 365 Cys His Asp Asp Ile Gly Trp Gly Leu Asp Glu Asp Val Glu Arg Gln 370 375 380 Leu Gly Ile Asp Pro Leu Lys His Lys Glu Phe Leu Tyr His Phe Tyr 385 390 395 400 Glu Gly Met Val Pro Gly Ser Trp Ala Met Gly Glu Leu Tyr Asn Tyr 405 410 415 Asp Pro Ala Ser Gly Asp Ala Arg Ser Cys Gly Thr Thr Ala Ser Leu 420 425 430 Cys Gly Ile Glu Arg Ala Leu Ile Thr His Asp Arg Pro Leu Tyr Glu 435 440 445 Arg Ser Ile Gln Arg Asp Leu Leu Met His His Ala Met Gly Phe Leu 450 455 460 Arg Gly Phe Pro Met Leu Asn Cys Gly Asp Glu Ile Gly Gln Leu Asn 465 470 475 480 Gly Trp Asp Tyr Lys Glu Asp Pro Asp Arg Val Ala Asp Ser Arg Asn 485 490 495 Leu His Arg Ser Lys Phe Asn Trp Lys Asn Ala Ala Lys Arg Asp Val 500 505 510 Pro Gly Thr Leu Pro Asn Arg Leu Trp Glu Gly Met Ala Asp Val Arg 515 520 525 Gln Met Arg Ser Asp Pro Cys Phe Ala Pro Asp Ala Trp Val Thr Thr 530 535 540 Trp Asp Ala His Asp Asp Gly Ile Leu Ala Met Val Arg Gln Ser Gly 545 550 555 560 Gly Arg Thr Leu Leu Gly Val Phe Asn Phe Ala Asn Arg Asp Ala Thr 565 570 575 Ala Thr Leu Asp Ser Ile Glu Gly Val Ser Leu Pro Arg Thr Val Ala 580 585 590 Leu Lys Pro Tyr Glu Trp Lys Ile Glu Ala Cys 595 600 <210> 2 <211> 603 <212> PRT <213> Artificial Sequence <220> <223> amylosucrase BtAS V542K <400> 2 Met Glu Ala Thr Tyr Arg Asp Ser Val Phe Ala Glu Arg Leu Ala Pro 1 5 10 15 Arg Cys Ala Glu Leu Glu Gln Leu Phe Arg Ser Leu Tyr Gly Asp Ser 20 25 30 Pro Glu Phe Asp His Phe Glu Gln Val Met Ala Lys Ala His Ala Asp 35 40 45 Arg Pro Ala Asp Leu Lys Arg Leu Asp Ala Ala Arg Glu His Asp Pro 50 55 60 Gln Trp Tyr Arg Arg Gly Asp Met Phe Gly Met Thr Met Tyr Thr Asp 65 70 75 80 Leu Phe Ala Gly Lys Leu Thr Asp Leu Ala Lys His Ile Asp Tyr Leu 85 90 95 Lys Glu Gln His Leu Thr Tyr Leu His Leu Met Pro Leu Leu Thr Met 100 105 110 Pro His Pro Asp Asn Asp Gly Gly Tyr Ala Ile Glu Asp Phe Asp Thr 115 120 125 Val Asp Pro Thr Ile Gly Thr Asn Glu Asp Leu Ala Asp Leu Thr Ala 130 135 140 Lys Leu Arg Glu Ala Gly Ile Ser Leu Cys Leu Asp Phe Val Met Asn 145 150 155 160 His Thr Ala Ser Thr His Arg Trp Ala Lys Ala Ala Gln Ala Gly Asp 165 170 175 Pro Glu Tyr Gln Asp Tyr Tyr Phe Cys Tyr Asp Asp Arg Thr Ile Pro 180 185 190 Asp Gln Tyr Asp Ala Val Val Pro Gln Val Phe Pro Thr Ala Ala Pro 195 200 205 Gly Asn Phe Thr Trp Asn Glu Gln Met Gly Lys Trp Val Met Thr Gln 210 215 220 Phe Tyr Pro Phe Gln Trp Asp Leu Asn Tyr Arg Asn Pro Lys Val Phe 225 230 235 240 Val Val Met Met Ser Ser Leu Leu His Leu Ala Asn Leu Gly Val Glu 245 250 255 Val Phe Arg Ile Asp Ala Val Pro Tyr Ile Trp Lys Gln Leu Gly Thr 260 265 270 Asn Cys Arg Asn Leu Pro Gln Val His Thr Ile Val Arg Met Met Arg 275 280 285 Ile Met Ser Glu Ile Val Cys Pro Ala Val Val Phe Lys Gly Glu Val 290 295 300 Val Met Ala Pro Lys Glu Leu Ala Ala Tyr Phe Gly Thr Pro Glu Lys 305 310 315 320 Pro Glu Cys His Met Leu Tyr Asn Val Ser Val Met Val Asn Leu Trp 325 330 335 Ser Ala Leu Ala Asn Gly Asp Thr Arg Leu Leu Lys Thr Gln Ile Asp 340 345 350 Lys Leu Asp Ala Leu Pro Asp Asn Cys Trp Phe Val Asn Tyr Leu Arg 355 360 365 Cys His Asp Asp Ile Gly Trp Gly Leu Asp Glu Asp Val Glu Arg Gln 370 375 380 Leu Gly Ile Asp Pro Leu Lys His Lys Glu Phe Leu Tyr His Phe Tyr 385 390 395 400 Glu Gly Met Val Pro Gly Ser Trp Ala Met Gly Glu Leu Tyr Asn Tyr 405 410 415 Asp Pro Ala Ser Gly Asp Ala Arg Ser Cys Gly Thr Thr Ala Ser Leu 420 425 430 Cys Gly Ile Glu Arg Ala Leu Ile Thr His Asp Arg Pro Leu Tyr Glu 435 440 445 Arg Ser Ile Gln Arg Asp Leu Leu Met His His Ala Met Gly Phe Leu 450 455 460 Arg Gly Phe Pro Met Leu Asn Cys Gly Asp Glu Ile Gly Gln Leu Asn 465 470 475 480 Gly Trp Asp Tyr Lys Glu Asp Pro Asp Arg Val Ala Asp Ser Arg Asn 485 490 495 Leu His Arg Ser Lys Phe Asn Trp Lys Asn Ala Ala Lys Arg Asp Val 500 505 510 Pro Gly Thr Leu Pro Asn Arg Leu Trp Glu Gly Met Ala Asp Val Arg 515 520 525 Gln Met Arg Ser Asp Pro Cys Phe Ala Pro Asp Ala Trp Lys Thr Thr 530 535 540 Trp Asp Ala His Asp Asp Gly Ile Leu Ala Met Val Arg Gln Ser Gly 545 550 555 560 Gly Arg Thr Leu Leu Gly Val Phe Asn Phe Ala Asn Arg Asp Ala Thr 565 570 575 Ala Thr Leu Asp Ser Ile Glu Gly Val Ser Leu Pro Arg Thr Val Ala 580 585 590 Leu Lys Pro Tyr Glu Trp Lys Ile Glu Ala Cys 595 600 <210> 3 <211> 603 <212> PRT <213> Artificial Sequence <220> <223> amylosucrase BtAS V542D <400> 3 Met Glu Ala Thr Tyr Arg Asp Ser Val Phe Ala Glu Arg Leu Ala Pro 1 5 10 15 Arg Cys Ala Glu Leu Glu Gln Leu Phe Arg Ser Leu Tyr Gly Asp Ser 20 25 30 Pro Glu Phe Asp His Phe Glu Gln Val Met Ala Lys Ala His Ala Asp 35 40 45 Arg Pro Ala Asp Leu Lys Arg Leu Asp Ala Ala Arg Glu His Asp Pro 50 55 60 Gln Trp Tyr Arg Arg Gly Asp Met Phe Gly Met Thr Met Tyr Thr Asp 65 70 75 80 Leu Phe Ala Gly Lys Leu Thr Asp Leu Ala Lys His Ile Asp Tyr Leu 85 90 95 Lys Glu Gln His Leu Thr Tyr Leu His Leu Met Pro Leu Leu Thr Met 100 105 110 Pro His Pro Asp Asn Asp Gly Gly Tyr Ala Ile Glu Asp Phe Asp Thr 115 120 125 Val Asp Pro Thr Ile Gly Thr Asn Glu Asp Leu Ala Asp Leu Thr Ala 130 135 140 Lys Leu Arg Glu Ala Gly Ile Ser Leu Cys Leu Asp Phe Val Met Asn 145 150 155 160 His Thr Ala Ser Thr His Arg Trp Ala Lys Ala Ala Gln Ala Gly Asp 165 170 175 Pro Glu Tyr Gln Asp Tyr Tyr Phe Cys Tyr Asp Asp Arg Thr Ile Pro 180 185 190 Asp Gln Tyr Asp Ala Val Val Pro Gln Val Phe Pro Thr Ala Ala Pro 195 200 205 Gly Asn Phe Thr Trp Asn Glu Gln Met Gly Lys Trp Val Met Thr Gln 210 215 220 Phe Tyr Pro Phe Gln Trp Asp Leu Asn Tyr Arg Asn Pro Lys Val Phe 225 230 235 240 Val Val Met Met Ser Ser Leu Leu His Leu Ala Asn Leu Gly Val Glu 245 250 255 Val Phe Arg Ile Asp Ala Val Pro Tyr Ile Trp Lys Gln Leu Gly Thr 260 265 270 Asn Cys Arg Asn Leu Pro Gln Val His Thr Ile Val Arg Met Met Arg 275 280 285 Ile Met Ser Glu Ile Val Cys Pro Ala Val Val Phe Lys Gly Glu Val 290 295 300 Val Met Ala Pro Lys Glu Leu Ala Ala Tyr Phe Gly Thr Pro Glu Lys 305 310 315 320 Pro Glu Cys His Met Leu Tyr Asn Val Ser Val Met Val Asn Leu Trp 325 330 335 Ser Ala Leu Ala Asn Gly Asp Thr Arg Leu Leu Lys Thr Gln Ile Asp 340 345 350 Lys Leu Asp Ala Leu Pro Asp Asn Cys Trp Phe Val Asn Tyr Leu Arg 355 360 365 Cys His Asp Asp Ile Gly Trp Gly Leu Asp Glu Asp Val Glu Arg Gln 370 375 380 Leu Gly Ile Asp Pro Leu Lys His Lys Glu Phe Leu Tyr His Phe Tyr 385 390 395 400 Glu Gly Met Val Pro Gly Ser Trp Ala Met Gly Glu Leu Tyr Asn Tyr 405 410 415 Asp Pro Ala Ser Gly Asp Ala Arg Ser Cys Gly Thr Thr Ala Ser Leu 420 425 430 Cys Gly Ile Glu Arg Ala Leu Ile Thr His Asp Arg Pro Leu Tyr Glu 435 440 445 Arg Ser Ile Gln Arg Asp Leu Leu Met His His Ala Met Gly Phe Leu 450 455 460 Arg Gly Phe Pro Met Leu Asn Cys Gly Asp Glu Ile Gly Gln Leu Asn 465 470 475 480 Gly Trp Asp Tyr Lys Glu Asp Pro Asp Arg Val Ala Asp Ser Arg Asn 485 490 495 Leu His Arg Ser Lys Phe Asn Trp Lys Asn Ala Ala Lys Arg Asp Val 500 505 510 Pro Gly Thr Leu Pro Asn Arg Leu Trp Glu Gly Met Ala Asp Val Arg 515 520 525 Gln Met Arg Ser Asp Pro Cys Phe Ala Pro Asp Ala Trp Asp Thr Thr 530 535 540 Trp Asp Ala His Asp Asp Gly Ile Leu Ala Met Val Arg Gln Ser Gly 545 550 555 560 Gly Arg Thr Leu Leu Gly Val Phe Asn Phe Ala Asn Arg Asp Ala Thr 565 570 575 Ala Thr Leu Asp Ser Ile Glu Gly Val Ser Leu Pro Arg Thr Val Ala 580 585 590 Leu Lys Pro Tyr Glu Trp Lys Ile Glu Ala Cys 595 600 <210> 4 <211> 603 <212> PRT <213> Artificial Sequence <220> <223> BtAS P200R <400> 4 Met Glu Ala Thr Tyr Arg Asp Ser Val Phe Ala Glu Arg Leu Ala Pro 1 5 10 15 Arg Cys Ala Glu Leu Glu Gln Leu Phe Arg Ser Leu Tyr Gly Asp Ser 20 25 30 Pro Glu Phe Asp His Phe Glu Gln Val Met Ala Lys Ala His Ala Asp 35 40 45 Arg Pro Ala Asp Leu Lys Arg Leu Asp Ala Ala Arg Glu His Asp Pro 50 55 60 Gln Trp Tyr Arg Arg Gly Asp Met Phe Gly Met Thr Met Tyr Thr Asp 65 70 75 80 Leu Phe Ala Gly Lys Leu Thr Asp Leu Ala Lys His Ile Asp Tyr Leu 85 90 95 Lys Glu Gln His Leu Thr Tyr Leu His Leu Met Pro Leu Leu Thr Met 100 105 110 Pro His Pro Asp Asn Asp Gly Gly Tyr Ala Ile Glu Asp Phe Asp Thr 115 120 125 Val Asp Pro Thr Ile Gly Thr Asn Glu Asp Leu Ala Asp Leu Thr Ala 130 135 140 Lys Leu Arg Glu Ala Gly Ile Ser Leu Cys Leu Asp Phe Val Met Asn 145 150 155 160 His Thr Ala Ser Thr His Arg Trp Ala Lys Ala Ala Gln Ala Gly Asp 165 170 175 Pro Glu Tyr Gln Asp Tyr Tyr Phe Cys Tyr Asp Asp Arg Thr Ile Pro 180 185 190 Asp Gln Tyr Asp Ala Val Val Arg Gln Val Phe Pro Thr Ala Ala Pro 195 200 205 Gly Asn Phe Thr Trp Asn Glu Gln Met Gly Lys Trp Val Met Thr Gln 210 215 220 Phe Tyr Pro Phe Gln Trp Asp Leu Asn Tyr Arg Asn Pro Lys Val Phe 225 230 235 240 Val Val Met Met Ser Ser Leu Leu His Leu Ala Asn Leu Gly Val Glu 245 250 255 Val Phe Arg Ile Asp Ala Val Pro Tyr Ile Trp Lys Gln Leu Gly Thr 260 265 270 Asn Cys Arg Asn Leu Pro Gln Val His Thr Ile Val Arg Met Met Arg 275 280 285 Ile Met Ser Glu Ile Val Cys Pro Ala Val Val Phe Lys Gly Glu Val 290 295 300 Val Met Ala Pro Lys Glu Leu Ala Ala Tyr Phe Gly Thr Pro Glu Lys 305 310 315 320 Pro Glu Cys His Met Leu Tyr Asn Val Ser Val Met Val Asn Leu Trp 325 330 335 Ser Ala Leu Ala Asn Gly Asp Thr Arg Leu Leu Lys Thr Gln Ile Asp 340 345 350 Lys Leu Asp Ala Leu Pro Asp Asn Cys Trp Phe Val Asn Tyr Leu Arg 355 360 365 Cys His Asp Asp Ile Gly Trp Gly Leu Asp Glu Asp Val Glu Arg Gln 370 375 380 Leu Gly Ile Asp Pro Leu Lys His Lys Glu Phe Leu Tyr His Phe Tyr 385 390 395 400 Glu Gly Met Val Pro Gly Ser Trp Ala Met Gly Glu Leu Tyr Asn Tyr 405 410 415 Asp Pro Ala Ser Gly Asp Ala Arg Ser Cys Gly Thr Thr Ala Ser Leu 420 425 430 Cys Gly Ile Glu Arg Ala Leu Ile Thr His Asp Arg Pro Leu Tyr Glu 435 440 445 Arg Ser Ile Gln Arg Asp Leu Leu Met His His Ala Met Gly Phe Leu 450 455 460 Arg Gly Phe Pro Met Leu Asn Cys Gly Asp Glu Ile Gly Gln Leu Asn 465 470 475 480 Gly Trp Asp Tyr Lys Glu Asp Pro Asp Arg Val Ala Asp Ser Arg Asn 485 490 495 Leu His Arg Ser Lys Phe Asn Trp Lys Asn Ala Ala Lys Arg Asp Val 500 505 510 Pro Gly Thr Leu Pro Asn Arg Leu Trp Glu Gly Met Ala Asp Val Arg 515 520 525 Gln Met Arg Ser Asp Pro Cys Phe Ala Pro Asp Ala Trp Val Thr Thr 530 535 540 Trp Asp Ala His Asp Asp Gly Ile Leu Ala Met Val Arg Gln Ser Gly 545 550 555 560 Gly Arg Thr Leu Leu Gly Val Phe Asn Phe Ala Asn Arg Asp Ala Thr 565 570 575 Ala Thr Leu Asp Ser Ile Glu Gly Val Ser Leu Pro Arg Thr Val Ala 580 585 590 Leu Lys Pro Tyr Glu Trp Lys Ile Glu Ala Cys 595 600 <210> 5 <211> 603 <212> PRT <213> Artificial Sequence <220> <223> BtAS V202I <400> 5 Met Glu Ala Thr Tyr Arg Asp Ser Val Phe Ala Glu Arg Leu Ala Pro 1 5 10 15 Arg Cys Ala Glu Leu Glu Gln Leu Phe Arg Ser Leu Tyr Gly Asp Ser 20 25 30 Pro Glu Phe Asp His Phe Glu Gln Val Met Ala Lys Ala His Ala Asp 35 40 45 Arg Pro Ala Asp Leu Lys Arg Leu Asp Ala Ala Arg Glu His Asp Pro 50 55 60 Gln Trp Tyr Arg Arg Gly Asp Met Phe Gly Met Thr Met Tyr Thr Asp 65 70 75 80 Leu Phe Ala Gly Lys Leu Thr Asp Leu Ala Lys His Ile Asp Tyr Leu 85 90 95 Lys Glu Gln His Leu Thr Tyr Leu His Leu Met Pro Leu Leu Thr Met 100 105 110 Pro His Pro Asp Asn Asp Gly Gly Tyr Ala Ile Glu Asp Phe Asp Thr 115 120 125 Val Asp Pro Thr Ile Gly Thr Asn Glu Asp Leu Ala Asp Leu Thr Ala 130 135 140 Lys Leu Arg Glu Ala Gly Ile Ser Leu Cys Leu Asp Phe Val Met Asn 145 150 155 160 His Thr Ala Ser Thr His Arg Trp Ala Lys Ala Ala Gln Ala Gly Asp 165 170 175 Pro Glu Tyr Gln Asp Tyr Tyr Phe Cys Tyr Asp Asp Arg Thr Ile Pro 180 185 190 Asp Gln Tyr Asp Ala Val Val Pro Gln Ile Phe Pro Thr Ala Ala Pro 195 200 205 Gly Asn Phe Thr Trp Asn Glu Gln Met Gly Lys Trp Val Met Thr Gln 210 215 220 Phe Tyr Pro Phe Gln Trp Asp Leu Asn Tyr Arg Asn Pro Lys Val Phe 225 230 235 240 Val Val Met Met Ser Ser Leu Leu His Leu Ala Asn Leu Gly Val Glu 245 250 255 Val Phe Arg Ile Asp Ala Val Pro Tyr Ile Trp Lys Gln Leu Gly Thr 260 265 270 Asn Cys Arg Asn Leu Pro Gln Val His Thr Ile Val Arg Met Met Arg 275 280 285 Ile Met Ser Glu Ile Val Cys Pro Ala Val Val Phe Lys Gly Glu Val 290 295 300 Val Met Ala Pro Lys Glu Leu Ala Ala Tyr Phe Gly Thr Pro Glu Lys 305 310 315 320 Pro Glu Cys His Met Leu Tyr Asn Val Ser Val Met Val Asn Leu Trp 325 330 335 Ser Ala Leu Ala Asn Gly Asp Thr Arg Leu Leu Lys Thr Gln Ile Asp 340 345 350 Lys Leu Asp Ala Leu Pro Asp Asn Cys Trp Phe Val Asn Tyr Leu Arg 355 360 365 Cys His Asp Asp Ile Gly Trp Gly Leu Asp Glu Asp Val Glu Arg Gln 370 375 380 Leu Gly Ile Asp Pro Leu Lys His Lys Glu Phe Leu Tyr His Phe Tyr 385 390 395 400 Glu Gly Met Val Pro Gly Ser Trp Ala Met Gly Glu Leu Tyr Asn Tyr 405 410 415 Asp Pro Ala Ser Gly Asp Ala Arg Ser Cys Gly Thr Thr Ala Ser Leu 420 425 430 Cys Gly Ile Glu Arg Ala Leu Ile Thr His Asp Arg Pro Leu Tyr Glu 435 440 445 Arg Ser Ile Gln Arg Asp Leu Leu Met His His Ala Met Gly Phe Leu 450 455 460 Arg Gly Phe Pro Met Leu Asn Cys Gly Asp Glu Ile Gly Gln Leu Asn 465 470 475 480 Gly Trp Asp Tyr Lys Glu Asp Pro Asp Arg Val Ala Asp Ser Arg Asn 485 490 495 Leu His Arg Ser Lys Phe Asn Trp Lys Asn Ala Ala Lys Arg Asp Val 500 505 510 Pro Gly Thr Leu Pro Asn Arg Leu Trp Glu Gly Met Ala Asp Val Arg 515 520 525 Gln Met Arg Ser Asp Pro Cys Phe Ala Pro Asp Ala Trp Val Thr Thr 530 535 540 Trp Asp Ala His Asp Asp Gly Ile Leu Ala Met Val Arg Gln Ser Gly 545 550 555 560 Gly Arg Thr Leu Leu Gly Val Phe Asn Phe Ala Asn Arg Asp Ala Thr 565 570 575 Ala Thr Leu Asp Ser Ile Glu Gly Val Ser Leu Pro Arg Thr Val Ala 580 585 590 Leu Lys Pro Tyr Glu Trp Lys Ile Glu Ala Cys 595 600 <210> 6 <211> 603 <212> PRT <213> Artificial Sequence <220> <223> BtAS Y265F <400> 6 Met Glu Ala Thr Tyr Arg Asp Ser Val Phe Ala Glu Arg Leu Ala Pro 1 5 10 15 Arg Cys Ala Glu Leu Glu Gln Leu Phe Arg Ser Leu Tyr Gly Asp Ser 20 25 30 Pro Glu Phe Asp His Phe Glu Gln Val Met Ala Lys Ala His Ala Asp 35 40 45 Arg Pro Ala Asp Leu Lys Arg Leu Asp Ala Ala Arg Glu His Asp Pro 50 55 60 Gln Trp Tyr Arg Arg Gly Asp Met Phe Gly Met Thr Met Tyr Thr Asp 65 70 75 80 Leu Phe Ala Gly Lys Leu Thr Asp Leu Ala Lys His Ile Asp Tyr Leu 85 90 95 Lys Glu Gln His Leu Thr Tyr Leu His Leu Met Pro Leu Leu Thr Met 100 105 110 Pro His Pro Asp Asn Asp Gly Gly Tyr Ala Ile Glu Asp Phe Asp Thr 115 120 125 Val Asp Pro Thr Ile Gly Thr Asn Glu Asp Leu Ala Asp Leu Thr Ala 130 135 140 Lys Leu Arg Glu Ala Gly Ile Ser Leu Cys Leu Asp Phe Val Met Asn 145 150 155 160 His Thr Ala Ser Thr His Arg Trp Ala Lys Ala Ala Gln Ala Gly Asp 165 170 175 Pro Glu Tyr Gln Asp Tyr Tyr Phe Cys Tyr Asp Asp Arg Thr Ile Pro 180 185 190 Asp Gln Tyr Asp Ala Val Val Pro Gln Val Phe Pro Thr Ala Ala Pro 195 200 205 Gly Asn Phe Thr Trp Asn Glu Gln Met Gly Lys Trp Val Met Thr Gln 210 215 220 Phe Tyr Pro Phe Gln Trp Asp Leu Asn Tyr Arg Asn Pro Lys Val Phe 225 230 235 240 Val Val Met Met Ser Ser Leu Leu His Leu Ala Asn Leu Gly Val Glu 245 250 255 Val Phe Arg Ile Asp Ala Val Pro Phe Ile Trp Lys Gln Leu Gly Thr 260 265 270 Asn Cys Arg Asn Leu Pro Gln Val His Thr Ile Val Arg Met Met Arg 275 280 285 Ile Met Ser Glu Ile Val Cys Pro Ala Val Val Phe Lys Gly Glu Val 290 295 300 Val Met Ala Pro Lys Glu Leu Ala Ala Tyr Phe Gly Thr Pro Glu Lys 305 310 315 320 Pro Glu Cys His Met Leu Tyr Asn Val Ser Val Met Val Asn Leu Trp 325 330 335 Ser Ala Leu Ala Asn Gly Asp Thr Arg Leu Leu Lys Thr Gln Ile Asp 340 345 350 Lys Leu Asp Ala Leu Pro Asp Asn Cys Trp Phe Val Asn Tyr Leu Arg 355 360 365 Cys His Asp Asp Ile Gly Trp Gly Leu Asp Glu Asp Val Glu Arg Gln 370 375 380 Leu Gly Ile Asp Pro Leu Lys His Lys Glu Phe Leu Tyr His Phe Tyr 385 390 395 400 Glu Gly Met Val Pro Gly Ser Trp Ala Met Gly Glu Leu Tyr Asn Tyr 405 410 415 Asp Pro Ala Ser Gly Asp Ala Arg Ser Cys Gly Thr Thr Ala Ser Leu 420 425 430 Cys Gly Ile Glu Arg Ala Leu Ile Thr His Asp Arg Pro Leu Tyr Glu 435 440 445 Arg Ser Ile Gln Arg Asp Leu Leu Met His His Ala Met Gly Phe Leu 450 455 460 Arg Gly Phe Pro Met Leu Asn Cys Gly Asp Glu Ile Gly Gln Leu Asn 465 470 475 480 Gly Trp Asp Tyr Lys Glu Asp Pro Asp Arg Val Ala Asp Ser Arg Asn 485 490 495 Leu His Arg Ser Lys Phe Asn Trp Lys Asn Ala Ala Lys Arg Asp Val 500 505 510 Pro Gly Thr Leu Pro Asn Arg Leu Trp Glu Gly Met Ala Asp Val Arg 515 520 525 Gln Met Arg Ser Asp Pro Cys Phe Ala Pro Asp Ala Trp Val Thr Thr 530 535 540 Trp Asp Ala His Asp Asp Gly Ile Leu Ala Met Val Arg Gln Ser Gly 545 550 555 560 Gly Arg Thr Leu Leu Gly Val Phe Asn Phe Ala Asn Arg Asp Ala Thr 565 570 575 Ala Thr Leu Asp Ser Ile Glu Gly Val Ser Leu Pro Arg Thr Val Ala 580 585 590 Leu Lys Pro Tyr Glu Trp Lys Ile Glu Ala Cys 595 600 <210> 7 <211> 603 <212> PRT <213> Artificial Sequence <220> <223> BtAS V305I <400> 7 Met Glu Ala Thr Tyr Arg Asp Ser Val Phe Ala Glu Arg Leu Ala Pro 1 5 10 15 Arg Cys Ala Glu Leu Glu Gln Leu Phe Arg Ser Leu Tyr Gly Asp Ser 20 25 30 Pro Glu Phe Asp His Phe Glu Gln Val Met Ala Lys Ala His Ala Asp 35 40 45 Arg Pro Ala Asp Leu Lys Arg Leu Asp Ala Ala Arg Glu His Asp Pro 50 55 60 Gln Trp Tyr Arg Arg Gly Asp Met Phe Gly Met Thr Met Tyr Thr Asp 65 70 75 80 Leu Phe Ala Gly Lys Leu Thr Asp Leu Ala Lys His Ile Asp Tyr Leu 85 90 95 Lys Glu Gln His Leu Thr Tyr Leu His Leu Met Pro Leu Leu Thr Met 100 105 110 Pro His Pro Asp Asn Asp Gly Gly Tyr Ala Ile Glu Asp Phe Asp Thr 115 120 125 Val Asp Pro Thr Ile Gly Thr Asn Glu Asp Leu Ala Asp Leu Thr Ala 130 135 140 Lys Leu Arg Glu Ala Gly Ile Ser Leu Cys Leu Asp Phe Val Met Asn 145 150 155 160 His Thr Ala Ser Thr His Arg Trp Ala Lys Ala Ala Gln Ala Gly Asp 165 170 175 Pro Glu Tyr Gln Asp Tyr Tyr Phe Cys Tyr Asp Asp Arg Thr Ile Pro 180 185 190 Asp Gln Tyr Asp Ala Val Val Pro Gln Val Phe Pro Thr Ala Ala Pro 195 200 205 Gly Asn Phe Thr Trp Asn Glu Gln Met Gly Lys Trp Val Met Thr Gln 210 215 220 Phe Tyr Pro Phe Gln Trp Asp Leu Asn Tyr Arg Asn Pro Lys Val Phe 225 230 235 240 Val Val Met Met Ser Ser Leu Leu His Leu Ala Asn Leu Gly Val Glu 245 250 255 Val Phe Arg Ile Asp Ala Val Pro Tyr Ile Trp Lys Gln Leu Gly Thr 260 265 270 Asn Cys Arg Asn Leu Pro Gln Val His Thr Ile Val Arg Met Met Arg 275 280 285 Ile Met Ser Glu Ile Val Cys Pro Ala Val Val Phe Lys Gly Glu Val 290 295 300 Ile Met Ala Pro Lys Glu Leu Ala Ala Tyr Phe Gly Thr Pro Glu Lys 305 310 315 320 Pro Glu Cys His Met Leu Tyr Asn Val Ser Val Met Val Asn Leu Trp 325 330 335 Ser Ala Leu Ala Asn Gly Asp Thr Arg Leu Leu Lys Thr Gln Ile Asp 340 345 350 Lys Leu Asp Ala Leu Pro Asp Asn Cys Trp Phe Val Asn Tyr Leu Arg 355 360 365 Cys His Asp Asp Ile Gly Trp Gly Leu Asp Glu Asp Val Glu Arg Gln 370 375 380 Leu Gly Ile Asp Pro Leu Lys His Lys Glu Phe Leu Tyr His Phe Tyr 385 390 395 400 Glu Gly Met Val Pro Gly Ser Trp Ala Met Gly Glu Leu Tyr Asn Tyr 405 410 415 Asp Pro Ala Ser Gly Asp Ala Arg Ser Cys Gly Thr Thr Ala Ser Leu 420 425 430 Cys Gly Ile Glu Arg Ala Leu Ile Thr His Asp Arg Pro Leu Tyr Glu 435 440 445 Arg Ser Ile Gln Arg Asp Leu Leu Met His His Ala Met Gly Phe Leu 450 455 460 Arg Gly Phe Pro Met Leu Asn Cys Gly Asp Glu Ile Gly Gln Leu Asn 465 470 475 480 Gly Trp Asp Tyr Lys Glu Asp Pro Asp Arg Val Ala Asp Ser Arg Asn 485 490 495 Leu His Arg Ser Lys Phe Asn Trp Lys Asn Ala Ala Lys Arg Asp Val 500 505 510 Pro Gly Thr Leu Pro Asn Arg Leu Trp Glu Gly Met Ala Asp Val Arg 515 520 525 Gln Met Arg Ser Asp Pro Cys Phe Ala Pro Asp Ala Trp Val Thr Thr 530 535 540 Trp Asp Ala His Asp Asp Gly Ile Leu Ala Met Val Arg Gln Ser Gly 545 550 555 560 Gly Arg Thr Leu Leu Gly Val Phe Asn Phe Ala Asn Arg Asp Ala Thr 565 570 575 Ala Thr Leu Asp Ser Ile Glu Gly Val Ser Leu Pro Arg Thr Val Ala 580 585 590 Leu Lys Pro Tyr Glu Trp Lys Ile Glu Ala Cys 595 600 <210> 8 <211> 603 <212> PRT <213> Artificial Sequence <220> <223> BtAS K393R <400> 8 Met Glu Ala Thr Tyr Arg Asp Ser Val Phe Ala Glu Arg Leu Ala Pro 1 5 10 15 Arg Cys Ala Glu Leu Glu Gln Leu Phe Arg Ser Leu Tyr Gly Asp Ser 20 25 30 Pro Glu Phe Asp His Phe Glu Gln Val Met Ala Lys Ala His Ala Asp 35 40 45 Arg Pro Ala Asp Leu Lys Arg Leu Asp Ala Ala Arg Glu His Asp Pro 50 55 60 Gln Trp Tyr Arg Arg Gly Asp Met Phe Gly Met Thr Met Tyr Thr Asp 65 70 75 80 Leu Phe Ala Gly Lys Leu Thr Asp Leu Ala Lys His Ile Asp Tyr Leu 85 90 95 Lys Glu Gln His Leu Thr Tyr Leu His Leu Met Pro Leu Leu Thr Met 100 105 110 Pro His Pro Asp Asn Asp Gly Gly Tyr Ala Ile Glu Asp Phe Asp Thr 115 120 125 Val Asp Pro Thr Ile Gly Thr Asn Glu Asp Leu Ala Asp Leu Thr Ala 130 135 140 Lys Leu Arg Glu Ala Gly Ile Ser Leu Cys Leu Asp Phe Val Met Asn 145 150 155 160 His Thr Ala Ser Thr His Arg Trp Ala Lys Ala Ala Gln Ala Gly Asp 165 170 175 Pro Glu Tyr Gln Asp Tyr Tyr Phe Cys Tyr Asp Asp Arg Thr Ile Pro 180 185 190 Asp Gln Tyr Asp Ala Val Val Pro Gln Val Phe Pro Thr Ala Ala Pro 195 200 205 Gly Asn Phe Thr Trp Asn Glu Gln Met Gly Lys Trp Val Met Thr Gln 210 215 220 Phe Tyr Pro Phe Gln Trp Asp Leu Asn Tyr Arg Asn Pro Lys Val Phe 225 230 235 240 Val Val Met Met Ser Ser Leu Leu His Leu Ala Asn Leu Gly Val Glu 245 250 255 Val Phe Arg Ile Asp Ala Val Pro Tyr Ile Trp Lys Gln Leu Gly Thr 260 265 270 Asn Cys Arg Asn Leu Pro Gln Val His Thr Ile Val Arg Met Met Arg 275 280 285 Ile Met Ser Glu Ile Val Cys Pro Ala Val Val Phe Lys Gly Glu Val 290 295 300 Val Met Ala Pro Lys Glu Leu Ala Ala Tyr Phe Gly Thr Pro Glu Lys 305 310 315 320 Pro Glu Cys His Met Leu Tyr Asn Val Ser Val Met Val Asn Leu Trp 325 330 335 Ser Ala Leu Ala Asn Gly Asp Thr Arg Leu Leu Lys Thr Gln Ile Asp 340 345 350 Lys Leu Asp Ala Leu Pro Asp Asn Cys Trp Phe Val Asn Tyr Leu Arg 355 360 365 Cys His Asp Asp Ile Gly Trp Gly Leu Asp Glu Asp Val Glu Arg Gln 370 375 380 Leu Gly Ile Asp Pro Leu Lys His Arg Glu Phe Leu Tyr His Phe Tyr 385 390 395 400 Glu Gly Met Val Pro Gly Ser Trp Ala Met Gly Glu Leu Tyr Asn Tyr 405 410 415 Asp Pro Ala Ser Gly Asp Ala Arg Ser Cys Gly Thr Thr Ala Ser Leu 420 425 430 Cys Gly Ile Glu Arg Ala Leu Ile Thr His Asp Arg Pro Leu Tyr Glu 435 440 445 Arg Ser Ile Gln Arg Asp Leu Leu Met His His Ala Met Gly Phe Leu 450 455 460 Arg Gly Phe Pro Met Leu Asn Cys Gly Asp Glu Ile Gly Gln Leu Asn 465 470 475 480 Gly Trp Asp Tyr Lys Glu Asp Pro Asp Arg Val Ala Asp Ser Arg Asn 485 490 495 Leu His Arg Ser Lys Phe Asn Trp Lys Asn Ala Ala Lys Arg Asp Val 500 505 510 Pro Gly Thr Leu Pro Asn Arg Leu Trp Glu Gly Met Ala Asp Val Arg 515 520 525 Gln Met Arg Ser Asp Pro Cys Phe Ala Pro Asp Ala Trp Val Thr Thr 530 535 540 Trp Asp Ala His Asp Asp Gly Ile Leu Ala Met Val Arg Gln Ser Gly 545 550 555 560 Gly Arg Thr Leu Leu Gly Val Phe Asn Phe Ala Asn Arg Asp Ala Thr 565 570 575 Ala Thr Leu Asp Ser Ile Glu Gly Val Ser Leu Pro Arg Thr Val Ala 580 585 590 Leu Lys Pro Tyr Glu Trp Lys Ile Glu Ala Cys 595 600 <210> 9 <211> 603 <212> PRT <213> Artificial Sequence <220> <223> BtAS S420T <400> 9 Met Glu Ala Thr Tyr Arg Asp Ser Val Phe Ala Glu Arg Leu Ala Pro 1 5 10 15 Arg Cys Ala Glu Leu Glu Gln Leu Phe Arg Ser Leu Tyr Gly Asp Ser 20 25 30 Pro Glu Phe Asp His Phe Glu Gln Val Met Ala Lys Ala His Ala Asp 35 40 45 Arg Pro Ala Asp Leu Lys Arg Leu Asp Ala Ala Arg Glu His Asp Pro 50 55 60 Gln Trp Tyr Arg Arg Gly Asp Met Phe Gly Met Thr Met Tyr Thr Asp 65 70 75 80 Leu Phe Ala Gly Lys Leu Thr Asp Leu Ala Lys His Ile Asp Tyr Leu 85 90 95 Lys Glu Gln His Leu Thr Tyr Leu His Leu Met Pro Leu Leu Thr Met 100 105 110 Pro His Pro Asp Asn Asp Gly Gly Tyr Ala Ile Glu Asp Phe Asp Thr 115 120 125 Val Asp Pro Thr Ile Gly Thr Asn Glu Asp Leu Ala Asp Leu Thr Ala 130 135 140 Lys Leu Arg Glu Ala Gly Ile Ser Leu Cys Leu Asp Phe Val Met Asn 145 150 155 160 His Thr Ala Ser Thr His Arg Trp Ala Lys Ala Ala Gln Ala Gly Asp 165 170 175 Pro Glu Tyr Gln Asp Tyr Tyr Phe Cys Tyr Asp Asp Arg Thr Ile Pro 180 185 190 Asp Gln Tyr Asp Ala Val Val Pro Gln Val Phe Pro Thr Ala Ala Pro 195 200 205 Gly Asn Phe Thr Trp Asn Glu Gln Met Gly Lys Trp Val Met Thr Gln 210 215 220 Phe Tyr Pro Phe Gln Trp Asp Leu Asn Tyr Arg Asn Pro Lys Val Phe 225 230 235 240 Val Val Met Met Ser Ser Leu Leu His Leu Ala Asn Leu Gly Val Glu 245 250 255 Val Phe Arg Ile Asp Ala Val Pro Tyr Ile Trp Lys Gln Leu Gly Thr 260 265 270 Asn Cys Arg Asn Leu Pro Gln Val His Thr Ile Val Arg Met Met Arg 275 280 285 Ile Met Ser Glu Ile Val Cys Pro Ala Val Val Phe Lys Gly Glu Val 290 295 300 Val Met Ala Pro Lys Glu Leu Ala Ala Tyr Phe Gly Thr Pro Glu Lys 305 310 315 320 Pro Glu Cys His Met Leu Tyr Asn Val Ser Val Met Val Asn Leu Trp 325 330 335 Ser Ala Leu Ala Asn Gly Asp Thr Arg Leu Leu Lys Thr Gln Ile Asp 340 345 350 Lys Leu Asp Ala Leu Pro Asp Asn Cys Trp Phe Val Asn Tyr Leu Arg 355 360 365 Cys His Asp Asp Ile Gly Trp Gly Leu Asp Glu Asp Val Glu Arg Gln 370 375 380 Leu Gly Ile Asp Pro Leu Lys His Lys Glu Phe Leu Tyr His Phe Tyr 385 390 395 400 Glu Gly Met Val Pro Gly Ser Trp Ala Met Gly Glu Leu Tyr Asn Tyr 405 410 415 Asp Pro Ala Thr Gly Asp Ala Arg Ser Cys Gly Thr Thr Ala Ser Leu 420 425 430 Cys Gly Ile Glu Arg Ala Leu Ile Thr His Asp Arg Pro Leu Tyr Glu 435 440 445 Arg Ser Ile Gln Arg Asp Leu Leu Met His His Ala Met Gly Phe Leu 450 455 460 Arg Gly Phe Pro Met Leu Asn Cys Gly Asp Glu Ile Gly Gln Leu Asn 465 470 475 480 Gly Trp Asp Tyr Lys Glu Asp Pro Asp Arg Val Ala Asp Ser Arg Asn 485 490 495 Leu His Arg Ser Lys Phe Asn Trp Lys Asn Ala Ala Lys Arg Asp Val 500 505 510 Pro Gly Thr Leu Pro Asn Arg Leu Trp Glu Gly Met Ala Asp Val Arg 515 520 525 Gln Met Arg Ser Asp Pro Cys Phe Ala Pro Asp Ala Trp Val Thr Thr 530 535 540 Trp Asp Ala His Asp Asp Gly Ile Leu Ala Met Val Arg Gln Ser Gly 545 550 555 560 Gly Arg Thr Leu Leu Gly Val Phe Asn Phe Ala Asn Arg Asp Ala Thr 565 570 575 Ala Thr Leu Asp Ser Ile Glu Gly Val Ser Leu Pro Arg Thr Val Ala 580 585 590 Leu Lys Pro Tyr Glu Trp Lys Ile Glu Ala Cys 595 600 <210> 10 <211> 603 <212> PRT <213> Artificial Sequence <220> <223> BtAS Y414F <400> 10 Met Glu Ala Thr Tyr Arg Asp Ser Val Phe Ala Glu Arg Leu Ala Pro 1 5 10 15 Arg Cys Ala Glu Leu Glu Gln Leu Phe Arg Ser Leu Tyr Gly Asp Ser 20 25 30 Pro Glu Phe Asp His Phe Glu Gln Val Met Ala Lys Ala His Ala Asp 35 40 45 Arg Pro Ala Asp Leu Lys Arg Leu Asp Ala Ala Arg Glu His Asp Pro 50 55 60 Gln Trp Tyr Arg Arg Gly Asp Met Phe Gly Met Thr Met Tyr Thr Asp 65 70 75 80 Leu Phe Ala Gly Lys Leu Thr Asp Leu Ala Lys His Ile Asp Tyr Leu 85 90 95 Lys Glu Gln His Leu Thr Tyr Leu His Leu Met Pro Leu Leu Thr Met 100 105 110 Pro His Pro Asp Asn Asp Gly Gly Tyr Ala Ile Glu Asp Phe Asp Thr 115 120 125 Val Asp Pro Thr Ile Gly Thr Asn Glu Asp Leu Ala Asp Leu Thr Ala 130 135 140 Lys Leu Arg Glu Ala Gly Ile Ser Leu Cys Leu Asp Phe Val Met Asn 145 150 155 160 His Thr Ala Ser Thr His Arg Trp Ala Lys Ala Ala Gln Ala Gly Asp 165 170 175 Pro Glu Tyr Gln Asp Tyr Tyr Phe Cys Tyr Asp Asp Arg Thr Ile Pro 180 185 190 Asp Gln Tyr Asp Ala Val Val Pro Gln Val Phe Pro Thr Ala Ala Pro 195 200 205 Gly Asn Phe Thr Trp Asn Glu Gln Met Gly Lys Trp Val Met Thr Gln 210 215 220 Phe Tyr Pro Phe Gln Trp Asp Leu Asn Tyr Arg Asn Pro Lys Val Phe 225 230 235 240 Val Val Met Met Ser Ser Leu Leu His Leu Ala Asn Leu Gly Val Glu 245 250 255 Val Phe Arg Ile Asp Ala Val Pro Tyr Ile Trp Lys Gln Leu Gly Thr 260 265 270 Asn Cys Arg Asn Leu Pro Gln Val His Thr Ile Val Arg Met Met Arg 275 280 285 Ile Met Ser Glu Ile Val Cys Pro Ala Val Val Phe Lys Gly Glu Val 290 295 300 Val Met Ala Pro Lys Glu Leu Ala Ala Tyr Phe Gly Thr Pro Glu Lys 305 310 315 320 Pro Glu Cys His Met Leu Tyr Asn Val Ser Val Met Val Asn Leu Trp 325 330 335 Ser Ala Leu Ala Asn Gly Asp Thr Arg Leu Leu Lys Thr Gln Ile Asp 340 345 350 Lys Leu Asp Ala Leu Pro Asp Asn Cys Trp Phe Val Asn Tyr Leu Arg 355 360 365 Cys His Asp Asp Ile Gly Trp Gly Leu Asp Glu Asp Val Glu Arg Gln 370 375 380 Leu Gly Ile Asp Pro Leu Lys His Lys Glu Phe Leu Tyr His Phe Tyr 385 390 395 400 Glu Gly Met Val Pro Gly Ser Trp Ala Met Gly Glu Leu Phe Asn Tyr 405 410 415 Asp Pro Ala Ser Gly Asp Ala Arg Ser Cys Gly Thr Thr Ala Ser Leu 420 425 430 Cys Gly Ile Glu Arg Ala Leu Ile Thr His Asp Arg Pro Leu Tyr Glu 435 440 445 Arg Ser Ile Gln Arg Asp Leu Leu Met His His Ala Met Gly Phe Leu 450 455 460 Arg Gly Phe Pro Met Leu Asn Cys Gly Asp Glu Ile Gly Gln Leu Asn 465 470 475 480 Gly Trp Asp Tyr Lys Glu Asp Pro Asp Arg Val Ala Asp Ser Arg Asn 485 490 495 Leu His Arg Ser Lys Phe Asn Trp Lys Asn Ala Ala Lys Arg Asp Val 500 505 510 Pro Gly Thr Leu Pro Asn Arg Leu Trp Glu Gly Met Ala Asp Val Arg 515 520 525 Gln Met Arg Ser Asp Pro Cys Phe Ala Pro Asp Ala Trp Val Thr Thr 530 535 540 Trp Asp Ala His Asp Asp Gly Ile Leu Ala Met Val Arg Gln Ser Gly 545 550 555 560 Gly Arg Thr Leu Leu Gly Val Phe Asn Phe Ala Asn Arg Asp Ala Thr 565 570 575 Ala Thr Leu Asp Ser Ile Glu Gly Val Ser Leu Pro Arg Thr Val Ala 580 585 590 Leu Lys Pro Tyr Glu Trp Lys Ile Glu Ala Cys 595 600 <210> 11 <211> 603 <212> PRT <213> Artificial Sequence <220> <223> BtAS Y414F*P200R <400> 11 Met Glu Ala Thr Tyr Arg Asp Ser Val Phe Ala Glu Arg Leu Ala Pro 1 5 10 15 Arg Cys Ala Glu Leu Glu Gln Leu Phe Arg Ser Leu Tyr Gly Asp Ser 20 25 30 Pro Glu Phe Asp His Phe Glu Gln Val Met Ala Lys Ala His Ala Asp 35 40 45 Arg Pro Ala Asp Leu Lys Arg Leu Asp Ala Ala Arg Glu His Asp Pro 50 55 60 Gln Trp Tyr Arg Arg Gly Asp Met Phe Gly Met Thr Met Tyr Thr Asp 65 70 75 80 Leu Phe Ala Gly Lys Leu Thr Asp Leu Ala Lys His Ile Asp Tyr Leu 85 90 95 Lys Glu Gln His Leu Thr Tyr Leu His Leu Met Pro Leu Leu Thr Met 100 105 110 Pro His Pro Asp Asn Asp Gly Gly Tyr Ala Ile Glu Asp Phe Asp Thr 115 120 125 Val Asp Pro Thr Ile Gly Thr Asn Glu Asp Leu Ala Asp Leu Thr Ala 130 135 140 Lys Leu Arg Glu Ala Gly Ile Ser Leu Cys Leu Asp Phe Val Met Asn 145 150 155 160 His Thr Ala Ser Thr His Arg Trp Ala Lys Ala Ala Gln Ala Gly Asp 165 170 175 Pro Glu Tyr Gln Asp Tyr Tyr Phe Cys Tyr Asp Asp Arg Thr Ile Pro 180 185 190 Asp Gln Tyr Asp Ala Val Val Arg Gln Val Phe Pro Thr Ala Ala Pro 195 200 205 Gly Asn Phe Thr Trp Asn Glu Gln Met Gly Lys Trp Val Met Thr Gln 210 215 220 Phe Tyr Pro Phe Gln Trp Asp Leu Asn Tyr Arg Asn Pro Lys Val Phe 225 230 235 240 Val Val Met Met Ser Ser Leu Leu His Leu Ala Asn Leu Gly Val Glu 245 250 255 Val Phe Arg Ile Asp Ala Val Pro Tyr Ile Trp Lys Gln Leu Gly Thr 260 265 270 Asn Cys Arg Asn Leu Pro Gln Val His Thr Ile Val Arg Met Met Arg 275 280 285 Ile Met Ser Glu Ile Val Cys Pro Ala Val Val Phe Lys Gly Glu Val 290 295 300 Val Met Ala Pro Lys Glu Leu Ala Ala Tyr Phe Gly Thr Pro Glu Lys 305 310 315 320 Pro Glu Cys His Met Leu Tyr Asn Val Ser Val Met Val Asn Leu Trp 325 330 335 Ser Ala Leu Ala Asn Gly Asp Thr Arg Leu Leu Lys Thr Gln Ile Asp 340 345 350 Lys Leu Asp Ala Leu Pro Asp Asn Cys Trp Phe Val Asn Tyr Leu Arg 355 360 365 Cys His Asp Asp Ile Gly Trp Gly Leu Asp Glu Asp Val Glu Arg Gln 370 375 380 Leu Gly Ile Asp Pro Leu Lys His Lys Glu Phe Leu Tyr His Phe Tyr 385 390 395 400 Glu Gly Met Val Pro Gly Ser Trp Ala Met Gly Glu Leu Phe Asn Tyr 405 410 415 Asp Pro Ala Ser Gly Asp Ala Arg Ser Cys Gly Thr Thr Ala Ser Leu 420 425 430 Cys Gly Ile Glu Arg Ala Leu Ile Thr His Asp Arg Pro Leu Tyr Glu 435 440 445 Arg Ser Ile Gln Arg Asp Leu Leu Met His His Ala Met Gly Phe Leu 450 455 460 Arg Gly Phe Pro Met Leu Asn Cys Gly Asp Glu Ile Gly Gln Leu Asn 465 470 475 480 Gly Trp Asp Tyr Lys Glu Asp Pro Asp Arg Val Ala Asp Ser Arg Asn 485 490 495 Leu His Arg Ser Lys Phe Asn Trp Lys Asn Ala Ala Lys Arg Asp Val 500 505 510 Pro Gly Thr Leu Pro Asn Arg Leu Trp Glu Gly Met Ala Asp Val Arg 515 520 525 Gln Met Arg Ser Asp Pro Cys Phe Ala Pro Asp Ala Trp Val Thr Thr 530 535 540 Trp Asp Ala His Asp Asp Gly Ile Leu Ala Met Val Arg Gln Ser Gly 545 550 555 560 Gly Arg Thr Leu Leu Gly Val Phe Asn Phe Ala Asn Arg Asp Ala Thr 565 570 575 Ala Thr Leu Asp Ser Ile Glu Gly Val Ser Leu Pro Arg Thr Val Ala 580 585 590 Leu Lys Pro Tyr Glu Trp Lys Ile Glu Ala Cys 595 600 <210> 12 <211> 603 <212> PRT <213> Artificial Sequence <220> <223> BtAS Y414F*V202I <400> 12 Met Glu Ala Thr Tyr Arg Asp Ser Val Phe Ala Glu Arg Leu Ala Pro 1 5 10 15 Arg Cys Ala Glu Leu Glu Gln Leu Phe Arg Ser Leu Tyr Gly Asp Ser 20 25 30 Pro Glu Phe Asp His Phe Glu Gln Val Met Ala Lys Ala His Ala Asp 35 40 45 Arg Pro Ala Asp Leu Lys Arg Leu Asp Ala Ala Arg Glu His Asp Pro 50 55 60 Gln Trp Tyr Arg Arg Gly Asp Met Phe Gly Met Thr Met Tyr Thr Asp 65 70 75 80 Leu Phe Ala Gly Lys Leu Thr Asp Leu Ala Lys His Ile Asp Tyr Leu 85 90 95 Lys Glu Gln His Leu Thr Tyr Leu His Leu Met Pro Leu Leu Thr Met 100 105 110 Pro His Pro Asp Asn Asp Gly Gly Tyr Ala Ile Glu Asp Phe Asp Thr 115 120 125 Val Asp Pro Thr Ile Gly Thr Asn Glu Asp Leu Ala Asp Leu Thr Ala 130 135 140 Lys Leu Arg Glu Ala Gly Ile Ser Leu Cys Leu Asp Phe Val Met Asn 145 150 155 160 His Thr Ala Ser Thr His Arg Trp Ala Lys Ala Ala Gln Ala Gly Asp 165 170 175 Pro Glu Tyr Gln Asp Tyr Tyr Phe Cys Tyr Asp Asp Arg Thr Ile Pro 180 185 190 Asp Gln Tyr Asp Ala Val Val Pro Gln Ile Phe Pro Thr Ala Ala Pro 195 200 205 Gly Asn Phe Thr Trp Asn Glu Gln Met Gly Lys Trp Val Met Thr Gln 210 215 220 Phe Tyr Pro Phe Gln Trp Asp Leu Asn Tyr Arg Asn Pro Lys Val Phe 225 230 235 240 Val Val Met Met Ser Ser Leu Leu His Leu Ala Asn Leu Gly Val Glu 245 250 255 Val Phe Arg Ile Asp Ala Val Pro Tyr Ile Trp Lys Gln Leu Gly Thr 260 265 270 Asn Cys Arg Asn Leu Pro Gln Val His Thr Ile Val Arg Met Met Arg 275 280 285 Ile Met Ser Glu Ile Val Cys Pro Ala Val Val Phe Lys Gly Glu Val 290 295 300 Val Met Ala Pro Lys Glu Leu Ala Ala Tyr Phe Gly Thr Pro Glu Lys 305 310 315 320 Pro Glu Cys His Met Leu Tyr Asn Val Ser Val Met Val Asn Leu Trp 325 330 335 Ser Ala Leu Ala Asn Gly Asp Thr Arg Leu Leu Lys Thr Gln Ile Asp 340 345 350 Lys Leu Asp Ala Leu Pro Asp Asn Cys Trp Phe Val Asn Tyr Leu Arg 355 360 365 Cys His Asp Asp Ile Gly Trp Gly Leu Asp Glu Asp Val Glu Arg Gln 370 375 380 Leu Gly Ile Asp Pro Leu Lys His Lys Glu Phe Leu Tyr His Phe Tyr 385 390 395 400 Glu Gly Met Val Pro Gly Ser Trp Ala Met Gly Glu Leu Phe Asn Tyr 405 410 415 Asp Pro Ala Ser Gly Asp Ala Arg Ser Cys Gly Thr Thr Ala Ser Leu 420 425 430 Cys Gly Ile Glu Arg Ala Leu Ile Thr His Asp Arg Pro Leu Tyr Glu 435 440 445 Arg Ser Ile Gln Arg Asp Leu Leu Met His His Ala Met Gly Phe Leu 450 455 460 Arg Gly Phe Pro Met Leu Asn Cys Gly Asp Glu Ile Gly Gln Leu Asn 465 470 475 480 Gly Trp Asp Tyr Lys Glu Asp Pro Asp Arg Val Ala Asp Ser Arg Asn 485 490 495 Leu His Arg Ser Lys Phe Asn Trp Lys Asn Ala Ala Lys Arg Asp Val 500 505 510 Pro Gly Thr Leu Pro Asn Arg Leu Trp Glu Gly Met Ala Asp Val Arg 515 520 525 Gln Met Arg Ser Asp Pro Cys Phe Ala Pro Asp Ala Trp Val Thr Thr 530 535 540 Trp Asp Ala His Asp Asp Gly Ile Leu Ala Met Val Arg Gln Ser Gly 545 550 555 560 Gly Arg Thr Leu Leu Gly Val Phe Asn Phe Ala Asn Arg Asp Ala Thr 565 570 575 Ala Thr Leu Asp Ser Ile Glu Gly Val Ser Leu Pro Arg Thr Val Ala 580 585 590 Leu Lys Pro Tyr Glu Trp Lys Ile Glu Ala Cys 595 600 <210> 13 <211> 603 <212> PRT <213> Artificial Sequence <220> <223> BtAS YY414F*Y265F <400> 13 Met Glu Ala Thr Tyr Arg Asp Ser Val Phe Ala Glu Arg Leu Ala Pro 1 5 10 15 Arg Cys Ala Glu Leu Glu Gln Leu Phe Arg Ser Leu Tyr Gly Asp Ser 20 25 30 Pro Glu Phe Asp His Phe Glu Gln Val Met Ala Lys Ala His Ala Asp 35 40 45 Arg Pro Ala Asp Leu Lys Arg Leu Asp Ala Ala Arg Glu His Asp Pro 50 55 60 Gln Trp Tyr Arg Arg Gly Asp Met Phe Gly Met Thr Met Tyr Thr Asp 65 70 75 80 Leu Phe Ala Gly Lys Leu Thr Asp Leu Ala Lys His Ile Asp Tyr Leu 85 90 95 Lys Glu Gln His Leu Thr Tyr Leu His Leu Met Pro Leu Leu Thr Met 100 105 110 Pro His Pro Asp Asn Asp Gly Gly Tyr Ala Ile Glu Asp Phe Asp Thr 115 120 125 Val Asp Pro Thr Ile Gly Thr Asn Glu Asp Leu Ala Asp Leu Thr Ala 130 135 140 Lys Leu Arg Glu Ala Gly Ile Ser Leu Cys Leu Asp Phe Val Met Asn 145 150 155 160 His Thr Ala Ser Thr His Arg Trp Ala Lys Ala Ala Gln Ala Gly Asp 165 170 175 Pro Glu Tyr Gln Asp Tyr Tyr Phe Cys Tyr Asp Asp Arg Thr Ile Pro 180 185 190 Asp Gln Tyr Asp Ala Val Val Pro Gln Val Phe Pro Thr Ala Ala Pro 195 200 205 Gly Asn Phe Thr Trp Asn Glu Gln Met Gly Lys Trp Val Met Thr Gln 210 215 220 Phe Tyr Pro Phe Gln Trp Asp Leu Asn Tyr Arg Asn Pro Lys Val Phe 225 230 235 240 Val Val Met Met Ser Ser Leu Leu His Leu Ala Asn Leu Gly Val Glu 245 250 255 Val Phe Arg Ile Asp Ala Val Pro Phe Ile Trp Lys Gln Leu Gly Thr 260 265 270 Asn Cys Arg Asn Leu Pro Gln Val His Thr Ile Val Arg Met Met Arg 275 280 285 Ile Met Ser Glu Ile Val Cys Pro Ala Val Val Phe Lys Gly Glu Val 290 295 300 Val Met Ala Pro Lys Glu Leu Ala Ala Tyr Phe Gly Thr Pro Glu Lys 305 310 315 320 Pro Glu Cys His Met Leu Tyr Asn Val Ser Val Met Val Asn Leu Trp 325 330 335 Ser Ala Leu Ala Asn Gly Asp Thr Arg Leu Leu Lys Thr Gln Ile Asp 340 345 350 Lys Leu Asp Ala Leu Pro Asp Asn Cys Trp Phe Val Asn Tyr Leu Arg 355 360 365 Cys His Asp Asp Ile Gly Trp Gly Leu Asp Glu Asp Val Glu Arg Gln 370 375 380 Leu Gly Ile Asp Pro Leu Lys His Lys Glu Phe Leu Tyr His Phe Tyr 385 390 395 400 Glu Gly Met Val Pro Gly Ser Trp Ala Met Gly Glu Leu Phe Asn Tyr 405 410 415 Asp Pro Ala Ser Gly Asp Ala Arg Ser Cys Gly Thr Thr Ala Ser Leu 420 425 430 Cys Gly Ile Glu Arg Ala Leu Ile Thr His Asp Arg Pro Leu Tyr Glu 435 440 445 Arg Ser Ile Gln Arg Asp Leu Leu Met His His Ala Met Gly Phe Leu 450 455 460 Arg Gly Phe Pro Met Leu Asn Cys Gly Asp Glu Ile Gly Gln Leu Asn 465 470 475 480 Gly Trp Asp Tyr Lys Glu Asp Pro Asp Arg Val Ala Asp Ser Arg Asn 485 490 495 Leu His Arg Ser Lys Phe Asn Trp Lys Asn Ala Ala Lys Arg Asp Val 500 505 510 Pro Gly Thr Leu Pro Asn Arg Leu Trp Glu Gly Met Ala Asp Val Arg 515 520 525 Gln Met Arg Ser Asp Pro Cys Phe Ala Pro Asp Ala Trp Val Thr Thr 530 535 540 Trp Asp Ala His Asp Asp Gly Ile Leu Ala Met Val Arg Gln Ser Gly 545 550 555 560 Gly Arg Thr Leu Leu Gly Val Phe Asn Phe Ala Asn Arg Asp Ala Thr 565 570 575 Ala Thr Leu Asp Ser Ile Glu Gly Val Ser Leu Pro Arg Thr Val Ala 580 585 590 Leu Lys Pro Tyr Glu Trp Lys Ile Glu Ala Cys 595 600 <210> 14 <211> 1812 <212> DNA <213> Artificial Sequence <220> <223> amylosucrase BtAS wild type <400> 14 atggaagcca catatcgcga ttccgtattc gccgaacggc tcgccccgcg ctgcgcagaa 60 cttgaacaac ttttccgctc gttgtacggg gattcccctg aattcgacca cttcgaacag 120 gtcatggcca aggcccacgc cgaccggcca gccgacctca aacgcctcga cgccgcccgt 180 gaacacgatc cgcaatggta ccgtcgcggc gacatgttcg gcatgaccat gtacaccgac 240 ctgttcgccg gcaaactcac cgatctcgcc aagcatatcg actatctcaa agagcagcat 300 ctgacctacc tgcacctcat gccgctgctg accatgcccc accccgacaa cgacggcggc 360 tacgccatcg aggatttcga caccgtcgac ccgactatcg gcaccaatga ggacctcgcc 420 gacctcaccg cgaaactgcg cgaagccggc atcagcctgt gccttgattt cgtcatgaac 480 cacaccgcat ccacccaccg gtgggcgaaa gccgcacaag ccggcgaccc cgaataccag 540 gactactact tctgctatga cgaccgcacc atccccgacc aatatgacgc cgtcgtcccg 600 caagtcttcc cgaccgccgc ccccggcaac ttcacatgga atgagcagat gggcaaatgg 660 gtcatgaccc agttctaccc gttccaatgg gacctcaact accgcaatcc caaggtcttc 720 gtcgtcatga tgtccagcct gctgcacctg gccaacctcg gcgtcgaagt cttccgcatc 780 gacgcggtgc cgtacatctg gaagcaactc ggcaccaact gccgcaacct gccgcaagtc 840 cacaccatcg tgcgcatgat gcgcatcatg tccgaaatcg tctgcccggc cgtcgtgttc 900 aaaggtgaag tcgtcatggc tcccaaggag ctcgccgcct acttcggcac ccccgagaag 960 cccgaatgcc acatgctgta caacgtgtcc gtcatggtca acttgtggag cgcgctcgcc 1020 aacggcgaca cccgcctgct taaaacccag atcgacaagc tcgacgccct gcccgacaac 1080 tgctggttcg tcaactatct gcgctgccat gacgatatcg gctggggtct ggacgaggat 1140 gtcgaacgcc agttgggcat cgacccgctc aagcacaagg aattcctcta ccacttctac 1200 gagggcatgg tgcccggcag ctgggcgatg ggcgagctgt acaactatga tccggcgtcc 1260 ggtgacgcgc gcagctgcgg caccacggcg agcttgtgcg gtattgagcg tgcgctgatc 1320 acgcatgacc ggccgctgta tgagcgttcc atccagcgtg atctgctcat gcaccacgct 1380 atgggcttcc tgcgtgggtt cccgatgctc aactgcggcg acgagatcgg ccagctcaac 1440 ggctgggatt ataaggaaga cccggaccgt gtcgctgaca gccgcaatct gcaccgcagc 1500 aagttcaact ggaagaacgc cgcgaagcgc gatgtccccg gaaccttgcc aaaccggctg 1560 tgggaaggca tggcggatgt gcggcagatg cgctcggacc catgcttcgc ccctgacgct 1620 tgggtgacga cgtgggacgc gcatgatgac ggtattctcg cgatggtccg gcagtcaggt 1680 gggcgcacac tgctcggcgt gttcaatttc gcgaaccgtg acgccacggc gacgcttgac 1740 agcatcgagg gcgtgagcct gccgcgtacg gtggcgctca agccatacga gtggaagatc 1800 gaggcctgct ga 1812 <210> 15 <211> 1812 <212> DNA <213> Artificial Sequence <220> <223> amylosucrase BtAS V542K <400> 15 atggaagcca catatcgcga ttccgtattc gccgaacggc tcgccccgcg ctgcgcagaa 60 cttgaacaac ttttccgctc gttgtacggg gattcccctg aattcgacca cttcgaacag 120 gtcatggcca aggcccacgc cgaccggcca gccgacctca aacgcctcga cgccgcccgt 180 gaacacgatc cgcaatggta ccgtcgcggc gacatgttcg gcatgaccat gtacaccgac 240 ctgttcgccg gcaaactcac cgatctcgcc aagcatatcg actatctcaa agagcagcat 300 ctgacctacc tgcacctcat gccgctgctg accatgcccc accccgacaa cgacggcggc 360 tacgccatcg aggatttcga caccgtcgac ccgactatcg gcaccaatga ggacctcgcc 420 gacctcaccg cgaaactgcg cgaagccggc atcagcctgt gccttgattt cgtcatgaac 480 cacaccgcat ccacccaccg gtgggcgaaa gccgcacaag ccggcgaccc cgaataccag 540 gactactact tctgctatga cgaccgcacc atccccgacc aatatgacgc cgtcgtcccg 600 caagtcttcc cgaccgccgc ccccggcaac ttcacatgga atgagcagat gggcaaatgg 660 gtcatgaccc agttctaccc gttccaatgg gacctcaact accgcaatcc caaggtcttc 720 gtcgtcatga tgtccagcct gctgcacctg gccaacctcg gcgtcgaagt cttccgcatc 780 gacgcggtgc cgtacatctg gaagcaactc ggcaccaact gccgcaacct gccgcaagtc 840 cacaccatcg tgcgcatgat gcgcatcatg tccgaaatcg tctgcccggc cgtcgtgttc 900 aaaggtgaag tcgtcatggc tcccaaggag ctcgccgcct acttcggcac ccccgagaag 960 cccgaatgcc acatgctgta caacgtgtcc gtcatggtca acttgtggag cgcgctcgcc 1020 aacggcgaca cccgcctgct taaaacccag atcgacaagc tcgacgccct gcccgacaac 1080 tgctggttcg tcaactatct gcgctgccat gacgatatcg gctggggtct ggacgaggat 1140 gtcgaacgcc agttgggcat cgacccgctc aagcacaagg aattcctcta ccacttctac 1200 gagggcatgg tgcccggcag ctgggcgatg ggcgagctgt acaactatga tccggcgtcc 1260 ggtgacgcgc gcagctgcgg caccacggcg agcttgtgcg gtattgagcg tgcgctgatc 1320 acgcatgacc ggccgctgta tgagcgttcc atccagcgtg atctgctcat gcaccacgct 1380 atgggcttcc tgcgtgggtt cccgatgctc aactgcggcg acgagatcgg ccagctcaac 1440 ggctgggatt ataaggaaga cccggaccgt gtcgctgaca gccgcaatct gcaccgcagc 1500 aagttcaact ggaagaacgc cgcgaagcgc gatgtccccg gaaccttgcc aaaccggctg 1560 tgggaaggca tggcggatgt gcggcagatg cgctcggacc catgcttcgc ccctgacgct 1620 tggaagacga cgtgggacgc gcatgatgac ggtattctcg cgatggtccg gcagtcaggt 1680 gggcgcacac tgctcggcgt gttcaatttc gcgaaccgtg acgccacggc gacgcttgac 1740 agcatcgagg gcgtgagcct gccgcgtacg gtggcgctca agccatacga gtggaagatc 1800 gaggcctgct ga 1812 <210> 16 <211> 1812 <212> DNA <213> Artificial Sequence <220> <223> amylosucrase BtAS V542D <400> 16 atggaagcca catatcgcga ttccgtattc gccgaacggc tcgccccgcg ctgcgcagaa 60 cttgaacaac ttttccgctc gttgtacggg gattcccctg aattcgacca cttcgaacag 120 gtcatggcca aggcccacgc cgaccggcca gccgacctca aacgcctcga cgccgcccgt 180 gaacacgatc cgcaatggta ccgtcgcggc gacatgttcg gcatgaccat gtacaccgac 240 ctgttcgccg gcaaactcac cgatctcgcc aagcatatcg actatctcaa agagcagcat 300 ctgacctacc tgcacctcat gccgctgctg accatgcccc accccgacaa cgacggcggc 360 tacgccatcg aggatttcga caccgtcgac ccgactatcg gcaccaatga ggacctcgcc 420 gacctcaccg cgaaactgcg cgaagccggc atcagcctgt gccttgattt cgtcatgaac 480 cacaccgcat ccacccaccg gtgggcgaaa gccgcacaag ccggcgaccc cgaataccag 540 gactactact tctgctatga cgaccgcacc atccccgacc aatatgacgc cgtcgtcccg 600 caagtcttcc cgaccgccgc ccccggcaac ttcacatgga atgagcagat gggcaaatgg 660 gtcatgaccc agttctaccc gttccaatgg gacctcaact accgcaatcc caaggtcttc 720 gtcgtcatga tgtccagcct gctgcacctg gccaacctcg gcgtcgaagt cttccgcatc 780 gacgcggtgc cgtacatctg gaagcaactc ggcaccaact gccgcaacct gccgcaagtc 840 cacaccatcg tgcgcatgat gcgcatcatg tccgaaatcg tctgcccggc cgtcgtgttc 900 aaaggtgaag tcgtcatggc tcccaaggag ctcgccgcct acttcggcac ccccgagaag 960 cccgaatgcc acatgctgta caacgtgtcc gtcatggtca acttgtggag cgcgctcgcc 1020 aacggcgaca cccgcctgct taaaacccag atcgacaagc tcgacgccct gcccgacaac 1080 tgctggttcg tcaactatct gcgctgccat gacgatatcg gctggggtct ggacgaggat 1140 gtcgaacgcc agttgggcat cgacccgctc aagcacaagg aattcctcta ccacttctac 1200 gagggcatgg tgcccggcag ctgggcgatg ggcgagctgt acaactatga tccggcgtcc 1260 ggtgacgcgc gcagctgcgg caccacggcg agcttgtgcg gtattgagcg tgcgctgatc 1320 acgcatgacc ggccgctgta tgagcgttcc atccagcgtg atctgctcat gcaccacgct 1380 atgggcttcc tgcgtgggtt cccgatgctc aactgcggcg acgagatcgg ccagctcaac 1440 ggctgggatt ataaggaaga cccggaccgt gtcgctgaca gccgcaatct gcaccgcagc 1500 aagttcaact ggaagaacgc cgcgaagcgc gatgtccccg gaaccttgcc aaaccggctg 1560 tgggaaggca tggcggatgt gcggcagatg cgctcggacc catgcttcgc ccctgacgct 1620 tgggacacga cgtgggacgc gcatgatgac ggtattctcg cgatggtccg gcagtcaggt 1680 gggcgcacac tgctcggcgt gttcaatttc gcgaaccgtg acgccacggc gacgcttgac 1740 agcatcgagg gcgtgagcct gccgcgtacg gtggcgctca agccatacga gtggaagatc 1800 gaggcctgct ga 1812 <210> 17 <211> 1812 <212> DNA <213> Artificial Sequence <220> <223> BtAS P200R <400> 17 atggaagcca catatcgcga ttccgtattc gccgaacggc tcgccccgcg ctgcgcagaa 60 cttgaacaac ttttccgctc gttgtacggg gattcccctg aattcgacca cttcgaacag 120 gtcatggcca aggcccacgc cgaccggcca gccgacctca aacgcctcga cgccgcccgt 180 gaacacgatc cgcaatggta ccgtcgcggc gacatgttcg gcatgaccat gtacaccgac 240 ctgttcgccg gcaaactcac cgatctcgcc aagcatatcg actatctcaa agagcagcat 300 ctgacctacc tgcacctcat gccgctgctg accatgcccc accccgacaa cgacggcggc 360 tacgccatcg aggatttcga caccgtcgac ccgactatcg gcaccaatga ggacctcgcc 420 gacctcaccg cgaaactgcg cgaagccggc atcagcctgt gccttgattt cgtcatgaac 480 cacaccgcat ccacccaccg gtgggcgaaa gccgcacaag ccggcgaccc cgaataccag 540 gactactact tctgctatga cgaccgcacc atccccgacc aatatgacgc cgtcgtccgc 600 caagtcttcc cgaccgccgc ccccggcaac ttcacatgga atgagcagat gggcaaatgg 660 gtcatgaccc agttctaccc gttccaatgg gacctcaact accgcaatcc caaggtcttc 720 gtcgtcatga tgtccagcct gctgcacctg gccaacctcg gcgtcgaagt cttccgcatc 780 gacgcggtgc cgtacatctg gaagcaactc ggcaccaact gccgcaacct gccgcaagtc 840 cacaccatcg tgcgcatgat gcgcatcatg tccgaaatcg tctgcccggc cgtcgtgttc 900 aaaggtgaag tcgtcatggc tcccaaggag ctcgccgcct acttcggcac ccccgagaag 960 cccgaatgcc acatgctgta caacgtgtcc gtcatggtca acttgtggag cgcgctcgcc 1020 aacggcgaca cccgcctgct taaaacccag atcgacaagc tcgacgccct gcccgacaac 1080 tgctggttcg tcaactatct gcgctgccat gacgatatcg gctggggtct ggacgaggat 1140 gtcgaacgcc agttgggcat cgacccgctc aagcacaagg aattcctcta ccacttctac 1200 gagggcatgg tgcccggcag ctgggcgatg ggcgagctgt acaactatga tccggcgtcc 1260 ggtgacgcgc gcagctgcgg caccacggcg agcttgtgcg gtattgagcg tgcgctgatc 1320 acgcatgacc ggccgctgta tgagcgttcc atccagcgtg atctgctcat gcaccacgct 1380 atgggcttcc tgcgtgggtt cccgatgctc aactgcggcg acgagatcgg ccagctcaac 1440 ggctgggatt ataaggaaga cccggaccgt gtcgctgaca gccgcaatct gcaccgcagc 1500 aagttcaact ggaagaacgc cgcgaagcgc gatgtccccg gaaccttgcc aaaccggctg 1560 tgggaaggca tggcggatgt gcggcagatg cgctcggacc catgcttcgc ccctgacgct 1620 tgggtgacga cgtgggacgc gcatgatgac ggtattctcg cgatggtccg gcagtcaggt 1680 gggcgcacac tgctcggcgt gttcaatttc gcgaaccgtg acgccacggc gacgcttgac 1740 agcatcgagg gcgtgagcct gccgcgtacg gtggcgctca agccatacga gtggaagatc 1800 gaggcctgct ga 1812 <210> 18 <211> 1812 <212> DNA <213> Artificial Sequence <220> <223> BtAS V202I <400> 18 atggaagcca catatcgcga ttccgtattc gccgaacggc tcgccccgcg ctgcgcagaa 60 cttgaacaac ttttccgctc gttgtacggg gattcccctg aattcgacca cttcgaacag 120 gtcatggcca aggcccacgc cgaccggcca gccgacctca aacgcctcga cgccgcccgt 180 gaacacgatc cgcaatggta ccgtcgcggc gacatgttcg gcatgaccat gtacaccgac 240 ctgttcgccg gcaaactcac cgatctcgcc aagcatatcg actatctcaa agagcagcat 300 ctgacctacc tgcacctcat gccgctgctg accatgcccc accccgacaa cgacggcggc 360 tacgccatcg aggatttcga caccgtcgac ccgactatcg gcaccaatga ggacctcgcc 420 gacctcaccg cgaaactgcg cgaagccggc atcagcctgt gccttgattt cgtcatgaac 480 cacaccgcat ccacccaccg gtgggcgaaa gccgcacaag ccggcgaccc cgaataccag 540 gactactact tctgctatga cgaccgcacc atccccgacc aatatgacgc cgtcgtcccg 600 caaatcttcc cgaccgccgc ccccggcaac ttcacatgga atgagcagat gggcaaatgg 660 gtcatgaccc agttctaccc gttccaatgg gacctcaact accgcaatcc caaggtcttc 720 gtcgtcatga tgtccagcct gctgcacctg gccaacctcg gcgtcgaagt cttccgcatc 780 gacgcggtgc cgtacatctg gaagcaactc ggcaccaact gccgcaacct gccgcaagtc 840 cacaccatcg tgcgcatgat gcgcatcatg tccgaaatcg tctgcccggc cgtcgtgttc 900 aaaggtgaag tcgtcatggc tcccaaggag ctcgccgcct acttcggcac ccccgagaag 960 cccgaatgcc acatgctgta caacgtgtcc gtcatggtca acttgtggag cgcgctcgcc 1020 aacggcgaca cccgcctgct taaaacccag atcgacaagc tcgacgccct gcccgacaac 1080 tgctggttcg tcaactatct gcgctgccat gacgatatcg gctggggtct ggacgaggat 1140 gtcgaacgcc agttgggcat cgacccgctc aagcacaagg aattcctcta ccacttctac 1200 gagggcatgg tgcccggcag ctgggcgatg ggcgagctgt acaactatga tccggcgtcc 1260 ggtgacgcgc gcagctgcgg caccacggcg agcttgtgcg gtattgagcg tgcgctgatc 1320 acgcatgacc ggccgctgta tgagcgttcc atccagcgtg atctgctcat gcaccacgct 1380 atgggcttcc tgcgtgggtt cccgatgctc aactgcggcg acgagatcgg ccagctcaac 1440 ggctgggatt ataaggaaga cccggaccgt gtcgctgaca gccgcaatct gcaccgcagc 1500 aagttcaact ggaagaacgc cgcgaagcgc gatgtccccg gaaccttgcc aaaccggctg 1560 tgggaaggca tggcggatgt gcggcagatg cgctcggacc catgcttcgc ccctgacgct 1620 tgggtgacga cgtgggacgc gcatgatgac ggtattctcg cgatggtccg gcagtcaggt 1680 gggcgcacac tgctcggcgt gttcaatttc gcgaaccgtg acgccacggc gacgcttgac 1740 agcatcgagg gcgtgagcct gccgcgtacg gtggcgctca agccatacga gtggaagatc 1800 gaggcctgct ga 1812 <210> 19 <211> 1812 <212> DNA <213> Artificial Sequence <220> <223> BtAS Y265F <400> 19 atggaagcca catatcgcga ttccgtattc gccgaacggc tcgccccgcg ctgcgcagaa 60 cttgaacaac ttttccgctc gttgtacggg gattcccctg aattcgacca cttcgaacag 120 gtcatggcca aggcccacgc cgaccggcca gccgacctca aacgcctcga cgccgcccgt 180 gaacacgatc cgcaatggta ccgtcgcggc gacatgttcg gcatgaccat gtacaccgac 240 ctgttcgccg gcaaactcac cgatctcgcc aagcatatcg actatctcaa agagcagcat 300 ctgacctacc tgcacctcat gccgctgctg accatgcccc accccgacaa cgacggcggc 360 tacgccatcg aggatttcga caccgtcgac ccgactatcg gcaccaatga ggacctcgcc 420 gacctcaccg cgaaactgcg cgaagccggc atcagcctgt gccttgattt cgtcatgaac 480 cacaccgcat ccacccaccg gtgggcgaaa gccgcacaag ccggcgaccc cgaataccag 540 gactactact tctgctatga cgaccgcacc atccccgacc aatatgacgc cgtcgtcccg 600 caagtcttcc cgaccgccgc ccccggcaac ttcacatgga atgagcagat gggcaaatgg 660 gtcatgaccc agttctaccc gttccaatgg gacctcaact accgcaatcc caaggtcttc 720 gtcgtcatga tgtccagcct gctgcacctg gccaacctcg gcgtcgaagt cttccgcatc 780 gacgcggtgc cgttcatctg gaagcaactc ggcaccaact gccgcaacct gccgcaagtc 840 cacaccatcg tgcgcatgat gcgcatcatg tccgaaatcg tctgcccggc cgtcgtgttc 900 aaaggtgaag tcgtcatggc tcccaaggag ctcgccgcct acttcggcac ccccgagaag 960 cccgaatgcc acatgctgta caacgtgtcc gtcatggtca acttgtggag cgcgctcgcc 1020 aacggcgaca cccgcctgct taaaacccag atcgacaagc tcgacgccct gcccgacaac 1080 tgctggttcg tcaactatct gcgctgccat gacgatatcg gctggggtct ggacgaggat 1140 gtcgaacgcc agttgggcat cgacccgctc aagcacaagg aattcctcta ccacttctac 1200 gagggcatgg tgcccggcag ctgggcgatg ggcgagctgt acaactatga tccggcgtcc 1260 ggtgacgcgc gcagctgcgg caccacggcg agcttgtgcg gtattgagcg tgcgctgatc 1320 acgcatgacc ggccgctgta tgagcgttcc atccagcgtg atctgctcat gcaccacgct 1380 atgggcttcc tgcgtgggtt cccgatgctc aactgcggcg acgagatcgg ccagctcaac 1440 ggctgggatt ataaggaaga cccggaccgt gtcgctgaca gccgcaatct gcaccgcagc 1500 aagttcaact ggaagaacgc cgcgaagcgc gatgtccccg gaaccttgcc aaaccggctg 1560 tgggaaggca tggcggatgt gcggcagatg cgctcggacc catgcttcgc ccctgacgct 1620 tgggtgacga cgtgggacgc gcatgatgac ggtattctcg cgatggtccg gcagtcaggt 1680 gggcgcacac tgctcggcgt gttcaatttc gcgaaccgtg acgccacggc gacgcttgac 1740 agcatcgagg gcgtgagcct gccgcgtacg gtggcgctca agccatacga gtggaagatc 1800 gaggcctgct ga 1812 <210> 20 <211> 1812 <212> DNA <213> Artificial Sequence <220> <223> BtAS V305I <400> 20 atggaagcca catatcgcga ttccgtattc gccgaacggc tcgccccgcg ctgcgcagaa 60 cttgaacaac ttttccgctc gttgtacggg gattcccctg aattcgacca cttcgaacag 120 gtcatggcca aggcccacgc cgaccggcca gccgacctca aacgcctcga cgccgcccgt 180 gaacacgatc cgcaatggta ccgtcgcggc gacatgttcg gcatgaccat gtacaccgac 240 ctgttcgccg gcaaactcac cgatctcgcc aagcatatcg actatctcaa agagcagcat 300 ctgacctacc tgcacctcat gccgctgctg accatgcccc accccgacaa cgacggcggc 360 tacgccatcg aggatttcga caccgtcgac ccgactatcg gcaccaatga ggacctcgcc 420 gacctcaccg cgaaactgcg cgaagccggc atcagcctgt gccttgattt cgtcatgaac 480 cacaccgcat ccacccaccg gtgggcgaaa gccgcacaag ccggcgaccc cgaataccag 540 gactactact tctgctatga cgaccgcacc atccccgacc aatatgacgc cgtcgtcccg 600 caagtcttcc cgaccgccgc ccccggcaac ttcacatgga atgagcagat gggcaaatgg 660 gtcatgaccc agttctaccc gttccaatgg gacctcaact accgcaatcc caaggtcttc 720 gtcgtcatga tgtccagcct gctgcacctg gccaacctcg gcgtcgaagt cttccgcatc 780 gacgcggtgc cgtacatctg gaagcaactc ggcaccaact gccgcaacct gccgcaagtc 840 cacaccatcg tgcgcatgat gcgcatcatg tccgaaatcg tctgcccggc cgtcgtgttc 900 aaaggtgaag tcatcatggc tcccaaggag ctcgccgcct acttcggcac ccccgagaag 960 cccgaatgcc acatgctgta caacgtgtcc gtcatggtca acttgtggag cgcgctcgcc 1020 aacggcgaca cccgcctgct taaaacccag atcgacaagc tcgacgccct gcccgacaac 1080 tgctggttcg tcaactatct gcgctgccat gacgatatcg gctggggtct ggacgaggat 1140 gtcgaacgcc agttgggcat cgacccgctc aagcacaagg aattcctcta ccacttctac 1200 gagggcatgg tgcccggcag ctgggcgatg ggcgagctgt acaactatga tccggcgtcc 1260 ggtgacgcgc gcagctgcgg caccacggcg agcttgtgcg gtattgagcg tgcgctgatc 1320 acgcatgacc ggccgctgta tgagcgttcc atccagcgtg atctgctcat gcaccacgct 1380 atgggcttcc tgcgtgggtt cccgatgctc aactgcggcg acgagatcgg ccagctcaac 1440 ggctgggatt ataaggaaga cccggaccgt gtcgctgaca gccgcaatct gcaccgcagc 1500 aagttcaact ggaagaacgc cgcgaagcgc gatgtccccg gaaccttgcc aaaccggctg 1560 tgggaaggca tggcggatgt gcggcagatg cgctcggacc catgcttcgc ccctgacgct 1620 tgggtgacga cgtgggacgc gcatgatgac ggtattctcg cgatggtccg gcagtcaggt 1680 gggcgcacac tgctcggcgt gttcaatttc gcgaaccgtg acgccacggc gacgcttgac 1740 agcatcgagg gcgtgagcct gccgcgtacg gtggcgctca agccatacga gtggaagatc 1800 gaggcctgct ga 1812 <210> 21 <211> 1812 <212> DNA <213> Artificial Sequence <220> <223> BtAS K393R <400> 21 atggaagcca catatcgcga ttccgtattc gccgaacggc tcgccccgcg ctgcgcagaa 60 cttgaacaac ttttccgctc gttgtacggg gattcccctg aattcgacca cttcgaacag 120 gtcatggcca aggcccacgc cgaccggcca gccgacctca aacgcctcga cgccgcccgt 180 gaacacgatc cgcaatggta ccgtcgcggc gacatgttcg gcatgaccat gtacaccgac 240 ctgttcgccg gcaaactcac cgatctcgcc aagcatatcg actatctcaa agagcagcat 300 ctgacctacc tgcacctcat gccgctgctg accatgcccc accccgacaa cgacggcggc 360 tacgccatcg aggatttcga caccgtcgac ccgactatcg gcaccaatga ggacctcgcc 420 gacctcaccg cgaaactgcg cgaagccggc atcagcctgt gccttgattt cgtcatgaac 480 cacaccgcat ccacccaccg gtgggcgaaa gccgcacaag ccggcgaccc cgaataccag 540 gactactact tctgctatga cgaccgcacc atccccgacc aatatgacgc cgtcgtcccg 600 caagtcttcc cgaccgccgc ccccggcaac ttcacatgga atgagcagat gggcaaatgg 660 gtcatgaccc agttctaccc gttccaatgg gacctcaact accgcaatcc caaggtcttc 720 gtcgtcatga tgtccagcct gctgcacctg gccaacctcg gcgtcgaagt cttccgcatc 780 gacgcggtgc cgtacatctg gaagcaactc ggcaccaact gccgcaacct gccgcaagtc 840 cacaccatcg tgcgcatgat gcgcatcatg tccgaaatcg tctgcccggc cgtcgtgttc 900 aaaggtgaag tcgtcatggc tcccaaggag ctcgccgcct acttcggcac ccccgagaag 960 cccgaatgcc acatgctgta caacgtgtcc gtcatggtca acttgtggag cgcgctcgcc 1020 aacggcgaca cccgcctgct taaaacccag atcgacaagc tcgacgccct gcccgacaac 1080 tgctggttcg tcaactatct gcgctgccat gacgatatcg gctggggtct ggacgaggat 1140 gtcgaacgcc agttgggcat cgacccgctc aagcacaggg aattcctcta ccacttctac 1200 gagggcatgg tgcccggcag ctgggcgatg ggcgagctgt acaactatga tccggcgtcc 1260 ggtgacgcgc gcagctgcgg caccacggcg agcttgtgcg gtattgagcg tgcgctgatc 1320 acgcatgacc ggccgctgta tgagcgttcc atccagcgtg atctgctcat gcaccacgct 1380 atgggcttcc tgcgtgggtt cccgatgctc aactgcggcg acgagatcgg ccagctcaac 1440 ggctgggatt ataaggaaga cccggaccgt gtcgctgaca gccgcaatct gcaccgcagc 1500 aagttcaact ggaagaacgc cgcgaagcgc gatgtccccg gaaccttgcc aaaccggctg 1560 tgggaaggca tggcggatgt gcggcagatg cgctcggacc catgcttcgc ccctgacgct 1620 tgggtgacga cgtgggacgc gcatgatgac ggtattctcg cgatggtccg gcagtcaggt 1680 gggcgcacac tgctcggcgt gttcaatttc gcgaaccgtg acgccacggc gacgcttgac 1740 agcatcgagg gcgtgagcct gccgcgtacg gtggcgctca agccatacga gtggaagatc 1800 gaggcctgct ga 1812 <210> 22 <211> 1812 <212> DNA <213> Artificial Sequence <220> <223> BtAS S420T <400> 22 atggaagcca catatcgcga ttccgtattc gccgaacggc tcgccccgcg ctgcgcagaa 60 cttgaacaac ttttccgctc gttgtacggg gattcccctg aattcgacca cttcgaacag 120 gtcatggcca aggcccacgc cgaccggcca gccgacctca aacgcctcga cgccgcccgt 180 gaacacgatc cgcaatggta ccgtcgcggc gacatgttcg gcatgaccat gtacaccgac 240 ctgttcgccg gcaaactcac cgatctcgcc aagcatatcg actatctcaa agagcagcat 300 ctgacctacc tgcacctcat gccgctgctg accatgcccc accccgacaa cgacggcggc 360 tacgccatcg aggatttcga caccgtcgac ccgactatcg gcaccaatga ggacctcgcc 420 gacctcaccg cgaaactgcg cgaagccggc atcagcctgt gccttgattt cgtcatgaac 480 cacaccgcat ccacccaccg gtgggcgaaa gccgcacaag ccggcgaccc cgaataccag 540 gactactact tctgctatga cgaccgcacc atccccgacc aatatgacgc cgtcgtcccg 600 caagtcttcc cgaccgccgc ccccggcaac ttcacatgga atgagcagat gggcaaatgg 660 gtcatgaccc agttctaccc gttccaatgg gacctcaact accgcaatcc caaggtcttc 720 gtcgtcatga tgtccagcct gctgcacctg gccaacctcg gcgtcgaagt cttccgcatc 780 gacgcggtgc cgtacatctg gaagcaactc ggcaccaact gccgcaacct gccgcaagtc 840 cacaccatcg tgcgcatgat gcgcatcatg tccgaaatcg tctgcccggc cgtcgtgttc 900 aaaggtgaag tcgtcatggc tcccaaggag ctcgccgcct acttcggcac ccccgagaag 960 cccgaatgcc acatgctgta caacgtgtcc gtcatggtca acttgtggag cgcgctcgcc 1020 aacggcgaca cccgcctgct taaaacccag atcgacaagc tcgacgccct gcccgacaac 1080 tgctggttcg tcaactatct gcgctgccat gacgatatcg gctggggtct ggacgaggat 1140 gtcgaacgcc agttgggcat cgacccgctc aagcacaagg aattcctcta ccacttctac 1200 gagggcatgg tgcccggcag ctgggcgatg ggcgagctgt acaactatga tccggcgacg 1260 ggtgacgcgc gcagctgcgg caccacggcg agcttgtgcg gtattgagcg tgcgctgatc 1320 acgcatgacc ggccgctgta tgagcgttcc atccagcgtg atctgctcat gcaccacgct 1380 atgggcttcc tgcgtgggtt cccgatgctc aactgcggcg acgagatcgg ccagctcaac 1440 ggctgggatt ataaggaaga cccggaccgt gtcgctgaca gccgcaatct gcaccgcagc 1500 aagttcaact ggaagaacgc cgcgaagcgc gatgtccccg gaaccttgcc aaaccggctg 1560 tgggaaggca tggcggatgt gcggcagatg cgctcggacc catgcttcgc ccctgacgct 1620 tgggtgacga cgtgggacgc gcatgatgac ggtattctcg cgatggtccg gcagtcaggt 1680 gggcgcacac tgctcggcgt gttcaatttc gcgaaccgtg acgccacggc gacgcttgac 1740 agcatcgagg gcgtgagcct gccgcgtacg gtggcgctca agccatacga gtggaagatc 1800 gaggcctgct ga 1812 <210> 23 <211> 1812 <212> DNA <213> Artificial Sequence <220> <223> BtAS Y414F <400> 23 atggaagcca catatcgcga ttccgtattc gccgaacggc tcgccccgcg ctgcgcagaa 60 cttgaacaac ttttccgctc gttgtacggg gattcccctg aattcgacca cttcgaacag 120 gtcatggcca aggcccacgc cgaccggcca gccgacctca aacgcctcga cgccgcccgt 180 gaacacgatc cgcaatggta ccgtcgcggc gacatgttcg gcatgaccat gtacaccgac 240 ctgttcgccg gcaaactcac cgatctcgcc aagcatatcg actatctcaa agagcagcat 300 ctgacctacc tgcacctcat gccgctgctg accatgcccc accccgacaa cgacggcggc 360 tacgccatcg aggatttcga caccgtcgac ccgactatcg gcaccaatga ggacctcgcc 420 gacctcaccg cgaaactgcg cgaagccggc atcagcctgt gccttgattt cgtcatgaac 480 cacaccgcat ccacccaccg gtgggcgaaa gccgcacaag ccggcgaccc cgaataccag 540 gactactact tctgctatga cgaccgcacc atccccgacc aatatgacgc cgtcgtcccg 600 caagtcttcc cgaccgccgc ccccggcaac ttcacatgga atgagcagat gggcaaatgg 660 gtcatgaccc agttctaccc gttccaatgg gacctcaact accgcaatcc caaggtcttc 720 gtcgtcatga tgtccagcct gctgcacctg gccaacctcg gcgtcgaagt cttccgcatc 780 gacgcggtgc cgtacatctg gaagcaactc ggcaccaact gccgcaacct gccgcaagtc 840 cacaccatcg tgcgcatgat gcgcatcatg tccgaaatcg tctgcccggc cgtcgtgttc 900 aaaggtgaag tcgtcatggc tcccaaggag ctcgccgcct acttcggcac ccccgagaag 960 cccgaatgcc acatgctgta caacgtgtcc gtcatggtca acttgtggag cgcgctcgcc 1020 aacggcgaca cccgcctgct taaaacccag atcgacaagc tcgacgccct gcccgacaac 1080 tgctggttcg tcaactatct gcgctgccat gacgatatcg gctggggtct ggacgaggat 1140 gtcgaacgcc agttgggcat cgacccgctc aagcacaagg aattcctcta ccacttctac 1200 gagggcatgg tgcccggcag ctgggcgatg ggcgagctgt tcaactatga tccggcgtcc 1260 ggtgacgcgc gcagctgcgg caccacggcg agcttgtgcg gtattgagcg tgcgctgatc 1320 acgcatgacc ggccgctgta tgagcgttcc atccagcgtg atctgctcat gcaccacgct 1380 atgggcttcc tgcgtgggtt cccgatgctc aactgcggcg acgagatcgg ccagctcaac 1440 ggctgggatt ataaggaaga cccggaccgt gtcgctgaca gccgcaatct gcaccgcagc 1500 aagttcaact ggaagaacgc cgcgaagcgc gatgtccccg gaaccttgcc aaaccggctg 1560 tgggaaggca tggcggatgt gcggcagatg cgctcggacc catgcttcgc ccctgacgct 1620 tgggtgacga cgtgggacgc gcatgatgac ggtattctcg cgatggtccg gcagtcaggt 1680 gggcgcacac tgctcggcgt gttcaatttc gcgaaccgtg acgccacggc gacgcttgac 1740 agcatcgagg gcgtgagcct gccgcgtacg gtggcgctca agccatacga gtggaagatc 1800 gaggcctgct ga 1812 <210> 24 <211> 1812 <212> DNA <213> Artificial Sequence <220> <223> BtAS Y414F*P200R <400> 24 atggaagcca catatcgcga ttccgtattc gccgaacggc tcgccccgcg ctgcgcagaa 60 cttgaacaac ttttccgctc gttgtacggg gattcccctg aattcgacca cttcgaacag 120 gtcatggcca aggcccacgc cgaccggcca gccgacctca aacgcctcga cgccgcccgt 180 gaacacgatc cgcaatggta ccgtcgcggc gacatgttcg gcatgaccat gtacaccgac 240 ctgttcgccg gcaaactcac cgatctcgcc aagcatatcg actatctcaa agagcagcat 300 ctgacctacc tgcacctcat gccgctgctg accatgcccc accccgacaa cgacggcggc 360 tacgccatcg aggatttcga caccgtcgac ccgactatcg gcaccaatga ggacctcgcc 420 gacctcaccg cgaaactgcg cgaagccggc atcagcctgt gccttgattt cgtcatgaac 480 cacaccgcat ccacccaccg gtgggcgaaa gccgcacaag ccggcgaccc cgaataccag 540 gactactact tctgctatga cgaccgcacc atccccgacc aatatgacgc cgtcgtccgc 600 caagtcttcc cgaccgccgc ccccggcaac ttcacatgga atgagcagat gggcaaatgg 660 gtcatgaccc agttctaccc gttccaatgg gacctcaact accgcaatcc caaggtcttc 720 gtcgtcatga tgtccagcct gctgcacctg gccaacctcg gcgtcgaagt cttccgcatc 780 gacgcggtgc cgtacatctg gaagcaactc ggcaccaact gccgcaacct gccgcaagtc 840 cacaccatcg tgcgcatgat gcgcatcatg tccgaaatcg tctgcccggc cgtcgtgttc 900 aaaggtgaag tcgtcatggc tcccaaggag ctcgccgcct acttcggcac ccccgagaag 960 cccgaatgcc acatgctgta caacgtgtcc gtcatggtca acttgtggag cgcgctcgcc 1020 aacggcgaca cccgcctgct taaaacccag atcgacaagc tcgacgccct gcccgacaac 1080 tgctggttcg tcaactatct gcgctgccat gacgatatcg gctggggtct ggacgaggat 1140 gtcgaacgcc agttgggcat cgacccgctc aagcacaagg aattcctcta ccacttctac 1200 gagggcatgg tgcccggcag ctgggcgatg ggcgagctgt tcaactatga tccggcgtcc 1260 ggtgacgcgc gcagctgcgg caccacggcg agcttgtgcg gtattgagcg tgcgctgatc 1320 acgcatgacc ggccgctgta tgagcgttcc atccagcgtg atctgctcat gcaccacgct 1380 atgggcttcc tgcgtgggtt cccgatgctc aactgcggcg acgagatcgg ccagctcaac 1440 ggctgggatt ataaggaaga cccggaccgt gtcgctgaca gccgcaatct gcaccgcagc 1500 aagttcaact ggaagaacgc cgcgaagcgc gatgtccccg gaaccttgcc aaaccggctg 1560 tgggaaggca tggcggatgt gcggcagatg cgctcggacc catgcttcgc ccctgacgct 1620 tgggtgacga cgtgggacgc gcatgatgac ggtattctcg cgatggtccg gcagtcaggt 1680 gggcgcacac tgctcggcgt gttcaatttc gcgaaccgtg acgccacggc gacgcttgac 1740 agcatcgagg gcgtgagcct gccgcgtacg gtggcgctca agccatacga gtggaagatc 1800 gaggcctgct ga 1812 <210> 25 <211> 1812 <212> DNA <213> Artificial Sequence <220> <223> BtAS Y414F*V202I <400> 25 atggaagcca catatcgcga ttccgtattc gccgaacggc tcgccccgcg ctgcgcagaa 60 cttgaacaac ttttccgctc gttgtacggg gattcccctg aattcgacca cttcgaacag 120 gtcatggcca aggcccacgc cgaccggcca gccgacctca aacgcctcga cgccgcccgt 180 gaacacgatc cgcaatggta ccgtcgcggc gacatgttcg gcatgaccat gtacaccgac 240 ctgttcgccg gcaaactcac cgatctcgcc aagcatatcg actatctcaa agagcagcat 300 ctgacctacc tgcacctcat gccgctgctg accatgcccc accccgacaa cgacggcggc 360 tacgccatcg aggatttcga caccgtcgac ccgactatcg gcaccaatga ggacctcgcc 420 gacctcaccg cgaaactgcg cgaagccggc atcagcctgt gccttgattt cgtcatgaac 480 cacaccgcat ccacccaccg gtgggcgaaa gccgcacaag ccggcgaccc cgaataccag 540 gactactact tctgctatga cgaccgcacc atccccgacc aatatgacgc cgtcgtcccg 600 caaatcttcc cgaccgccgc ccccggcaac ttcacatgga atgagcagat gggcaaatgg 660 gtcatgaccc agttctaccc gttccaatgg gacctcaact accgcaatcc caaggtcttc 720 gtcgtcatga tgtccagcct gctgcacctg gccaacctcg gcgtcgaagt cttccgcatc 780 gacgcggtgc cgtacatctg gaagcaactc ggcaccaact gccgcaacct gccgcaagtc 840 cacaccatcg tgcgcatgat gcgcatcatg tccgaaatcg tctgcccggc cgtcgtgttc 900 aaaggtgaag tcgtcatggc tcccaaggag ctcgccgcct acttcggcac ccccgagaag 960 cccgaatgcc acatgctgta caacgtgtcc gtcatggtca acttgtggag cgcgctcgcc 1020 aacggcgaca cccgcctgct taaaacccag atcgacaagc tcgacgccct gcccgacaac 1080 tgctggttcg tcaactatct gcgctgccat gacgatatcg gctggggtct ggacgaggat 1140 gtcgaacgcc agttgggcat cgacccgctc aagcacaagg aattcctcta ccacttctac 1200 gagggcatgg tgcccggcag ctgggcgatg ggcgagctgt tcaactatga tccggcgtcc 1260 ggtgacgcgc gcagctgcgg caccacggcg agcttgtgcg gtattgagcg tgcgctgatc 1320 acgcatgacc ggccgctgta tgagcgttcc atccagcgtg atctgctcat gcaccacgct 1380 atgggcttcc tgcgtgggtt cccgatgctc aactgcggcg acgagatcgg ccagctcaac 1440 ggctgggatt ataaggaaga cccggaccgt gtcgctgaca gccgcaatct gcaccgcagc 1500 aagttcaact ggaagaacgc cgcgaagcgc gatgtccccg gaaccttgcc aaaccggctg 1560 tgggaaggca tggcggatgt gcggcagatg cgctcggacc catgcttcgc ccctgacgct 1620 tgggtgacga cgtgggacgc gcatgatgac ggtattctcg cgatggtccg gcagtcaggt 1680 gggcgcacac tgctcggcgt gttcaatttc gcgaaccgtg acgccacggc gacgcttgac 1740 agcatcgagg gcgtgagcct gccgcgtacg gtggcgctca agccatacga gtggaagatc 1800 gaggcctgct ga 1812 <210> 26 <211> 1812 <212> DNA <213> Artificial Sequence <220> <223> BtAS Y414F*Y265F <400> 26 atggaagcca catatcgcga ttccgtattc gccgaacggc tcgccccgcg ctgcgcagaa 60 cttgaacaac ttttccgctc gttgtacggg gattcccctg aattcgacca cttcgaacag 120 gtcatggcca aggcccacgc cgaccggcca gccgacctca aacgcctcga cgccgcccgt 180 gaacacgatc cgcaatggta ccgtcgcggc gacatgttcg gcatgaccat gtacaccgac 240 ctgttcgccg gcaaactcac cgatctcgcc aagcatatcg actatctcaa agagcagcat 300 ctgacctacc tgcacctcat gccgctgctg accatgcccc accccgacaa cgacggcggc 360 tacgccatcg aggatttcga caccgtcgac ccgactatcg gcaccaatga ggacctcgcc 420 gacctcaccg cgaaactgcg cgaagccggc atcagcctgt gccttgattt cgtcatgaac 480 cacaccgcat ccacccaccg gtgggcgaaa gccgcacaag ccggcgaccc cgaataccag 540 gactactact tctgctatga cgaccgcacc atccccgacc aatatgacgc cgtcgtcccg 600 caagtcttcc cgaccgccgc ccccggcaac ttcacatgga atgagcagat gggcaaatgg 660 gtcatgaccc agttctaccc gttccaatgg gacctcaact accgcaatcc caaggtcttc 720 gtcgtcatga tgtccagcct gctgcacctg gccaacctcg gcgtcgaagt cttccgcatc 780 gacgcggtgc cgttcatctg gaagcaactc ggcaccaact gccgcaacct gccgcaagtc 840 cacaccatcg tgcgcatgat gcgcatcatg tccgaaatcg tctgcccggc cgtcgtgttc 900 aaaggtgaag tcgtcatggc tcccaaggag ctcgccgcct acttcggcac ccccgagaag 960 cccgaatgcc acatgctgta caacgtgtcc gtcatggtca acttgtggag cgcgctcgcc 1020 aacggcgaca cccgcctgct taaaacccag atcgacaagc tcgacgccct gcccgacaac 1080 tgctggttcg tcaactatct gcgctgccat gacgatatcg gctggggtct ggacgaggat 1140 gtcgaacgcc agttgggcat cgacccgctc aagcacaagg aattcctcta ccacttctac 1200 gagggcatgg tgcccggcag ctgggcgatg ggcgagctgt tcaactatga tccggcgtcc 1260 ggtgacgcgc gcagctgcgg caccacggcg agcttgtgcg gtattgagcg tgcgctgatc 1320 acgcatgacc ggccgctgta tgagcgttcc atccagcgtg atctgctcat gcaccacgct 1380 atgggcttcc tgcgtgggtt cccgatgctc aactgcggcg acgagatcgg ccagctcaac 1440 ggctgggatt ataaggaaga cccggaccgt gtcgctgaca gccgcaatct gcaccgcagc 1500 aagttcaact ggaagaacgc cgcgaagcgc gatgtccccg gaaccttgcc aaaccggctg 1560 tgggaaggca tggcggatgt gcggcagatg cgctcggacc catgcttcgc ccctgacgct 1620 tgggtgacga cgtgggacgc gcatgatgac ggtattctcg cgatggtccg gcagtcaggt 1680 gggcgcacac tgctcggcgt gttcaatttc gcgaaccgtg acgccacggc gacgcttgac 1740 agcatcgagg gcgtgagcct gccgcgtacg gtggcgctca agccatacga gtggaagatc 1800 gaggcctgct ga 1812 <210> 27 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> BtAS V542D forward primer <400> 27 cgcccctgac gcttgggaca cgacgtggga cgcgc 35 <210> 28 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> BtAS V542D reverse primer <400> 28 gcgcgtccca cgtcgtgtcc caagcgtcag gggcg 35 <210> 29 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> BtAS V542K forward primer <400> 29 cgcccctgac gcttggaaga cgacgtggga cgcgc 35 <210> 30 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> BtAS V542K reverse primer <400> 30 gcgcgtccca cgtcgtcttc caagcgtcag gggcg 35 <210> 31 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> BtAS P200R forward primer <400> 31 gccgtcgtcc gccaagtctt c 21 <210> 32 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> BtAS P200R reverse primer <400> 32 gaagacttgg cggacgacgg c 21 <210> 33 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> BtAS V202I forward primer <400> 33 gtcccgcaaa tcttcccgac c 21 <210> 34 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> BtAS V202I reverse primer <400> 34 ggtcgggaag atttgcggga c 21 <210> 35 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> BtAS Y265F forward primer <400> 35 gacgcggtgc cgttcatctg gaagcaa 27 <210> 36 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> BtAS Y265F reverse primer <400> 36 ttgcttccag atgaacggca ccgcgtc 27 <210> 37 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> BtAS Y305I forward primer <400> 37 aaaggtgaag tcatcatggc tcccaag 27 <210> 38 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> BtAS Y305I reverse primer <400> 38 cttgggagcc atgatgactt caccttt 27 <210> 39 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> BtAS K393R forward primer <400> 39 ccgctcaagc acagggaatt cctctac 27 <210> 40 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> BtAS K393R reverse primer <400> 40 gtagaggaat tccctgtgct tgagcgg 27 <210> 41 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> BtAS S420T forward primer <400> 41 tatgatccgg cgacgggtga cgcgcgc 27 <210> 42 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> BtAS S420T reverse primer <400> 42 gcgcgcgtca cccgtcgccg gatcata 27 <210> 43 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> BtAS Y414F forward primer <400> 43 atgggcgagc tgttcaacta tgatccg 27 <210> 44 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> BtAS Y414F reverse primer <400> 44 cggatcatag ttgaacagct cgcccat 27 <110> SAMYANG CORPORATION INDUSTRY ACADEMY COOPERATION FOUNDATION OF SEJONG UNIVERSITY <120> Method of producing turanose <130> DPP20173326KR <160> 44 <170> KoPatentIn 3.0 <210> 1 <211> 603 <212> PRT <213> Artificial Sequence <220 > <223> amylosucrase BtAS wild type <400> 1 Met Glu Ala Thr Tyr Arg Asp Ser Val Phe Ala Glu Arg Leu Ala Pro 1 5 10 15 Arg Cys Ala Glu Leu Glu Gln Leu Phe Arg Ser Leu Tyr Gly Asp Ser 20 25 30 Pro Glu Phe Asp His Phe Glu Gln Val Met Ala Lys Ala His Ala Asp 35 40 45 Arg Pro Ala Asp Leu Lys Arg Leu Asp Ala Ala Arg Glu His Asp Pro 50 55 60 Gln Trp Tyr Arg Arg Gly Asp Met Phe Gly Met Thr Met Tyr Thr Asp 65 70 75 80 Leu Phe Ala Gly Lys Leu Thr Asp Leu Ala Lys His Ile Asp Tyr Leu 85 90 95 Lys Glu Gln His Leu Thr Tyr Leu His Leu Met Pro Leu Leu Thr Met 100 105 110 Pro His Pro Asp Asn Asp Gly Gly Tyr Ala Ile Glu Asp Phe Asp Thr 115 120 125 Val Asp Pro Thr Ile Gly Thr Asn Glu Asp Leu Ala Asp Leu Thr Ala 130 135 140 Lys Leu Arg Glu Ala Gly Ile Ser Leu Cys Leu Asp Phe Val Met Asn 145 150 155 160 His Thr Ala Ser Thr His Arg Trp Ala Lys Ala Ala Gln Ala Gly Asp 165 170 175 Pro Glu Tyr Gln Asp Tyr Tyr Phe Cys Tyr Asp Asp Arg Thr Ile Pro 180 185 190 Asp Gln Tyr Asp Ala Val Val Pro Gln Val Phe Pro Thr Ala Ala Pro 195 200 205 Gly Asn Phe Thr Trp Asn Glu Gln Met Gly Lys Trp Val Met Thr Gln 210 215 220 Phe Tyr Pro Phe Gln Trp Asp Leu Asn Tyr Arg Asn Pro Lys Val Phe 225 230 235 240 Val Val Met Met Ser Ser Leu Leu His Leu Ala Asn Leu Gly Val Glu 245 250 255 Val Phe Arg Ile Asp Ala Val Pro Tyr Ile Trp Lys Gln Leu Gly Thr 260 265 270 Asn Cys Arg Asn Leu Pro Gln Val His Thr Ile Val Arg Met Met Arg 275 280 285 Ile Met Ser Glu Ile Val Cys Pro Ala Val Val Phe Lys Gly Glu Val 290 295 300 Val Met Ala Pro Lys Glu Leu Ala Ala Tyr Phe Gly Thr Pro Glu Lys 305 310 315 320 Pro Glu Cys His Met Leu Tyr Asn Val Ser Val Met Val Asn Leu Trp 325 330 335 Ser Ala Leu Ala Asn Gly Asp Thr Arg Leu Leu Lys Thr Gln Ile Asp 340 345 350 Lys Leu Asp Ala Leu Pro Asp Asn Cys Trp Phe Val Asn Tyr Leu Arg 355 360 365 Cys His Asp Asp Ile Gly Trp Gly Leu Asp Glu Asp Val Glu Arg Gln 370 375 380 Leu Gly Ile Asp Pro Leu Lys His Lys Glu Phe Leu Tyr His Phe Tyr 385 390 395 400 Glu Gly Met Val Pro Gly Ser Trp Ala Met Gly Glu Leu Tyr Asn Tyr 405 410 415 Asp Pro Ala Ser Gly Asp Ala Arg Ser Cys Gly Thr Thr Ala Ser Leu 420 425 430 Cys Gly Ile Glu Arg Ala Leu Ile Thr His Asp Arg Pro Leu Tyr Glu 435 440 445 Arg Ser Ile Gln Arg Asp Leu Leu Met His His Ala Met Gly Phe Leu 450 455 460 Arg Gly Phe Pro Met Leu Asn Cys Gly Asp Glu Ile Gly Gln Leu Asn 465 470 475 480 Gly Trp Asp Tyr Lys Glu Asp Pro Asp Arg Val Ala Asp Ser Arg Asn 485 490 495 Leu His Arg Ser Lys Phe Asn Trp Lys Asn Ala Ala Lys Arg Asp Val 500 505 510 Pro Gly Thr Leu Pro Asn Arg Leu Trp Glu Gly Met Ala Asp Val Arg 515 520 525 Gln Met Arg Ser Asp Pro Cys Phe Ala Pro Asp Ala Trp Val Thr Thr Thr 530 535 540 Trp Asp Ala His Asp Asp Gly Ile Leu Ala Met Val Arg Gln Ser Gly 545 550 555 560 Gly Arg Thr Leu Leu Gly Val Phe Asn Phe Ala Asn Arg Asp Ala Thr 565 570 575 Ala Thr Leu Asp Ser Ile Glu Gly Val Ser Leu Pro Arg Thr Val Ala 580 585 590 Leu Lys Pro Tyr Glu Trp Lys Ile Glu Ala Cys 595 600 <210> 2 <211> 603 <212> PRT <213> Artificial Sequence <220> <223> amylosucrase BtAS V542K <400> 2 Met Glu Ala Thr Tyr Arg Asp Ser Val Phe Ala Glu Arg Leu Ala Pro 1 5 10 15 Arg Cys Ala Glu Leu Glu Gln Leu Phe Arg Ser Leu Tyr Gly Asp Ser 20 25 30 Pro Glu Phe Asp His Phe Glu Gln Val Met Ala Lys Ala His Ala Asp 35 40 45 Arg Pro Ala Asp Leu Lys Arg Leu Asp Ala Ala Arg Glu His Asp Pro 50 55 60 Gln Trp Tyr Arg Arg Gly Asp Met Phe Gly Met Thr Met Tyr Thr Asp 65 70 75 80 Leu Phe Ala Gly Lys Leu Thr Asp Leu Ala Lys His Ile Asp Tyr Leu 85 90 95 Lys Glu Gln His Leu Thr Tyr Leu His Leu Met Pro Leu Leu Thr Met 100 105 110 Pro His Pro Asp Asn Asp Gly Gly Tyr Ala Ile Glu Asp Phe Asp Thr 115 120 125 Val Asp Pro Thr Ile Gly Thr Asn Glu Asp Leu Ala Asp Leu Thr Ala 130 135 140 Lys Leu Arg Glu Ala Gly Ile Ser Leu Cys Leu Asp Phe Val Met Asn 145 150 155 160 His Thr Ala Ser Thr His Arg Trp Ala Lys Ala Ala Gln Ala Gly Asp 165 170 175 Pro Glu Tyr Gln Asp Tyr Tyr Phe Cys Tyr Asp Asp Arg Thr Ile Pro 180 185 190 Asp Gln Tyr Asp Ala Val Val Pro Gln Val Phe Pro Thr Ala Ala Pro 195 200 205 Gly Asn Phe Thr Trp Asn Glu Gln Met Gly Lys Trp Val Met Thr Gln 210 215 220 Phe Tyr Pro Phe Gln Trp Asp Leu Asn Tyr Arg Asn Pro Lys Val Phe 225 230 235 240 Val Val Met Met Ser Ser Leu Leu His Leu Ala Asn Leu Gly Val Glu 245 250 255 Val Phe Arg Ile Asp Ala Val Pro Tyr Ile Trp Lys Gln Leu Gly T hr 260 265 270 Asn Cys Arg Asn Leu Pro Gln Val His Thr Ile Val Arg Met Met Arg 275 280 285 Ile Met Ser Glu Ile Val Cys Pro Ala Val Val Phe Lys Gly Glu Val 290 295 300 Val Met Ala Pro Lys Glu Leu Ala Ala Tyr Phe Gly Thr Pro Glu Lys 305 310 315 320 Pro Glu Cys His Met Leu Tyr Asn Val Ser Val Met Val Asn Leu Trp 325 330 335 Ser Ala Leu Ala Asn Gly Asp Thr Arg Leu Leu Lys Thr Gln Ile Asp 340 345 350 Lys Leu Asp Ala Leu Pro Asp Asn Cys Trp Phe Val Asn Tyr Leu Arg 355 360 365 Cys His Asp Asp Ile Gly Trp Gly Leu Asp Glu Asp Val Glu Arg Gln 370 375 380 Leu Gly Ile Asp Pro Leu Lys His Lys Glu Phe Leu Tyr His Phe Tyr 385 390 395 400 Glu Gly Met Val Pro Gly Ser Trp Ala Met Gly Glu L eu Tyr Asn Tyr 405 410 415 Asp Pro Ala Ser Gly Asp Ala Arg Ser Cys Gly Thr Thr Ala Ser Leu 420 425 430 Cys Gly Ile Glu Arg Ala Leu Ile Thr His Asp Arg Pro Leu Tyr Glu 435 440 445 Arg Ser Ile Gln Arg Asp Leu Leu Met His His Ala Met Gly Phe Leu 450 455 460 Arg Gly Phe Pro Met Leu Asn Cys Gly Asp Glu Ile Gly Gln Leu Asn 465 470 475 480 Gly Trp Asp Tyr Lys Glu Asp Pro Asp Arg Val Ala Asp Ser Arg Asn 485 490 495 Leu His Arg Ser Lys Phe Asn Trp Lys Asn Ala Ala Lys Arg Asp Val 500 505 510 Pro Gly Thr Leu Pro Asn Arg Leu Trp Glu Gly Met Ala Asp Val Arg 515 520 525 Gln Met Arg Ser Asp Pro Cys Phe Ala Pro Asp Ala Trp Lys Thr Thr Thr 530 535 540 Trp Asp Ala His Asp Asp Gly Ile Leu Ala Met Val Arg Gln S er Gly 545 550 555 560 Gly Arg Thr Leu Leu Gly Val Phe Asn Phe Ala Asn Arg Asp Ala Thr 565 570 575 Ala Thr Leu Asp Ser Ile Glu Gly Val Ser Leu Pro Arg Thr Val Ala 580 585 590 Leu Lys Pro Tyr Glu Trp Lys Ile Glu Ala Cys 595 600 <210> 3 <211> 603 <212> PRT <213> Artificial Sequence <220> <223> amylosucrase BtAS V542D <400> 3 Met Glu Ala Thr Tyr Arg Asp Ser Val Phe Ala Glu Arg Leu Ala Pro 1 5 10 15 Arg Cys Ala Glu Leu Glu Gln Leu Phe Arg Ser Leu Tyr Gly Asp Ser 20 25 30 Pro Glu Phe Asp His Phe Glu Gln Val Met Ala Lys Ala His Ala Asp 35 40 45 Arg Pro Ala Asp Leu Lys Arg Leu Asp Ala Ala Arg Glu His Asp Pro 50 55 60 Gln Trp Tyr Arg Arg Gly Asp Met Phe Gly Met Thr Met Tyr Thr Asp 65 70 75 80 Leu Phe Ala Gly Lys Leu Thr Asp Leu Ala Lys His Ile Asp Tyr Leu 85 90 95 Lys Glu Gln His Leu Thr Tyr Leu His Leu Met Pro Leu Leu Thr Met 100 105 110 Pro His Pro Asp Asn Asp Gly Gly Tyr Ala Ile Glu Asp Phe Asp Thr 115 120 125 Val Asp Pro Thr Ile Gly Thr Asn Glu Asp Leu Ala Asp Leu Thr Ala 130 135 140 Lys Leu Arg Glu Ala Gly Ile Ser Leu Cys Leu Asp Phe Val Met Asn 145 150 155 160 His Thr Ala Ser Thr His Arg Trp Ala Lys Ala Ala Gln Ala Gly Asp 165 170 175 Pro Glu Tyr Gln Asp Tyr Tyr Phe Cys Tyr Asp Asp Arg Thr Ile Pro 180 185 190 Asp Gln Tyr Asp Ala Val Val Pro Gln Val Phe Pro Thr Ala Ala Pro 195 200 205 Gly Asn Phe Thr Trp Asn Glu Gln Met Gly Lys Trp Val Met Thr Gln 210 215 220 Phe Tyr Pro Phe Gln Trp Asp Leu Asn Tyr Arg Asn Pro Lys Val Phe 225 230 235 240 Val Val Met Met Ser Ser Leu Leu His Leu Ala Asn Leu Gly Val Glu 245 250 255 Val Phe Arg Ile Asp Ala Val Pro Tyr Ile Trp Lys Gln Leu Gly Thr 260 265 270 Asn Cys Arg Asn Leu Pro Gln Val His Thr Ile Val Arg Met Met Arg 275 280 285 Ile Met Ser Glu Ile Val Cys Pro Ala Val Val Phe Lys Gly Glu Val 290 295 300 Val Met Ala Pro Lys Glu Leu Ala Ala Tyr Phe Gly Thr Pro Glu Lys 305 310 315 320 Pro Glu Cys His Met Leu Tyr Asn Val Ser Val Met Val Asn Leu Trp 325 330 335 Ser Ala Leu Ala Asn Gly Asp Thr Arg Leu Leu Lys Thr Gln Ile Asp 340 345 350 Lys Leu Asp Ala Leu Pro Asp Asn Cys Trp Phe Val Asn Tyr Leu Arg 355 360 365 Cys His Asp Asp Ile Gly Trp Gly Leu Asp Glu Asp Val Glu Arg Gln 370 375 380 Leu Gly Ile Asp Pro Leu Lys His Lys Glu Phe Leu Tyr His Phe Tyr 385 390 395 400 Glu Gly Met Val Pro Gly Ser Trp Ala Met Gly Glu Leu Tyr Asn Tyr 405 410 415 Asp Pro Ala Ser Gly Asp Ala Arg Ser Cys Gly Thr Thr Ala Ser Leu 420 425 430 Cys Gly Ile Glu Arg Ala Leu Ile Thr His Asp Arg Pro Leu Tyr Glu 435 440 445 Arg Ser Ile Gln Arg Asp Leu Leu Met His His Ala Met Gly Phe Leu 450 455 460 Arg Gly Phe Pro Met Leu Asn Cys Gly Asp Glu Ile Gly Gln Leu Asn 465 470 475 480 Gly Trp Asp Tyr Lys Glu Asp Pro Asp Arg Val Ala Asp Ser Arg Asn 485 490 495 Leu His Arg Ser Lys Phe Asn Trp Lys Asn Ala Ala Lys Arg Asp Val 500 505 510 Pro Gly Thr Leu Pro Asn Arg Leu Trp Glu Gly Met Ala Asp Val Arg 515 520 525 Gln Met Arg Ser Asp Pro Cys Phe Ala Pro Asp Ala Trp Asp Thr Thr 530 535 540 Trp Asp Ala His Asp Asp Gly Ile Leu Ala Met Val Arg Gln Ser Gly 545 550 555 560 Gly Arg Thr Leu Leu Gly Val Phe Asn Phe Ala Asn Arg Asp Ala Thr 565 570 575 Ala Thr Leu Asp Ser Ile Glu Gly Val Ser Leu Pro Arg Thr Val Ala 580 585 590 Leu Lys Pro Tyr Glu Trp Lys Ile Glu Ala Cys 595 600 <210> 4 <211> 603 <212> PRT <213> Artificial Sequence <220> <223> BtAS P200R <400 > 4 Met Glu Ala Thr Tyr Arg Asp Ser Val Phe Ala Glu Arg Leu Ala Pro 1 5 10 15 Arg Cys Ala Glu Leu Glu Gln Leu Phe Arg Ser Leu Tyr Gly Asp Ser 20 25 30 Pro Glu Phe Asp His Phe Glu Gln Val Met Ala Lys Ala His Ala Asp 35 40 45 Arg Pro Ala Asp Leu Lys Arg Leu Asp Ala Ala Arg Glu His Asp Pro 50 55 60 Gln Trp Tyr Arg Arg Gly Asp Met Phe Gly Met Thr Met Tyr Thr Asp 65 70 75 80 Leu Phe Ala Gly Lys Leu Thr Asp Leu Ala Lys His Ile Asp Tyr Leu 85 90 95 Lys Glu Gln Hi s Leu Thr Tyr Leu His Leu Met Pro Leu Leu Thr Met 100 105 110 Pro His Pro Asp Asn Asp Gly Gly Tyr Ala Ile Glu Asp Phe Asp Thr 115 120 125 Val Asp Pro Thr Ile Gly Thr Asn Glu Asp Leu Ala Asp Leu Thr Ala 130 135 140 Lys Leu Arg Glu Ala Gly Ile Ser Leu Cys Leu Asp Phe Val Met Asn 145 150 155 160 His Thr Ala Ser Thr His Arg Trp Ala Lys Ala Ala Gln Ala Gly Asp 165 170 175 Pro Glu Tyr Gln Asp Tyr Tyr Phe Cys Tyr Asp Asp Arg Thr Ile Pro 180 185 190 Asp Gln Tyr Asp Ala Val Val Arg Gln Val Phe Pro Thr Ala Ala Pro 195 200 205 Gly Asn Phe Thr Trp Asn Glu Gln Met Gly Lys Trp Val Met Thr Gln 210 215 220 Phe Tyr Pro Phe Gln Trp Asp Leu Asn Tyr Arg Asn Pro Lys Val Phe 225 230 235 240 Va l Val Met Met Ser Ser Leu Leu His Leu Ala Asn Leu Gly Val Glu 245 250 255 Val Phe Arg Ile Asp Ala Val Pro Tyr Ile Trp Lys Gln Leu Gly Thr 260 265 270 Asn Cys Arg Asn Leu Pro Gln Val His Thr Ile Val Arg Met Met Arg 275 280 285 Ile Met Ser Glu Ile Val Cys Pro Ala Val Val Phe Lys Gly Glu Val 290 295 300 Val Met Ala Pro Lys Glu Leu Ala Ala Tyr Phe Gly Thr Pro Glu Lys 305 310 315 320 Pro Glu Cys His Met Leu Tyr Asn Val Ser Val Met Val Asn Leu Trp 325 330 335 Ser Ala Leu Ala Asn Gly Asp Thr Arg Leu Leu Lys Thr Gln Ile Asp 340 345 350 Lys Leu Asp Ala Leu Pro Asp Asn Cys Trp Phe Val Asn Tyr Leu Arg 355 360 365 Cys His Asp Asp Ile Gly Trp Gly Leu Asp Glu Asp Val Glu Arg Gln 370 375 380 Leu Gly Il e Asp Pro Leu Lys His Lys Glu Phe Leu Tyr His Phe Tyr 385 390 395 400 Glu Gly Met Val Pro Gly Ser Trp Ala Met Gly Glu Leu Tyr Asn Tyr 405 410 415 Asp Pro Ala Ser Gly Asp Ala Arg Ser Cys Gly Thr Thr Ala Ser Leu 420 425 430 Cys Gly Ile Glu Arg Ala Leu Ile Thr His Asp Arg Pro Leu Tyr Glu 435 440 445 Arg Ser Ile Gln Arg Asp Leu Leu Met His His Ala Met Gly Phe Leu 450 455 460 Arg Gly Phe Pro Met Leu Asn Cys Gly Asp Glu Ile Gly Gln Leu Asn 465 470 475 480 Gly Trp Asp Tyr Lys Glu Asp Pro Asp Arg Val Ala Asp Ser Arg Asn 485 490 495 Leu His Arg Ser Lys Phe Asn Trp Lys Asn Ala Ala Lys Arg Asp Val 500 505 510 Pro Gly Thr Leu Pro Asn Arg Leu Trp Glu Gly Met Ala Asp Val Arg 515 520 52 5 Gln Met Arg Ser Asp Pro Cys Phe Ala Pro Asp Ala Trp Val Thr Thr Thr 530 535 540 Trp Asp Ala His Asp Asp Gly Ile Leu Ala Met Val Arg Gln Ser Gly 545 550 555 560 Gly Arg Thr Leu Leu Gly Val Phe Asn Phe Ala Asn Arg Asp Ala Thr 565 570 575 Ala Thr Leu Asp Ser Ile Glu Gly Val Ser Leu Pro Arg Thr Val Ala 580 585 590 Leu Lys Pro Tyr Glu Trp Lys Ile Glu Ala Cys 595 600 <210> 5 <211> 603 <212> PRT <213> Artificial Sequence <220> <223> BtAS V202I <400> 5 Met Glu Ala Thr Tyr Arg Asp Ser Val Phe Ala Glu Arg Leu Ala Pro 1 5 10 15 Arg Cys Ala Glu Leu Glu Gln Leu Phe Arg Ser Leu Tyr Gly Asp Ser 20 25 30 Pro Glu Phe Asp His Phe Glu Gln Val Met Ala Lys Ala His Ala Asp 35 40 45 Arg Pro Ala Asp Leu Lys Arg Leu Asp Ala Ala Arg Glu His Asp Pro 50 55 60 Gln Trp Tyr Arg Arg Gly Asp Met Phe Gly Met Thr Met Tyr Thr Asp 65 70 75 80 Leu Phe Ala Gly Lys Leu Thr Asp Leu Ala Lys His Ile Asp Tyr Leu 85 90 95 Lys Glu Gln His Leu Thr Tyr Leu His Leu Met Pro Leu Leu Thr Met 100 105 110 Pro His Pro Asp Asn Asp Gly Gly Tyr Ala Ile Glu Asp Phe Asp Thr 115 120 125 Val Asp Pro Thr Ile Gly Thr Asn Glu Asp Leu Ala Asp Leu Thr Ala 130 135 140 Lys Leu Arg Glu Ala Gly Ile Ser Leu Cys Leu Asp Phe Val Met Asn 145 150 155 160 His Thr Ala Ser Thr His Arg Trp Ala Lys Ala Ala Gln Ala Gly Asp 165 170 175 Pro Glu Tyr Gln Asp Tyr Tyr Phe Cys Tyr Asp Asp Arg Thr Ile Pro 180 185 190 Asp Gln Tyr Asp Ala Val Val Pro Gln Ile Phe Pro Thr Ala Ala Pro 195 200 205 Gly Asn Phe Thr Trp Asn Glu Gln Met Gly Lys Trp Val Met Thr Gln 210 215 220 Phe Tyr Pro Phe Gln Trp Asp Leu Asn Tyr Arg Asn Pro Lys Val Phe 225 230 235 240 Val Val Met Met Ser Ser Leu Leu His Leu Ala Asn Leu Gly Val Glu 245 250 255 Val Phe Arg Ile Asp Ala Val Pro Tyr Ile Trp Lys Gln Leu Gly Thr 260 265 270 Asn Cys Arg Asn Leu Pro Gln Val His Thr Ile Val Arg Met Met Arg 275 280 285 Ile Met Ser Glu Ile Val Cys Pro Ala Val Val Phe Lys Gly Glu Val 290 295 300 Val Met Ala Pro Lys Glu Leu Ala Ala Tyr Phe Gly Thr Pro Glu Lys 305 310 315 320 Pro Glu Cys His Met Leu Tyr Asn Val Ser Val Met Val Asn Leu Trp 325 330 335 Ser Ala Leu Ala Asn Gly Asp Thr Arg Leu Leu Lys Thr Gln Ile Asp 340 345 350 Lys Leu Asp Ala Leu Pro Asp Asn Cys Trp Phe Val Asn Tyr Leu Arg 355 360 365 Cys His Asp Asp Ile Gly Trp Gly Leu Asp Glu Asp Val Glu Arg Gln 370 375 380 Leu Gly Ile Asp Pro Leu Lys His Lys Glu Phe Leu Tyr His Phe Tyr 385 390 395 400 Glu Gly Met Val Pro Gly Ser Trp Ala Met Gly Glu Leu Tyr Asn Tyr 405 410 415 Asp Pro Ala Ser Gly Asp Ala Arg Ser Cys Gly Thr Thr Ala Ser Leu 420 425 430 Cys Gly Ile Glu Arg Ala Leu Ile Thr His Asp Arg Pro Leu Tyr Glu 435 440 445 Arg Ser Ile Gln Arg Asp Leu Leu Met His His Ala Met Gly Phe Leu 450 455 460 Arg Gly Phe Pro Met Leu Asn Cys Gly Asp Glu Ile Gly Gln Leu Asn 465 470 475 480 Gly Trp Asp Tyr Lys Glu Asp Pro Asp Arg Val Ala Asp Ser Arg Asn 485 490 495 Leu His Arg Ser Lys Phe Asn Trp Lys Asn Ala Ala Lys Arg Asp Val 500 505 510 Pro Gly Thr Leu Pro Asn Arg Leu Trp Glu Gly Met Ala Asp Val Arg 515 520 525 Gln Met Arg Ser Asp Pro Cys Phe Ala Pro Asp Ala Trp Val Thr Thr Thr 530 535 540 Trp Asp Ala His Asp Asp Gly Ile Leu Ala Met Val Arg Gln Ser Gly 545 550 555 560 Gly Arg Thr Leu Leu Gly Val Phe Asn Phe Ala Asn Arg Asp Ala Thr 565 570 575 Ala Thr Leu Asp Ser Ile Glu Gly Val Ser Leu Pro Arg Thr Val Ala 580 585 590 Leu Lys Pro Tyr Glu Trp Lys Ile Glu Ala Cys 595 600 <210> 6 <211> 603 <212> PRT <213> Artificial Sequence <220> <223> BtAS Y265F <400> 6 Met Glu Ala Thr Tyr Arg Asp Ser Val Phe Ala Glu Arg Leu Ala Pro 1 5 10 15 Arg Cys Ala Glu Leu Glu Gln Leu Phe Arg Ser Leu Tyr Gly Asp Ser 20 25 30 Pro Glu Phe Asp His Phe Glu Gln Val Met Ala Lys Ala His Ala Asp 35 40 45 Arg Pro Ala Asp Leu Lys Arg Leu Asp Ala Ala Arg Glu His Asp Pro 50 55 60 Gln Trp Tyr Arg Arg Gly Asp Met Phe Gly Met Thr Met Tyr Thr Asp 65 70 75 80 Leu Phe Ala Gly Lys Leu Thr Asp Leu Ala Lys His Ile Asp Tyr Leu 85 90 95 Lys Glu Gln His Leu Thr Tyr Leu His Leu Met Pro Leu Leu Thr Met 100 105 110 Pro His Pro Asp Asn Asp Gly Gly Tyr Ala Ile Glu Asp Phe Asp Thr 115 120 125 Val Asp Pro Thr Ile Gly Thr Asn Glu Asp Leu Ala Asp Leu Thr Ala 130 135 140 Lys Leu Arg Glu Ala Gly Ile Ser Leu Cys Leu Asp Phe Val Met Asn 145 150 155 160 His Thr Ala Ser Thr His Arg Trp Ala Lys Ala Ala Gln Ala Gly Asp 165 170 175 Pro Glu Tyr Gln Asp Tyr Tyr Phe Cys Tyr Asp Asp Arg Thr Ile Pro 180 185 190 Asp Gln Tyr Asp Ala Val Val Pro Gln Val Phe Pro Thr Ala Ala Pro 195 200 205 Gly Asn Phe Thr Trp Asn Glu Gln Met Gly Lys Trp Val Met Thr Gln 210 215 220 Phe Tyr Pro Phe Gln Trp Asp Leu Asn Tyr Arg Asn Pro Lys Val Phe 225 230 235 240 Val Val Met Met Ser Ser Leu Leu His Leu Ala Asn Leu Gly Val Glu 245 25 0 255 Val Phe Arg Ile Asp Ala Val Pro Phe Ile Trp Lys Gln Leu Gly Thr 260 265 270 Asn Cys Arg Asn Leu Pro Gln Val His Thr Ile Val Arg Met Met Arg 275 280 285 Ile Met Ser Glu Ile Val Cys Pro Ala Val Val Phe Lys Gly Glu Val 290 295 300 Val Met Ala Pro Lys Glu Leu Ala Ala Tyr Phe Gly Thr Pro Glu Lys 305 310 315 320 Pro Glu Cys His Met Leu Tyr Asn Val Ser Val Met Val Asn Leu Trp 325 330 335 Ser Ala Leu Ala Asn Gly Asp Thr Arg Leu Leu Lys Thr Gln Ile Asp 340 345 350 Lys Leu Asp Ala Leu Pro Asp Asn Cys Trp Phe Val Asn Tyr Leu Arg 355 360 365 Cys His Asp Asp Ile Gly Trp Gly Leu Asp Glu Asp Val Glu Arg Gln 370 375 380 Leu Gly Ile Asp Pro Leu Lys His Lys Glu Phe Leu Tyr His Phe Tyr 385 390 395 400 Glu Gly Met Val Pro Gly Ser Trp Ala Met Gly Glu Leu Tyr Asn Tyr 405 410 415 Asp Pro Ala Ser Gly Asp Ala Arg Ser Cys Gly Thr Thr Ala Ser Leu 420 425 430 Cys Gly Ile Glu Arg Ala Leu Ile Thr His Asp Arg Pro Leu Tyr Glu 435 440 445 Arg Ser Ile Gln Arg Asp Leu Leu Met His His Ala Met Gly Phe Leu 450 455 460 Arg Gly Phe Pro Met Leu Asn Cys Gly Asp Glu Ile Gly Gln Leu Asn 465 470 475 480 Gly Trp Asp Tyr Lys Glu Asp Pro Asp Arg Val Ala Asp Ser Arg Asn 485 490 495 Leu His Arg Ser Lys Phe Asn Trp Lys Asn Ala Ala Lys Arg Asp Val 500 505 510 Pro Gly Thr Leu Pro Asn Arg Leu Trp Glu Gly Met Ala Asp Val Arg 515 520 525 Gln Met Arg Ser Asp Pro Cys Phe Ala Pro Asp Ala Trp Val Thr Thr 530 535 540 Trp Asp Ala His Asp Asp Gly Ile Leu Ala Met Val Arg Gln Ser Gly 545 550 555 560 Gly Arg Thr Leu Leu Gly Val Phe Asn Phe Ala Asn Arg Asp Ala Thr 565 570 575 Ala Thr Leu Asp Ser Ile Glu Gly Val Ser Leu Pro Arg Thr Val Ala 580 585 590 Leu Lys Pro Tyr Glu Trp Lys Ile Glu Ala Cys 595 600 <210> 7 <211> 603 <212> PRT <213> Artificial Sequence <220> <223> BtAS V305I <400 > 7 Met Glu Ala Thr Tyr Arg Asp Ser Val Phe Ala Glu Arg Leu Ala Pro 1 5 10 15 Arg Cys Ala Glu Leu Glu Gln Leu Phe Arg Ser Leu Tyr Gly Asp Ser 20 25 30 Pro Glu Phe Asp His Phe Glu Gln Val Met Ala Lys Ala His Ala Asp 35 40 45 Arg Pro Ala Asp Leu Lys Arg Leu Asp Ala Ala Arg Glu His Asp Pro 50 55 60 Gln Trp Tyr Arg Arg Gly Asp Met Phe Gly Met Thr Met Tyr Thr Asp 65 70 75 80 Leu Phe Ala Gly Lys Leu Thr Asp Leu Ala Lys His Ile Asp Tyr Leu 85 90 95 Lys Glu Gln His Leu T hr Tyr Leu His Leu Met Pro Leu Leu Thr Met 100 105 110 Pro His Pro Asp Asn Asp Gly Gly Tyr Ala Ile Glu Asp Phe Asp Thr 115 120 125 Val Asp Pro Thr Ile Gly Thr Asn Glu Asp Leu Ala Asp Leu Thr Ala 130 135 140 Lys Leu Arg Glu Ala Gly Ile Ser Leu Cys Leu Asp Phe Val Met Asn 145 150 155 160 His Thr Ala Ser Thr His Arg Trp Ala Lys Ala Ala Gln Ala Gly Asp 165 170 175 Pro Glu Tyr Gln Asp Tyr Tyr Phe Cys Tyr Asp Asp Arg Thr Ile Pro 180 185 190 Asp Gln Tyr Asp Ala Val Val Pro Gln Val Phe Pro Thr Ala Ala Pro 195 200 205 Gly Asn Phe Thr Trp Asn Glu Gln Met Gly Lys Trp Val Met Thr Gln 210 215 220 Phe Tyr Pro Phe Gln Trp Asp Leu Asn Tyr Arg Asn Pro Lys Val Phe 225 230 235 240 Val Val M et Met Ser Ser Leu Leu His Leu Ala Asn Leu Gly Val Glu 245 250 255 Val Phe Arg Ile Asp Ala Val Pro Tyr Ile Trp Lys Gln Leu Gly Thr 260 265 270 Asn Cys Arg Asn Leu Pro Gln Val His Thr Ile Val Arg Met Met Arg 275 280 285 Ile Met Ser Glu Ile Val Cys Pro Ala Val Val Phe Lys Gly Glu Val 290 295 300 Ile Met Ala Pro Lys Glu Leu Ala Ala Tyr Phe Gly Thr Pro Glu Lys 305 310 315 320 Pro Glu Cys His Met Leu Tyr Asn Val Ser Val Met Val Asn Leu Trp 325 330 335 Ser Ala Leu Ala Asn Gly Asp Thr Arg Leu Leu Lys Thr Gln Ile Asp 340 345 350 Lys Leu Asp Ala Leu Pro Asp Asn Cys Trp Phe Val Asn Tyr Leu Arg 355 360 365 Cys His Asp Asp Ile Gly Trp Gly Leu Asp Glu Asp Val Glu Arg Gln 370 375 380 Leu Gly Ile Asp P ro Leu Lys His Lys Glu Phe Leu Tyr His Phe Tyr 385 390 395 400 Glu Gly Met Val Pro Gly Ser Trp Ala Met Gly Glu Leu Tyr Asn Tyr 405 410 415 Asp Pro Ala Ser Gly Asp Ala Arg Ser Cys Gly Thr Thr Ala Ser Leu 420 425 430 Cys Gly Ile Glu Arg Ala Leu Ile Thr His Asp Arg Pro Leu Tyr Glu 435 440 445 Arg Ser Ile Gln Arg Asp Leu Leu Met His His Ala Met Gly Phe Leu 450 455 460 Arg Gly Phe Pro Met Leu Asn Cys Gly Asp Glu Ile Gly Gln Leu Asn 465 470 475 480 Gly Trp Asp Tyr Lys Glu Asp Pro Asp Arg Val Ala Asp Ser Arg Asn 485 490 495 Leu His Arg Ser Lys Phe Asn Trp Lys Asn Ala Ala Lys Arg Asp Val 500 505 510 Pro Gly Thr Leu Pro Asn Arg Leu Trp Glu Gly Met Ala Asp Val Arg 515 520 525 Gln M et Arg Ser Asp Pro Cys Phe Ala Pro Asp Ala Trp Val Thr Thr Thr 530 535 540 Trp Asp Ala His Asp Asp Gly Ile Leu Ala Met Val Arg Gln Ser Gly 545 550 555 560 Gly Arg Thr Leu Leu Gly Val Phe Asn Phe Ala Asn Arg Asp Ala Thr 565 570 575 Ala Thr Leu Asp Ser Ile Glu Gly Val Ser Leu Pro Arg Thr Val Ala 580 585 590 Leu Lys Pro Tyr Glu Trp Lys Ile Glu Ala Cys 595 600 <210> 8 <211> 603 <212> PRT <213> Artificial Sequence <220> <223> BtAS K393R <400> 8 Met Glu Ala Thr Tyr Arg Asp Ser Val Phe Ala Glu Arg Leu Ala Pro 1 5 10 15 Arg Cys Ala Glu Leu Glu Gln Leu Phe Arg Ser Leu Tyr Gly Asp Ser 20 25 30 Pro Glu Phe Asp His Phe Glu Gln Val Met Ala Lys Ala His Ala Asp 35 40 45 Arg Pro Ala Asp Leu Lys Arg Leu Asp Ala Ala Arg Glu His Asp Pro 50 55 60 Gln Trp Tyr Arg Arg Gly Asp Met Phe Gly Met Thr Met Tyr Thr Asp 65 70 75 80 Leu Phe Ala Gly L ys Leu Thr Asp Leu Ala Lys His Ile Asp Tyr Leu 85 90 95 Lys Glu Gln His Leu Thr Tyr Leu His Leu Met Pro Leu Leu Thr Met 100 105 110 Pro His Pro Asp Asn Asp Gly Gly Tyr Ala Ile Glu Asp Phe Asp Thr 115 120 125 Val Asp Pro Thr Ile Gly Thr Asn Glu Asp Leu Ala Asp Leu Thr Ala 130 135 140 Lys Leu Arg Glu Ala Gly Ile Ser Leu Cys Leu Asp Phe Val Met Asn 145 150 155 160 His Thr Ala Ser Thr His Arg Trp Ala Lys Ala Ala Gln Ala Gly Asp 165 170 175 Pro Glu Tyr Gln Asp Tyr Tyr Phe Cys Tyr Asp Asp Arg Thr Ile Pro 180 185 190 Asp Gln Tyr Asp Ala Val Val Pro Gln Val Phe Pro Thr Ala Ala Pro 195 200 205 Gly Asn Phe Thr Trp Asn Glu Gln Met Gly Lys Trp Val Met Thr Gln 210 215 220 Phe Tyr Pro Phe Gln Trp Asp Leu Asn Tyr Arg Asn Pro Lys Val Phe 225 230 235 240 Val Val Met Met Ser Ser Leu Leu His Leu Ala Asn Leu Gly Val Glu 245 250 255 Val Phe Arg Ile Asp Ala Val Pro Tyr Ile Trp Lys Gln Leu Gly Thr 260 265 270 Asn Cys Arg Asn Leu Pro Gln Val His Thr Ile Val Arg Met Met Arg 275 280 285 Ile Met Ser Glu Ile Val Cys Pro Ala Val Val Phe Lys Gly Glu Val 290 295 300 Val Met Ala Pro Lys Glu Leu Ala Ala Tyr Phe Gly Thr Pro Glu Lys 305 310 315 320 Pro Glu Cys His Met Leu Tyr Asn Val Ser Val Met Val Asn Leu Trp 325 330 335 Ser Ala Leu Ala Asn Gly Asp Thr Arg Leu Leu Lys Thr Gln Ile Asp 340 345 350 Lys Leu Asp Ala Leu Pro Asp Asn Cys Trp Phe Val Asn Tyr Leu Arg 355 360 365 Cys His Asp Asp Ile Gly Trp Gly Leu Asp Glu Asp Val Glu Arg Gln 370 375 380 Leu Gly Ile Asp Pro Leu Lys His Arg Glu Phe Leu Tyr His Phe Tyr 385 390 395 400 Glu Gly Met Val Pro Gly Ser Trp Ala Met Gly Glu Leu Tyr Asn Tyr 405 410 415 Asp Pro Ala Ser Gly Asp Ala Arg Ser Cys Gly Thr Thr Ala Ser Leu 420 425 430 Cys Gly Ile Glu Arg Ala Leu Ile Thr His Asp Arg Pro Leu Tyr Glu 435 440 445 Arg Ser Ile Gln Arg Asp Leu Leu Met His His Ala Met Gly Phe Leu 450 455 460 Arg Gly Phe Pro Met Leu Asn Cys Gly Asp Glu Ile Gly Gln Leu Asn 465 470 475 480 Gly Trp Asp Tyr Lys Glu Asp Pro Asp Arg Val Ala Asp Ser Arg Asn 485 490 495 Leu His Arg Ser Lys Phe Asn Trp Lys Asn Ala Ala Lys Arg Asp Val 500 505 510 Pro Gly Thr Leu Pro Asn Arg Leu Trp Glu Gly Met Ala Asp Val Arg 515 520 525 Gln Met Arg Ser Asp Pro Cys Phe Ala Pro Asp Ala Trp Val Thr Thr 530 535 540 Trp Asp Ala His Asp Asp Gly Ile Leu Ala Met Val Arg Gln Ser Gly 545 550 555 560 Gly Arg Thr Leu Leu Gly Val Phe Asn Phe Ala Asn Arg Asp Ala Thr 565 570 575 Ala Thr Leu Asp Ser Ile Glu Gly Val Ser Leu Pro Arg Thr Val Ala 580 585 590 Leu Lys Pro Tyr Glu Trp Lys Ile Glu Ala Cys 595 600 <210> 9 <211> 603 <212> PRT <213> Artificial Sequence <220> <223> BtAS S420T <400> 9 Met Glu Ala Thr Tyr Arg Asp Ser Val Phe Ala Glu Arg Leu Ala Pro 1 5 10 15 Arg Cys Ala Glu Leu Glu Gln Leu Phe Arg Ser Leu Tyr Gly Asp Ser 20 25 30 Pro Glu Phe Asp His Phe Glu Gln Val Met Ala Lys Ala His Ala Asp 35 40 45 Arg Pro Ala Asp Leu Lys Arg Leu Asp Ala Ala Arg Glu His Asp Pro 50 55 60 Gln Trp Tyr Arg Arg Gly Asp Met Phe Gly Met Thr Met Tyr Thr Asp 65 70 75 80 Leu Phe Ala Gly Lys Leu Thr Asp Leu Ala Lys His Ile Asp Tyr Leu 85 90 95 Lys Glu Gln His Leu Thr Tyr Leu His Leu Met Pro Leu Leu Thr Met 100 105 110 Pro His Pro Asp Asn Asp Gly Gly Tyr Ala Ile Glu Asp Phe Asp Thr 115 120 125 Val Asp Pro Thr Ile Gly Thr Asn Glu Asp Leu Ala Asp Leu Thr Ala 130 135 140 Lys Leu Arg Glu Ala Gly Ile Ser Leu Cys Leu Asp Phe Val Met Asn 145 150 155 160 His Thr Ala Ser Thr His Arg Trp Ala Lys Ala Ala Gln Ala Gly Asp 165 170 175 Pro Glu Tyr Gln Asp Tyr Tyr Phe Cys Tyr Asp Asp Arg Thr Ile Pro 180 185 190 Asp Gln Tyr Asp Ala Val Val Pro Gln Val Phe Pro Thr Ala Ala Pro 195 200 205 Gly Asn Phe Thr Trp Asn Glu Gln Met Gly Lys Trp Val Met Thr Gln 210 215 220 Phe Tyr Pro Phe Gln Trp Asp Leu Asn Tyr Arg Asn Pro Lys Val Phe 225 230 235 240 Val Val Met Met Ser Ser Leu Leu His Leu Ala Asn Leu Gly Val Glu 245 250 255 Val Phe Arg Ile Asp Ala Val Pro Tyr Ile Trp Lys Gln Leu Gly Thr 260 265 270 Asn Cys Arg Asn Leu Pro Gln Val His Thr Ile Val Arg Met Met Arg 275 280 285 Ile Met Ser Glu Ile Val Cys Pro Ala Val Val Phe Lys Gly Glu Val 290 295 300 Val Met Ala Pro Lys Glu Leu Ala Ala Tyr Phe Gly Thr Pro Glu Lys 305 310 315 320 Pro Glu Cys His Met Leu Tyr Asn Val Ser Val Met Val Asn Leu Trp 325 330 335 Ser Ala Leu Ala Asn Gly Asp Thr Arg Leu Leu Lys Thr Gln Ile Asp 340 345 350 Lys Leu Asp Ala Leu Pro Asp Asn Cys Trp Phe Val Asn Tyr Leu Arg 355 360 365 Cys His Asp Asp Ile Gly Trp Gly Leu Asp Glu Asp Val Glu Arg Gln 370 375 380 Leu Gly Ile Asp Pro Leu Lys His Lys Glu Phe Leu Tyr His Phe Tyr 385 390 395 400 Glu Gly Met Val Pro Gly Ser Trp Ala Met Gly Glu Leu Tyr Asn Tyr 405 410 415 Asp Pro Ala Thr Gly Asp Ala Arg Ser Cys Gly Thr Thr Ala Ser Leu 420 425 430 Cys Gly Ile Glu Arg Ala Leu Ile Thr His Asp Arg Pro Leu Tyr Glu 435 440 445 Arg Ser Ile Gln Arg Asp Leu Leu Met His His Ala Met Gly Phe Leu 450 455 460 Arg Gly Phe Pro Met Leu Asn Cys Gly Asp Glu Ile Gly Gln Leu Asn 465 470 475 480 Gly Trp Asp Tyr Lys Glu Asp Pro Asp Arg Val Ala Asp Ser Arg Asn 485 490 495 Leu His Arg Ser Lys Phe Asn Trp Lys Asn Ala Ala Lys Arg Asp Val 500 505 510 Pro Gly Thr Leu Pro Asn Arg Leu Trp Glu Gly Met Ala Asp Val Arg 515 520 525 Gln Met Arg Ser Asp Pro Cys Phe Ala Pro Asp Ala Trp Val Thr Thr 530 535 540 Trp Asp Ala His Asp Asp Gly Ile Leu Ala Met Val Arg Gln Ser Gly 545 550 555 560 Gly Arg Thr Leu Leu Gly Val Phe Asn Phe Ala Asn Arg Asp Ala Thr 565 570 575 Ala Thr Leu Asp Ser Ile Glu Gly Val Ser Leu Pro Arg Thr Val Ala 580 585 590 Leu Lys Pro Tyr Glu Trp Lys Ile Glu Ala Cys 595 600 <210> 10 <211> 603 <212> PRT <213> Artificial Sequence < 220> <223> BtAS Y414F <400> 10 Met Glu Ala Thr Tyr Arg Asp Ser Val Phe Ala Glu Arg Leu Ala Pro 1 5 10 15 Arg Cys Ala Glu Leu Glu Gln Leu Phe Arg Ser Leu Tyr Gly Asp Ser 20 25 30 Pro Glu Phe Asp His Phe Glu Gln Val Met Ala Lys Ala His Ala Asp 35 40 45 Arg Pro Ala Asp Leu Lys Arg Leu Asp Ala Ala Arg Glu His Asp Pro 50 55 60 Gln Trp Tyr Arg Arg Gly Asp Met Phe Gly Met Thr Met Tyr Thr Asp 65 70 75 80 Leu Phe Ala Gly Lys Leu Thr Asp Leu Ala L ys His Ile Asp Tyr Leu 85 90 95 Lys Glu Gln His Leu Thr Tyr Leu His Leu Met Pro Leu Leu Thr Met 100 105 110 Pro His Pro Asp Asn Asp Gly Gly Tyr Ala Ile Glu Asp Phe Asp Thr 115 120 125 Val Asp Pro Thr Ile Gly Thr Asn Glu Asp Leu Ala Asp Leu Thr Ala 130 135 140 Lys Leu Arg Glu Ala Gly Ile Ser Leu Cys Leu Asp Phe Val Met Asn 145 150 155 160 His Thr Ala Ser Thr His Arg Trp Ala Lys Ala Ala Gln Ala Gly Asp 165 170 175 Pro Glu Tyr Gln Asp Tyr Tyr Phe Cys Tyr Asp Asp Arg Thr Ile Pro 180 185 190 Asp Gln Tyr Asp Ala Val Val Pro Gln Val Phe Pro Thr Ala Ala Pro 195 200 205 Gly Asn Phe Thr Trp Asn Glu Gln Met Gly Lys Trp Val Met Thr Gln 210 215 220 Phe Tyr Pro Phe Gln Trp Asp Leu Asn Tyr Arg Asn Pro Lys Val Phe 225 230 235 240 Val Val Met Met Ser Ser Leu Leu His Leu Ala Asn Leu Gly Val Glu 245 250 255 Val Phe Arg Ile Asp Ala Val Pro Tyr Ile Trp Lys Gln Leu Gly Thr 260 265 270 Asn Cys Arg Asn Leu Pro Gln Val His Thr Ile Val Arg Met Met Arg 275 280 285 Ile Met Ser Glu Ile Val Cys Pro Ala Val Val Phe Lys Gly Glu Val 290 295 300 Val Met Ala Pro Lys Glu Leu Ala Ala Tyr Phe Gly Thr Pro Glu Lys 305 310 315 320 Pro Glu Cys His Met Leu Tyr Asn Val Ser Val Met Val Asn Leu Trp 325 330 335 Ser Ala Leu Ala Asn Gly Asp Thr Arg Leu Leu Lys Thr Gln Ile Asp 340 345 350 Lys Leu Asp Ala Leu Pro Asp Asn Cys Trp Phe Val Asn Tyr Leu Arg 355 360 365 Cys His Asp Asp Ile Gly Trp Gly Leu Asp Glu Asp Val Glu Arg Gln 370 375 380 Leu Gly Ile Asp Pro Leu Lys His Lys Glu Phe Leu Tyr His Phe Tyr 385 390 395 400 Glu Gly Met Val Pro Gly Ser Trp Ala Met Gly Glu Leu Phe Asn Tyr 405 410 415 Asp Pro Ala Ser Gly Asp Ala Arg Ser Cys Gly Thr Thr Ala Ser Leu 420 425 430 Cys Gly Ile Glu Arg Ala Leu Ile Thr His Asp Arg Pro Leu Tyr Glu 435 440 445 Arg Ser Ile Gln Arg Asp Leu Leu Met His His Ala Met Gly Phe Leu 450 455 460 Arg Gly Phe Pro Met Leu Asn Cys Gly Asp Glu Ile Gly Gln Leu Asn 465 470 475 480 Gly Trp Asp Tyr Lys Glu Asp Pro Asp Arg Val Ala Asp Ser Arg Asn 485 490 495 Leu His Arg Ser Lys Phe Asn Trp Lys Asn Ala Ala Lys Arg Asp Val 500 505 510 Pro Gly Thr Leu Pro Asn Arg Leu Trp Glu Gly Met Ala Asp Val Arg 515 520 525 Gln Met Arg Ser Asp Pro Cys Phe Ala Pro Asp Ala Trp Val Thr Thr Thr 530 535 540 Trp Asp Ala His Asp Asp Gly Ile Leu Ala Met Val Arg Gln Ser Gly 545 550 555 560 Gly Arg Thr Leu Leu Gly Val Phe Asn Phe Ala Asn Arg Asp Ala Thr 565 570 575 Ala Thr Leu Asp Ser Ile Glu Gly Val Ser Leu Pro Arg Thr Val Ala 580 585 590 Leu Lys Pro Tyr Glu Trp Lys Ile Glu Ala Cys 595 600 <210> 11 <211 > 603 <212> PRT <213> Artificial Sequence <220> <223> BtAS Y414F*P200R <400> 11 Met Glu Ala Thr Tyr Arg Asp Ser Val Phe Ala Glu Arg Leu Ala Pro 1 5 10 15 Arg Cys Ala Glu Leu Glu Gln Leu Phe Arg Ser Leu Tyr Gly Asp Ser 20 25 30 Pro Glu Phe Asp His Phe Glu Gln Val Met Ala Lys Ala His Ala Asp 35 40 45 Arg Pro Ala Asp Leu Lys Arg Leu Asp Ala Ala Arg Glu His Asp Pro 50 55 60 Gln Trp Tyr Arg Arg Gly Asp Met Phe Gly Met Thr Met Tyr Thr Asp 65 70 75 80 Leu Phe Ala Gly Lys Leu Thr Asp Leu Ala Lys His Ile Asp Tyr Leu 85 90 95 Lys Glu Gln His Leu Thr Tyr Leu His Leu Met Pro Leu Leu Thr Met 100 105 110 Pro His Pro Asp Asn Asp Gly Gly Tyr Ala Ile Glu Asp Phe Asp Thr 115 120 125 Val Asp Pro Thr Ile Gly Thr Asn Glu Asp Leu Ala Asp Leu Thr Ala 130 135 140 Lys Leu Arg Glu Ala Gly Ile Ser Leu Cys Leu Asp Phe Val Met Asn 145 150 155 160 His Thr Ala Ser Thr His Arg Trp Ala Lys Ala Ala Gln Ala Gly Asp 165 170 175 Pro Glu Tyr Gln Asp Tyr Tyr Phe Cys Tyr Asp Asp Arg Thr Ile Pro 180 185 190 Asp Gln Tyr Asp Ala Val Val Arg Gln Val Phe Pro Thr Ala Ala Pro 195 200 205 Gly Asn Phe Thr Trp Asn Glu Gln Met Gly Lys Trp Val Met Thr Gln 210 215 220 Phe Tyr Pro Phe Gln Trp Asp Leu Asn Tyr Arg Asn Pro Lys Val Phe 225 230 235 240 Val Val Met Met Ser Ser Leu Leu His Leu Ala Asn Leu Gly Val Glu 245 250 255 Val Phe Arg Ile Asp Ala Val Pro Tyr Ile Trp Lys Gln Leu Gly Thr 260 265 270 Asn Cys Arg Asn Leu Pro Gln Val His Thr Ile Val Arg Met Met Arg 275 280 285 Ile Met Ser Glu Ile Val Cys Pro Ala Val Val Phe Lys Gly Glu Val 290 295 300 Val Met Ala Pro Lys Glu Leu Ala Ala Tyr Phe Gly Thr Pro Glu Lys 305 310 315 320 Pro Glu Cys His Met Leu Tyr Asn Val Ser Val Met Val Asn Leu Trp 325 330 335 Ser Ala Leu Ala Asn Gly Asp Thr Arg Leu Leu Lys Thr Gln Ile Asp 340 345 350 Lys Leu Asp Ala Leu Pro Asp Asn Cys Trp Phe Val Asn Tyr Leu Arg 355 360 365 Cys His Asp Asp Ile Gly Trp Gly Leu Asp Glu Asp Val Glu Arg Gln 370 375 380 Leu Gly Ile Asp Pro Leu Lys His Lys Glu Phe Leu Tyr His Phe Tyr 385 390 395 400 Glu Gly Met Val Pro Gly Ser Trp Ala Met Gly Glu Leu Phe Asn Tyr 405 410 415 Asp Pro Ala Ser Gly Asp Ala Arg Ser Cys Gly Thr Thr Ala Ser Leu 420 425 430 Cys Gly Ile Glu Arg Ala Leu Ile Thr His Asp Arg Pro Leu Tyr Glu 435 440 445 Arg Ser Ile Gln Arg Asp Leu Leu Met His His Ala Met Gly Phe Leu 450 455 460 Arg Gly Phe Pro Met Leu Asn Cys Gly Asp Glu Ile Gly Gln Leu Asn 465 470 475 480 Gly Trp Asp Tyr Lys Glu Asp Pro Asp Arg Val Ala Asp Ser Arg Asn 485 490 495 Leu His Arg Ser Lys Phe Asn Trp Lys Asn Ala Ala Lys Arg Asp Val 500 505 510 Pro Gly Thr Leu Pro Asn Arg Leu Trp Glu Gly Met Ala Asp Val Arg 515 520 525 Gln Met Arg Ser Asp Pro Cys Phe Ala Pro Asp Ala Trp Val Thr Thr Thr 530 535 540 Trp Asp Ala His Asp Asp Gly Ile Leu Ala Met Val Arg Gln Ser Gly 545 550 555 560 Gly Arg Thr Leu Leu Gly Val Phe Asn Phe Ala Asn Arg Asp Ala Thr 565 570 575 Ala Thr Leu Asp Ser Ile Glu Gly Val Ser Leu Pro Arg Thr Val Ala 580 585 590 Leu Lys Pro Tyr Glu Trp Lys Ile Glu Ala Cys 595 600 <210> 12 <211> 603 <212> PRT <213> Artificial Sequence <220> <223> BtAS Y414F*V202I <400> 12 Met Glu Ala Thr Tyr Arg Asp Ser Val Phe Ala Glu Arg Leu Ala Pro 1 5 10 15 Arg Cys Ala Glu Leu Glu Gln Leu Phe Arg Ser Leu Tyr Gly Asp Ser 20 25 30 Pro Glu Phe Asp His Phe Glu Gln Val Met Ala Lys Ala His Ala Asp 35 40 45 Arg Pro Ala Asp Leu Lys Arg Leu Asp Ala Ala Arg Glu His Asp Pro 50 55 60 Gln Trp Tyr Arg Arg Gly Asp Met Phe Gly Met Thr Met Tyr Thr Asp 65 70 75 80 Leu Phe Ala Gly Lys Leu Thr Asp Leu Ala Lys His Ile Asp Tyr Leu 85 90 95 Lys Glu Gln His Leu Thr Tyr Leu His Leu Met Pro Leu Leu Thr Met 100 105 110 Pro His Pro Asp Asn Asp Gly Gly Tyr Ala Ile Glu Asp Phe Asp Thr 115 120 125 Val Asp Pro Thr Ile Gly Thr Asn Glu Asp Leu Ala Asp Leu Thr Ala 130 135 140 Lys Leu Arg Glu Ala Gly Ile Ser Leu Cys Leu Asp Phe Val Met Asn 145 150 155 160 His Thr Ala Ser Thr His Arg Trp Ala Lys Ala Ala Gln Ala Gly Asp 165 170 175 Pro Glu Tyr Gln Asp Tyr Tyr Phe Cys Tyr Asp Asp Arg Thr Ile Pro 180 185 190 Asp Gln Tyr Asp Ala Val Val Pro Gln Ile Phe Pro Thr Ala Ala Pro 195 200 205 Gly Asn Phe Thr Trp As n Glu Gln Met Gly Lys Trp Val Met Thr Gln 210 215 220 Phe Tyr Pro Phe Gln Trp Asp Leu Asn Tyr Arg Asn Pro Lys Val Phe 225 230 235 240 Val Val Met Met Ser Ser Leu Leu His Leu Ala Asn Leu Gly Val Glu 245 250 255 Val Phe Arg Ile Asp Ala Val Pro Tyr Ile Trp Lys Gln Leu Gly Thr 260 265 270 Asn Cys Arg Asn Leu Pro Gln Val His Thr Ile Val Arg Met Met Arg 275 280 285 Ile Met Ser Glu Ile Val Cys Pro Ala Val Val Phe Lys Gly Glu Val 290 295 300 Val Met Ala Pro Lys Glu Leu Ala Ala Tyr Phe Gly Thr Pro Glu Lys 305 310 315 320 Pro Glu Cys His Met Leu Tyr Asn Val Ser Val Met Val Asn Leu Trp 325 330 335 Ser Ala Leu Ala Asn Gly Asp Thr Arg Leu Leu Lys Thr Gln Ile Asp 340 345 350 Lys Leu As p Ala Leu Pro Asp Asp Asn Cys Trp Phe Val Asn Tyr Leu Arg 355 360 365 Cys His Asp Asp Ile Gly Trp Gly Leu Asp Glu Asp Val Glu Arg Gln 370 375 380 Leu Gly Ile Asp Pro Leu Lys His Lys Glu Phe Leu Tyr His Phe Tyr 385 390 395 400 Glu Gly Met Val Pro Gly Ser Trp Ala Met Gly Glu Leu Phe Asn Tyr 405 410 415 Asp Pro Ala Ser Gly Asp Ala Arg Ser Cys Gly Thr Thr Ala Ser Leu 420 425 430 Cys Gly Ile Glu Arg Ala Leu Ile Thr His Asp Arg Pro Leu Tyr Glu 435 440 445 Arg Ser Ile Gln Arg Asp Leu Leu Met His His Ala Met Gly Phe Leu 450 455 460 Arg Gly Phe Pro Met Leu Asn Cys Gly Asp Glu Ile Gly Gln Leu Asn 465 470 475 480 Gly Trp Asp Tyr Lys Glu Asp Pro Asp Arg Val Ala Asp Ser Arg Asn 485 490 49 5 Leu His Arg Ser Lys Phe Asn Trp Lys Asn Ala Ala Lys Arg Asp Val 500 505 510 Pro Gly Thr Leu Pro Asn Arg Leu Trp Glu Gly Met Ala Asp Val Arg 515 520 525 Gln Met Arg Ser Asp Pro Cys Phe Ala Pro Asp Ala Trp Val Thr Thr 530 535 540 Trp Asp Ala His Asp Asp Gly Ile Leu Ala Met Val Arg Gln Ser Gly 545 550 555 560 Gly Arg Thr Leu Leu Gly Val Phe Asn Phe Ala Asn Arg Asp Ala Thr 565 570 575 Ala Thr Leu Asp Ser Ile Glu Gly Val Ser Leu Pro Arg Thr Val Ala 580 585 590 Leu Lys Pro Tyr Glu Trp Lys Ile Glu Ala Cys 595 600 <210> 13 <211> 603 <212 > PRT <213> Artificial Sequence <220> <223> BtAS YY414F*Y265F <400> 13 Met Glu Ala Thr Tyr Arg Asp Ser Val Phe Ala Glu Arg Leu Ala Pro 1 5 10 15 Arg Cys Ala Glu Leu Glu Gln Leu Phe Arg Ser Leu Tyr Gly Asp Ser 20 25 30 Pro Glu Phe Asp His Phe Glu Gln Val Met Ala Lys Ala His Ala Asp 35 40 45 Arg Pro Ala Asp Leu Lys Arg Leu Asp Ala Ala Arg Glu His Asp Pro 50 55 60 Gln Trp Tyr Arg Arg Gly Asp Met Phe Gly Met Thr Met Tyr Thr Asp 65 70 75 80 Leu Phe Ala Gly Lys Leu Thr Asp Leu Ala Lys His Ile Asp Tyr Leu 85 90 95 Lys Glu Gln His Leu Thr Tyr Leu His Leu Met Pro Leu Leu Thr Met 100 105 110 Pro His Pro Asp Asn Asp Gly Gly Tyr Ala Ile Glu Asp Phe Asp Thr 115 120 125 Val Asp Pro Thr Ile Gly Thr Asn Glu Asp Leu Ala Asp Leu Thr Ala 130 135 140 Lys Leu Arg Glu Ala Gly Ile Ser Leu Cys Leu Asp Phe Val Met Asn 145 150 155 160 His Thr Ala Ser Thr His Arg Trp Ala Lys Ala Ala Gln Ala Gly Asp 165 170 175 Pro Glu Tyr Gln Asp Tyr Tyr Phe Cys Tyr Asp Asp Arg Thr Ile Pro 180 185 190 Asp Gln Tyr Asp Ala Val Val Pro Gln Val Phe Pro Thr Ala Ala Pro 195 200 205 Gly Asn Phe Thr Trp Asn Glu Gln Met Gly Lys Trp Val Met Thr Gln 210 215 220 Phe Tyr Pro Phe Gln Trp Asp Leu Asn Tyr Arg As n Pro Lys Val Phe 225 230 235 240 Val Val Met Met Ser Ser Leu Leu His Leu Ala Asn Leu Gly Val Glu 245 250 255 Val Phe Arg Ile Asp Ala Val Pro Phe Ile Trp Lys Gln Leu Gly Thr 260 265 270 Asn Cys Arg Asn Leu Pro Gln Val His Thr Ile Val Arg Met Met Arg 275 280 285 Ile Met Ser Glu Ile Val Cys Pro Ala Val Val Phe Lys Gly Glu Val 290 295 300 Val Met Ala Pro Lys Glu Leu Ala Ala Tyr Phe Gly Thr Pro Glu Lys 305 310 315 320 Pro Glu Cys His Met Leu Tyr Asn Val Ser Val Met Val Asn Leu Trp 325 330 335 Ser Ala Leu Ala Asn Gly Asp Thr Arg Leu Leu Lys Thr Gln Ile Asp 340 345 350 Lys Leu Asp Ala Leu Pro Asp Asn Cys Trp Phe Val Asn Tyr Leu Arg 355 360 365 Cys His Asp Asp Ile Gly Trp Gly Le u Asp Glu Asp Val Glu Arg Gln 370 375 380 Leu Gly Ile Asp Pro Leu Lys His Lys Glu Phe Leu Tyr His Phe Tyr 385 390 395 400 Glu Gly Met Val Pro Gly Ser Trp Ala Met Gly Glu Leu Phe Asn Tyr 405 410 415 Asp Pro Ala Ser Gly Asp Ala Arg Ser Cys Gly Thr Thr Ala Ser Leu 420 425 430 Cys Gly Ile Glu Arg Ala Leu Ile Thr His Asp Arg Pro Leu Tyr Glu 435 440 445 Arg Ser Ile Gln Arg Asp Leu Leu Met His His Ala Met Gly Phe Leu 450 455 460 Arg Gly Phe Pro Met Leu Asn Cys Gly Asp Glu Ile Gly Gln Leu Asn 465 470 475 480 Gly Trp Asp Tyr Lys Glu Asp Pro Asp Arg Val Ala Asp Ser Arg Asn 485 490 495 Leu His Arg Ser Lys Phe Asn Trp Lys Asn Ala Ala Lys Arg Asp Val 500 505 510 Pro Gly Thr Leu Pro As n Arg Leu Trp Glu Gly Met Ala Asp Val Arg 515 520 525 Gln Met Arg Ser Asp Pro Cys Phe Ala Pro Asp Ala Trp Val Thr Thr Thr 530 535 540 Trp Asp Ala His Asp Asp Gly Ile Leu Ala Met Val Arg Gln Ser Gly 545 550 555 560 Gly Arg Thr Leu Leu Gly Val Phe Asn Phe Ala Asn Arg Asp Ala Thr 565 570 575 Ala Thr Leu Asp Ser Ile Glu Gly Val Ser Leu Pro Arg Thr Val Ala 580 585 590 Leu Lys Pro Tyr Glu Trp Lys Ile Glu Ala Cys 595 600 <210> 14 <211> 1812 <212> DNA <213> Artificial Sequence <220> <223> amylosucrase BtAS wild type <400> 14 atggaagcca catatcgcga ttccgtattc gccgaacggc tcgccccgcg ctgcgcagaa 60 cttgaacaac ttttccgctc gttgtacggg gattcccctg aattcgacca cttcgaacag 120 gtcatggcca aggcccacgc cgaccggccca gccgacctca aacgcctcga cgccgcccgt 180 gaacacgatc cgcaatggta ccgtcgcggc gacatgttcg gcatgaccat gtacaccgac 240 ctgttcgccg gcaaactcac cgatctcgcc aagcatatcg actatctcaa agagcagcat 300 ctgacctacc tgcacctcat gccgctgctg accatgcccc accccgacaa cgacggcggc 360 tacgccatcg aggatttcga caccgtcgac ccgactatcg gcaccaatga ggacctcgcc 420 gacctcaccg cgaaactgcg cgaagccggc atcagcctgt gccttgattt cgtcatgaac 480 cacaccgcat ccacccaccg gtgggcgaaa gccgcacaag ccggcgaccc cgaataccag 540 gactactact tctgctatga cgaccgcacc atccccgacc aatatgacgc cgtcgtcccg 600 caagtcttcc cgaccgccgc ccccggcaac ttcacatgga atgagcagat gggcaaatgg 660 gtcatgaccc agttctaccc gttccaatgg gacctcaact accgcaatcc caaggtcttc 720 gtcgtcatga tgtccagcct gctgcacctg gccaacctcg gcgtcgaagt cttccgcatc 780 gacgcggtgc cgtacatctg gaagcaactc ggcaccaact gccgcaacct gccgcaagtc 840 cacaccatcg tgcgcatgat gcgcatcatg tccgaaatcg tctgcccggc cgtcgtgttc 900 aaaggtgaag tcgtcatggc tcccaaggag ctcgccgcct acttcggcac ccccgagaag 960 cccgaatgcc acatgctgta caacgtgtcc gtcatggtca acttgtggag cgcgctcgcc 1020 aacggcgaca cccgcctgct taaaacccag atcgacaagc tcgacgccct gcccgacaac 1080 tgctggttcg tcaactatct gcgctg ccat gacgatatcg gctggggtct ggacgaggat 1140 gtcgaacgcc agttgggcat cgacccgctc aagcacaagg aattcctcta ccacttctac 1200 gagggcatgg tgcccggcag ctgggcgatg ggcgagctgt acaactatga tccggcgtcc 1260 ggtgacgcgc gcagctgcgg caccacggcg agcttgtgcg gtattgagcg tgcgctgatc 1320 acgcatgacc ggccgctgta tgagcgttcc atccagcgtg atctgctcat gcaccacgct 1380 atgggcttcc tgcgtgggtt cccgatgctc aactgcggcg acgagatcgg ccagctcaac 1440 ggctgggatt ataaggaaga cccggaccgt gtcgctgaca gccgcaatct gcaccgcagc 1500 aagttcaact ggaagaacgc cgcgaagcgc gatgtccccg gaaccttgcc aaaccggctg 1560 tgggaaggca tggcggatgt gcggcagatg cgctcggacc catgcttcgc ccctgacgct 1620 tgggtgacga cgtgggacgc gcatgatgac ggtattctcg cgatggtccg gcagtcaggt 1680 gggcgcacac tgctcggcgt gttcaatttc gcgaaccgtg acgccacggc gacgcttgac 1740 agcatcgagg gcgtgagcct gccgcgtacg gtggcgctca agccatacga gtggaagatc 1800 gaggcctgct ga 1812 <210> 15 <211> 1812 <212> DNA <213> Artificial Sequence <220> <223> amylosucrase BtAS V542K <400> 15 atggaagcca catatcgcga ttccgtattc gccgaacggc tcgccccgcg c tgcgcagaa 60 cttgaacaac ttttccgctc gttgtacggg gattcccctg aattcgacca cttcgaacag 120 gtcatggcca aggcccacgc cgaccggcca gccgacctca aacgcctcga cgccgcccgt 180 gaacacgatc cgcaatggta ccgtcgcggc gacatgttcg gcatgaccat gtacaccgac 240 ctgttcgccg gcaaactcac cgatctcgcc aagcatatcg actatctcaa agagcagcat 300 ctgacctacc tgcacctcat gccgctgctg accatgcccc accccgacaa cgacggcggc 360 tacgccatcg aggatttcga caccgtcgac ccgactatcg gcaccaatga ggacctcgcc 420 gacctcaccg cgaaactgcg cgaagccggc atcagcctgt gccttgattt cgtcatgaac 480 cacaccgcat ccacccaccg gtgggcgaaa gccgcacaag ccggcgaccc cgaataccag 540 gactactact tctgctatga cgaccgcacc atccccgacc aatatgacgc cgtcgtcccg 600 caagtcttcc cgaccgccgc ccccggcaac ttcacatgga atgagcagat gggcaaatgg 660 gtcatgaccc agttctaccc gttccaatgg gacctcaact accgcaatcc caaggtcttc 720 gtcgtcatga tgtccagcct gctgcacctg gccaacctcg gcgtcgaagt cttccgcatc 780 gacgcggtgc cgtacatctg gaagcaactc ggcaccaact gccgcaacct gccgcaagtc 840 cacaccatcg tgcgcatgat gcgcatcatg tccgaaatcg tctgcccggc cgtcgtgttc 900 aaaggtg aag tcgtcatggc tcccaaggag ctcgccgcct acttcggcac ccccgagaag 960 cccgaatgcc acatgctgta caacgtgtcc gtcatggtca acttgtggag cgcgctcgcc 1020 aacggcgaca cccgcctgct taaaacccag atcgacaagc tcgacgccct gcccgacaac 1080 tgctggttcg tcaactatct gcgctgccat gacgatatcg gctggggtct ggacgaggat 1140 gtcgaacgcc agttgggcat cgacccgctc aagcacaagg aattcctcta ccacttctac 1200 gagggcatgg tgcccggcag ctgggcgatg ggcgagctgt acaactatga tccggcgtcc 1260 ggtgacgcgc gcagctgcgg caccacggcg agcttgtgcg gtattgagcg tgcgctgatc 1320 acgcatgacc ggccgctgta tgagcgttcc atccagcgtg atctgctcat gcaccacgct 1380 atgggcttcc tgcgtgggtt cccgatgctc aactgcggcg acgagatcgg ccagctcaac 1440 ggctgggatt ataaggaaga cccggaccgt gtcgctgaca gccgcaatct gcaccgcagc 1500 aagttcaact ggaagaacgc cgcgaagcgc gatgtccccg gaaccttgcc aaaccggctg 1560 tgggaaggca tggcggatgt gcggcagatg cgctcggacc catgcttcgc ccctgacgct 1620 tggaagacga cgtgggacgc gcatgatgac ggtattctcg cgatggtccg gcagtcaggt 1680 gggcgcacac tgctcggcgt gttcaatttc gcgaaccgtg acgccacggc gacgcttgac 1740 agcatcgagg gcg tgagcct gccgcgtacg gtggcgctca agccatacga gtggaagatc 1800 gaggcctgct ga 1812 <210> 16 <211> 1812 <212> DNA <213> Artificial Sequence <220> <223> amylosucrase BtAS V542D <400> 16 atggaagcca catatcgcga ttccgtattc gccgaacggc tcgccccgcg ctgcgcagaa 60 cttgaacaac ttttccgctc gttgtacggg gattcccctg aattcgacca cttcgaacag 120 gtcatggcca aggcccacgc cgaccggcca gccgacctca aacgcctcga cgccgcccgt 180 gaacacgatc cgcaatggta ccgtcgcggc gacatgttcg gcatgaccat gtacaccgac 240 ctgttcgccg gcaaactcac cgatctcgcc aagcatatcg actatctcaa agagcagcat 300 ctgacctacc tgcacctcat gccgctgctg accatgcccc accccgacaa cgacggcggc 360 tacgccatcg aggatttcga caccgtcgac ccgactatcg gcaccaatga ggacctcgcc 420 gacctcaccg cgaaactgcg cgaagccggc atcagcctgt gccttgattt cgtcatgaac 480 cacaccgcat ccacccaccg gtgggcgaaa gccgcacaag ccggcgaccc cgaataccag 540 gactactact tctgctatga cgaccgcacc atccccgacc aatatgacgc cgtcgtcccg 600 caagtcttcc cgaccgccgc ccccggcaac ttcacatgga atgagcagat gggcaaatgg 660 gtcatgaccc agttctaccc gttccaatgg gacctcaact accgcaatcc caaggtcttc 720 gtcgtcatga tgtccagcct gctgcacctg gccaacctcg gcgtcgaagt cttccgcatc 780 gacgcggtgc cgtacatctg gaagcaactc ggcaccaact gccgcaacct gccgcaagtc 840 cacaccatcg tgcgcatgat gcgcatcatg tccgaaatcg tctgcccggc cgtcgtgttc 900 aaaggtgaag tcgtcatggc tcccaaggag ctcgccgcct acttcggcac ccccgagaag 960 cccgaatgcc acatgctgta caacgtgtcc gtcatggtca acttgtggag cgcgctcgcc 1020 aacggcgaca cccgcctgct taaaacccag atcgacaagc tcgacgccct gcccgacaac 1080 tgctggttcg tcaactatct gcgctgccat gacgatatcg gctggggtct ggacgaggat 1140 gtcgaacgcc agttgggcat cgacccgctc aagcacaagg aattcctcta ccacttctac 1200 gagggcatgg tgcccggcag ctgggcgatg ggcgagctgt acaactatga tccggcgtcc 1260 ggtgacgcgc gcagctgcgg caccacggcg agcttgtgcg gtattgagcg tgcgctgatc 1320 acgcatgacc ggccgctgta tgagcgttcc atccagcgtg atctgctcat gcaccacgct 1380 atgggcttcc tgcgtgggtt cccgatgctc aactgcggcg acgagatcgg ccagctcaac 1440 ggctgggatt ataaggaaga cccggaccgt gtcgctgaca gccgcaatct gcaccgcagc 1500 aagttcaact ggaagaacgc cgcgaagcgc gatgtccccg gaaccttgcc aaaccggctg 1560 tgggaaggca tggcggatgt gcggcagatg cgctcggacc catgcttcgc ccctgacgct 1620 tgggacacga cgtgggacgc gcatgatgac ggtattctcg cgatggtccg gcagtcaggt 1680 gggcgcacac tgctcggcgt gttcaatttc gcgaaccgtg acgccacggc gacgcttgac 1740 agcatcgagg gcgtgagcct gccgcgtacg gtggcgctca agccatacga gtggaagatc 1800 gaggcctgct ga 1812 <210> 17 <211> 1812 <212> DNA <213> Artificial Sequence < 220> <223> BtAS P200R <400> 17 atggaagcca catatcgcga ttccgtattc gccgaacggc tcgccccgcg ctgcgcagaa 60 cttgaacaac ttttccgctc gttgtacggg gattcccctg aattcgacca cttcgaacag 120 gtcatggcca aggcccacgc cgaccggcca gccgacctca aacgcctcga cgccgcccgt 180 gaacacgatc cgcaatggta ccgtcgcggc gacatgttcg gcatgaccat gtacaccgac 240 ctgttcgccg gcaaactcac cgatctcgcc aagcatatcg actatctcaa agagcagcat 300 ctgacctacc tgcacctcat gccgctgctg accatgcccc accccgacaa cgacggcggc 360 tacgccatcg aggatttcga caccgtcgac ccgactatcg gcaccaatga ggacctcgcc 420 gacctcaccg cgaaactgcg cgaagccggc atcagcctgt gccttgattt cgtcatgaac 480 cacaccgcat ccacccaccg gtgggcgaaa gccgcacaag ccggcgaccc cgaataccag 540 gactactact tctgctatga cgaccgcacc atccccgacc aatatgacgc cgtcgtccgc 600 caagtcttcc cgaccgccgc ccccggcaac ttcacatgga atgagcagat gggcaaatgg 660 gtcatgaccc agttctaccc gttccaatgg gacctcaact accgcaatcc caaggtcttc 720 gtcgtcatga tgtccagcct gctgcacctg gccaacctcg gcgtcgaagt cttccgcatc 780 gacgcggtgc cgtacatctg gaagcaactc ggcaccaact gccgcaacct gccgcaagtc 840 cacaccatcg tgcgcatgat gcgcatcatg tccgaaatcg tctgcccggc cgtcgtgttc 900 aaaggtgaag tcgtcatggc tcccaaggag ctcgccgcct acttcggcac ccccgagaag 960 cccgaatgcc acatgctgta caacgtgtcc gtcatggtca acttgtggag cgcgctcgcc 1020 aacggcgaca cccgcctgct taaaacccag atcgacaagc tcgacgccct gcccgacaac 1080 tgctggttcg tcaactatct gcgctgccat gacgatatcg gctggggtct ggacgaggat 1140 gtcgaacgcc agttgggcat cgacccgctc aagcacaagg aattcctcta ccacttctac 1200 gagggcatgg tgcccggcag ctgggcgatg ggcgagctgt acaactatga tccggcgtcc 1260 ggtgacgcgc gcagctgcgg caccacggcg agcttgtgcg gtattgagcg tgcgctgatc 1320 acgcatgacc ggccgctgta tgagcgttcc atccagcgtg atctgctcat gca ccacgct 1380 atgggcttcc tgcgtgggtt cccgatgctc aactgcggcg acgagatcgg ccagctcaac 1440 ggctgggatt ataaggaaga cccggaccgt gtcgctgaca gccgcaatct gcaccgcagc 1500 aagttcaact ggaagaacgc cgcgaagcgc gatgtccccg gaaccttgcc aaaccggctg 1560 tgggaaggca tggcggatgt gcggcagatg cgctcggacc catgcttcgc ccctgacgct 1620 tgggtgacga cgtgggacgc gcatgatgac ggtattctcg cgatggtccg gcagtcaggt 1680 gggcgcacac tgctcggcgt gttcaatttc gcgaaccgtg acgccacggc gacgcttgac 1740 agcatcgagg gcgtgagcct gccgcgtacg gtggcgctca agccatacga gtggaagatc 1800 gaggcctgct ga 1812 <210> 18 <211> 1812 <212> DNA <213> Artificial Sequence <220> <223> BtAS V202I <400> 18 atggaagcca catatcgcga ttccgtattc gccgaacggc tcgccccgcg ctgcgcagaa 60 cttgaacaac ttttccgctc gttgtacggg gattcccctg aattcgacca cttcgaacag 120 gtcatggcca aggcccacgc cgaccggcca gccgacctca aacgcctcga cgccgcccgt 180 gaacacgatc cgcaatggta ccgtcgcggc gacatgttcg gcatgaccat gtacaccgac 240 ctgttcgccg gcaaactcac cgatctcgcc aagcatatcg actatctcaa agagcagcat 300 ctgacctacc tgcacctcatg gccgctg acctg ccatgcccc accccgacaa cgacggcggc 360 tacgccatcg aggatttcga caccgtcgac ccgactatcg gcaccaatga ggacctcgcc 420 gacctcaccg cgaaactgcg cgaagccggc atcagcctgt gccttgattt cgtcatgaac 480 cacaccgcat ccacccaccg gtgggcgaaa gccgcacaag ccggcgaccc cgaataccag 540 gactactact tctgctatga cgaccgcacc atccccgacc aatatgacgc cgtcgtcccg 600 caaatcttcc cgaccgccgc ccccggcaac ttcacatgga atgagcagat gggcaaatgg 660 gtcatgaccc agttctaccc gttccaatgg gacctcaact accgcaatcc caaggtcttc 720 gtcgtcatga tgtccagcct gctgcacctg gccaacctcg gcgtcgaagt cttccgcatc 780 gacgcggtgc cgtacatctg gaagcaactc ggcaccaact gccgcaacct gccgcaagtc 840 cacaccatcg tgcgcatgat gcgcatcatg tccgaaatcg tctgcccggc cgtcgtgttc 900 aaaggtgaag tcgtcatggc tcccaaggag ctcgccgcct acttcggcac ccccgagaag 960 cccgaatgcc acatgctgta caacgtgtcc gtcatggtca acttgtggag cgcgctcgcc 1020 aacggcgaca cccgcctgct taaaacccag atcgacaagc tcgacgccct gcccgacaac 1080 tgctggttcg tcaactatct gcgctgccat gacgatatcg gctggggtct ggacgaggat 1140 gtcgaacgcc agttgggcat cgacccgctc aagcacaagg aattcct cta ccacttctac 1200 gagggcatgg tgcccggcag ctgggcgatg ggcgagctgt acaactatga tccggcgtcc 1260 ggtgacgcgc gcagctgcgg caccacggcg agcttgtgcg gtattgagcg tgcgctgatc 1320 acgcatgacc ggccgctgta tgagcgttcc atccagcgtg atctgctcat gcaccacgct 1380 atgggcttcc tgcgtgggtt cccgatgctc aactgcggcg acgagatcgg ccagctcaac 1440 ggctgggatt ataaggaaga cccggaccgt gtcgctgaca gccgcaatct gcaccgcagc 1500 aagttcaact ggaagaacgc cgcgaagcgc gatgtccccg gaaccttgcc aaaccggctg 1560 tgggaaggca tggcggatgt gcggcagatg cgctcggacc catgcttcgc ccctgacgct 1620 tgggtgacga cgtgggacgc gcatgatgac ggtattctcg cgatggtccg gcagtcaggt 1680 gggcgcacac tgctcggcgt gttcaatttc gcgaaccgtg acgccacggc gacgcttgac 1740 agcatcgagg gcgtgagcct gccgcgtacg gtggcgctca agccatacga gtggaagatc 1800 gaggcctgct ga 1812 <210> 19 <211> 1812 <212> DNA <213> Artificial Sequence <220> <223> BtAS Y265F <400> 19 atggaagcca catatcgcga ttccgtattc gccgaacggc tcgccccgcg ctgcgcagaa 60 cttgaacaac ttttccgctc gttgtacggg gattcccctg aattcgacca cttcgaacag 120 gtcatggcca aggcccacgc cg accggcca gccgacctca aacgcctcga cgccgcccgt 180 gaacacgatc cgcaatggta ccgtcgcggc gacatgttcg gcatgaccat gtacaccgac 240 ctgttcgccg gcaaactcac cgatctcgcc aagcatatcg actatctcaa agagcagcat 300 ctgacctacc tgcacctcat gccgctgctg accatgcccc accccgacaa cgacggcggc 360 tacgccatcg aggatttcga caccgtcgac ccgactatcg gcaccaatga ggacctcgcc 420 gacctcaccg cgaaactgcg cgaagccggc atcagcctgt gccttgattt cgtcatgaac 480 cacaccgcat ccacccaccg gtgggcgaaa gccgcacaag ccggcgaccc cgaataccag 540 gactactact tctgctatga cgaccgcacc atccccgacc aatatgacgc cgtcgtcccg 600 caagtcttcc cgaccgccgc ccccggcaac ttcacatgga atgagcagat gggcaaatgg 660 gtcatgaccc agttctaccc gttccaatgg gacctcaact accgcaatcc caaggtcttc 720 gtcgtcatga tgtccagcct gctgcacctg gccaacctcg gcgtcgaagt cttccgcatc 780 gacgcggtgc cgttcatctg gaagcaactc ggcaccaact gccgcaacct gccgcaagtc 840 cacaccatcg tgcgcatgat gcgcatcatg tccgaaatcg tctgcccggc cgtcgtgttc 900 aaaggtgaag tcgtcatggc tcccaaggag ctcgccgcct acttcggcac ccccgagaag 960 cccgaatgcc acatgctgta caacgtgtcc gtcatggtca acttgtggag cgcgctcgcc 1020 aacggcgaca cccgcctgct taaaacccag atcgacaagc tcgacgccct gcccgacaac 1080 tgctggttcg tcaactatct gcgctgccat gacgatatcg gctggggtct ggacgaggat 1140 gtcgaacgcc agttgggcat cgacccgctc aagcacaagg aattcctcta ccacttctac 1200 gagggcatgg tgccc ggcag ctgggcgatg ggcgagctgt acaactatga tccggcgtcc 1260 ggtgacgcgc gcagctgcgg caccacggcg agcttgtgcg gtattgagcg tgcgctgatc 1320 acgcatgacc ggccgctgta tgagcgttcc atccagcgtg atctgctcat gcaccacgct 1380 atgggcttcc tgcgtgggtt cccgatgctc aactgcggcg acgagatcgg ccagctcaac 1440 ggctgggatt ataaggaaga cccggaccgt gtcgctgaca gccgcaatct gcaccgcagc 1500 aagttcaact ggaagaacgc cgcgaagcgc gatgtccccg gaaccttgcc aaaccggctg 1560 tgggaaggca tggcggatgt gcggcagatg cgctcggacc catgcttcgc ccctgacgct 1620 tgggtgacga cgtgggacgc gcatgatgac ggtattctcg cgatggtccg gcagtcaggt 1680 gggcgcacac tgctcggcgt gttcaatttc gcgaaccgtg acgccacggc gacgcttgac 1740 agcatcgagg gcgtgagcct gccgcgtacg gtggcgctca agccatacga gtggaagatc 1800 gaggcctgct ga 1812 <210> 20 <211> 1812 <212> DNA <213> Artificial Sequence <220> <223> BtAS V305I <400> 20 atggaagcca catatcgcga ttccgtattc gccgaacggc tcgccccgcg ctgcgcagaa 60 cttgaacaac ttttccgctc gttgtacggg gattcccctg aattcgacca cttcgaacag 120 gtcatggcca aggcccacgc cgaccggcca gccgacctca aacgccgcga cgccgcga cccgt 180 gaacacgatc cgcaatggta ccgtcgcggc gacatgttcg gcatgaccat gtacaccgac 240 ctgttcgccg gcaaactcac cgatctcgcc aagcatatcg actatctcaa agagcagcat 300 ctgacctacc tgcacctcat gccgctgctg accatgcccc accccgacaa cgacggcggc 360 tacgccatcg aggatttcga caccgtcgac ccgactatcg gcaccaatga ggacctcgcc 420 gacctcaccg cgaaactgcg cgaagccggc atcagcctgt gccttgattt cgtcatgaac 480 cacaccgcat ccacccaccg gtgggcgaaa gccgcacaag ccggcgaccc cgaataccag 540 gactactact tctgctatga cgaccgcacc atccccgacc aatatgacgc cgtcgtcccg 600 caagtcttcc cgaccgccgc ccccggcaac ttcacatgga atgagcagat gggcaaatgg 660 gtcatgaccc agttctaccc gttccaatgg gacctcaact accgcaatcc caaggtcttc 720 gtcgtcatga tgtccagcct gctgcacctg gccaacctcg gcgtcgaagt cttccgcatc 780 gacgcggtgc cgtacatctg gaagcaactc ggcaccaact gccgcaacct gccgcaagtc 840 cacaccatcg tgcgcatgat gcgcatcatg tccgaaatcg tctgcccggc cgtcgtgttc 900 aaaggtgaag tcatcatggc tcccaaggag ctcgccgcct acttcggcac ccccgagaag 960 cccgaatgcc acatgctgta caacgtgtcc gtcatggtca acttgtggag cgcgctcgcc 1020 aacggcgac a cccgcctgct taaaacccag atcgacaagc tcgacgccct gcccgacaac 1080 tgctggttcg tcaactatct gcgctgccat gacgatatcg gctggggtct ggacgaggat 1140 gtcgaacgcc agttgggcat cgacccgctc aagcacaagg aattcctcta ccacttctac 1200 gagggcatgg tgcccggcag ctgggcgatg ggcgagctgt acaactatga tccggcgtcc 1260 ggtgacgcgc gcagctgcgg caccacggcg agcttgtgcg gtattgagcg tgcgctgatc 1320 acgcatgacc ggccgctgta tgagcgttcc atccagcgtg atctgctcat gcaccacgct 1380 atgggcttcc tgcgtgggtt cccgatgctc aactgcggcg acgagatcgg ccagctcaac 1440 ggctgggatt ataaggaaga cccggaccgt gtcgctgaca gccgcaatct gcaccgcagc 1500 aagttcaact ggaagaacgc cgcgaagcgc gatgtccccg gaaccttgcc aaaccggctg 1560 tgggaaggca tggcggatgt gcggcagatg cgctcggacc catgcttcgc ccctgacgct 1620 tgggtgacga cgtgggacgc gcatgatgac ggtattctcg cgatggtccg gcagtcaggt 1680 gggcgcacac tgctcggcgt gttcaatttc gcgaaccgtg acgccacggc gacgcttgac 1740 agcatcgagg gcgtgagcct gccgcgtacg gtggcgctca agccatacga gtggaagatc 1800 gaggcctgct ga 1812 <210> 21 <211 > 1812 <212> DNA <213> Artificial Sequence <220> <223> BtAS K393R <400> 21 atggaagcca catatcgcga ttccgtattc gccgaacggc tcgccccgcg ctgcgcagaa 60 cttgaacaac ttttccgctc gttgtacggg gattcccctg aattcgacca cttcgaacag 120 gtcatggcca aggcccacgc cgaccggcca gccgacctca aacgcctcga cgccgcccgt 180 gaacacgatc cgcaatggta ccgtcgcggc gacatgttcg gcatgaccat gtacaccgac 240 ctgttcgccg gcaaactcac cgatctcgcc aagcatatcg actatctcaa agagcagcat 300 ctgacctacc tgcacctcat gccgctgctg accatgcccc accccgacaa cgacggcggc 360 tacgccatcg aggatttcga caccgtcgac ccgactatcg gcaccaatga ggacctcgcc 420 gacctcaccg cgaaactgcg cgaagccggc atcagcctgt gccttgattt cgtcatgaac 480 cacaccgcat ccacccaccg gtgggcgaaa gccgcacaag ccggcgaccc cgaataccag 540 gactactact tctgctatga cgaccgcacc atccccgacc aatatgacgc cgtcgtcccg 600 caagtcttcc cgaccgccgc ccccggcaac ttcacatgga atgagcagat gggcaaatgg 660 gtcatgaccc agttctaccc gttccaatgg gacctcaact accgcaatcc caaggtcttc 720 gtcgtcatga tgtccagcct gctgcacctg gccaacctcg gcgtcgaagt cttccgcatc 780 gacgcggtgc cgtacatctg gaagcaactc gccaccaact gccgcaacct gccgcaagtc 840 cacaccatcg tgcgcatgat gcgcatcatg tccgaaatcg tctgcccggc cgtcgtgttc 900 aaaggtgaag tcgtcatggc tcccaaggag ctcgccgcct acttcggcac ccccgagaag 960 cccgaatgcc acatgctgta caacgtgtcc gtcatggtca acttgtggag cgcgctcgcc 1020 aacggcgaca cccgcctgct taaaacccag atcgacaagc tcgacgccct gcccgacaac 1080 tgctggttcg tcaactatct gcgctgccat gacgatatcg gctggggtct ggacgaggat 1140 gtcgaacgcc agttgggcat cgacccgctc aagcacaggg aattcctcta ccacttctac 1200 gagggcatgg tgcccggcag ctgggcgatg ggcgagctgt acaactatga tccggcgtcc 1260 ggtgacgcgc gcagctgcgg caccacggcg agcttgtgcg gtattgagcg tgcgctgatc 1320 acgcatgacc ggccgctgta tgagcgttcc atccagcgtg atctgctcat gcaccacgct 1380 atgggcttcc tgcgtgggtt cccgatgctc aactgcggcg acgagatcgg ccagctcaac 1440 ggctgggatt ataaggaaga cccggaccgt gtcgctgaca gccgcaatct gcaccgcagc 1500 aagttcaact ggaagaacgc cgcgaagcgc gatgtccccg gaaccttgcc aaaccggctg 1560 tgggaaggca tggcggatgt gcggcagatg cgctcggacc catgcttcgc ccctgacgct 1620 tgggtgacga cgtgggacgc gcatgatgac ggtattctcg cgatggtccg gcagtcaggt 1680 gggcgcac ac tgctcggcgt gttcaatttc gcgaaccgtg acgccacggc gacgcttgac 1740 agcatcgagg gcgtgagcct gccgcgtacg gtggcgctca agccatacga gtggaagatc 1800 gaggcctgct ga 1812 <210> 22 <211> 1812 <212> DNA <213> Artificial Sequence <220> <223> BtAS S420T <400> 22 atggaagcca catatcgcga ttccgtattc gccgaacggc tcgccccgcg ctgcgcagaa 60 cttgaacaac ttttccgctc gttgtacggg gattcccctg aattcgacca cttcgaacag 120 gtcatggcca aggcccacgc cgaccggcca gccgacctca aacgcctcga cgccgcccgt 180 gaacacgatc cgcaatggta ccgtcgcggc gacatgttcg gcatgaccat gtacaccgac 240 ctgttcgccg gcaaactcac cgatctcgcc aagcatatcg actatctcaa agagcagcat 300 ctgacctacc tgcacctcat gccgctgctg accatgcccc accccgacaa cgacggcggc 360 tacgccatcg aggatttcga caccgtcgac ccgactatcg gcaccaatga ggacctcgcc 420 gacctcaccg cgaaactgcg cgaagccggc atcagcctgt gccttgattt cgtcatgaac 480 cacaccgcat ccacccaccg gtgggcgaaa gccgcacaag ccggcgaccc cgaataccag 540 gactactact tctgctatga cgaccgcacc atccccgacc aatatgacgc cgtcgtcccg 600 caagtcttcc cgaccgccgc ccccggcaac ttcacatgga atgagcagat gggca aatgg 660 gtcatgaccc agttctaccc gttccaatgg gacctcaact accgcaatcc caaggtcttc 720 gtcgtcatga tgtccagcct gctgcacctg gccaacctcg gcgtcgaagt cttccgcatc 780 gacgcggtgc cgtacatctg gaagcaactc ggcaccaact gccgcaacct gccgcaagtc 840 cacaccatcg tgcgcatgat gcgcatcatg tccgaaatcg tctgcccggc cgtcgtgttc 900 aaaggtgaag tcgtcatggc tcccaaggag ctcgccgcct acttcggcac ccccgagaag 960 cccgaatgcc acatgctgta caacgtgtcc gtcatggtca acttgtggag cgcgctcgcc 1020 aacggcgaca cccgcctgct taaaacccag atcgacaagc tcgacgccct gcccgacaac 1080 tgctggttcg tcaactatct gcgctgccat gacgatatcg gctggggtct ggacgaggat 1140 gtcgaacgcc agttgggcat cgacccgctc aagcacaagg aattcctcta ccacttctac 1200 gagggcatgg tgcccggcag ctgggcgatg ggcgagctgt acaactatga tccggcgacg 1260 ggtgacgcgc gcagctgcgg caccacggcg agcttgtgcg gtattgagcg tgcgctgatc 1320 acgcatgacc ggccgctgta tgagcgttcc atccagcgtg atctgctcat gcaccacgct 1380 atgggcttcc tgcgtgggtt cccgatgctc aactgcggcg acgagatcgg ccagctcaac 1440 ggctgggatt ataaggaaga cccggaccgt gtcgctgaca gccgcaatct gcaccgcagc 1500 a agttcaact ggaagaacgc cgcgaagcgc gatgtccccg gaaccttgcc aaaccggctg 1560 tgggaaggca tggcggatgt gcggcagatg cgctcggacc catgcttcgc ccctgacgct 1620 tgggtgacga cgtgggacgc gcatgatgac ggtattctcg cgatggtccg gcagtcaggt 1680 gggcgcacac tgctcggcgt gttcaatttc gcgaaccgtg acgccacggc gacgcttgac 1740 agcatcgagg gcgtgagcct gccgcgtacg gtggcgctca agccatacga gtggaagatc 1800 gaggcctgct ga 1812 <210> 23 <211> 1812 <212> DNA <213> Artificial Sequence <220> <223> BtAS Y414F <400> 23 atggaagcca catatcgcga ttccgtattc gccgaacggc tcgccccgcg ctgcgcagaa 60 cttgaacaac ttttccgctc gttgtacggg gattcccctg aattcgacca cttcgaacag 120 gtcatggcca aggcccacgc cgaccggcca gccgacctca aacgcctcga cgccgcccgt 180 gaacacgatc cgcaatggta ccgtcgcggc gacatgttcg gcatgaccat gtacaccgac 240 ctgttcgccg gcaaactcac cgatctcgcc aagcatatcg actatctcaa agagcagcat 300 ctgacctacc tgcacctcat gccgctgctg accatgcccc accccgacaa cgacggcggc 360 tacgccatcg aggatttcga caccgtcgac ccgactatcg gcaccaatga ggacctcgcc 420 gacctcaccg cgaaactgcg cgaagccggc atcagcctgt gccttg attt cgtcatgaac 480 cacaccgcat ccacccaccg gtgggcgaaa gccgcacaag ccggcgaccc cgaataccag 540 gactactact tctgctatga cgaccgcacc atccccgacc aatatgacgc cgtcgtcccg 600 caagtcttcc cgaccgccgc ccccggcaac ttcacatgga atgagcagat gggcaaatgg 660 gtcatgaccc agttctaccc gttccaatgg gacctcaact accgcaatcc caaggtcttc 720 gtcgtcatga tgtccagcct gctgcacctg gccaacctcg gcgtcgaagt cttccgcatc 780 gacgcggtgc cgtacatctg gaagcaactc ggcaccaact gccgcaacct gccgcaagtc 840 cacaccatcg tgcgcatgat gcgcatcatg tccgaaatcg tctgcccggc cgtcgtgttc 900 aaaggtgaag tcgtcatggc tcccaaggag ctcgccgcct acttcggcac ccccgagaag 960 cccgaatgcc acatgctgta caacgtgtcc gtcatggtca acttgtggag cgcgctcgcc 1020 aacggcgaca cccgcctgct taaaacccag atcgacaagc tcgacgccct gcccgacaac 1080 tgctggttcg tcaactatct gcgctgccat gacgatatcg gctggggtct ggacgaggat 1140 gtcgaacgcc agttgggcat cgacccgctc aagcacaagg aattcctcta ccacttctac 1200 gagggcatgg tgcccggcag ctgggcgatg ggcgagctgt tcaactatga tccggcgtcc 1260 ggtgacgcgc gcagctgcgg caccacggcg agcttgtgcg gtattgagcg tgcgctgatc 1320 acgcatgacc ggccgctgta tgagcgttcc atccagcgtg atctgctcat gcaccacgct 1380 atgggcttcc tgcgtgggtt cccgatgctc aactgcggcg acgagatcgg ccagctcaac 1440 ggctgggatt ataaggaaga cccggaccgt gtcgctgaca gccgcaatct gcaccgcagc 1500 aagttcaact ggaagaacgc cgcgaagcgc gatgtccccg gaaccttgcc aaaccggctg 1560 tgggaaggca tggcggatgt gcggcagatg cgctcggacc catgcttcgc ccctgacgct 1620 tgggtgacga cgtgggacgc gcatgatgac ggtattctcg cgatggtccg gcagtcaggt 1680 gggcgcacac tgctcggcgt gttcaatttc gcgaaccgtg acgccacggc gacgcttgac 1740 agcatcgagg gcgtgagcct gccgcgtacg gtggcgctca agccatacga gtggaagatc 1800 gaggcctgct ga 1812 <210> 24 <211> 1812 <212> DNA <213> Artificial Sequence <220> <223> BtAS Y414F*P200R <400> 24 atggaagcca catatcgcga ttccgtattc gccgaacggc tcgccccgcg ctgcgcagaa 60 cttgaacaac ttttccgctc gttgtacggg gattcccctg aattcgacca cttcgaacag 120 gtcatggcca aggcccacgc cgaccggcca gccgacctca aacgcctcga cgccgcccgt 180 gaacacgatc cgcaatggta ccgtcgcggc gacatgttcg gcatgaccat gtacaccgac 240 ctgttcgccg gcatactcgccg cgactactcgccc agcatatcg actatctcaa agagcagcat 300 ctgacctacc tgcacctcat gccgctgctg accatgcccc accccgacaa cgacggcggc 360 tacgccatcg aggatttcga caccgtcgac ccgactatcg gcaccaatga ggacctcgcc 420 gacctcaccg cgaaactgcg cgaagccggc atcagcctgt gccttgattt cgtcatgaac 480 cacaccgcat ccacccaccg gtgggcgaaa gccgcacaag ccggcgaccc cgaataccag 540 gactactact tctgctatga cgaccgcacc atccccgacc aatatgacgc cgtcgtccgc 600 caagtcttcc cgaccgccgc ccccggcaac ttcacatgga atgagcagat gggcaaatgg 660 gtcatgaccc agttctaccc gttccaatgg gacctcaact accgcaatcc caaggtcttc 720 gtcgtcatga tgtccagcct gctgcacctg gccaacctcg gcgtcgaagt cttccgcatc 780 gacgcggtgc cgtacatctg gaagcaactc ggcaccaact gccgcaacct gccgcaagtc 840 cacaccatcg tgcgcatgat gcgcatcatg tccgaaatcg tctgcccggc cgtcgtgttc 900 aaaggtgaag tcgtcatggc tcccaaggag ctcgccgcct acttcggcac ccccgagaag 960 cccgaatgcc acatgctgta caacgtgtcc gtcatggtca acttgtggag cgcgctcgcc 1020 aacggcgaca cccgcctgct taaaacccag atcgacaagc tcgacgccct gcccgacaac 1080 tgctggttcg tcaactatct gcgctgccat gacgatatcg gctggggt ct ggacgaggat 1140 gtcgaacgcc agttgggcat cgacccgctc aagcacaagg aattcctcta ccacttctac 1200 gagggcatgg tgcccggcag ctgggcgatg ggcgagctgt tcaactatga tccggcgtcc 1260 ggtgacgcgc gcagctgcgg caccacggcg agcttgtgcg gtattgagcg tgcgctgatc 1320 acgcatgacc ggccgctgta tgagcgttcc atccagcgtg atctgctcat gcaccacgct 1380 atgggcttcc tgcgtgggtt cccgatgctc aactgcggcg acgagatcgg ccagctcaac 1440 ggctgggatt ataaggaaga cccggaccgt gtcgctgaca gccgcaatct gcaccgcagc 1500 aagttcaact ggaagaacgc cgcgaagcgc gatgtccccg gaaccttgcc aaaccggctg 1560 tgggaaggca tggcggatgt gcggcagatg cgctcggacc catgcttcgc ccctgacgct 1620 tgggtgacga cgtgggacgc gcatgatgac ggtattctcg cgatggtccg gcagtcaggt 1680 gggcgcacac tgctcggcgt gttcaatttc gcgaaccgtg acgccacggc gacgcttgac 1740 agcatcgagg gcgtgagcct gccgcgtacg gtggcgctca agccatacga gtggaagatc 1800 gaggcctgct ga 1812 <210> 25 <211> 1812 <212> DNA <213> Artificial Sequence <220> <223> BtAS Y414F*V202I <400> 25 atggaagcca catatcgcga ttccgtattc gccgaacggc tcgccccgcg ctgcgcagaa 60 cttgaacaac ttttccg ctc gttgtacggg gattcccctg aattcgacca cttcgaacag 120 gtcatggcca aggcccacgc cgaccggcca gccgacctca aacgcctcga cgccgcccgt 180 gaacacgatc cgcaatggta ccgtcgcggc gacatgttcg gcatgaccat gtacaccgac 240 ctgttcgccg gcaaactcac cgatctcgcc aagcatatcg actatctcaa agagcagcat 300 ctgacctacc tgcacctcat gccgctgctg accatgcccc accccgacaa cgacggcggc 360 tacgccatcg aggatttcga caccgtcgac ccgactatcg gcaccaatga ggacctcgcc 420 gacctcaccg cgaaactgcg cgaagccggc atcagcctgt gccttgattt cgtcatgaac 480 cacaccgcat ccacccaccg gtgggcgaaa gccgcacaag ccggcgaccc cgaataccag 540 gactactact tctgctatga cgaccgcacc atccccgacc aatatgacgc cgtcgtcccg 600 caaatcttcc cgaccgccgc ccccggcaac ttcacatgga atgagcagat gggcaaatgg 660 gtcatgaccc agttctaccc gttccaatgg gacctcaact accgcaatcc caaggtcttc 720 gtcgtcatga tgtccagcct gctgcacctg gccaacctcg gcgtcgaagt cttccgcatc 780 gacgcggtgc cgtacatctg gaagcaactc ggcaccaact gccgcaacct gccgcaagtc 840 cacaccatcg tgcgcatgat gcgcatcatg tccgaaatcg tctgcccggc cgtcgtgttc 900 aaaggtgaag tcgtcatggc tcccaaggag ctcgc cgcct acttcggcac ccccgagaag 960 cccgaatgcc acatgctgta caacgtgtcc gtcatggtca acttgtggag cgcgctcgcc 1020 aacggcgaca cccgcctgct taaaacccag atcgacaagc tcgacgccct gcccgacaac 1080 tgctggttcg tcaactatct gcgctgccat gacgatatcg gctggggtct ggacgaggat 1140 gtcgaacgcc agttgggcat cgacccgctc aagcacaagg aattcctcta ccacttctac 1200 gagggcatgg tgcccggcag ctgggcgatg ggcgagctgt tcaactatga tccggcgtcc 1260 ggtgacgcgc gcagctgcgg caccacggcg agcttgtgcg gtattgagcg tgcgctgatc 1320 acgcatgacc ggccgctgta tgagcgttcc atccagcgtg atctgctcat gcaccacgct 1380 atgggcttcc tgcgtgggtt cccgatgctc aactgcggcg acgagatcgg ccagctcaac 1440 ggctgggatt ataaggaaga cccggaccgt gtcgctgaca gccgcaatct gcaccgcagc 1500 aagttcaact ggaagaacgc cgcgaagcgc gatgtccccg gaaccttgcc aaaccggctg 1560 tgggaaggca tggcggatgt gcggcagatg cgctcggacc catgcttcgc ccctgacgct 1620 tgggtgacga cgtgggacgc gcatgatgac ggtattctcg cgatggtccg gcagtcaggt 1680 gggcgcacac tgctcggcgt gttcaatttc gcgaaccgtg acgccacggc gacgcttgac 1740 agcatcgagg gcgtgagcct gccgcgtacg gtggcgctca a gccatacga gtggaagatc 1800 gaggcctgct ga 1812 <210> 26 <211> 1812 <212> DNA <213> Artificial Sequence <220> <223> BtAS Y414F*Y265F <400> 26 atggaagcca catatcgcga ttccgtattc gccgaacggc tcgccccgcg ctgcgcagaa 60 cttgaacaac ttttccgctc gttgtacggg gattcccctg aattcgacca cttcgaacag 120 gtcatggcca aggcccacgc cgaccggcca gccgacctca aacgcctcga cgccgcccgt 180 gaacacgatc cgcaatggta ccgtcgcggc gacatgttcg gcatgaccat gtacaccgac 240 ctgttcgccg gcaaactcac cgatctcgcc aagcatatcg actatctcaa agagcagcat 300 ctgacctacc tgcacctcat gccgctgctg accatgcccc accccgacaa cgacggcggc 360 tacgccatcg aggatttcga caccgtcgac ccgactatcg gcaccaatga ggacctcgcc 420 gacctcaccg cgaaactgcg cgaagccggc atcagcctgt gccttgattt cgtcatgaac 480 cacaccgcat ccacccaccg gtgggcgaaa gccgcacaag ccggcgaccc cgaataccag 540 gactactact tctgctatga cgaccgcacc atccccgacc aatatgacgc cgtcgtcccg 600 caagtcttcc cgaccgccgc ccccggcaac ttcacatgga atgagcagat gggcaaatgg 660 gtcatgaccc agttctaccc gttccaatgg gacctcaact accgcaatcc caaggtcttc 720 gtccagccgat gctgcacctg gccaacctcg gcgtcgaagt cttccgcatc 780 gacgcggtgc cgttcatctg gaagcaactc ggcaccaact gccgcaacct gccgcaagtc 840 cacaccatcg tgcgcatgat gcgcatcatg tccgaaatcg tctgcccggc cgtcgtgttc 900 aaaggtgaag tcgtcatggc tcccaaggag ctcgccgcct acttcggcac ccccgagaag 960 cccgaatgcc acatgctgta caacgtgtcc gtcatggtca acttgtggag cgcgctcgcc 1020 aacggcgaca cccgcctgct taaaacccag atcgacaagc tcgacgccct gcccgacaac 1080 tgctggttcg tcaactatct gcgctgccat gacgatatcg gctggggtct ggacgaggat 1140 gtcgaacgcc agttgggcat cgacccgctc aagcacaagg aattcctcta ccacttctac 1200 gagggcatgg tgcccggcag ctgggcgatg ggcgagctgt tcaactatga tccggcgtcc 1260 ggtgacgcgc gcagctgcgg caccacggcg agcttgtgcg gtattgagcg tgcgctgatc 1320 acgcatgacc ggccgctgta tgagcgttcc atccagcgtg atctgctcat gcaccacgct 1380 atgggcttcc tgcgtgggtt cccgatgctc aactgcggcg acgagatcgg ccagctcaac 1440 ggctgggatt ataaggaaga cccggaccgt gtcgctgaca gccgcaatct gcaccgcagc 1500 aagttcaact ggaagaacgc cgcgaagcgc gatgtccccg gaaccttgcc aaaccggctg 1560 tgggaaggca tggcggatgt gcggcagatg cgctcggacc catgcttcgc ccctgacgct 1620 tgggtgacga cgtgggacgc gcatgatgac ggtattctcg cgatggtccg gcagtcaggt 1680 gggcgcacac tgctcggcgt gttcaatttc gcgaaccgtg acgccacggc gacgcttgac 1740 agcatcgagg gcgtgagcct gccgcgtacg gtggcgctca agccatacga gtggaagatc 1800 gaggcc tgct ga 1812 <210> 27 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> BtAS V542D forward primer <400> 27 cgcccctgac gcttggggaca cgacgtggga cgcgc 35 <210> 28 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> BtAS V542D reverse primer <400> 28 gcgcgtccca cgtcgtgtcc caagcgtcag gggcg 35 <210> 29 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> BtAS V542K forward primer <400> 29 cgcccctgac gcttggaaga cgacgtggga cgcgc 35 <210> 30 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> BtAS V542K reverse primer <400> 30 gcgcgtccca cgtcgtcttc caagcgtcag gggcg 35 <210> 31 <211> 212> DNA <213> Artificial Sequence <220> <223> BtAS P200R forward primer <400> 31 gccgtcgtcc gccaagtctt c 21 <210> 32 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> BtAS P200R reverse primer <400> 32 gaagacttgg cggacgacgg c 21 <210> 33 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> BtAS V202I forward primer <400> 33 gtcccgcaaa tcttcccgac c 21 <210> 34 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> BtAS V202I reverse primer <400> 34 ggtcgggaag atttgcggga c 21 <210> 35 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> BtAS Y265F forward primer <400> 35 gacgcggtgc cgttcatctg gaagcaa 27 <210> 36 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> BtAS Y265F reverse primer <400> 36 ttgcttccag atgaacggca ccgcgtc 27 <210> 37 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> BtAS Y305I forward primer <400> 37 aaaggtgaag tcatcatggc tcccaag 27 <210> 38 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> BtAS Y305I reverse primer <400> 38 cttgggagcc atgatgactt caccttt 27 <210> 39 <211 > 27 <212> DNA <213> Artificial Sequence <220> <223> BtAS K393R forward primer <400> 39 ccgctcaagc acagggaatt cctctac 27 <210> 40 <211> 27 <212> DNA <213> Artificial Sequence <220> < 223> BtAS K393R reverse primer <400> 40 gtagaggaat tccctgtgct tgagcgg 27 <210> 41 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> BtAS S420T forward primer <400> 41 tatgatccgg cgacgggtga cgcgcgc 27 < 210> 42 <211> 27 <212> DNA <213> A rtificial Sequence <220> <223> BtAS S420T reverse primer <400> 42 gcgcgcgtca cccgtcgccg gatcata 27 <210> 43 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> BtAS Y414F forward primer <400> 43 atgggcgagc tgttcaacta tgatccg 27 <210> 44 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> BtAS Y414F reverse primer<400> 44 cggatcatag ttgaacagct cgcccat 27

Claims (15)

설탕 및 과당으로 이루어진 군에서 선택된 1종 이상의 반응 기질에 아밀로수크라제 효소를 포함하는 촉매 조성물을 반응시켜, 투라노스를 포함하는 반응생성물을 제조하는 단계; 및
상기 반응 생성물을 모사 이동층(SMB) 크로마토그래피를 이용한 투라노스 분획과 라피네이트로 분리하는 단계를 포함하고,
상기 아밀로수크라제 효소는 서열번호 2, 3, 10, 11, 12 및 13의 아미노산 서열로 이루어진 군에서 선택된 1종 이상의 서열로 이루어지는 효소인,
투라노스의 제조방법.
preparing a reaction product containing turanose by reacting a catalyst composition containing an amylosucrase enzyme with at least one reaction substrate selected from the group consisting of sugar and fructose; and
Separating the reaction product into a turanose fraction and a raffinate using simulated moving bed (SMB) chromatography;
The amylosucrase enzyme is an enzyme consisting of one or more sequences selected from the group consisting of amino acid sequences of SEQ ID NOs: 2, 3, 10, 11, 12 and 13,
Method for producing turanos.
제1항에 있어서, 상기 반응생성물에 글루코아밀라제 효소를 반응시키는 단계를 추가로 포함하는, 제조방법.The method of claim 1, further comprising reacting the reaction product with a glucoamylase enzyme. 삭제delete 제1항에 있어서, 상기 반응생성물에 포함된 전체 당류 고형분 함량 100중량%를 기준으로, 트레할룰로스 함량이 7.0 중량%이하인 것인 제조방법.The method according to claim 1, wherein the reaction product has a trehalulose content of 7.0% by weight or less based on 100% by weight of the total saccharide solid content. 제1항에 있어서, 상기 투라노스 분획에 포함된 당류 고형분 함량 100중량%를 기준으로, 트레할룰로스 함량이 7.0 중량%이하인 것인 제조방법.The method according to claim 1, wherein the turanose fraction has a trehalulose content of 7.0% by weight or less based on 100% by weight of the saccharide solid content. 제1항에 있어서, 상기 투라노스 분획에 포함된 당류 고형분 함량 100중량%를 기준으로, 투라노스 함량이 70 중량%이상인 것인 제조방법.The method according to claim 1, wherein the turanose fraction is 70% by weight or more based on 100% by weight of the saccharide solid content in the turanose fraction. 제1항에 있어서, 상기 반응 기질은 설탕 고형분 함량 100중량부를 기준으로 과당 고형분 함량이 5 내지 250중량부로 포함하는 것인 제조방법. The method of claim 1, wherein the reaction substrate contains 5 to 250 parts by weight of fructose solids based on 100 parts by weight of sugar solids. 제1항에 있어서, 상기 반응생성물 고형분 100중량%를 기준으로, 반응 생성물은 DP3이상의 올리고당 함량이 20중량%이고, 투라노스 30 중량%이상으로 포함하는 것인 제조방법. The method according to claim 1, wherein the reaction product contains 20% by weight of oligosaccharides of DP3 or higher and 30% by weight or more of turanose, based on 100% by weight of the solid content of the reaction product. 제1항에 있어서, 상기 촉매 조성물은 아밀로수크라제 효소, 아밀로 수크라제 효소를 생산하는 재조합 미생물, 상기 재조합 미생물의 배양물 및 상기 재조합 미생물의 파쇄물로 이루어진 군에서 선택된 1종 이상을 포함하는 것인, 제조방법.The method of claim 1, wherein the catalyst composition comprises at least one selected from the group consisting of an amylosucrase enzyme, a recombinant microorganism producing the amylosucrase enzyme, a culture of the recombinant microorganism, and a lysate of the recombinant microorganism. Including, the manufacturing method. 제1항에 있어서, 탈염, 탈색, 농축, 결정화, 원심분리 및 여과로 이루어진 군에서 선택된 1종 이상의 단계를 추가로 포함하는, 제조방법.The method according to claim 1, further comprising at least one step selected from the group consisting of desalting, decoloring, concentration, crystallization, centrifugation and filtration. 제1항에 있어서, 상기 아밀로수크라제 효소는 아래 특성으로 이루어진 군에서 선택된 1종 이상의 특성을 갖는 것인, 제조방법:
(1) 단량체의 분자량이 65 내지 75 kDa
(2) 최적 온도가 30 내지 65℃
(3) 최적 pH가 6.0 내지 9.0.
The method of claim 1, wherein the amylosucrase enzyme has one or more properties selected from the group consisting of the following properties:
(1) the molecular weight of the monomer is 65 to 75 kDa
(2) The optimum temperature is 30 to 65 ° C.
(3) an optimum pH of 6.0 to 9.0.
제1항에 있어서, 상기 아밀로수크라제 효소는, 상기 반응 기질과 50℃의 온도 및 pH 6.0에서 24시간 동안 반응하여 얻어진 반응생성물 고형분 100중량%를 기준으로 투라노스 30 중량%이상, 올리고당 20중량%이하 및 트레할룰로스 7중량%이하로 포함하는 반응생성물을 제조하는 것을 특징으로 하는, 제조방법.The method of claim 1, wherein the amylosucrase enzyme is reacted with the reaction substrate at a temperature of 50 ° C. and pH 6.0 for 24 hours, based on 100% by weight of solid content of the reaction product, 30% by weight or more of turanose, oligosaccharide A method for producing a reaction product containing 20% by weight or less and 7% by weight or less of trehalulose. 삭제delete 삭제delete 삭제delete
KR1020180129298A 2018-10-26 2018-10-26 Method for preparing turanose KR102466543B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180129298A KR102466543B1 (en) 2018-10-26 2018-10-26 Method for preparing turanose

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180129298A KR102466543B1 (en) 2018-10-26 2018-10-26 Method for preparing turanose

Publications (2)

Publication Number Publication Date
KR20200047176A KR20200047176A (en) 2020-05-07
KR102466543B1 true KR102466543B1 (en) 2022-11-11

Family

ID=70733777

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180129298A KR102466543B1 (en) 2018-10-26 2018-10-26 Method for preparing turanose

Country Status (1)

Country Link
KR (1) KR102466543B1 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101177218B1 (en) * 2010-11-02 2012-08-27 세종대학교산학협력단 Preparation method of turanose using amylosucrase and sweetner using turanose

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Chromatography Research International, Vol. 2013, pp. 1-7 (2013.)*
Food Chemistry, Vol. 132, pp. 773-779 (2011.11.17.)*
NCBI GenBank Accession No. KFJ08006.1 (2014.08.18.)*

Also Published As

Publication number Publication date
KR20200047176A (en) 2020-05-07

Similar Documents

Publication Publication Date Title
US20210198648A1 (en) 3-Epimerase
AU2015236336B2 (en) Production of glucan polymers from alternate sucrose sources
KR102132381B1 (en) Ketose 3-epimerase produced by arthrobacter globiformis
CN112831485B (en) Low-temperature activity improved exoinulase mutant MutDR121EH9
KR101695831B1 (en) Saccharide mixture containing psicose with improved sweetness quality and crystallization
CN105821027B (en) Application of 3-epimerase
KR101807507B1 (en) Composition for preparing D-psicose comprising D-psicose 3-epimerase and salt, and method for preparing D-psicose using the same
CN112063666B (en) Application of recombinant sucrose isomerase in preparation of isomaltulose by converting sucrose
TW201823456A (en) A d-psicose 3-epimerase, methods for preparing d-psicose using the same, a polynucleotide encoding the same, a recombinant vector, a microorganism and a composition
CN108588149B (en) A fructus crataegi syrup and its preparation method
CN113174385B (en) Sucrose isomerase mutant with high activity and high conversion rate and application thereof
JP2023506154A (en) Allulose epimerization enzyme mutant, method for producing the same, and method for producing allulose using the same
WO2014025235A1 (en) Psicose epimerase and composition for conversion to psicose using same
KR102466543B1 (en) Method for preparing turanose
CN111455003A (en) Method for preparing D-psicose from microalgae
KR102004945B1 (en) Expression system for producing amylosucrase and method of producing turanose using the same
KR101708974B1 (en) Novel sucrose isomerase and process for preparing the same
KR102141174B1 (en) Expression system for producing amylosucrase and method of producing turanose using the same
KR102131638B1 (en) Hexuronate c4-epimerase variants with improved conversion activity from fructose to tagatose
CN114317509A (en) Cellobiose epimerase mutant and application thereof
CN106119235A (en) A kind of DPE deriving from bulkholderia cepasea and application thereof
CN108034649B (en) Glucose isomerase mutant and application thereof
CN111057698B (en) L-arabinose isomerase, mutant and application thereof
JP7535192B2 (en) Allulose epimerization enzyme mutant with excellent thermostability, its production method, and production method of allulose using the same
JP7445947B2 (en) Arabinose isomerase mutant

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant