KR102462735B1 - 압력 용기 내의 열 응력을 감소시키는 시스템 및 방법 - Google Patents

압력 용기 내의 열 응력을 감소시키는 시스템 및 방법 Download PDF

Info

Publication number
KR102462735B1
KR102462735B1 KR1020170169333A KR20170169333A KR102462735B1 KR 102462735 B1 KR102462735 B1 KR 102462735B1 KR 1020170169333 A KR1020170169333 A KR 1020170169333A KR 20170169333 A KR20170169333 A KR 20170169333A KR 102462735 B1 KR102462735 B1 KR 102462735B1
Authority
KR
South Korea
Prior art keywords
manifold
branch
connections
branch connections
steam
Prior art date
Application number
KR1020170169333A
Other languages
English (en)
Other versions
KR20180067438A (ko
Inventor
밴 댕
데니스 로버트 브루노
에드워드 마틴 오트만
얼리 페미아나
Original Assignee
제네럴 일렉트릭 컴퍼니
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 제네럴 일렉트릭 컴퍼니 filed Critical 제네럴 일렉트릭 컴퍼니
Publication of KR20180067438A publication Critical patent/KR20180067438A/ko
Application granted granted Critical
Publication of KR102462735B1 publication Critical patent/KR102462735B1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/18Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines
    • F22B1/1807Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines using the exhaust gases of combustion engines
    • F22B1/1815Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines using the exhaust gases of combustion engines using the exhaust gases of gas-turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/02Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
    • F22B37/10Water tubes; Accessories therefor
    • F22B37/20Supporting arrangements, e.g. for securing water-tube sets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22GSUPERHEATING OF STEAM
    • F22G1/00Steam superheating characterised by heating method
    • F22G1/16Steam superheating characterised by heating method by using a separate heat source independent from heat supply of the steam boiler, e.g. by electricity, by auxiliary combustion of fuel oil
    • F22G1/165Steam superheating characterised by heating method by using a separate heat source independent from heat supply of the steam boiler, e.g. by electricity, by auxiliary combustion of fuel oil by electricity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

시스템은 배기 가스를 이용하여 공급되는 공급수로부터 증기를 발생시키도록 구성된 열 회수 증기 발생기(HRSG)를 포함한다. HRSG는 공급되는 증기를 수용하여 해당 증기를 추가로 가열하도록 구성된 히터를 포함한다. 히터는 제1 매니폴드와 해당 제1 매니폴드의 제1 원주축을 중심으로 원주 방향으로 이격된 제1 세트의 분기 접속부를 포함한다. 분기 접속부는 각각 제1 매니폴드의 내강부 내로 증기의 유체 제트를 전달한다.

Description

압력 용기 내의 열 응력을 감소시키는 시스템 및 방법{SYSTEMS AND METHODS FOR REDUCING THERMAL STRESS IN PRESSURE VESSELS}
본 명세서에 개시된 주제는 열 회수 증기 발생(HRSG) 시스템에 관한 것이다. 더 구체적으로, 본 개시 내용은 HRSG 시스템 내에서 발견되는 압력 용기 내의 열 응력을 감소시키는 시스템 및 방법에 관한 것이다.
소정의 동력 장치는 복합 사이클을 포함한다. 복합 사이클은 예컨대, 폐열을 통해 정상적으로 소실되었을 에너지를 수집하는 것에 의해 에너지 효율을 더 크게 할 수 있다. 따라서, 복합 사이클은 폐열로부터의 에너지를 유용한 동력으로 변환시키는 시스템을 포함할 수 있다. 예를 들면, 복합 사이클 동력 발생 시스템은 가스 터빈 엔진 배기 가스를 이용하여 증기 터빈용 증기를 발생시키는 HRSG 시스템을 포함할 수 있다. 구체적으로, HRSG 시스템은 HRSG 내의 열 교환기를 통해 유동하는 유체를 가열하여 증기를 생성할 수 있으며, 해당 증기는 증기 터빈의 고압부, 중압부 및/또는 저압부에 사용될 수 있다. 일부의 상황에서, HRSG는 물을 취수하여 증기로 변환시킨 후 일련의 히터를 사용하여 증기를 추가로 가열할 수 있다. 히터는 압력 용기일 수 있는 매니폴드를 포함할 수 있다.
본 명세서에 개시된 소정의 실시예들을 아래에 요약하여 기술한다. 이들 양태들은 단지 독자들에게 이들 소정의 실시예들의 간단한 요약을 제공하도록 제시된 것이고 이들 양태들은 본 개시 내용의 범위를 한정하고자 의도된 것이 아님을 이해하여야 한다. 실제로, 본 개시 내용은 아래 언급되지 않을 수 있는 다양한 양태들을 포함할 수 있다.
제1 실시예에서, 시스템은 배기 가스를 이용하여 공급되는 공급수로부터 증기를 발생시키도록 구성된 열 회수 증기 발생기(HRSG)를 포함한다. HRSG는 공급되는 증기를 수용하여 해당 증기를 추가로 가열하도록 구성된 히터를 포함한다. 히터는 제1 매니폴드와 해당 제1 매니폴드의 제1 원주축을 중심으로 원주 방향으로 이격된 제1 세트의 분기 접속부를 포함한다. 분기 접속부는 각각 제1 매니폴드의 내강부(lumen) 내로 증기의 유체 제트를 전달한다.
제2 실시예에서, 시스템은 배기 가스를 이용하여 공급되는 공급수로부터 증기를 발생시키도록 구성된 열 회수 증기 발생기(HRSG)를 포함한다. HRSG는 공급되는 증기를 수용하여 해당 증기를 추가로 가열하도록 구성된 히터를 포함한다. 히터는 매니폴드와 해당 매니폴드의 원주축을 중심으로 원주 방향으로 이격되고 상기 매니폴드의 길이를 따라 이격된 다중 분기 접속부를 포함하며, 분기 접속부는 각각 매니폴드의 내강부 내로 증기의 유체 제트를 전달한다.
제3 실시예에서, 시스템은 배기 가스를 생성하도록 구성된 가스 터빈 엔진과 상기 가스 터빈 엔진으로부터 상기 배기 가스를 수용하도록 구성된 열 회수 증기 발생기(HRSG)를 포함하며, 상기 배기 가스는 공급되는 공급수로부터 증기를 발생시키는 데 사용된다. HRSG는 공급되는 증기를 수용하여 해당 증기를 추가로 가열하도록 구성된 히터를 포함한다. 히터는 매니폴드와 해당 매니폴드의 원주축을 중심으로 원주 방향으로 이격된 다중 분기 접속부를 포함하며, 분기 접속부는 각각 매니폴드의 내강부 내로 증기의 유체 제트를 전달한다. 시스템은 히터로부터 공급되는 증기를 수용하여 부하를 구동시키도록 구성된 증기 터빈을 더 포함한다.
본 개시 내용에서의 이들 및 다른 특징, 양태 및 장점은 도면 전체에 걸쳐 유사한 부분을 유사한 문자로서 나타내고 있는 첨부 도면을 참조로 하기의 설명을 판독시 더 잘 이해될 것이다. 도면에서:
도 1은 본 개시 내용의 실시예에 따른 열 회수 증기 발생기(HRSG) 시스템을 가지는 일 실시예의 복합 주기 시스템의 개략적인 흐름도이고;
도 2는 본 개시 내용의 실시예에 따라 하나 이상의 고압 히터를 포함하는 도 1의 HRSG 시스템의 일 실시예의 개략적인 흐름도이고;
도 3은 본 개시 내용의 실시예에 따라 매니폴드를 포함하는 도 2의 고압 히터의 일 실시예의 사시도이고;
도 4는 본 개시 내용의 실시예에 따른 도 3의 고압 히터의 매니폴드의 일 실시예의 단면도이고;
도 5는 본 개시 내용의 실시예에 따른 도 4의 매니폴드의 보강 접속부의 일 실시예의 상세 단면도이다.
하나 이상의 특정 실시예들을 아래에 설명한다. 이들 실시예를 간결하게 설명하기 위한 노력으로, 실제 구현예의 모든 특징부를 명세서에 기술하지 않을 수 있다. 임의의 엔지니어링 또는 설계 프로젝트에서와 같이 임의의 이러한 실제 구현예의 개발시에는 구현예마다 다를 수 있는 시스템-관련 및 사업-관련 제약의 준수와 같은 개발자의 특정 목표를 달성하기 위해 다수의 구현예에 특정된 결정을 행하여야 함을 알아야 한다. 더욱이, 이러한 개발의 노력은 복잡하고 시간 소모적일 수 있지만 그럼에도 불구하고 본 개시 내용의 이익을 가지는 통상의 기술자에게는 설계, 제작 및 제조의 일상적인 일일 것임을 알아야 한다.
본 발명의 다양한 실시예의 요소들을 도입시, 단수형 표현은 해당 요소가 하나 이상 존재함을 의미하고자 의도된 것이다. "포함하다", "가지다" 등의 용어는 포괄적이고자 의도된 것으로, 열거된 요소들이 아닌 추가의 요소가 존재할 수 있음을 의미한다.
개시된 실시예는 한정되는 것은 아니지만 복합 사이클 동력 장치(CCPP) 또는 통합형 가스화 복합 사이클(IGCC) 동력 장치와 같은 복합 사이클 시스템에 사용될 수 있는 열 회수 증기 발생기(HRSG)를 포함한다. HRSG는 가스 터빈 엔진으로부터의 배기 가스를 이용하여 증기 생성을 가능케 하는 다양한 구성 요소를 포함한다. HRSG에 의해 생성된 증기는 증기 터빈과 관련된 부하를 구동시키는 데 사용될 수 있다. HRSG 시스템은 증기 드럼, 증발기 및 이코노마이저(economizer)를 각각 포함하는 하나 이상의 압력부(예, 고압부(HP), 중압부(IP) 및 저압부(LP))를 포함할 수 있다. 구체적으로, 아래에 더 상세히 논의되는 바와 같이, 공급수가 압력부를 통해 전달될 수 있으며, 증기로 변환될 수 있다. 소정의 상황에서, HRSG의 HP부에서 방출되는 고압 증기는 과열 히터(예, 1차 고압 과열 히터, 최종 고압 과열 히터 등)와 재가열 히터(예, 1차 재가열 히터, 2차 재가열 히터 등)를 포함하는 하나 이상의 히터로 유도될 수 있다. 히터는 HP 증기를 과열시키고 결국 HP 증기를 증기 터빈의 HP 및/또는 IP 스테이지로 전달할 수 있다.
특히, 개시된 실시예는 개괄적으로 HRSG 시스템의 열 응력을 감소시키고 HRSG 시스템 내의 주기적 동작을 향상시키는 것을 보조할 수 있는 히터(예, 과열 히터와 재가열 히터)의 압력 용기를 위한 구성에 관련된 것이다. 구체적으로, 개시된 실시예는 열 응력을 감소시키고 히터에 대한 주기적 동작을 향상시키는 것을 보조하는 히터(예, 과열 히터와 재가열 히터)의 구성 요소의 구성 또는 배열에 관련된 것이다. 예를 들면, 본 개시 내용의 소정의 실시예에서, 히터의 매니폴드 및/또는 매니폴드에 결합된 하나 이상의 분기 접속부(예, 링크 관)의 구성은 HRSG 동작으로부터 기인하는 열 응력을 감소시키는 것을 보조하는 방식으로 변경될 수 있다. 특히, 매니폴드에 결합된 하나 이상의 분기 접속부의 형상, 크기 및/또는 배열은 열 응력을 감소시키고 주기적 동작을 향상시키도록 변경될 수 있다. 소정의 실시예에서, 예컨대, 매니폴드 주변의 복수의 분기 접속부의 원주 방향 분배는 효율을 향상시키고 균일한 온도 분포를 조장하도록 배열될 수 있다. 특히, 소정의 실시예에서, 분기 접속부는 매니폴드의 원주축을 따르고 매니폴드의 길이를 따라 대칭적으로 균일하게 이격될 수 있으며, 이는 분기 접속부 간의 열적 상호 작용과 매니폴드에 대한 전체 응력을 감소시킬 수 있다. 또한, 소정의 실시예에서, 복수의 분기 접속부 각각은 보강되되, 보강된 접속부의 벽의 두께가 매니폴드의 두께와 유사하도록 보강될 수 있다. 이 방식으로, 매니폴드의 벽의 두께가 최소화됨으로써 매니폴드에 대한 열 응력을 감소시킬 수 있다. 또한, 소정의 실시예에서, 각각의 분기 접속부가 매니폴드에 결합되는 각도는 각각의 분기 접속부로부터의 증기 유체 제트가 다른 분기 접속부로부터의 증기 유체 제트와 상호 작용하여 영향을 미치도록 배열될 수 있다.
이제 도면을 참조하며, 도 1은 가스 터빈(12), 증기 터빈(14) 및 HRSG 시스템(16)을 가지는 일 실시예의 복합 사이클 동력 발생 시스템(10)의 개략적인 흐름도이다. 시스템(10)은 발전기(18)(예, 부하)를 구동시키는 가스 터빈(12)을 포함할 수 있다. 발전기(18)는 예컨대, 전력을 발생시키는 전기 발전기일 수 있다. 또한, 가스 터빈(12)은 터빈(20), 연소기 또는 연소실(22) 및 압축기(24)를 포함할 수 있다. 소정의 실시예에서, 연소실(22)은 연소실(22)에 결합된 연료 가스 히터(25)로부터 천연 가스 및/또는 액체 연료를 수용할 수 있다. 일 실시예에서, 시스템(10)은 부하(26)를 구동시키는 증기 터빈(14)도 포함할 수 있다. 부하(26)는 전력을 발생시키는 전기 발전기일 수도 있다. 그러나, 발전기(18)와 부하(26)는 모두 가스 터빈(12)과 증기 터빈(14)에 의해 구동될 수 있는 다른 종류의 부하일 수 있다. 추가로, 가스 터빈(12)과 증기 터빈(14)은 예시된 실시예에서 보여지는 바와 같이 단일 샤프트 상에서 발전기(18)와 부하(26)를 함께 구동시키도록 동시에 사용되는 것으로 보이지만, 가스 터빈(12)과 증기 터빈(14)은 별도의 샤프트 상에서 발전기(18)와 부하(26)를 구동시키도록 사용될 수도 있다. 그러나, 가스 터빈(12)은 물론, 증기 터빈(14)의 특정 구성은 구현예에 특정될 수 있으며, 여러 부분의 임의의 조합을 포함할 수 있다.
시스템(10)은 다중-스테이지 HRSG(16)를 포함할 수도 있다. HRSG(16)의 구성 요소는 예시된 실시예에서 HRSG(16)의 단순화된 표현이며, HRSG(16)에 포함될 수 있는 것을 한정하고자 의도된 것이 아니다. 오히려, 예시된 HRSG(16)는 HRSG 시스템의 전반적인 동작을 전달하는 것으로 보여진다. 또한, HRSG(16)는 단일 스테이지 HRSG(16) 또는 임의의 다른 종류의 HRSG로서 제공될 수 있다. 가스 터빈(12)으로부터 나오는 가열된 배기 가스(34)는 HRSG(16) 내로 운반되어 증기 터빈(14)을 활성화시키는 데 사용되는 증기를 가열하도록 사용될 수 있다. 알 수 있는 바와 같이, 배기 가스(34)의 온도는 가스 터빈(12)의 연료 조성, 대기 조건, 및/또는 작동 조건을 포함하는 다수의 변수를 기초로 변할 수 있다. 예를 들면, 배기 가스(34)의 온도는 통상적인 작동 중에 약 300~750℃의 범위 내에서 변할 수 있다.
시스템(10)과 같은 복합 사이클 시스템에서, 고온 배기 가스(34)가 가스 터빈(12)으로부터 유동되어 HRSG(16)를 통과할 수 있으며, 하나 이상의 압력 레벨과 높은 온도로 증기를 발생시키는 데 사용될 수 있다. HRSG(16)에 의해 생성된 증기는 이후 동력 발생을 위해 증기 터빈(14)을 통과할 수 있다. 추가로, 생성된 증기는 과열된/포화된 증기가 사용될 수 있는 임의의 다른 프로세스에 공급될 수 있다. 가스 터빈(12) 사이클은 때로 "토핑(topping) 사이클" 또는 Brayton 사이클로 지칭되는 반면, 증기 터빈(14) 발생 사이클(예, 증기 사이클)은 "바터밍(bottoming) 사이클" 또는 Rankine 사이클로 지칭되곤 한다. 도 1에 예시된 바와 같이 이들 2가지 사이클을 결합시키는 것에 의해, 복합 사이클 동력 발생 시스템(10)은 결합된 플랜트에 대해 더 큰 전체 효율을 유도할 수 있다. 특히, 토핑 사이클로부터의 폐열이 수집되어 바터밍 사이클에 사용되는 증기를 발생시키도록 사용될 수 있다.
예시된 실시예에서, 증기 터빈(14)은 저압부(28)(LP ST), 중압부(30)(IP ST), 고압부(32)(HP ST)를 포함할 수 있다. 알 수 있는 바와 같이, 압력부(28, 30, 32) 각각은 배기 가스를 생성할 수 있다. 증기 터빈(14)의 저압부(28)로부터의 배기 가스는 응축기(38)로 유도될 수 있고 거기에서 액체 응축액으로 응축된다. 응축기(38)로부터의 응축액은 다시 응축액 펌프(40)의 도움으로 HRSG(16)의 저압부 측으로 유도될 수 있다. 또한, 응축액은 이후 응축액을 가열하는 데 사용되는 저압 이코노마이저(44)(LPECON)를 통해 유동될 수 있다. 저압 이코노마이저(44)로부터, 응축액은 응축액으로부터 증기를 생성하는 데 사용되는 압력 용기(48)를 가지는 저압 증발기(44)(LPEVAP)(예, 보일러) 내로 유도될 수 있다. 저압 증발기(46)로부터 생성된 증기는 저압 과열 히터(50)를 통해 유동될 수 있으며, 거기에서 과열된 후 증기 터빈(14)의 저압부(28)로 유도된다.
압력 용기(44)로 돌아가면, 가열된 응축액은 압력 용기(44)로부터 중압 펌프(52)를 통해 중압 이코노마이저(54)(IPECON) 측으로 펌핑되어 응축액에 추가의 열을 인가할 수 있다. 중압 이코노마이저(54)로부터, 응축액은 응축액으로부터 증기를 생성하는 데 사용되는 압력 용기(58)를 가지는 중압 증발기(56)(IPEVAP)(예, 보일러) 내로 유도될 수 있다. 중압 증발기(56)로부터의 증기는 중압 과ㅏ열 히터(60)로 유도될 수 있고, 거기에서 과열된다. 과열된 증기는 이후 증기 터빈(14)의 중압부(30)로 유도되기 전에 하나 이상의 재가열 히터(61)를 통해 유동될 수 있다. 예를 들면, 재가열 히터(61)는 1차 재가열 히터(62)와 2차 재가열 히터(64)를 포함할 수 있다. 예시된 바와 같이, 증기 터빈(14)의 중압부(30)로부터의 배기 가스는 증기 터빈(14)의 저압부(28) 내로 유도될 수 있다.
다시 압력 용기(48)로 돌아가면, 가열된 응축액이 압력 용기(48)로부터 고압 펌프(66)를 통해 제3 고압 이코노마이저(68)(HPECON #3) 측으로 펌핑되어 응축액에 추가의 열을 인가할 수 있다. 제3 고압 이코노마이저(68)로부터의 응축액은 제2 고압 이코노마이저(70)(HPECON #2)를 거친 후 제1 고압 이코노마이저(72)(HPECON #1)로 유도될 수 있고, 거기에서 추가로 가열된다. 제1 고압 이코노마이저(72)로부터의 응축액은 응축액으로부터 증기를 생성하는 데 사용되는 압력 용기(76)를 가지는 고압 증발기(74)(HPEVAP)(예, 보일러) 내로 유도될 수 있다. 고압 증발기(74)에서 나오는 증기는 하나 이상의 고압 과열 히터(77) 내로 유도될 수 있다. 예를 들면, 예시된 실시예에서, 고압 과열 히터(77)는 1차 고압 과열 히터(78)와 최종 고압 과열 히터(82)를 포함할 수 있다. 고압 과열 히터(77)는 증기를 과열시키고 결국 고압 증기를 증기 터빈(14)의 고압부(32)로 전달할 수 있다. 예시된 바와 같이, 증기 터빈(14)의 고압부(32)로부터의 배기 가스는 다시 1차 및 2차 재가열 히터(62, 64)를 통해 증기 터빈(14)의 중압부(30) 내로 유도될 수 있다.
증기 터빈(14)의 고압부(32)와 고압 증발기(74)로부터 히터(75)(예, 고압 과열 히터(77)와 재가열 히터(61)) 내로 유도되는 증기는 히터(75) 내의 하나 이상의 매니폴드(80)를 통과할 수 있다. HRSG(16)의 동작 중에, 히터(75)는 증기를 약 600℃로 가열하여 건조된 고온 증기를 발생시킬 수 있으며, 고온 발생 증기는 이후 증기 터빈(14)의 고압부(32) 또는 중압부(30) 내로 전달된다. 소정의 실시예에서, 각각의 히터(75)는 복수의 분기 접속부(84)(도 2 참조)에 결합되도록 구성될 수 있는 매니폴드(80)를 포함한다. 구체적으로, 분기 접속부는 매니폴드(80)의 길이를 따라 배열되고 매니폴드(80)에 의해 더 큰 주요 용기로 수집되어 히터(75)(예, 고압 과열 히터(77)와 재가열 히터(61)) 전체에 걸쳐 열 응력을 감소시키고 주기적 동작을 향상시키며 균일한 온도 분포를 조장하고 및/또는 각각의 분기 접속부(84)로부터의 증기 유체 제트를 사용하여 매니폴드(80) 내에서 서로 충돌시켜 와류를 발생시키는 것에 의해 히터(75)의 벽으로의 열 전달을 감소시키는 복수의 링크 관(예, 복수의 소구경 라인 또는 분기관)일 수 있다. 이들 및 다른 특징은 도 2~5를 참조로 추가로 상세히 설명한다.
도 2는 도 1의 HRSG(16)의 고압 과열 히터(77)의 일 실시예의 개략적인 흐름도이다. 이 예는 HRSG(16)의 고압 과열 히터(77)에 대한 매니폴드(80)의 사용을 논의하지만, 개시된 실시예는 HRSG(16)의 재가열 히터(61)(예, 1차 재가열 히터(62)와 2차 재가열 히터(64))에도 적용될 수 있음을 이해하여야 한다. 소정의 실시예에서, 고압 증발기(74)에서 나오는 증기는 직렬 구성으로 배열된 하나 이상의 고압 과열 히터(77) 내로 유도될 수 있다. 과열 히터(77)는 증기를 과열시켜 건조된 고온 증기를 발생시키도록 구성될 수 있으며, 고온 증기는 증기 터빈(14)의 고압부(32)로 전달될 수 있다. 예시된 실시예에서, 증기는 1차 고압 과열 히터(78)와 최종 고압 과열 히터(82) 내로 전달된다. 특히, 각각의 과열 히터(77)는 예컨대, 유입 매니폴드(90)와 유출 매니폴드(98)와 같은 매니폴드(80)(예, 고압 매니폴드(80))를 포함할 수 있다. 소정의 실시예에서, 각각의 매니폴드(80)는 하나 이상의 분기 접속부(84)(예, 링크 관)를 도 3과 관련하여 추가로 설명되는 바와 같이 매니폴드(80) 주변에 그 길이를 따른 특정 배열 또는 구성으로 집합시키도록 구성될 수 있다.
예시된 실시예에서, 고압 증발기(74)로부터의 증기는 먼저 1차 고압 과열 히터(78) 내로 전달된 후 최종 고압 과열 히터(82) 내로 전달될 수 있다. 다른 실시예에서, 추가의 과열 히터(77)들이 1차 및 최종 고압 과열 히터(78, 82)에 연속으로 배열될 수 있음을 알아야 한다. 각각의 과열 히터(77)에 대해, 증기는 예컨대 유입 매니폴드(90)를 통해 유입되어 유출 매니폴드(98)를 통해 유출되는 것과 같이 매니폴드(80)를 통해 출입될 수 있다. 예를 들면, 증기는 1차 고압 과열 히터(78)의 유입 매니폴드(90)에 유입되고, 1차 고압 과열 히터(78)의 복수의 분기 접속부(84)를 통해 전달되고, 1차 고압 과열 히터(78)의 유출 매니폴드(98)를 통해 유출될 수 있다. 유사하게, 증기는 최종 고압 과열 히터(82)의 유입 매니폴드(90)에 유입되고(1차 고압 과열 히터(78)의 유출 매니폴드(98)로부터), 최종 고압 과열 히터(82)의 복수의 분기 접속부(84)를 통해 전달되고, 최종 고압 과열 히터(82)의 유출 매니폴드(98)를 통해 유출될 수 있다.
소정의 실시예에서, 각각의 분기 접속부(84)는 분기 접속부(84)가 매니폴드(80)(즉, 과열 히터(77)의 유입 매니폴드(90)와 유출 매니폴드(98))에 결합되는 위치가 보강될 수 있다. 분기 접속부(84)는 이후 매니폴드(80) 근처에 배치된 하나 이상의 헤더(94)에 연결될 수 있다. 증기는 분기 접속부(84)로부터 하나 이상의 헤더(94)를 출입할 수 있다. 각각의 헤더(94)는 12개의 분기 접속부(84)에 연결될 수 있지만, 각 헤더(94)마다 임의의 수의 분기 접속부(84)(예, 6, 8, 10, 14, 16, 18, 20, 22, 24, 30, 50 또는 그 이상)가 존재할 수 있다. 예시된 실시예에서, 각각의 과열 히터(77)의 매니폴드(80)(예, 유입 매니폴드(90)와 유출 매니폴드(98)) 주위에 3개의 헤더(94)가 표현되어 있다. 다른 실시예에서, 임의의 수의 헤더(94)(예, 2, 4, 5, 6, 7 또는 그 이상)가 각각의 과열 히터(77)의 매니폴드(80) 주변에 배치될 수 있다.
소정의 실시예에서, 증기는 각각의 과열 히터(77)의 유입 매니폴드(90)에 있는 하나 이상의 헤더(94)로부터의 복수의 증기관(96)으로 유입될 수 있다. 소정의 실시예에서, 각각의 헤더(94)는 50개의 증기관(96)을 포함할 수 있지만, 헤더(94) 당 임의의 수의 증기관(96)(예, 10, 20, 30, 40, 50, 60, 70, 80 또는 그 이상)이 존재할 수 있다. 또한, 증기관(96)으로부터의 증기는 이후 각각의 과열 히터(77)의 유출 매니폴드(98) 주변의 헤더(94)에 유입될 수 있다. 소정의 실시예에서, 유출 매니폴드(98) 주변의 헤더(94)로부터의 증기는 증기를 각각의 과열 히터(77)의 유출 매니폴드(98)로 유도하는 분기 접속부(84)로 유입될 수 있다. 예를 들면, 각각의 과열 히터(77)의 유출 매니폴드(98) 측으로 각각의 헤더(94)를 빠져나가는 12개의 분기 접속부(84)가 존재할 수 있다. 그러나, 각각의 헤더(94)로부터 유출 매니폴드(98) 내로 전달하기 위해 임의의 수의 분기 접속부(84)가 사용될 수 있다. 소정의 실시예에서, 증기는 유출 매니폴드(98)에 결합된 증기관(100)을 통해 최종 고압 과열 히터(82)로부터 유출될 수 있다. 특히, 증기관(100)은 최종 고압 과열 히터(82)로부터 증기 터빈(14)의 고압부(32)까지 생성된 고온 증기를 취할 수 있다. 소정의 실시예에서, 생성된 증기는 과열된 증기가 사용될 수 있는 임의의 다른 프로세스에 공급될 수 있다.
소정의 실시예에서, 각각의 과열 히터(77)의 유출 매니폴드(98)에 매니폴드(80)가 존재할 수 있다.또한, 각각의 과열 히터(77)의 유입 매니폴드(90)에 매니폴드(80)가 존재할 수 있다. 각각의 과열 히터(77)의 유입 매니폴드(90)는 각각의 과열 히터(77)의 유출 매니폴드(98)의 거울 이미지일 수 있다. 과열 히터(77)의 하나 이상의 매니폴드(80)는 보강된 접속부(110)(도 3 참조)를 통해 다중 분기 접속부(84)에 결합되도록 구성될 수 있다. 소정의 실시예에서, 분기 접속부(84)는 하나 이상의 매니폴드(80)에 매니폴드(80) 둘레의 원주 방향 배열로 결합될 수 있으며, 매니폴드(80)의 길이(120)(도 3 참조)를 따라 분배될 수 있다. 소정의 실시예에서, 분기 접속부(84)는 분기 접속부(84)와 매니폴드(80) 간의 접합부(보강된 접속부(110))에서 보강될 수 있다.
도 3은 HRSG 시스템(16) 내의 헤더(75)의 유입 매니폴드(90) 및/또는 유출 매니폴드(98)와 같은 매니폴드(80)의 일부의 사시도이다. 예시된 실시예에서, 매니폴드(80)는 내강부(lumen)(112)를 가지는 환형 구조를 가질 수 있고, 매니폴드(80)의 길이(120)를 통해 증기가 유동될 수 있다. 특히, 각각의 분기 접속부(84)는 증기(증기의 유체 제트로서)를 매니폴드(80)의 벽을 통해 내강부(112) 내로 전달할 수 있어서, 각각의 분기 접속부(84)로부터의 증기는 내강부(112)를 통해 유동되는 증기 내에 합체된다. 소정의 실시예에서, 분기 접속부(84)도 역시 환형 구조를 가질 수 있다. 분기 접속부(84)는 분기 접속부(84)가 헤더(94)를 빠져나와 매니폴드(80)에 접근할 때 서로 평행하게 연장될 수 있다. 그러나, 분기 접속부(84)는 매니폴드(80)에 접근함에 따라 방향이 변할 수 있으므로, 각각의 분기 접속부(84)는 매니폴드(80)에 매니폴드(80)의 원주축(118) 주변으로 종축(116)을 따른 원주 방향의 배열로 결합된다.
소정의 실시예에서, 분기 접속부(84)는 각각 도 4 및 도 5를 참조로 추가로 설명되는 바와 같이 관부(92)와 보강된 접속부(110)를 가질 수 있다. 헤더(94)를 출입하는 다중 분기 접속부(84)는 보강된 접속부(110)를 통해 매니폴드(80)에 결합될 수 있다. 소정의 실시예에서, 분기 접속부(84)를 매니폴드(80)에 결합시키는 보강된 접속부(110)는 매니폴드(80)의 원주축(118)을 중심으로 원주 방향으로 균일하게 분배되고 매니폴드(80)의 종축(116)의 길이(120)를 따라 균일하게 분배될 수 있다. 이러한 분배 구성은 분기 접속부(84)가 매니폴드(80)를 대칭적인 방식으로 결합시킬 수 있도록 함으로써 각각의 분기 접속부(84)로부터의 증기가 매니폴드(80)의 내강부(112)에 유입될 때 균일한 열 분배가 가능해진다. 소정의 실시예에서, 균일한 열 분배는 적어도 부분적으로는 특정 위치에서 또는 매니폴드(80)의 특정 벽을 따른 열의 집중이 존재하지 않으므로, 매니폴드(80)에 대한응력을 감소시키는 데 도움이 될 수 있다. 그러나, 소정의 실시예에서, 분기 접속부(84)는 비대칭 방식으로 매니폴드(80)에 결합될 수 있다. 예를 들면, 소정의 실시예에서, 분기 접속부(84)를 매니폴드(80)에 결합시키는 보강된 접속부(110)는 매니폴드(80)의 원주축(118)을 중심으로 원주 방향으로 균일하지 않거나 임의로 그리고 매니폴드(80)의 종축(116)의 길이(120)를 따라 균일하지 않거나 임의의 분배될 수 있다.
예시된 실시예에서, 분기 접속부(84)는 보강된 접속부(110)를 통해 매니폴드(80)에 매니폴드(80)의 종축(116)을 따라 3개의 엇갈린 열로 결합된다. 그러나, 분기 접속부(84)와 보강된 접속부(110)는 매니폴드(80)의 길이를 따라 임의의 다른 배열로 배향될 수 있다. 분기 접속부의 이러한 특징 및 다른 특징은 도 4 및 도 5를 참조로 추가로 설명된다.
도 4는 HRSG 시스템(16) 내의 히터(75)(예, 과열 히터(77)와 재가열 히터(61))의 유입 매니폴드(90) 및/또는 유출 매니폴드998)와 같은 매니폴드(80)의 실시예의 단면도이다. 예시된 실시예에서, 매니폴드(80)에 3개의 분기 접속부(84)가 결합될 수 있다. 특히, 매니폴드의 길이(120)를 따른 특정 종방향 위치에서, 분기 접속부(84)는 매니폴드(80)의 원주축(118)을 중심으로 균일하게 분배될 수 있다. 예를 들면, 매니폴드 상의 특정 종방향 위치에서의 각각의 분기 접속부 사이의 분리의 각도는 동일할 수 있다. 또한, 원주축(118)을 중심으로 한 균일한 분배는 매니폴드의 길이(120)를 따라 다른 종방향 위치에서 반복될 수 있다. 예를 들면, 매니폴드(80)의 길이(120)를 따라 원주 방향으로 균일하게 이격된 3개의 분기 접속부(84)의 그룹이 균일하게 분배될 수 있다. 이 방식으로, 분기 접속부(84)는 매니폴드(80)의 길이(120)를 따라 서로 평행하게 연장되는 3개의 열로 배열될 수 있다(도 3 참조).
소정의 실시예에서, 보강된 접속부(110)를 통해 매니폴드(80)에 결합된 분기 접속부(84)는 분리된 분기 접속부(84)로부터의 증기의 유체 제트(126)가 매니폴드(80)로 유입될 때 서로 충격될 수 있도록 매니폴드(80)를 따라 그리고 매니폴드를 중심으로 한 방식으로 배열될 수 있다. 분기 접속부(84)로부터의 증기의 유체 제트(126)의 이러한 상호 작용은 매니폴드(80)의 내부에 수집된 증기에 와류(128)를 야기할 수 있다. 따라서, 분기 접속부(84)를 이 방식으로 배열하는 것은 분기 접속부(84)로부터의 증기의 유체 제트(126)가 매니폴드(80)의 내부면(136)에 직접 접촉되기보다는 서로 충돌되게 할 수 있다. 또한, 매니폴드(80) 내부의 증기의 와류(128)는 매니폴드(80)의 내벽(136)과 내부 챔버(내강부(112))에 대한 응력을 감소시키는 데 도움이 될 수 있다. 소정의 실시예에서, 분기 접속부(84)는 매니폴드80) 내로 유입되는 증기의 유체 제트(126)가 서로 직접적으로 상호 작용하지 않을 수 있도록 엇갈림 배열로 배열될 수 있다. 매니폴드(80) 내로 유입되는 증기의 유체 제트(126)는 매니폴드(80)의 길이(120)를 따라 복수의 위치에서 유입되는 흐름(126)에 기인하여 와류(128)를 발생시킬 수 있다. 증기의 유체 제트(126)는 이후 유입시 와류(128)와 상호 작용하여 매니폴드(80)에 대한 응력을 감소시키는 데 도움이 될 수 있다.
예시된 실시예에서, 분기 접속부(84)는 각각 각각의 분기 접속부(84)의 보강된 접속부(110)의 길이를 따라 연장되는 축(122)을 포함할 수 있다. 각각의 보강된 접속부(110)의 축(122)은 매니폴드(80)의 종축(116)에 수직할 수 있다. 소정의 실시예에서, 매니폴드(80) 주변으로 원주 방향으로 이격된(원주축(118)을 중심으로) 각각의 분기 접속부(84) 사이의 간격은 하나의 분기 접속부(84)의 축(122)으로부터 인접하는 분기 접속부(84)의 축(122)까지 120°의 각도일 수 있다. 이 각도는 매니폴드(80)에 결합된 분기 접속부(84)의 수와 매니폴드(80)의 길이(20)를 따라 배열된 분리 접속부(84)의 열의 수에 따라 120°보다 크거나 작을 수 있다. 매니폴드(80)에 결합된 분기 접속부(84)는 임의의 개수가 존재할 수 있으며, 분기 접속부(84)는 매니폴드(80)의 주변과 길이를 따라 다양한 배열로 존재할 수 있음을 알아야 한다. 예를 들면, 소정의 실시예에서, 분기 접속부(84)는 매니폴드(80)의 길이(120)를 따라 특정 종방향 위치에 원주 방향으로 임의로 또는 불균일하게 분배될 수 있다. 또한, 분기 접속부(84)는 매니폴드(80)의 길이(120)를 따라 임의로 또는 불균일하게 분배될 수 있다.
소정의 실시예에서, 분기 접속부(84)의 각각의 관부(92)는 직경(132)을 가질 수 있다. 분기 접속부(84)의 보강된 접속부(110) 각각은 직경(130)을 가질 수 있다. 소정의 실시예에서, 보강된 접속부(110)의 직경(130)은 분기 접속부(84)의 직경보다 클 수 있다. 또한, 분기 접속부(84)는 분기 접속부(84)의 관부(92)의 직경(132)이 보강된 접속부(110)의 직경(130)까지 증가하는 위치에 테이퍼진 엣지(134)를 가질 수 있다. 소정의 실시예에서, 분기 접속부(84)의 내강부의 직경과 보강된 접속부(110)의 내강부의 직경은 동일할 수 있다. 따라서, 직경(132)에 비해 큰 직경(130)은 보강된 접속부(110)의 벽이 분기 접속부(84)의 관부(92)의 벽보다 두꺼울 수 있음을 나타낼 수 있다. 보강된 접속부(110)의 벽 두께는 도 5를 참조로 더 상세히 논의될 것이다.
도 5는 히터(75)(예, 과열 히터(77)와 재가열 히터(61))에 배치된 분기 접속부(84)의 보강된 접속부(110)의 상세 단면도이다. 상세도는 분기 접속부(84)의 관부(92)의 직경(132)이 보강된 접속부(110)의 직경(130)보다 작을 수 있음을 보여준다. 분기 접속부(84)의 테이퍼진 엣지(134)는 분기 접속부(84)의 관부(92)가 보강된 접속부(110)에 결합될 때 직경(132)으로부터 직경(130)까지 외측으로 증가할 수 있다. 소정의 실시예에서, 테이퍼진 엣지(134)는 관부(92)로부터 보강된 접속부(110)까지 점차적으로 직경을 증가시키도록 하나 이상의 스텝부를 포함할 수 있다. 예시된 실시예에서, 보강된 접속부(110)가 제1 두께(140)로 존재할 수 있는 데, 이는 관부(92)의 내강부가 보강된 접속부(110)의 내강부와 동일하도록 할 수 있게 한다. 또한, 매니폴드(80)의 벽이 제2 두께(142)로 존재할 수 있다. 제1 두께(140)는 제2 두께(142)와 유사할 수 있어서, 보강된 접속부(110)의 벽과 매니폴드(80)의 벽의 두께가 유사함을 나타낸다. 보강된 접속부(110)와 매니폴드(80)의 벽의 두께(제1 및 제2 두께(140, 142))의 유사성은 매니폴드(80)의 벽의 두께(142)를 증가시키지 않고 매니폴드(80)에 대한 압력을 감소시키는 데 도움이 될 수 있다. 이 방식으로, 보강된 접속부(110)의 벽을 두껍게 하는 것은 매니폴드(80)를 강화시키며, 매니폴드(80)의 벽을 얇게 하는 것을 가능케 할 수 있어서 매니폴드(80)에 대한 열 응력을 감소시킬 수 있다.
개시된 실시예의 기술적 효과는 매니폴드의 주기적 동작을 향상시킴은 물론, HRSG의 고압 과열 히터와 재가열 히터 내의 하나 이상의 매니폴드에 부여되는 응력의 감소에 도움이 된다. 분기 접속부로부터 매니폴드로 유입되는 증기의 유체 제트는 과열 히터 내의 증기가 600℃ 이상까지 가열될 수 있으므로 매니폴드에 대한 열 응력을 야기할 수 있다. 매니폴드의 벽 두께와 유사한 벽 두께를 가지는 보강된 접속부는 매니폴드의 벽을 얇게 하는 것을 가능케 할 수 있다. 매니폴드의 얇은 벽은 매니폴드가 더 깨짐에 강하게 할 수 있으므로 매니폴드의 사이클링 능력을 향상시킬 수 있다. 더욱이, 매니폴드의 주변으로 길이를 따른 분기 접속부의 결합의 원주 방향 배열은 증기의 유체 제트가 매니폴드에 수집될 때 매니폴드에 대한 응력의 감소에 더 도움이 될 수 있다. 매니폴드에 유입되는 증기의 유체 제트의 균일하게 이격된 원주 방향의 분배는 증기의 유체 제트가 매니폴드의 벽보다는 서로 충돌하도록 하게 할 수 있다.
기술된 설명은 여러 예를 이용하여 최상의 모드를 포함하여 여기 논의된 개념들을 개시하고, 충분한 개시를 통해 임의의 장치 또는 시스템을 제작 및 사용하고 임의의 통합된 방법을 수행하는 것을 포함하여 당업자가 본 발명을 실시할 수 있게 한다. 본 개시 내용의 특허 가능한 범위는 청구범위에 의해 정해지며, 당업자가 안출할 수 있는 다른 예를 포함할 수 있다. 이러한 다른 예는 청구범위의 문자 언어와 다르지 않은 구조적 요소를 포함하는 경우 또는 청구범위의 문자 언어와의 차이가 실질적이지 않은 등가의 구조적 요소를 포함하는 경우 청구범위의 범위 내에 있는 것으로 의도된 것이다.

Claims (20)

  1. 배기 가스를 이용하여 공급되는 공급수로부터 증기를 발생시키도록 구성된 열 회수 증기 발생기(HRSG)를 포함하고, 상기 HRSG는:
    공급되는 증기를 수용하고 이 증기를 더 가열하도록 구성된 히터를 포함하고, 상기 히터는 제1 매니폴드와 제1의 복수의 분기 접속부를 포함하고, 상기 제1의 복수의 분기 접속부는 적어도 3개의 분기 접속부들을 포함하고, 상기 제1 매니폴드는 상기 제1 매니폴드의 제1 중심축 주위로 완전히 연장되는 제1 원주 전체 주위에 배치되는 제1 벽을 포함하고, 상기 제1의 복수의 분기 접속부는 상기 제1 매니폴드의 제1 원주 전체에 대해 원주 방향으로 균일하게 이격되고, 상기 제1의 복수의 분기 접속부의 분기 접속부는 각각 상기 제1 매니폴드의 내강부 내로 증기의 유체 제트를 전달하는 것인 시스템.
  2. 제1항에 있어서, 상기 히터는 제2 매니폴드와 제2의 복수의 분기 접속부를 포함하고, 상기 제2의 복수의 분기 접속부는 적어도 3개의 분기 접속부들을 포함하고, 상기 제2 매니폴드는 상기 제2 매니폴드의 제2 중심축 주위로 완전히 연장되는 제2 원주 전체 주위에 배치되는 제2 벽을 포함하고, 상기 제2의 복수의 분기 접속부들은 상기 제2 매니폴드의 상기 제2 원주 전체에 대해 원주 방향으로 균일하게 이격되고, 상기 제2의 복수의 분기 접속부의 분기 접속부는 각각 상기 제2 매니폴드로부터 증기의 유체 제트를 전달하는 것인 시스템.
  3. 제2항에 있어서, 상기 제1 매니폴드와 상기 제1의 복수의 분기 접속부는 복수의 증기관을 통해 상기 제2 매니폴드와 상기 제2의 복수의 분기 접속부에 유체 연통 가능하게 결합된 것인 시스템.
  4. 제1항에 있어서, 상기 제1의 복수의 분기 접속부의 분기 접속부는 각각 보강된 접속부에 고정식으로 결합되는 관부를 포함하고, 상기 제1의 복수의 분기 접속부의 분기 접속부는 각각 상기 보강된 접속부에 의해 상기 제1 매니폴드에 고정식으로 결합된 것인 시스템.
  5. 제4항에 있어서, 상기 보강된 접속부의 제1 내경은 상기 관부의 제2 내경과 동일한 치수를 가지며, 상기 보강된 접속부의 제1 외경은 상기 관부의 제2 외경보다 큰 것인 시스템.
  6. 제4항에 있어서, 상기 보강된 접속부의 제1 벽 두께는 상기 제1 매니폴드의 제2 벽 두께의 절반보다 적어도 큰 것인 시스템.
  7. 제4항에 있어서, 상기 제1의 복수의 분기 접속부의 분기 접속부는 각각 상기 관부와 상기 보강된 접속부 사이에 테이퍼진 엣지를 포함하는 것인 시스템.
  8. 제1항에 있어서, 상기 제1의 복수의 분기 접속부는 상기 제1 매니폴드의 제1 원주축을 중심으로 대칭으로 그리고 균일하게 이격된 것인 시스템.
  9. 제1항에 있어서, 상기 제1의 복수의 분기 접속부는 상기 제1 매니폴드의 길이를 따라 균일하게 이격된 것인 시스템.
  10. 제1항에 있어서, 상기 제1의 복수의 분기 접속부의 제1 분기 접속부는 상기 제1 매니폴드의 내강부 내로 제1의 증기의 유체 제트를 제1 각도로 전달하며, 상기 제1의 복수의 분기 접속부의 제2 분기 접속부는 상기 제1 매니폴드의 내강부 내로 제2의 증기의 유체 제트를 상기 제1 각도와 다른 제2 각도로 전달하는 것인 시스템.
  11. 제10항에 있어서, 상기 제1의 증기의 유체 제트와 상기 제2의 증기의 유체 제트는 상기 제1 매니폴드를 통해 와류를 발생시키도록 상기 내강부 내에서 서로 충돌되는 것인 시스템.
  12. 제1항에 있어서, 상기 HRSG는 상기 공급되는 증기를 복합 사이클 시스템의 증기 터빈 내로 전달하는 것인 시스템.
  13. 배기 가스를 이용하여 공급되는 공급수로부터 증기를 발생시키도록 구성된 열 회수 증기 발생기(HRSG)를 포함하고, 상기 HRSG는:
    매니폴드와 복수의 분기 접속부를 포함하는 히터를 포함하고, 상기 복수의 분기 접속부는 적어도 3개의 분기 접속부들을 포함하고, 상기 매니폴드는 상기 매니폴드의 중심축 주위로 완전히 연장되는 원주 전체 주위에 배치되는 벽을 포함하고, 상기 복수의 분기 접속부들은 상기 매니폴드의 원주 전체에 대해 원주 방향으로 균일하게 이격되는 것인 시스템.
  14. 제13항에 있어서, 상기 매니폴드의 벽은 환형이고, 상기 복수의 분기 접속부는 상기 매니폴드의 길이를 따라 균일하게 이격되는 것인 시스템.
  15. 제13항에 있어서, 상기 복수의 분기 접속부의 분기 접속부는 각각 상기 매니폴드의 내강부 내로 증기의 유체 제트를 전달하고, 제1의 증기의 유체 제트와 제2의 증기의 유체 제트는 상기 매니폴드를 내에 와류를 형성하도록 상기 내강부 내에서 충돌하는 것인 시스템.
  16. 제13항에 있어서, 상기 복수의 분기 접속부의 분기 접속부는 각각 보강된 접속부에 고정식으로 결합된 관부를 포함하고, 상기 복수의 분기 접속부의 분기 접속부는 각각 상기 보강된 접속부에 의해 상기 매니폴드에 고정식으로 결합된 것인 시스템.
  17. 제16항에 있어서, 상기 보강된 접속부의 제1 직경은 상기 관부의 제2 직경보다 크며, 상기 보강된 접속부의 제1 벽 두께는 상기 매니폴드의 제2 벽 두께의 절반보다 적어도 큰 것인 특징으로 하는 시스템.
  18. 열 회수 증기 발생기(HRSG)의 흐름을 분배하기 위한 시스템으로서, 상기 시스템은:
    상기 HSRG의 매니폴드로서, 상기 매니폴드의 중심축 주위로 완전히 연장되는 원주 전체 주위에 배치되는 벽을 포함하는 것인 매니폴드; 및
    상기 매니폴드의 원주 전체에 대해 원주 방향으로 균일하게 이격되는 복수의 분기 접속부로서, 적어도 3개의 분기 접속부를 포함하는 복수의 분기 접속부
    를 포함하는 것인 시스템.
  19. 제18항에 있어서, 상기 복수의 분기 접속부의 분기 접속부는 각각 보강된 접속부에 고정식으로 결합되는 관부를 포함하고, 상기 복수의 분기 접속부의 분기 접속부 각각은 상기 보강된 접속부에 의해 상기 매니폴드에 고정식으로 결합되는 것인 시스템.
  20. 제19항에 있어서, 상기 보강된 접속부의 제1 벽 두께는 상기 매니폴드의 제2 벽 두께의 절반보다 적어도 큰 것인 시스템.
KR1020170169333A 2016-12-12 2017-12-11 압력 용기 내의 열 응력을 감소시키는 시스템 및 방법 KR102462735B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15/376,392 US10415433B2 (en) 2016-12-12 2016-12-12 Systems and methods for reducing thermal stress in pressure vessels
US15/376,392 2016-12-12

Publications (2)

Publication Number Publication Date
KR20180067438A KR20180067438A (ko) 2018-06-20
KR102462735B1 true KR102462735B1 (ko) 2022-11-02

Family

ID=62488154

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170169333A KR102462735B1 (ko) 2016-12-12 2017-12-11 압력 용기 내의 열 응력을 감소시키는 시스템 및 방법

Country Status (2)

Country Link
US (1) US10415433B2 (ko)
KR (1) KR102462735B1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10472993B2 (en) * 2017-12-04 2019-11-12 General Electric Company Output manifold for heat recovery steam generations
US11060421B2 (en) 2017-12-04 2021-07-13 General Electric Company System to aggregate working fluid for heat recovery steam generators

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016205806A (ja) * 2015-04-17 2016-12-08 ゼネラル エレクトリック テクノロジー ゲゼルシャフト ミット ベシュレンクテル ハフツングGeneral Electric Technology GmbH 排熱回収蒸気発生器のためのカラーに支持された耐圧部

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4075838B2 (ja) * 2003-06-27 2008-04-16 株式会社デンソー 配管継手装置
DE102004046548B3 (de) * 2004-09-20 2005-06-23 Festo Ag & Co. Anschlussvorrichtung für Fluidleitungen
US7360718B2 (en) * 2004-11-12 2008-04-22 Rain Bird Corporation Sprinkler housing with side inlet
US7770544B2 (en) * 2004-12-01 2010-08-10 Victory Energy Operations LLC Heat recovery steam generator
KR20130024019A (ko) * 2011-08-30 2013-03-08 주식회사 유엠하이텍 응축기용 냉매파이프 고정구조 및 그 고정방법
US20150239198A1 (en) * 2014-02-26 2015-08-27 Fts Co., Ltd. Attaching structure of insert member to blow molded article
CA2875512C (en) * 2014-12-18 2015-12-08 Westport Power Inc. Sealing structure for gaseous fuel
US20160290235A1 (en) * 2015-04-02 2016-10-06 General Electric Company Heat pipe temperature management system for a turbomachine
US9797310B2 (en) * 2015-04-02 2017-10-24 General Electric Company Heat pipe temperature management system for a turbomachine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016205806A (ja) * 2015-04-17 2016-12-08 ゼネラル エレクトリック テクノロジー ゲゼルシャフト ミット ベシュレンクテル ハフツングGeneral Electric Technology GmbH 排熱回収蒸気発生器のためのカラーに支持された耐圧部

Also Published As

Publication number Publication date
KR20180067438A (ko) 2018-06-20
US20180163573A1 (en) 2018-06-14
US10415433B2 (en) 2019-09-17

Similar Documents

Publication Publication Date Title
US7874162B2 (en) Supercritical steam combined cycle and method
US6499302B1 (en) Method and apparatus for fuel gas heating in combined cycle power plants
US20070017207A1 (en) Combined Cycle Power Plant
EP2584157B1 (en) Heat recovery steam generator and methods of coupling same to a combined cycle power plant
CN109653875B (zh) 用于燃烧涡轮发动机的燃料预热系统
US9188028B2 (en) Gas turbine system with reheat spray control
US20130074508A1 (en) Fuel Heating in Combined Cycle Turbomachinery
JP2010031867A (ja) 複合サイクル発電プラント用排熱回収ボイラ
RU2662257C2 (ru) Интегрированная система утилизации тепла дымовых газов
JP2010038162A (ja) 複合サイクル発電プラントにおいて燃料を予熱するためのシステム及びアセンブリ
KR102462735B1 (ko) 압력 용기 내의 열 응력을 감소시키는 시스템 및 방법
EP2604821B1 (en) System and method for thermal control in a gas turbine engine
US9074491B2 (en) Steam cycle system with thermoelectric generator
US10287922B2 (en) Steam turbine plant, combined cycle plant provided with same, and method of operating steam turbine plant
US20180066548A1 (en) Combined cycle power plant having an integrated recuperator
US20140069078A1 (en) Combined Cycle System with a Water Turbine
EP3318733B1 (en) Feedwater bypass system for a desuperheater
RU2561776C2 (ru) Парогазовая установка
RU126373U1 (ru) Парогазовая установка
RU2391517C2 (ru) Парогазовая установка
RU2078229C1 (ru) Парогазовая установка
CN109804140B (zh) 蒸汽和燃气轮机装置
RU2643510C1 (ru) Тепловая система газоохлаждаемого реактора атомной энергетической установки
RU89666U1 (ru) Прямоточный котел-утилизатор для парогазовой установки
JP2014190194A (ja) ガスタービンプラント、及びガスタービンプラントの運転方法

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant