KR102459438B1 - Solid oxide fuel cell having co-ionic conductor electrolyte with improved durability and manufacturing method thereof - Google Patents

Solid oxide fuel cell having co-ionic conductor electrolyte with improved durability and manufacturing method thereof Download PDF

Info

Publication number
KR102459438B1
KR102459438B1 KR1020200117714A KR20200117714A KR102459438B1 KR 102459438 B1 KR102459438 B1 KR 102459438B1 KR 1020200117714 A KR1020200117714 A KR 1020200117714A KR 20200117714 A KR20200117714 A KR 20200117714A KR 102459438 B1 KR102459438 B1 KR 102459438B1
Authority
KR
South Korea
Prior art keywords
doped
layer
electrolyte
fuel cell
bcy
Prior art date
Application number
KR1020200117714A
Other languages
Korean (ko)
Other versions
KR20220035679A (en
KR102459438B9 (en
Inventor
임형태
김영제
아티프 칸 니아즈
Original Assignee
창원대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 창원대학교 산학협력단 filed Critical 창원대학교 산학협력단
Priority to KR1020200117714A priority Critical patent/KR102459438B1/en
Publication of KR20220035679A publication Critical patent/KR20220035679A/en
Application granted granted Critical
Publication of KR102459438B1 publication Critical patent/KR102459438B1/en
Publication of KR102459438B9 publication Critical patent/KR102459438B9/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • H01M8/126Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides the electrolyte containing cerium oxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8882Heat treatment, e.g. drying, baking
    • H01M4/8885Sintering or firing
    • H01M4/8889Cosintering or cofiring of a catalytic active layer with another type of layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • H01M4/9025Oxides specially used in fuel cell operating at high temperature, e.g. SOFC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1213Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1213Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material
    • H01M8/1226Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material characterised by the supporting layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • H01M8/1253Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides the electrolyte containing zirconium oxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0094Composites in the form of layered products, e.g. coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

The present invention relates to a solid oxide fuel cell including a co-ionic conductor electrolyte having improved durability and a manufacturing method thereof, which comprises: a negative electrode support layer; a negative electrode functional layer; a BCY-GDC electrolyte layer including yttria-doped barium cerates (BCY) and gadolinium-doped ceria (GDC); a BZY-NDC electrolyte layer including a yttria-doped barium zirconate (BZY) and a neodymium-doped ceria (NDC); and a positive electrode functional layer, wherein the above-mentioned layers are sequentially stacked. The solid oxide fuel cell according to the present invention has the co-ionic conductor electrolyte layer in a bilayer structure, which includes the BCY-GDC layer in contact with the negative electrode and the BZY-NDC layer in contact with the positive electrode, thereby realizing the co-ionic conductor electrolyte fuel cell having high durability, which keeps advantages of the co-ionic conductor electrolyte, such as prevention of fuel dilution and degradation at high temperature intact and prevents the electrode from being separated from the electrolyte even under a condition of a reverse voltage operation.

Description

내구성이 향상된 혼합이온 전도체 전해질 포함 고체산화물 연료전지 및 그 제조방법{SOLID OXIDE FUEL CELL HAVING CO-IONIC CONDUCTOR ELECTROLYTE WITH IMPROVED DURABILITY AND MANUFACTURING METHOD THEREOF}Solid oxide fuel cell including mixed ion conductor electrolyte with improved durability and manufacturing method thereof

본 발명은 고체산화물 연료전지 및 그 제조방법에 대한 것으로서, 보다 상세하게는, 역전압(negative cell voltage) 운전 조건 하에서도 전극과 전해질 간의 계면 박리가 일어나지 않는 내구성이 우수한 혼합이온 전도체 전해질 포함 고체산화물 연료전지 및 그 제조방법에 대한 것이다. The present invention relates to a solid oxide fuel cell and a method for manufacturing the same, and more particularly, to a solid oxide containing a mixed ion conductor electrolyte having excellent durability in which interfacial delamination between an electrode and an electrolyte does not occur even under a negative cell voltage operating condition. It relates to a fuel cell and a method for manufacturing the same.

제3세대인 고체산화물 연료전지(SOFC)는 연료의 다양성 및 고효율과 같은 장 점을 가지고 있다. 최근 고온 고체산화물 연료전지의 가장 큰 문제점인 고온 열화를 방지할 수 있는 저온형 고체산화물 연료전지에 대한 연구가 활발히 진행되고 있다. The third-generation solid oxide fuel cell (SOFC) has advantages such as variety of fuels and high efficiency. Recently, research on a low-temperature solid oxide fuel cell capable of preventing high-temperature degradation, which is the biggest problem of a high-temperature solid oxide fuel cell, is being actively conducted.

저온형 고체산화물 연료전지 전해질은 크게 이온 전도체인 세리아계 전해질 [Gd0.2Ce0.2O2-d (GDC) 또는 Nd0.1Ce0.9O2-d (NCD)]과 프로톤(수소이온) 전도체인 페롭스카이트 산화물계 전해질[perovskite oxide, BaCe0.85Y0.15O3-d (BCY) 또는 BaZr0.85Y0.15O3-d (BZY)]로 나눌 수 있다. GDC와 NDC는 저온에서 우수한 전도도를 나타내는 반면, 세리아의 환원 문제로 인한 누설 전류 발생, 개방회로 전압(OCV) 저하, 화학적 안정성 문제로 실제 스택 적용에 어려움을 겪고 있다. 프로톤 전도체의 경우, BCY는 수증기와 이산화탄소 분위기에서 화학적으로 불안정하며 BZY는 화학적 안정성이 우수한 반면 소결성이 떨어져 결정립계 저항 증가와 같은 문제를 가지고 있다. Low-temperature solid oxide fuel cell electrolytes are mainly composed of ceria-based electrolytes [Gd 0.2 Ce 0.2 O 2-d (GDC) or Nd 0.1 Ce 0.9 O 2-d (NCD)], which are ionic conductors, and perovsky, which are proton (hydrogen ions) conductors. It can be divided into perovskite oxide, BaCe 0.85 Y 0.15 O 3-d (BCY) or BaZr 0.85 Y 0.15 O 3-d (BZY)]. While GDC and NDC show excellent conductivity at low temperature, they are having difficulties in practical stack application due to leakage current caused by ceria reduction problem, open circuit voltage (OCV) lowering, and chemical stability problems. In the case of proton conductors, BCY is chemically unstable in water vapor and carbon dioxide atmosphere, and while BZY has excellent chemical stability, it has problems such as increased grain boundary resistance due to poor sinterability.

최근 이와 같은 단점을 상호 보완할 수 있는 산소이온 전도성 전해질과 프 로톤 전도성 전해질을 결합한 혼합이온 전도체(co-ionic conductor) 전해질이 주목받고 있다. 두 가지 타입의 전해질을 복합체로 구성함으로써 세리아계의 화학적 안정성은 증대시키고 높은 OCV를 확보할 수 있을 뿐 아니라, 페롭스카이트 산화물계의 난소결성 문제를 해결할 수 있다. 또한, 산소이온과 수소이온을 모두 전달할 수 있기 때문에 연료전지 부산물 수증기가 연료극과 공기극 양쪽 모두에 형성되어 연료극에서의 연료 희석 문제를 해결할 수 있다(도 1). Recently, a co-ionic conductor electrolyte that combines an oxygen ion conductive electrolyte and a proton conductive electrolyte that can compensate for these shortcomings is attracting attention. By composing the two types of electrolytes as a composite, the chemical stability of the ceria system can be increased and high OCV can be secured, and the problem of sinterability of the perovskite oxide system can be solved. In addition, since both oxygen ions and hydrogen ions can be transferred, water vapor, a fuel cell by-product, is formed at both the anode and the cathode, thereby solving the fuel dilution problem at the anode ( FIG. 1 ).

한편, 연료전지의 기전력은 단위 셀 하나 당 최대 1V 이기 때문에 원하는 출력을 얻기 위해서는 직렬로 여러 장의 셀을 스태킹(stacking)하는 단계가 필요하다. 스택 내에서 하나의 셀이 큰 성능 편차를 보인다면 낮은 성능을 보이는 셀이 임계 전류 값 이상에서 역전압(negative cell voltage)으로 작동하여 산소분압이 증가하게 됨으로써 전극/전해질 박리로 이어져 스택 전체의 작동이 멈추게 된다(도 2). 따라서, 단위 셀을 개발할 때 이와 같은 작동 조건 및 환경을 충분히 고려해야 스택 적용 시 단위 셀의 내구성을 확보할 수 있다. Meanwhile, since the electromotive force of the fuel cell is at most 1V per unit cell, a step of stacking several cells in series is required to obtain a desired output. If one cell in the stack exhibits a large performance deviation, the cell with low performance operates with a negative cell voltage above the critical current value and the oxygen partial pressure increases, leading to electrode/electrolyte delamination and operation of the entire stack This stops (FIG. 2). Therefore, it is possible to secure the durability of the unit cell when the stack is applied by sufficiently considering such operating conditions and environment when developing the unit cell.

앞서 언급한 혼합이온 전도체 전해질(BCY-GDC, BZY-NDC 등)의 경우, 역전압 작동 조건에서 셀 전압 강하가 크게 일어나는 불안정한 거동을 보이는 것으로 보고된 바 있다. In the case of the aforementioned mixed ion conductor electrolytes (BCY-GDC, BZY-NDC, etc.), it has been reported that the cell voltage drop significantly occurs under reverse voltage operating conditions and exhibits unstable behavior.

따라서, 역전압 작동에 대비해 혼합이온 전도체 전해질 연료전지의 내구성을 확보하기 위해서는 새로운 전해질 디자인이 요구된다. Therefore, in order to secure the durability of the mixed ion conductor electrolyte fuel cell in preparation for reverse voltage operation, a new electrolyte design is required.

국제공개특허 WO 2010-078356 (공개일: 2005.03.17)International Patent Publication WO 2010-078356 (published on: March 17, 2005) 한국 공개특허 제10-2015-0081928호 (공개일: 2015.07.15)Korean Patent Publication No. 10-2015-0081928 (published on: July 15, 2015)

본 발명이 해결하고자 하는 기술적 과제는, 역전압 운전 조건에서 음극/전해질 간의 박리 양극/전해질 간의 박리 모두를 효과적으로 방지할 수 있는 새로운 구조의 혼합이온 전도체 전해질층 포함 저온형 고체산화물 연료전지 및 그 제조방법을 제공하는 것이다.The technical problem to be solved by the present invention is a low-temperature solid oxide fuel cell including a mixed ion conductor electrolyte layer of a new structure that can effectively prevent both delamination between anode/electrolyte and anode/electrolyte under reverse voltage operation conditions, and manufacturing thereof to provide a way

고체산화물 연료전지가 역전압 운전 조건에서 안정적으로 성능을 유지하기 위해서는 전해질 내부의 산소/수소 분압의 억제가 필요하고 이를 위해서는 전극과 인접한 전해질 영역에서 높은 전자전도성이 요구된다. In order for the solid oxide fuel cell to stably maintain its performance under reverse voltage operation conditions, it is necessary to suppress the partial pressure of oxygen/hydrogen inside the electrolyte, and for this, high electron conductivity is required in the electrolyte region adjacent to the electrode.

특히, 혼합이온 전도체 전해질의 경우에는 수소이온과 산소이온 모두 이동하므로 양극과 인접한 전해질 영역과 음극과 인접한 전해질 영역 모두 높은 전자 전도성이 요구되는데, 종래의 혼합이온 전도체 전해질 포함 SOFC 셀은 특정 조성의 혼합이온 전도체(BCY-GDC, BZY-NDC 등)만으로 이루어진 단일층을 전해질로 포함함에 따라 역전압 운전 조건에서 양극 또는 음극과 전해질 간의 박리가 발생해 SOFC 셀 스택의 내구성에 악영향을 미칠 수 있다. In particular, in the case of a mixed ion conductor electrolyte, since both hydrogen ions and oxygen ions move, high electronic conductivity is required for both the electrolyte region adjacent to the anode and the electrolyte region adjacent to the cathode. Since a single layer made of only ion conductors (BCY-GDC, BZY-NDC, etc.) is included as the electrolyte, delamination between the anode or cathode and the electrolyte may occur under reverse voltage operation conditions, which may adversely affect the durability of the SOFC cell stack.

즉, BCY-GDC 단일층 전해질 포함 SOFC 셀의 경우, 음극과 인접한 전해질 영역에서는 높은 N-type 전자 및 이온 혼합 전도성이 존재하지만 양극과 인접한 전해질 영역의 전자 전도성이 부족하여(순수 이온 전도성에 의해) 양극/전해질 계면의 박리가 일어날 수 있다. 반면에, BZY-NDC 단일층 전해질 포함 SOFC 셀의 경우에는 양극과 인접한 전해질 영역에서는 높은 P-type 전자 및 이온 혼합 전도성이 존재하지만 음극과 인접한 전해질 영역의 전자 전도성이 부족하여 음극/전해질 계면의 박리가 일어날 수 있다. That is, in the case of the SOFC cell with the BCY-GDC single-layer electrolyte, high N-type electron and ion mixed conductivity exists in the electrolyte region adjacent to the cathode, but the electron conductivity in the electrolyte region adjacent to the anode is insufficient (by pure ionic conductivity). Delamination of the anode/electrolyte interface may occur. On the other hand, in the case of the SOFC cell containing the BZY-NDC single-layer electrolyte, high P-type electron and ion mixed conductivity exists in the electrolyte region adjacent to the anode, but the electron conductivity in the electrolyte region adjacent to the cathode is insufficient, resulting in separation of the cathode/electrolyte interface. can happen

이에, 본 발명은 혼합이온 전도체 전해질층이 이중층(bilayer) 구조로 이루어지되, 상기 이중층 중에서 양극 측에 접하는 전해질층은 양극에 가까운 전해질 영역에 높은 전자전도성을 가지는 혼합이온 전도체로 이루어지고, 음극 측에 접하는 전해질층은 음극에 가까운 전해질 영역에서 높은 전자전도성을 가지는 혼합이온 전도체로 이루어짐으로써, 역전압 운전 조건 하에서도 양극/전해질 계면 및 음극/전해질 계면 모두에서 박리를 방지할 수 있는 저온형 혼합이온 전도체 고체산화물 연료전지를 제공하고자 한다. Accordingly, in the present invention, the mixed ion conductor electrolyte layer has a bilayer structure, and the electrolyte layer in contact with the anode side of the bilayer is made of a mixed ion conductor having high electronic conductivity in the electrolyte region close to the anode, and the cathode side The electrolyte layer in contact with the anode is made of a mixed ion conductor with high electronic conductivity in the electrolyte region close to the cathode, so that it is possible to prevent delamination at both the anode/electrolyte interface and the cathode/electrolyte interface even under reverse voltage operation conditions. An object of the present invention is to provide a conductive solid oxide fuel cell.

구체적으로, 전술한 기술적 과제를 달성하기 위해, 본 발명은 음극 지지층; 음극 기능층; 이트리아(yttria)가 도핑된 바륨 세레이트(barium cerates, BCY) 및 가돌리늄(Gd)이 도핑된 세리아(gadolinium-doped ceria, GDC)를 포함하는 BCY-GDC 전해질층; 이트리아가 도핑된 바륨지르코네이트(barium zirconate, BZY) 및 네오디뮴(Nd)이 도핑된 세리아(neodymium-doped ceria, NDC)를 포함하는 BZY-NDC 전해질층; 및 양극 기능층;이 순차적으로 적층된 고체산화물 연료전지를 제공한다.Specifically, in order to achieve the above-described technical problem, the present invention is an anode support layer; anode functional layer; a BCY-GDC electrolyte layer comprising barium cerates (BCY) doped with yttria and ceria doped with gadolinium (Gd); BZY-NDC electrolyte layer comprising yttria-doped barium zirconate (BZY) and neodymium-doped ceria (NDC) doped with neodymium (Nd); and a positive electrode functional layer; provides a solid oxide fuel cell in which the sequentially stacked solid oxide fuel cell is stacked.

상기 BCY-GDC 전해질층 및 BZY-NDC 전해질층으로 구성되는 이중층(bilayer) 구조의 전해질층 중에서, 음극 쪽에 인접한 BCY-GDC 전해질층은 낮은 산소분압에 의해 세리아가 환원함으로써 N-type의 전자 전도성이 증가하고, 양극 쪽에 인접한 BZY-NDC 전해질층은 높은 산소 분압에 의해 산소 공공이 일부 산소로 채워짐으로써 P-type 전도성이 증가하게 된다. 결과적으로, 양극과 음극 계면에 인접한 전해질 영역에서 모두 전자 전도성을 확보할 수 있게 되고, 중간 영역은 전자 전도성이 매우 낮기 때문에 누설 전류는 방지할 수 있게 된다. 이러한 이중층 구조로 역전압 조건에서도 박리가 일어나지 않는 고내구성 혼합이온 전도체 전해질 연료전지를 구현할 수 있다. Among the bilayer electrolyte layer composed of the BCY-GDC electrolyte layer and the BZY-NDC electrolyte layer, the BCY-GDC electrolyte layer adjacent to the negative electrode has an N-type electron conductivity by reducing ceria by low oxygen partial pressure. In the BZY-NDC electrolyte layer adjacent to the anode side, the oxygen vacancies are partially filled with oxygen due to the high oxygen partial pressure, thereby increasing the P-type conductivity. As a result, electron conductivity can be secured in both the electrolyte region adjacent to the anode and cathode interface, and leakage current can be prevented because the intermediate region has very low electron conductivity. With such a double-layer structure, it is possible to realize a highly durable mixed ion conductor electrolyte fuel cell that does not delaminate even under reverse voltage conditions.

한편, 상기 음극 지지층은, 산화니켈(NiO) 및 이트륨(Y)과 이터븀(Yb)이 도핑된 BaCeO3-BaZrO3 고체혼합물(BZCYYb)을 포함하는 혼합물로 이루어질 수 있다. Meanwhile, the negative electrode support layer may be formed of a mixture including nickel oxide (NiO) and a BaCeO 3 -BaZrO 3 solid mixture (BZCYYb) doped with yttrium (Y) and ytterbium (Yb).

또한, 상기 음극 기능층은, 산화니켈(NiO) 및 BCY-GDC를 포함하는 혼합물로 이루어질 수 있다. In addition, the anode functional layer may be formed of a mixture including nickel oxide (NiO) and BCY-GDC.

음극 지지층 및 음극 기능층의 산화니켈(NiO)은 연료전지 작동 시에는 수소에 의해 니켈(Ni)로 환원된다. Nickel oxide (NiO) in the negative electrode support layer and the negative electrode functional layer is reduced to nickel (Ni) by hydrogen during operation of the fuel cell.

또한, 상기 양극 기능층은, 란탄-스트론튬-코발트-철 산화물(LSCF) 및 NDC를 포함하는 혼합물로 이루어질 수 있다. In addition, the anode functional layer may be formed of a mixture including lanthanum-strontium-cobalt-iron oxide (LSCF) and NDC.

그리고, 본 발명은 발명의 다른 측면에서, 상기 고체산화물 연료전지의 제조방법으로서, (a) 음극 지지층을 형성시키는 단계; (b) 상기 음극 지지층의 상면에 음극 기능층을 형성시키는 단계; (c) 상기 음극 기능층의 상면에, 이트리아(yttria)가 도핑된 바륨 세레이트(barium cerates, BCY) 및 가돌리늄(Gd)이 도핑된 세리아(gadolinium-doped ceria, GDC)를 포함하는 혼합물을 이용하여 BCY-GDC 전해질층을 형성시키는 단계; (d) 상기 BCY-GDC 전해질층의 상면에, 이트리아가 도핑된 바륨지르코네이트(barium zirconate, BZY) 및 네오디뮴(Nd)이 도핑된 세리아(neodymium-doped ceria, NDC)를 포함하는 혼합물을 이용하여 BZY-NDC 전해질층을 형성시켜 적층체를 제조하는 단계; (e) 상기 적층체를 1450 내지 1550 ℃의 온도에서 1 내지 10 시간 동안 소결하는 단계; 및 (f) 상기 단계 (e)에서 소결한 적층체의 BZY-NDC 전해질층의 상면에 양극 기능층을 형성시키는 단계;를 포함하는 고체산화물 연료전지 제조방법을 제공한다.And, in another aspect of the present invention, there is provided a method for manufacturing the solid oxide fuel cell, comprising the steps of: (a) forming an anode support layer; (b) forming a negative electrode functional layer on the upper surface of the negative electrode support layer; (c) a mixture containing barium cerates (BCY) doped with yttria and ceria doped with gadolinium (Gd) on the upper surface of the negative electrode functional layer (gadolinium-doped ceria, GDC) forming a BCY-GDC electrolyte layer using; (d) on the upper surface of the BCY-GDC electrolyte layer, a mixture comprising yttria-doped barium zirconate (BZY) and neodymium (Nd) doped ceria (neodymium-doped ceria, NDC) preparing a laminate by forming a BZY-NDC electrolyte layer using; (e) sintering the laminate at a temperature of 1450 to 1550° C. for 1 to 10 hours; and (f) forming a positive electrode functional layer on the upper surface of the BZY-NDC electrolyte layer of the laminate sintered in step (e).

나아가, 본 발명은 발명의 또 다른 측면에서, 상기 고체산화물 연료전지로 이루어진 단위 셀을 복수 개 포함하는 고체산화물 연료전지 스택을 제공한다.Furthermore, in another aspect of the present invention, there is provided a solid oxide fuel cell stack including a plurality of unit cells made of the solid oxide fuel cell.

본 발명에 따른 고체산화물 연료전지는, 음극 측에 접한 BCY-GDC층 및 양극 측에 접한 BZY-NDC층을 포함하는 이중층(bilayer) 구조의 혼합이온 전도체 전해질층을 구비함으로써, 혼합이온 전도체 전해질의 장점(연료희석 및 고온열화 방지)을 그대로 유지할 뿐만 아니라, 역전압 운전 조건에서도 양극/전해질 계면과 음극/전해질 계면에서 박리가 일어나지 않는 고내구성 혼합이온 전도체 전해질 연료전지를 구현할 수 있다. The solid oxide fuel cell according to the present invention is provided with a mixed ion conductor electrolyte layer having a bilayer structure including a BCY-GDC layer in contact with the negative electrode side and a BZY-NDC layer in contact with the positive electrode side. It is possible to realize a highly durable mixed ion conductor electrolyte fuel cell that not only maintains its advantages (prevention of fuel dilution and high temperature degradation), but also does not delaminate at the anode/electrolyte interface and at the cathode/electrolyte interface even under reverse voltage operation conditions.

도 1은 종래 기술에 따른 단일층으로 이루어진 혼합이온 전도체 전해질을 가지는 SOFC 셀의 단면 모식도이다.
도 2는 정상 셀 스택과 불량 셀이 포함된 셀 스택 각각에 대한 I-V(전류-전압) 그래프이다.
도 3는 본 발명에 따른 각 층이 서로 다른 조성의 혼합이온 전도체 전해질로 이루어진 이중층(bilayer) 구조의 혼합이온 전도체 전해질을 포함하는 SOFC 셀의 단면 모식도이다.
도 4는 본원 실시예에서 혼합이온 전도체 전해질을 포함하는 고체산화물 연료전지를 제조하는 과정의 각 단계를 나타낸 흐름도이다.
도 5(a) 및 도 5(b)는 본원 실시예에서 제조된 SOFC 셀의 혼합이온 전도체 전해질 이중층 중 BCY-GDC 전해질층 및 BZY-NDC 전해질층 각각에 대한 XRD 분석 결과이다.
도 6은 본원 실시예에서 제조된 SOFC 셀의 혼합이온 전도체 전해질 이중층 단면에 대한 SEM/EDS 분석 결과이다.
도 7(a)는 본원 실시예에서 제조된 SOFC 셀의 전압을 개방회로 상태에서 측정할 결과이고, 도 7(b)는 본원 실시예에서 제조된 SOFC 셀에 대한 (+) 전압 정전류 테스트 결과이며, 도 7(c)는 본원 실시예에서 제조된 SOFC 셀에 대한 (-) 전압 정전류 테스트 결과이이다.
도 8(a)는 전해질로서 BCY-GDC 단일층을 포함하는 SOFC 셀에 대한 정전류 테스트 결과이고, 도 8(b)는 전해질로서 BZY-NDC 단일층을 포함하는 SOFC 셀에 대한 정전류 테스트 결과이다.
도 9는 본원 실시예에서 제조된 SOFC 셀을 포함하는 스택을 ~ 90시간 구동시킨 후의 셀 단면 미세구조를 보여주는 주사전자현미경(SEM) 사진이다.
1 is a schematic cross-sectional view of a SOFC cell having a mixed ion conductor electrolyte consisting of a single layer according to the prior art.
2 is an IV (current-voltage) graph for each of a cell stack including a normal cell stack and a defective cell.
3 is a schematic cross-sectional view of an SOFC cell including a mixed ion conductor electrolyte having a bilayer structure in which each layer is composed of a mixed ion conductor electrolyte having a different composition according to the present invention.
4 is a flowchart showing each step of the process of manufacturing the solid oxide fuel cell including the mixed ion conductor electrolyte in the present embodiment.
5(a) and 5(b) are XRD analysis results for each of the BCY-GDC electrolyte layer and the BZY-NDC electrolyte layer among the mixed ion conductor electrolyte double layers of the SOFC cell prepared in Examples of the present application.
6 is an SEM/EDS analysis result of a cross-section of a mixed ion conductor electrolyte double layer of the SOFC cell prepared in Example of the present application.
7 (a) is the result of measuring the voltage of the SOFC cell manufactured in the present Example in an open circuit state, FIG. 7 (b) is the (+) voltage constant current test result for the SOFC cell manufactured in the present Example , FIG. 7(c) is a negative voltage constant current test result for the SOFC cell manufactured in Example of the present application.
FIG. 8(a) is a constant current test result for an SOFC cell including a BCY-GDC single layer as an electrolyte, and FIG. 8(b) is a constant current test result for an SOFC cell including a BZY-NDC single layer as an electrolyte.
9 is a scanning electron microscope (SEM) photograph showing the cell cross-sectional microstructure after driving the stack including the SOFC cell prepared in Example of the present application for ~ 90 hours.

본 발명을 설명함에 있어서 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 것이다.In describing the present invention, if it is determined that a detailed description of a related well-known function or configuration may unnecessarily obscure the gist of the present invention, the detailed description thereof will be omitted.

본 발명의 개념에 따른 실시예는 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있으므로 특정 실시예를 도면에 예시하고 본 명세서 또는 출원에 상세하게 설명하고자 한다. 그러나 이는 본 발명의 개념에 따른 실시 예를 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.Since the embodiment according to the concept of the present invention may have various changes and may have various forms, a specific embodiment will be illustrated in the drawings and described in detail in the present specification or application. However, this is not intended to limit the embodiment according to the concept of the present invention with respect to a specific disclosed form, and should be understood to include all changes, equivalents or substitutes included in the spirit and scope of the present invention.

본 명세서에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다" 또는 "가지다" 등의 용어는 설시된 특징, 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terms used herein are used only to describe specific embodiments, and are not intended to limit the present invention. The singular expression includes the plural expression unless the context clearly dictates otherwise. In the present specification, terms such as “comprise” or “have” are intended to designate that the described feature, number, step, operation, component, part, or combination thereof exists, and includes one or more other features or numbers. , it is to be understood that it does not preclude the possibility of the presence or addition of steps, operations, components, parts, or combinations thereof.

이하, 실시예를 통해 본 발명을 보다 상세히 설명하도록 한다.Hereinafter, the present invention will be described in more detail through examples.

<실시예><Example>

도 4에 도시한 바와 같이 아래 (1) 내지 (6)의 단계를 순차적으로 실시해 도 3에 도시된 단면 모식도를 가지는 혼합이온 전도체(co-ionic conductor) 전해질 SOFC 단위 셀을 제조하였다. As shown in FIG. 4, the following steps (1) to (6) were sequentially performed to prepare a co-ionic conductor electrolyte SOFC unit cell having a schematic cross-sectional view shown in FIG. 3 .

(1) 65 wt% NiO와 35 wt% BZCYYb (BaZr0.1Ce0.7Y0.1Yb0.1O2.9)로 구성된 혼합 파우더를 die-press 한 후 900℃에서 1시간 열처리하여 음극지지층 (AS)을 제조하였다. (1) After die-pressing a mixed powder composed of 65 wt% NiO and 35 wt% BZCYYb (BaZr 0.1 Ce 0.7 Y 0.1 Yb 0.1 O 2.9 ), heat treatment at 900° C. for 1 hour to prepare an anode support layer (AS).

(2) 음극 기능층 (AFL) 제조를 위해서 NiO와 BCY(65 wt%)-GCD(35 wt%)를 각각 60 wt% : 40 wt% 비율로 혼합하였으며 입자 미세화를 위해 유성볼밀을 이용하여 추가 분쇄 공정을 실시하였다. (2) NiO and BCY (65 wt%)-GCD (35 wt%) were mixed in a ratio of 60 wt% : 40 wt%, respectively, for the preparation of the anode functional layer (AFL), and added using a planetary ball mill for particle refinement A grinding process was performed.

(3) 분쇄 후 부탄올 용매를 이용하여 슬러리로 제조하였으며 앞서 제조한 AS 층에 drop 코팅하여 950℃에서 1시간 열처리하였다. (3) After grinding, a slurry was prepared using a butanol solvent, and the AS layer prepared above was drop-coated and heat-treated at 950° C. for 1 hour.

(4) 열처리된 AS/AFL substrate에 BCY(65 wt%)-GCD(35 wt%) 슬러리를 drop 코팅하여 1000℃에서 1시간 동안 열처리하였다. (4) BCY (65 wt%)-GCD (35 wt%) slurry was drop-coated on the heat-treated AS/AFL substrate and heat-treated at 1000°C for 1 hour.

(5) 열처리된 BCY-GDC 층 위에 BZY(25 wt%)-NDC(75 wt%) 슬러리를 drop 코팅하여 1550℃에서 4시간 동안 소결하였다.(5) BZY (25 wt%)-NDC (75 wt%) slurry was drop-coated on the heat-treated BCY-GDC layer and sintered at 1550° C. for 4 hours.

(6) LSCF (La0.6Sr0.4Co0.2Fe0.8O3)와 NDC를 각각 60 wt% : 40 wt% 비율로 혼합한 양극 기능층 (CFL)을 코팅한 후 950℃에서 2시간 동안 열처리하였다.(6) A positive electrode functional layer (CFL) in which LSCF (La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3 ) and NDC were mixed in a ratio of 60 wt% : 40 wt%, respectively, was coated and then heat treated at 950°C for 2 hours.

<실험예><Experimental example>

1. 혼합이온 전도체(co-ionic conductor) 전해질의 상(phase)/미세구조/원소 분석 1. Phase/microstructure/elemental analysis of co-ionic conductor electrolytes

상기 실시예에서 제조된 단위 셀에 대해 XRD 분석을 실시한 결과, 도 5에 도시한 바와 같이 이중층 전해질을 이루는 두 전해질(BCY-GDC 및 BZY-NDC) 모두 이차상(secondary phase) 없이 복합체가 형성되었음이 확인되었다. As a result of performing XRD analysis on the unit cell prepared in the above example, as shown in FIG. 5 , both electrolytes (BCY-GDC and BZY-NDC) constituting the double-layer electrolyte were formed without a secondary phase. This was confirmed.

도 6은 이중층 전해질 단면의 SEM/EDS 분석 결과로서, 양극(cathode) 계면에서부터 약 10㎛까지 높은 Zr 농도가 관찰되었고(BZY-NDC 영역), 그 이후 영역에서는 Zr 농도가 급감하는 것을 볼 수 있다(BCY-GDC 영역). 6 is a SEM/EDS analysis result of a cross-section of a double-layer electrolyte. A high Zr concentration was observed from the cathode interface to about 10 μm (BZY-NDC region), and it can be seen that the Zr concentration sharply decreased in the region after that. (BCY-GDC region).

2. 역전압 내구성 테스트2. Reverse voltage endurance test

상기 실시예에서 제조된 이중층 구조 전해질 기반 연료전지 개방회로 전압은 1.0 ~ 1.1 V의 정상적인 값을 나타냈다(도 7(a)). The open circuit voltage of the fuel cell based on the double-layer structure electrolyte prepared in the above example exhibited a normal value of 1.0 to 1.1 V (FIG. 7(a)).

역전압 작동 하에서의 내구성을 확인하기 위해 (+) 전압 (~ 0.2 V, 227 mA/cm2) 테스트를 3 ~ 4 시간 진행한 후(도 7(b)), (-) 전압 테스트를 -0.05 V, (227 mA/cm2), -0.05 V, (227 mA/cm2), -0.05 V, (227 mA/cm2) 순으로 단계적으로 진행하였다(도 7(c)). BCY-GDC 단일층 셀 테스트 결과(도 8(a))와 BZY-NDC 단일층 셀(도 8(b)) 테스트 결과와는 달리 본원 실시예에서 제조한 이중층 전해질 셀은 역전압 조건에서도 안정한 전압값을 유지하는 것을 확인할 수 있다. To confirm the durability under reverse voltage operation, the (+) voltage (~ 0.2 V, 227 mA/cm 2 ) test was performed for 3 to 4 hours (Fig. 7(b)), and then the (-) voltage test was performed at -0.05 V , (227 mA/cm 2 ), -0.05 V, (227 mA/cm 2 ), -0.05 V, (227 mA/cm 2 ) was carried out stepwise in the order ( FIG. 7( c )). Unlike the BCY-GDC single-layer cell test results (FIG. 8(a)) and the BZY-NDC single-layer cell (FIG. 8(b)) test results, the double-layer electrolyte cell prepared in this example shows a stable voltage even under reverse voltage conditions. It can be seen that the value is maintained.

또한, 사후 분석결과 양극/전해질 계면과 음극/전해질 계면 모두 어떠한 물리적 손상(박리)도 관찰되지 않았다(도 9). In addition, as a result of post-mortem analysis, no physical damage (delamination) was observed at both the anode/electrolyte interface and the cathode/electrolyte interface ( FIG. 9 ).

상기한 결과들을 종합해보면, 이중층 구조의 혼합이온 전도체 전해질은 혼합이온 전도체 기반 연료전지의 전극 박리 방지에 매우 효과적인 셀 디자인임을 알 수 있다. Combining the above results, it can be seen that the mixed ion conductor electrolyte having a double layer structure is a very effective cell design for preventing electrode delamination of a mixed ion conductor based fuel cell.

이상, 첨부된 도면을 참조하여 본 발명의 실시예를 설명하였지만, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명이 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예 에는 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. As mentioned above, although embodiments of the present invention have been described with reference to the accompanying drawings, those of ordinary skill in the art to which the present invention pertains can implement the present invention in other specific forms without changing its technical spirit or essential features. You will understand that there is Therefore, it should be understood that the embodiments described above are illustrative in all respects and not restrictive.

Claims (7)

음극 지지층;
음극 기능층;
이트리아(yttria)가 도핑된 바륨 세레이트(barium cerates, BCY) 및 가돌리늄(Gd)이 도핑된 세리아(gadolinium-doped ceria, GDC)를 포함하는 혼합물을 이용해 형성되어, 이트리아(yttria)가 도핑된 바륨 세레이트(barium cerates, BCY) 및 가돌리늄(Gd)이 도핑된 세리아(gadolinium-doped ceria, GDC)를 포함하는 BCY-GDC 전해질층;
이트리아가 도핑된 바륨지르코네이트(barium zirconate, BZY) 및 네오디뮴(Nd)이 도핑된 세리아(neodymium-doped ceria, NDC)를 포함하는 혼합물을 이용해 형성되어, 이트리아가 도핑된 바륨지르코네이트(barium zirconate, BZY) 및 네오디뮴(Nd)이 도핑된 세리아(neodymium-doped ceria, NDC)를 포함하는 BZY-NDC 전해질층; 및
양극 기능층;이 순차적으로 적층된 고체산화물 연료전지.
anode support layer;
anode functional layer;
Formed using a mixture containing yttria-doped barium cerates (BCY) and gadolinium-doped ceria (GDC) doped, so that yttria is doped BCY-GDC electrolyte layer comprising barium cerates (BCY) and gadolinium-doped ceria (GDC) doped;
Yttria-doped barium zirconate (BZY) and neodymium (Nd) doped barium zirconate formed by using a mixture containing ceria (neodymium-doped ceria, NDC) doped barium zirconate (BZY), BZY-NDC electrolyte layer including (barium zirconate, BZY) and neodymium (Nd) doped ceria (neodymium-doped ceria, NDC); and
A solid oxide fuel cell in which a positive electrode functional layer is sequentially stacked.
제1항에 있어서,
상기 음극 지지층은,
산화니켈(NiO) 및 이트륨(Y)과 이터븀(Yb)이 도핑된 BaCeO3-BaZrO3 고체혼합물(BZCYYb)을 포함하는 혼합물로 형성시킨 것을 특징으로 하는 고체산화물 연료전지.
According to claim 1,
The negative electrode support layer,
A solid oxide fuel cell comprising nickel oxide (NiO) and a mixture containing a BaCeO 3 -BaZrO 3 solid mixture (BZCYYb) doped with yttrium (Y) and ytterbium (Yb).
제1항에 있어서,
상기 음극 기능층은,
산화니켈(NiO) 및 BCY-GDC를 포함하는 혼합물로 형성시킨 것을 특징으로 하는 고체산화물 연료전지.
According to claim 1,
The anode functional layer,
A solid oxide fuel cell, characterized in that it is formed of a mixture containing nickel oxide (NiO) and BCY-GDC.
제 1항에 있어서,
상기 양극 기능층은,
란탄-스트론튬-코발트-철 산화물(LSCF) 및 NDC를 포함하는 혼합물로 형성시킨 것을 특징으로 하는 고체산화물 연료전지.
The method of claim 1,
The anode functional layer,
A solid oxide fuel cell, characterized in that it is formed of a mixture containing lanthanum-strontium-cobalt-iron oxide (LSCF) and NDC.
(a) 음극 지지층을 형성시키는 단계;
(b) 상기 음극 지지층의 상면에 음극 기능층을 형성시키는 단계;
(c) 상기 음극 기능층의 상면에, 이트리아(yttria)가 도핑된 바륨 세레이트(barium cerates, BCY) 및 가돌리늄(Gd)이 도핑된 세리아(gadolinium-doped ceria, GDC)를 포함하는 혼합물을 이용하여 BCY-GDC 전해질층을 형성시키는 단계;
(d) 상기 BCY-GDC 전해질층의 상면에, 이트리아가 도핑된 바륨지르코네이트(barium zirconate, BZY) 및 네오디뮴(Nd)이 도핑된 세리아(neodymium-doped ceria, NDC)를 포함하는 혼합물을 이용하여 BZY-NDC 전해질층을 형성시켜 적층체를 제조하는 단계;
(e) 상기 적층체를 소결하는 단계; 및
(f) 상기 단계 (e)에서 소결한 적층체의 BZY-NDC 전해질층의 상면에 양극 기능층을 형성시키는 단계;를 포함하는 고체산화물 연료전지 제조방법.
(a) forming a negative electrode support layer;
(b) forming a negative electrode functional layer on the upper surface of the negative electrode support layer;
(c) a mixture containing barium cerates (BCY) doped with yttria and ceria doped with gadolinium (Gd) on the upper surface of the negative electrode functional layer (gadolinium-doped ceria, GDC) forming a BCY-GDC electrolyte layer using;
(d) on the upper surface of the BCY-GDC electrolyte layer, a mixture comprising yttria-doped barium zirconate (BZY) and neodymium (Nd) doped ceria (neodymium-doped ceria, NDC) preparing a laminate by forming a BZY-NDC electrolyte layer using;
(e) sintering the laminate; and
(f) forming a positive electrode functional layer on the upper surface of the BZY-NDC electrolyte layer of the laminate sintered in step (e);
제5항에 있어서,
상기 단계 (e)에서 1450 내지 1550 ℃의 온도에서 1 내지 10 시간 동안 소결하는 것을 특징으로 하는 고체산화물 연료전지 제조방법.
6. The method of claim 5,
A method for manufacturing a solid oxide fuel cell, characterized in that in step (e), sintering is performed at a temperature of 1450 to 1550° C. for 1 to 10 hours.
제1항 내지 제4항 중 어느 한 항의 고체산화물 연료전지 단위 셀을 복수 개 포함하는 고체산화물 연료전지 스택.A solid oxide fuel cell stack comprising a plurality of solid oxide fuel cell unit cells according to any one of claims 1 to 4.
KR1020200117714A 2020-09-14 2020-09-14 Solid oxide fuel cell having co-ionic conductor electrolyte with improved durability and manufacturing method thereof KR102459438B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200117714A KR102459438B1 (en) 2020-09-14 2020-09-14 Solid oxide fuel cell having co-ionic conductor electrolyte with improved durability and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200117714A KR102459438B1 (en) 2020-09-14 2020-09-14 Solid oxide fuel cell having co-ionic conductor electrolyte with improved durability and manufacturing method thereof

Publications (3)

Publication Number Publication Date
KR20220035679A KR20220035679A (en) 2022-03-22
KR102459438B1 true KR102459438B1 (en) 2022-10-26
KR102459438B9 KR102459438B9 (en) 2023-03-03

Family

ID=80991933

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200117714A KR102459438B1 (en) 2020-09-14 2020-09-14 Solid oxide fuel cell having co-ionic conductor electrolyte with improved durability and manufacturing method thereof

Country Status (1)

Country Link
KR (1) KR102459438B1 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5539391B2 (en) 2008-12-31 2014-07-02 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド Method for SOFC cathode and co-fired battery and stack
KR101637917B1 (en) 2014-01-07 2016-07-08 한국과학기술연구원 Protonic conducting solid oxide fuel cell and method for preparing thereof
KR20160087516A (en) * 2015-01-14 2016-07-22 창원대학교 산학협력단 Low and intermediate-temperature type proton-conducting ceramic fuel cells containing bi-layer electrolyte structure for preventing performance degradation and method for manufacturing the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JOURNAL OF POWER SOURCES, vol 336 (2016) pp. 437_446 (2016. 11. 09.)*

Also Published As

Publication number Publication date
KR20220035679A (en) 2022-03-22
KR102459438B9 (en) 2023-03-03

Similar Documents

Publication Publication Date Title
US7601447B2 (en) Electrolyte-electrode assembly comprising an isotropic layer
US20080254336A1 (en) Composite anode showing low performance loss with time
US10062909B2 (en) Composition for fuel cell electrode
KR102256575B1 (en) New Ceramic Anode Materials For Solid Oxide Fuel Cells
US11817589B2 (en) Solid oxide fuel cells with cathode functional layers
KR20140057080A (en) Cathode for solid oxide fuel cell, method for preparing the same and solid oxide fuel cell including the same
KR102080961B1 (en) Air electrode structure, fuel cell comprising the same, battery module comprising the fuel cell and method of manufacturing the air electrode structure
EP1961067B1 (en) Fuel cell component having an electrolyte dopant
US20090181274A1 (en) Electrodes for Lanthanum Gallate Electrolyte-Based Electrochemical Systems
KR102459438B1 (en) Solid oxide fuel cell having co-ionic conductor electrolyte with improved durability and manufacturing method thereof
JP7301768B2 (en) Electrochemical cells, electrochemical cell stacks and electrolytes for electrochemical cells
KR102128941B1 (en) Method for manufacturing solid oxide fuel cell having durable electrolyte under negative voltage condition
KR102186600B1 (en) Electrolyte for solid oxide fuel cell, solid oxide fuel cell and method of preparing solid oxide fuel cell
KR102220867B1 (en) Solid oxide fuel cell having durable electrolyte under negative current conditions
US20140272672A1 (en) Composition for anode in fuel cell
KR102026502B1 (en) Solid oxide fuel cell, battery module comprising the same and method for manufacturing solid oxide fuel cell
KR102287531B1 (en) Single cell for solid oxide fuel cell and solid oxide fuel cell conataining thereof
KR20120085488A (en) Solid electrolyte for solid oxide fuel cell, and solid oxide fuel cell including the solid electrolyte
TWI642229B (en) Ceramic battery structure
KR20180120392A (en) Solid Oxide Fuel Cell comprising reduction-prevention layer

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right