KR102451497B1 - Manufacturing method of mixed fuel which mixed the refined gas obtained by thermal decomposition of biomass - Google Patents

Manufacturing method of mixed fuel which mixed the refined gas obtained by thermal decomposition of biomass Download PDF

Info

Publication number
KR102451497B1
KR102451497B1 KR1020200006555A KR20200006555A KR102451497B1 KR 102451497 B1 KR102451497 B1 KR 102451497B1 KR 1020200006555 A KR1020200006555 A KR 1020200006555A KR 20200006555 A KR20200006555 A KR 20200006555A KR 102451497 B1 KR102451497 B1 KR 102451497B1
Authority
KR
South Korea
Prior art keywords
pyrolysis
gas
biomass
mixed
removal step
Prior art date
Application number
KR1020200006555A
Other languages
Korean (ko)
Other versions
KR20210093407A (en
Inventor
김용주
한미진
Original Assignee
비엔지코리아(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 비엔지코리아(주) filed Critical 비엔지코리아(주)
Priority to KR1020200006555A priority Critical patent/KR102451497B1/en
Publication of KR20210093407A publication Critical patent/KR20210093407A/en
Application granted granted Critical
Publication of KR102451497B1 publication Critical patent/KR102451497B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/04Purifying combustible gases containing carbon monoxide by cooling to condense non-gaseous materials
    • C10K1/046Reducing the tar content
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/02Particle separators, e.g. dust precipitators, having hollow filters made of flexible material
    • B01D46/023Pockets filters, i.e. multiple bag filters mounted on a common frame
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • B01D53/78Liquid phase processes with gas-liquid contact
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • B01D53/79Injecting reactants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/82Gas withdrawal means
    • C10J3/84Gas withdrawal means with means for removing dust or tar from the gas
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/08Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors
    • C10K1/10Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors with aqueous liquids
    • C10K1/12Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors with aqueous liquids alkaline-reacting including the revival of the used wash liquors
    • C10K1/121Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors with aqueous liquids alkaline-reacting including the revival of the used wash liquors containing NH3 only (possibly in combination with NH4 salts)
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/08Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors
    • C10K1/10Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors with aqueous liquids
    • C10K1/12Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors with aqueous liquids alkaline-reacting including the revival of the used wash liquors
    • C10K1/122Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors with aqueous liquids alkaline-reacting including the revival of the used wash liquors containing only carbonates, bicarbonates, hydroxides or oxides of alkali-metals (including Mg)
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/20Purifying combustible gases containing carbon monoxide by treating with solids; Regenerating spent purifying masses
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/0916Biomass
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/1625Integration of gasification processes with another plant or parts within the plant with solids treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Abstract

본 발명은 바이오매스를 열분해하여 얻어진 정제 가스를 혼합한 혼합연료의 제조방법에 관한 것으로 보다 상세하게는 바이오매스(bio-mass)를 이용하여 천연가스와 일정한 비율로 혼합시켜 내연기관, 산업용 연료, 가정용 연료 등으로 사용할 수 있도록 한 바이오매스를 열분해하여 얻어진 정제 가스를 혼합한 혼합연료의 제조방법에 관한 것인바, 본 발명은 바이오매스를 열분해하여 얻어진 정제 가스를 혼합한 혼합연료의 제조방법에 있어서, 바이오매스를 연소 및 소각시켜 열분해 하는 열분해단계와; 상기 열분해단계에 의해 생성된 열분해가스의 온도를 공기를 이용하여 냉각시켜 타르와 일정량의 목축액을 제거하기 위해 1차 냉각작업과 2차 냉각작업으로 이루어진 타르제거단계와; 상기 타르제거단계에 의해 일정한 온도가 된 열분해가스에 가성소다(NaOH)와 암모니아(NH4OH) 용액을 공급하여 PH를 조절하는 불순물제거단계와; 상기 불순물제거단계를 수행한 열분해가스에 생석회 분말을 투입하여 수분을 제거하는 수분제거 단계와; 상기 생석회와 수분이 반응하여 생성된 소석회를 여과하며 열분해 연소가스를 여과하는 바이오가스를 취득하는 여과단계와; 상기 여과단계에 의해 생성된 열분해 가스와 천연가스를 일정한 비율로 혼합하는 혼합단계 순으로 이루어지는 것에 그 특징이 있다.The present invention relates to a method for producing a mixed fuel in which purified gas obtained by pyrolysis of biomass is mixed, and more particularly, biomass is mixed with natural gas in a certain ratio to produce an internal combustion engine, industrial fuel, The present invention relates to a method for producing a mixed fuel obtained by mixing purified gas obtained by pyrolyzing biomass to be used as a household fuel, etc. , a thermal decomposition step of pyrolyzing the biomass by burning and incineration; a tar removal step comprising a primary cooling operation and a secondary cooling operation in order to cool the temperature of the pyrolysis gas generated by the pyrolysis step using air to remove tar and a certain amount of livestock; an impurity removal step of adjusting PH by supplying caustic soda (NaOH) and ammonia (NH 4 OH) solutions to the pyrolysis gas having a constant temperature by the tar removal step; a water removal step of removing moisture by adding quicklime powder to the pyrolysis gas on which the impurity removal step has been performed; a filtration step of filtering the slaked lime produced by the reaction of the quicklime with moisture and obtaining biogas for filtering the pyrolysis combustion gas; It is characterized in that it is made in the order of the mixing step of mixing the pyrolysis gas and natural gas produced by the filtration step at a constant ratio.

Description

바이오매스를 열분해하여 얻어진 정제 가스를 혼합한 혼합연료의 제조방법{Manufacturing method of mixed fuel which mixed the refined gas obtained by thermal decomposition of biomass}Manufacturing method of mixed fuel which mixed the refined gas obtained by thermal decomposition of biomass obtained by thermal decomposition of biomass

본 발명은 바이오매스를 열분해하여 얻어진 정제 가스를 혼합한 혼합연료의 제조방법에 관한 것으로 보다 상세하게는 바이오매스(bio-mass)를 열분해에 의해 얻어진 가스를 정제하여 천연가스와 일정한 비율로 혼합시켜 내연기관, 산업용 연료, 가정용 연료 등으로 사용할 수 있도록 한 바이오매스를 열분해하여 얻어진 정제 가스를 혼합한 혼합연료의 제조방법에 관한 것이다.The present invention relates to a method for producing a mixed fuel in which purified gas obtained by pyrolyzing biomass is mixed, and more particularly, by purifying the gas obtained by pyrolysis of biomass and mixing it with natural gas in a certain ratio. It relates to a method for producing a mixed fuel in which purified gas obtained by pyrolyzing biomass that can be used as an internal combustion engine, industrial fuel, household fuel, etc. is mixed.

바이오연료(Bio-fuel)는 현재 가장 활발히 연구되고 있는 대체 에너지 분야들 중 하나이다. 바이오연료는 바이오매스(Bio-mass)로부터 생물학적, 화학적 또는 물리적인 처리를 통해 생산되는 고체, 액체, 기체 상태의 다양한 연료를 의미한다. Bio-fuel is one of the most actively researched alternative energy fields. Biofuel refers to various fuels in solid, liquid, and gaseous states produced from biomass through biological, chemical, or physical treatment.

좁은 관점에서, 바이오매스는 재생 가능한 식물체에서 광합성 과정으로부터 생산되는 유기물만을 의미하지만, 넓은 범위에서는 동물 배설물, 도시 쓰레기, 수생생물들과 같은 유기성 폐기물까지도 포함한다.In a narrower sense, biomass refers only to organic matter produced from photosynthetic processes in renewable plants, but in a broad scope it also includes organic wastes such as animal waste, municipal waste and aquatic organisms.

현재 바이오매스로부터 생산되는 바이오연료는 에탄올, 부탄올, 디젤 같은 액체 연료와 수소, 메탄, LNG, LPG과 같은 기체용 연료 등이 있다. 바이오연료는 재생이 가능하고, 폐기물의 유용한 처리가 가능하며, 화석연료에 비해 상대적으로 청정 연료로서 배출 연소가스의 오염과 미세먼지가 아주 적은 효과 등이 장점이며, 그로 인해 앞서 지적하였던 자원고갈, 환경오염, 지구 온난화, 대기오염 같은 문제들을 해결하는데 크게 기여할 수 있다.Currently, biofuels produced from biomass include liquid fuels such as ethanol, butanol, and diesel, and gaseous fuels such as hydrogen, methane, LNG, and LPG. Biofuel can be recycled, can be treated usefully, and is a relatively clean fuel compared to fossil fuels. It can greatly contribute to solving problems such as environmental pollution, global warming, and air pollution.

최근 바이오연료 생산을 위한 바이오매스의 확보에 대한 관심이 여러 국가들을 중심으로 증대되고 있다. 미국과 브라질에서는 주로 전분질계(옥수수) 및 당질계(사탕수수)를 이용한 바이오에탄올 생산과 EU에서는 동식물 유지를 이용한 바이오디젤 생산에 주력하고 있다.Recently, interest in securing biomass for biofuel production is increasing in several countries. In the United States and Brazil, bioethanol production mainly using starch (corn) and sugar (sugar cane), and biodiesel production using animal and plant oils and fats in the EU.

한편, 곡물 바이오매스를 이용한 바이오연료 생산 시 곡물 바이오매스의 연소로 인해 발생하는 이산화탄소는 원래 식물체가 대기에서 광합성작용을 통해 흡수한 것으로 대기 내 전체 이산화탄소의 양은 변화가 없으므로 온실효과 저감 효과를 기대할 수 있다. 하지만 곡물 바이오매스의 이용은 제한된 경작지 면적으로 인한 식량 부족, 곡물가격의 상승, 농업용수의 부족, 비료로 인한 토양오염화 등의 문제점을 안고 있는 실정이다.On the other hand, when producing biofuel using grain biomass, carbon dioxide generated from the combustion of grain biomass is originally absorbed by plants through photosynthesis in the atmosphere, and since the total amount of carbon dioxide in the atmosphere does not change, it can be expected to reduce the greenhouse effect. have. However, the use of grain biomass has problems such as food shortage due to limited arable land area, increase in grain price, shortage of agricultural water, and soil contamination due to fertilizer.

곡물 바이오매스와 달리 미세조류는 해양으로부터 풍부한 양의 비식용 원료를 수확할 수 있다. 미세조류(Microalgae)는 현미경으로 관찰할 수 있는 크기가 작은 단세포 모양을 가진 원핵 또는 진핵 조류를 지칭하며, 식물과 마찬가지로 광합성기작을 가지고 있으므로 광독립영양 생장을 할 수 있다. 지구상에는 최소한 5 만종 이상의 다양한 미세조류들이 해양 생태계에 광범위하게 분포되어 있는 것으로 추정되며, 지구 전체 산소 발생량의 50% 이상을 차지하고 있는 것으로 알려지고 있다.Unlike grain biomass, microalgae can harvest copious amounts of non-edible raw materials from the ocean. Microalgae refer to prokaryotic or eukaryotic algae with a single-celled shape that can be observed under a microscope, and they have a photosynthetic mechanism like plants, so they can grow photoautotrophically. It is estimated that at least 50,000 species of various microalgae are widely distributed in the marine ecosystem on the earth, and it is known that they account for more than 50% of the total amount of oxygen on the earth.

최근에는 이러한 이유로 대체 바이오 에너지 생산을 위한 원료로 미세조류가 주목을 받고 있고, 효율적인 생산을 위한 새로운 미세조류 종의 동정 및 분리 연구가 활발히 진행되고 있다. 하지만 많은 장점에도 불구하고 미세조류의 배양 후 수확 시 높은 수분함량으로 인해 미세조류 바이오매스의 탈수 공정 및 건조 공정에 많은 에너지가 필요하기 때문에 미세조류의 바이오매스화는 아직 경제적인 면에서는 불리한 입장이다.For this reason, microalgae have recently been attracting attention as a raw material for alternative bioenergy production, and research on the identification and isolation of new microalgae species for efficient production is being actively conducted. However, despite many advantages, biomassing of microalgae is still economically disadvantageous because a lot of energy is required for the dehydration and drying process of microalgal biomass due to the high moisture content during harvest after culturing microalgae. .

바이오매스 자원을 에너지로 전환시키는 기술은 종래 기술에서 보듯이 바이오매스 자원을 500 ~ 900℃의 온도에서 조업되는 가스화기에 주입하고, 산소 또는 증기를 이용하여 수소, 일산화탄소 등으로 구성된 합성가스로 전환하는 것으로 기재되어 있다. 그러나 상기 방법은 바이오매스의 수분 함량이 30% 이상이 되면 주입되는 바이오매스 내의 수분을 고온의 증기로 전환시키기에 필요한 열을 공급하기 어려워 석탄, LNG, 등유 등의 화석연료 자원을 반드시 이용해야 한다. 특히 수분 함량이 97 ~ 99%인 미세조류 및 50 ~ 60% 이상의 바이오매스를 이용하기 위해서는 건조를 위해 에너지를 추가로 소비해야 하는 문제점이 있었다.As seen in the prior art, the technology for converting biomass resources into energy is to inject biomass resources into a gasifier operated at a temperature of 500 to 900 ° C. is described as doing. However, in the above method, when the moisture content of the biomass is 30% or more, it is difficult to supply the heat necessary to convert the moisture in the injected biomass into high-temperature steam, so fossil fuel resources such as coal, LNG, kerosene, etc. must be used. . In particular, in order to use microalgae having a water content of 97 to 99% and biomass of 50 to 60% or more, there is a problem in that additional energy must be consumed for drying.

이것은 전체적인 바이오매스 생산 가격의 20 ~ 30%를 차지하는 것으로 알려져 있다. 한편 바이오매스 가스화는 열화학적 공정의 한 종류로서, 가연성 물질을 완전연소를 위한 이론공기량보다 적은 양의 공기 혹은 산화제를 공급하여 일산화탄소(Co)와 수소(H2), 그리고 소량의 메탄(CH4)으로 구성되는 합성가스를 생산하는 열분해공정이다. 바이오매스 열분해가스에는 타르와 수분, 분진 및 부식성 산성가스(SOX,Hcl,NOX)등이 포함되어 이를 기존의 가스연료를 이용하는 설비에 적용하기 위해서는 정제과정이 요구된다.It is known to account for 20-30% of the total biomass production price. On the other hand, biomass gasification is a type of thermochemical process. It supplies carbon monoxide (Co) and hydrogen (H 2 ), and a small amount of methane (CH 4 ) is a pyrolysis process that produces syngas composed of Biomass pyrolysis gas contains tar, moisture, dust, and corrosive acid gas (SO X , Hcl, NO X ), and a purification process is required to apply it to facilities using existing gas fuel.

가스화를 통해 생산되는 가스는 내연기관, 가스터빈, 버너 등에 적용이 가능하나 천연가스나 액화석유가스(LPG) 등에 비해 발열량이 낮은 단점이 있으며, 바이오매스의 종류와 가스화 반응기의 운전 조건에 따라서는 가연성 성분의 농도가 낮아져 연소가 곤란한 경우도 발생한다.Gas produced through gasification can be applied to internal combustion engines, gas turbines, and burners, but has a disadvantage in that it has a lower calorific value compared to natural gas or liquefied petroleum gas (LPG). The concentration of combustible components is lowered and combustion is difficult.

상기 가스화 공정을 적용하면 우드칩이나 우드펠렛과 같은 목질계 바이오매스와 볏짚이나 갈대 등의 초본계 바이오매스를 이용하여 저열량 합성가스를 생산할 수 있다. When the gasification process is applied, low-calorie syngas can be produced using woody biomass such as wood chips or wood pellets and herbal biomass such as rice straw or reed.

바이오매스 합성가스의 일반적인 조성은 가연성 성분인 일산화탄소가 10~20%, 수소가 8~15%, 그리고 메탄이 최고 5% 정도를 차지하고 있고 나머지는 수분과 질소로 구성된다. 바이오매스 합성가스는 불균질한 연료의 특성으로 인해 가스 조성은 변하며 때로는 가연성 기체 조성이 낮아져 안정적인 연소가 어려울 수 있다.The general composition of biomass syngas is 10-20% of carbon monoxide, which is a combustible component, 8-15% of hydrogen, and about 5% of methane, and the rest consists of water and nitrogen. In biomass syngas, the gas composition changes due to the heterogeneous fuel characteristics, and sometimes the combustible gas composition is low, making it difficult to achieve stable combustion.

다른 문제로는 동물 배설물, 도시 쓰레기, 수생생물들과 같은 유기성 폐기물 및 광합성 과정으로부터 생산되는 유기물 등을 매립하고자 할 때 많은 매립양이 많이 발생되어 매립지 확보가 어려운 문제점이 있다.Another problem is that when trying to landfill organic waste such as animal excrement, city waste, aquatic organisms, and organic matter produced from photosynthesis, a large amount of landfill is generated, making it difficult to secure a landfill site.

대한민국 특허등록 제1619325호Korean Patent Registration No. 1619325

상기한 종래 문제점을 감안하여 안출한 것으로서 본 발명의 목적은 가스화 잔재물(ash)는 간단한 공정을 거쳐 토질개량제 또는 비료로 사용 가능하므로 매립이 불필요하므로 매립지가 필요없으므로 매립지의 수명연장 및 신규 매립지 확보난을 해소할 수 있으며 바이오매스 열분해에 의한 정제 그린가스와 천연가스를 혼합한 혼합연료를 이용하여 저 열량 내연기관(메탄가스용 5,000 kal/Nm³)을 가동 종래의 방법 즉 보일러 가동, 스팀터빈 발전시스템에 비하여 발전 효율 향상과 시설비 절감. 운전이 간편 또한 소각방법보다 대기오염 및 미세먼지를 대폭 줄이므로 환경적인 측면이 우수한 바이오매스를 열분해하여 얻어진 정제 가스를 혼합한 혼합연료의 제조방법을 제공하는데 있다.The purpose of the present invention is to extend the life of the landfill and solve the problem of securing a new landfill site because it does not require landfill because it is unnecessary to landfill because the gasification residue (ash) can be used as a soil improver or fertilizer through a simple process. low-calorie internal combustion engine (5,000 kal/Nm³ for methane gas) using a mixed fuel mixed with purified green gas and natural gas by biomass pyrolysis Compared to that, improvement of power generation efficiency and reduction of facility cost. An object of the present invention is to provide a method for manufacturing a mixed fuel mixed with purified gas obtained by pyrolysis of biomass, which is easy to operate and significantly reduces air pollution and fine dust than the incineration method.

상기한 본 발명의 목적은 바이오매스를 열분해하여 얻어진 정제 가스를 혼합한 혼합연료의 제조방법에 있어서, 바이오매스를 연소 치환반응에 의해 열분해 하는 열분해단계와; 상기 열분해단계에 의해 생성된 열분해가스의 온도를 공기를 이용하여 냉각시켜 타르와 일정량의 목축액을 제거하기 위해 1차 냉각작업과 2차 냉각작업으로 이루어진 타르제거단계와; 상기 타르제거단계에 의해 일정한 온도가 된 열분해가스에 가성소다(NaOH)와 암모니아(NH4OH) 용액을 공급하여 PH를 조절하는 불순물제거단계와; 상기 불순물제거단계를 수행한 열분해가스에 생석회 분말을 투입하여 수분을 제거하는 수분제거 단계와; 상기 생석회와 수분이 반응하여 생성된 소석회를 여과하며 열분해 연소가스를 여과하는 바이오가스를 취득하는 여과단계와; 상기 여과단계에 의해 생성된 바이오가스와 천연가스를 일정한 비율로 혼합하는 혼합단계 순으로 이루어지는 것을 특징으로 하는 바이오매스를 열분해하여 얻어진 정제 가스를 혼합한 혼합연료의 제조방법에 의하여 달성된다.An object of the present invention is to provide a method for producing a mixed fuel in which a purified gas obtained by pyrolyzing biomass is mixed, comprising: a pyrolysis step of thermally decomposing biomass through a combustion substitution reaction; a tar removal step comprising a primary cooling operation and a secondary cooling operation in order to cool the temperature of the pyrolysis gas generated by the pyrolysis step using air to remove tar and a certain amount of livestock; an impurity removal step of adjusting PH by supplying caustic soda (NaOH) and ammonia (NH 4 OH) solutions to the pyrolysis gas having a constant temperature by the tar removal step; a water removal step of removing moisture by adding quicklime powder to the pyrolysis gas on which the impurity removal step has been performed; a filtration step of filtering the slaked lime produced by the reaction of the quicklime with moisture and obtaining biogas for filtering the pyrolysis combustion gas; It is achieved by a method for producing a mixed fuel mixed with purified gas obtained by pyrolyzing biomass, characterized in that it consists of a mixing step of mixing the biogas and natural gas produced by the filtration step in a predetermined ratio.

상기 타르제거단계는 열분해단계에 의해 생성된 열분해가스의 온도를 110~130℃범위로 저하시키는 1차 냉각작업과, 상기 1차 냉각작업의 수행된 열분해 가스를 다시 50~60℃의 온도 범위가 되도록 냉각하는 2차 냉각작업을 수행하여 타르와 목초액을 제거하도록 하는 것을 특징으로 하는 바이오매스를 열분해하여 얻어진 정제 가스를 혼합한 혼합연료의 제조방법에 의하여 달성된다.The tar removal step is a primary cooling operation of lowering the temperature of the pyrolysis gas generated by the pyrolysis step to a range of 110 ~ 130 ℃, and the temperature range of 50 ~ 60 ℃ of the pyrolysis gas performed in the primary cooling operation again It is achieved by a method for producing a mixed fuel mixed with purified gas obtained by pyrolyzing biomass, characterized in that by performing a secondary cooling operation to cool as much as possible to remove tar and wood vinegar.

상기 천연가스는 LPG, LNG 중 어느 하나인 것을 사용하며 천연가스와 열분해가스의 혼합비는 1:1인 것을 특징으로 하는 바이오매스를 열분해하여 얻어진 정제 가스를 혼합한 혼합연료의 제조방법에 의하여 달성된다.The natural gas uses any one of LPG and LNG, and the mixing ratio of natural gas and pyrolysis gas is 1:1. .

상기 수분제거 단계에서 소석회와 은이온이 함유된 제올라이트계 무기입자, 은이온이 함유된 인산지르코늄계 화합물 등의 무기물 복합체를 더 공급하여 연소가스에 포함되어 있는 산소 성분을 활성화하여 타르 성분의 악취를 제거하도록 한 것을 특징으로 하는 바이오매스를 열분해하여 얻어진 정제 가스를 혼합한 혼합연료의 제조방법에 의하여 달성된다.In the water removal step, inorganic complexes such as zeolite-based inorganic particles containing slaked lime and silver ions and zirconium phosphate-based compounds containing silver ions are further supplied to activate the oxygen component contained in the combustion gas to remove the odor of tar components. It is achieved by a method for producing a mixed fuel mixed with a purified gas obtained by pyrolyzing biomass, characterized in that it is removed.

이와 같은 본 발명은 바이오매스(bio-mass)를 열분해에 의하여 얻은 정제 바이오 가스를 이용하여 천연가스와 일정한 비율로 혼합시켜 내연기관, 산업용 연료, 가정용 연료 등으로 사용할 수 있도록 바이오 에너지를 회수하기 위하여 가스화함으로 본 발명은 가스화 후 잔재물(ash)을 파쇄 등 간단한 가공을 통하여 토질개량제 또는 비료로 사용하며 집진장치에서 얻어진 플라이 에쉬(fly ash)는 토지개량제로 사용하므로 별도의 매립이 필요 없다. 그러므로 매립지 확보난을 해소할 수 있으며 천연가스의 사용량을 줄일 수 있으며 신재생에너지 확보가 가능한 이점이 있는 유용한 발명이다.As described above, the present invention uses purified biogas obtained by pyrolysis of biomass and mixes it with natural gas in a certain ratio to recover bioenergy so that it can be used as an internal combustion engine, industrial fuel, household fuel, etc. By gasification, the present invention uses the residue (ash) after gasification as a soil improver or fertilizer through simple processing such as crushing, and the fly ash obtained from the dust collector is used as a land improver, so there is no need for a separate landfill. Therefore, it is a useful invention that can solve the problem of securing landfills, reduce the amount of natural gas used, and secure new and renewable energy.

도 1은 본 발명의 기술이 적용된 바이오매스를 열분해하여 얻어진 정제 가스를 혼합한 혼합연료의 제조방법을 보여주는 예시도.1 is an exemplary view showing a method for producing a mixed fuel mixed with purified gas obtained by pyrolyzing biomass to which the technology of the present invention is applied.

이하 본 발명의 바람직한 실시예를 첨부된 도면에 의거하여 상세히 설명하면 다음과 같다.Hereinafter, preferred embodiments of the present invention will be described in detail based on the accompanying drawings.

첨부도면 도 1은 본 발명의 기술이 적용된 바이오매스를 열분해하여 얻어진 가스를 혼합한 혼합연료의 제조방법을 보여주는 예시도로써 이에 따른 본 발명은 재생 가능한 식물체에서 광합성 과정으로부터 생산되는 유기물, 동물 배설물, 음식물 쓰레기, 수생생물들과 같은 유기성 폐기물까지도 포함하는 바이오매스를 열분해로에 넣고 소량의 공기를 투입 연소 및 치환반응을 일으켜 열분해단계(S100)를 수행한다.1 is an exemplary view showing a method for producing a mixed fuel mixed with a gas obtained by pyrolyzing biomass to which the technology of the present invention is applied, according to the present invention, organic matter, animal excrement, Biomass including even organic waste such as food waste and aquatic organisms is put into the pyrolysis furnace, and a small amount of air is input to cause combustion and substitution reaction to perform the pyrolysis step (S100).

이때 상기 열분해로에서 열분해가 완료된 후 남은 연소재(ash)는 배출후 분쇄 선별공정을 거쳐 토질 개량제 및 비료로 사용한다. 가스가 생성되고 열분해 연소 가스는 공정에 따라 정제를 거쳐 포집되게 된다. 또한 집진장치(백필터)에서 포집된 플라이 에쉬(fly ash)는 포집 후 토질 개량제로 사용한다.At this time, the combustion ash (ash) remaining after pyrolysis in the pyrolysis furnace is completed is discharged and then used as a soil improver and fertilizer through a crushing and sorting process. Gas is generated and the pyrolysis combustion gas is purified according to the process and collected. In addition, the fly ash collected in the dust collector (bag filter) is used as a soil conditioner after collection.

한편 상기 열분해로에서 열분해된 가스는 즉, 열분해단계(S100)에 의해 생성된 가스의 온도를 약 250~350℃ 정도이며 상기 열분해가스를 이동시켜 타르(TAR)를 응고시켜 제거하는 과정 중 이때 자연적으로 온도 저하가 이루어지도록 하는 타르제거단계(S200)를 수행한다.
이때 첨부도면 도 1에 도시된 바와 같이 상기 상기 열분해단계에 의해 생성된 열분해가스의 온도를 이용하여 외부 공기를 가열시킨 후 다시 열분해로로 공급하면 열분해로로 공급되는 가스가 가열되어 외부의 저온 공기를 그대로 사용하지 않고 냉각기에서 열교환하여 외부공기의 온도를 승강시켜 사용함으로 열분해로의 열분해 효율을 향상시키면서 배출되는 열분해가스를 1차 냉각작업과 2차 냉각작업으로 냉각시켜 타르와 일정량의 목축액을 제거하는 타르제거단계를 수행한다.
On the other hand, the pyrolyzed gas in the pyrolysis furnace, that is, the temperature of the gas generated by the pyrolysis step (S100) is about 250 ~ 350 ° C. During the process of coagulating and removing the tar (TAR) by moving the pyrolysis gas, it is natural at this time to perform a tar removal step (S200) so that the temperature is lowered.
At this time, as shown in the accompanying drawings, when the outside air is heated using the temperature of the pyrolysis gas generated by the pyrolysis step and then supplied to the pyrolysis furnace again, the gas supplied to the pyrolysis furnace is heated and external low-temperature air The pyrolysis efficiency of the pyrolysis furnace is improved by increasing the temperature of the outside air by exchanging heat in the cooler instead of using it as it is, and cooling the discharged pyrolysis gas through the primary cooling operation and the secondary cooling operation to produce tar and a certain amount of livestock liquid. Carry out the tar removal step to remove.

상기 타르제거단계(S200)는 약 250~350℃ 정도 온도를 갖는 열분해가스를 배출시 열분해가스에 포함되어 있는 타르(TAR)를 제거하기 위하여 온도가 낮은 외부 공기를 공급하면 외부 공기의 공급에 의해 온도가 약 110~130℃ 정도 범위의 온도로 저하되면서 1차 냉각작업(S210)을 수행하여 기체 상태로 포함되어 있던 타르(TAR)가 응고점에서 냉각되어 목초액과 함께 제거한다.The tar removal step (S200) is when the pyrolysis gas having a temperature of about 250 ~ 350 ℃ is supplied to remove the tar (TAR) contained in the pyrolysis gas when the external air is supplied by the supply of the external air. As the temperature is lowered to a temperature in the range of about 110 ~ 130 ℃, the primary cooling operation (S210) is performed, and the tar (TAR) contained in the gaseous state is cooled at the freezing point and removed together with the wood vinegar.

상기한 1차 냉각작업(S210)을 수행하기 위하여 냉각기에 외부공기를 공급하게 되는데 상기한 외부공기는 1차 냉각작업(S210)을 수행하기 위해 사용된 후 냉각기에서 열교환이 일어나 온도가 상승되게 되며 상승한 외부공기는 열분해로로 다시 공급한다.External air is supplied to the cooler to perform the primary cooling operation (S210). After the external air is used to perform the primary cooling operation (S210), heat exchange occurs in the cooler to increase the temperature. The rising outside air is supplied back to the pyrolysis furnace.

상기 1차 냉각작업(S210)을 수행한 외부공기는 일정한 온도로 상승되어 있기 때문에 열분해로로 공급되는 외부공기의 온도가 높을 경우 열분해 효율이 상승되기 때문이다.This is because the pyrolysis efficiency is increased when the temperature of the external air supplied to the pyrolysis furnace is high because the external air that has been subjected to the first cooling operation (S210) is raised to a constant temperature.

물론 열분해로의 초기 구동시에는 외부공기가 1차 냉각작업(S210)을 수행하기 위한 냉각기를 경유하여 공급되어도 상기 냉각기를 경유한 외부공기가 온도 상승이 이루어지지 않은 상태지만 열분해로의 가동으로 인해 외부공기가 온도 상승되어 공급되게 된다. Of course, during the initial operation of the pyrolysis furnace, even if the external air is supplied via the cooler for performing the primary cooling operation (S210), the temperature of the external air passing through the cooler is not increased, but due to the operation of the pyrolysis furnace The temperature of the outside air is increased and supplied.

한편 열분해가스에 기체 상태로 포함되어 있던 타르(TAR)와 목초액을 1차 냉각작업(S210)을 수행하면서 제거 후 열분해 가스는 2차 냉각작업(S220)을 수행하기 위해 냉각수에 의한 냉각기로 유도하여 50~60℃로 냉각하여 열분해 가스 중에 함유된 소량의 목초액과 수분이 응축되면서 다량의 응축수가 발생하며 이는 폐수와 혼합 처리하여 배출된다.On the other hand, after removing tar (TAR) and wood vinegar contained in the gaseous state in the pyrolysis gas while performing the primary cooling operation (S210), the pyrolysis gas is guided to a cooler by cooling water to perform the secondary cooling operation (S220). After cooling to 50~60℃, a small amount of wood vinegar and moisture contained in the pyrolysis gas is condensed, and a large amount of condensed water is generated, which is mixed with wastewater and discharged.

상기 타르제거단계(S200)에 의해 일정한 온도가 된 열분해가스를 스크러브(습식 세정탑)를 통과시켜 불순물제거공정(S300)을 수행한다. 상기 불순물제거공정(S300)은 가연성, 폭발성 가스, 분진, 미스트, 부식성 가스 및 분진 제거를 실시하며 이때 분진과 부식성 산성유해가스를 동시 포집할 수 있도록 스크러브(습식세정탑)에 수산화나트륨(NaOH)을 공급하여 PH를 조절한다.The impurity removal process (S300) is performed by passing the pyrolysis gas at a constant temperature by the tar removal step (S200) through a scrub (wet cleaning tower). In the impurity removal process (S300), combustible, explosive gas, dust, mist, corrosive gas and dust are removed, and at this time, sodium hydroxide (NaOH ) to control the pH.

타르제거단계를 통과한 열분해가스가 50~60℃로 냉각하면서 타르(tar)와 수분이 제거된 열분해가스는 충진물이 없는 습식 스크러브(습식 세정장치)에 공급되는 수산화나트륨(NaOH)에 일정량의 암모니아수(NH4OH)용액을 혼합한 알카리용액을 공급하여 습식스크러브(습식세정탑)를 순환하는 순환액의 PH를 7~7.5로 조절하여 열분해 가스 중에 함유된 부식성 산성가스와 질소화합물(NO) 및 분진을 제거한다. 이때 부식성 산성가스와 질소화합물(NO)은 다음과 같은 반응식에 의하여 중화되어 제거되고, 분진은 순환액에 의해 약 60% 이상 제거된다.As the pyrolysis gas that has passed through the tar removal stage is cooled to 50~60℃, the pyrolysis gas from which tar and moisture have been removed is added to a certain amount of sodium hydroxide (NaOH) supplied to a wet scrub (wet scrubber) without a filler. By supplying an alkali solution mixed with aqueous ammonia (NH 4 OH) solution to adjust the PH of the circulating fluid circulating in the wet scrub (wet scrubbing tower) to 7~7.5, corrosive acid gas and nitrogen compounds (NO) contained in the pyrolysis gas ) and dust. At this time, the corrosive acid gas and nitrogen compound (NO) are neutralized and removed by the following reaction formula, and the dust is removed by about 60% or more by the circulating fluid.

Hcl + NaOH → Nacl Hcl + NaOH → Nacl

SO3 + 2NaOH → Na2SO4SO3 + 2NaOH → Na 2 SO4

2HCl + CaO → CaCl2 + H2O 2HCl + CaO → CaCl 2 + H 2 O

4NO + 4NH4OH + O2 → 4N2 + 6H2O4NO + 4NH4OH + O2 → 4N2 + 6H2O

SO3 → CaO →CaSO4 + Ca(OH)2+ QkcalSO 3 → CaO → CaSO 4 + Ca(OH) 2 + Qkcal

H2O+ CaO → Ca(OH)2 + QkcalH 2 O+ CaO → Ca(OH) 2 + Qkcal

한편 상기한 불순물제거공정(S300)이 완료된 열분해가스는 20~30℃의 온도를 형성하게 되며 이때 열분해가스의 상대습도는 RH100%이다. 따라서 상대습도를 RH80% 이하로 조절하고, 또한 충진물이 없는 습식스크러버(습식세정장치)에서 완전 제거치 못한 부식성 산성가스를 완전 제거하기 위하여 분말 생석회를 일정량 투입하여 부식성 산성가스는 중화 제거하고 생석회의 수화반응에 의하여 열분해가스는 약간의 온도상승과 포함된 수분을 제거하는 수분제거단계(S400)를 수행하여 습도를 조절한다.On the other hand, the pyrolysis gas after the impurity removal process (S300) is completed forms a temperature of 20 ~ 30 ℃, at this time, the relative humidity of the pyrolysis gas is RH100%. Therefore, in order to control the relative humidity to RH80% or less, and to completely remove the corrosive acid gas that cannot be completely removed in a wet scrubber (wet cleaning device) without a filler, a certain amount of powdered quicklime is added to neutralize the corrosive acid gas and remove the quicklime. By the hydration reaction, the pyrolysis gas performs a water removal step (S400) of a slight temperature rise and removing the contained water to control the humidity.

상기 수분조절과 부식성 산성가스가 제거된 열분해 가스 중에 함유된 반응 소석회는 여과 바이오가스를 취득하는 집진장치(백필터)에서 여과 후 포집하게 된다(여과단계(S500) 참조).The reactive slaked lime contained in the pyrolysis gas from which the moisture control and corrosive acid gas have been removed is collected after filtration in a dust collector (bag filter) that obtains filtered biogas (refer to the filtration step (S500)).

상기 수분제거단계(S400)에서 소석회와 은이온이 함유된 제올라이트계 무기입자, 은이온이 함유된 인산지르코늄계 화합물 등의 무기물 복합체를 더 공급하여 연소가스에 포함되어 있는 산소 성분을 활성화하여 타르 성분의 악취를 제거하도록 사용할 수도 있다.In the water removal step (S400), inorganic complexes such as zeolite-based inorganic particles containing slaked lime and silver ions and zirconium phosphate-based compounds containing silver ions are further supplied to activate the oxygen component contained in the combustion gas, thereby activating the tar component It can also be used to remove odors from

상기 수분제거단계(S400)에서 제공되는 제올라이트계 무기입자와의 반응시 오존이 발생됨으로 상기 오존은 열분해가스에 잔존하는 냄새를 억제시키며 혼합가스 중에 함유된 산소성분을 활성화시키고, 혼합연료의 제조시 활성화된 공기를 연료와 혼합시켜 연소(산화) 반응이 잘 이루어지게 하여 효과적으로 연소효율을 향상시켜 완전연소가 이루어질 수 있도록 한다.Ozone is generated when reacting with the zeolite-based inorganic particles provided in the water removal step (S400), and the ozone suppresses the odor remaining in the pyrolysis gas, activates the oxygen component contained in the mixed gas, and produces mixed fuel. By mixing the activated air with the fuel, the combustion (oxidation) reaction is made well, and the combustion efficiency is effectively improved so that complete combustion can be achieved.

상기 열분해가스에 포함되어 있는 수분과 반응한 생석회를 여과하는 여과단계(S500) 및 상기 여과단계(S500)에 의해 생성된 정제 가스와 천연가스를 일정한 비율로 혼합하는 혼합단계(S700) 순으로 제조한다.The filtration step (S500) of filtering the quicklime reacted with the moisture contained in the pyrolysis gas and the mixing step (S700) of mixing the purified gas and natural gas generated by the filtration step (S500) at a certain ratio do.

상기 천연가스는 LPG, LNG 중 어느 하나를 사용하며 상기 정제 가스와 천연가스의 혼합 비율은 1:1로 혼합한다. 상기 천연가스의 열량은 10,000~12,000kcal이므로 여기에 500~1000kcal의 열량을 갖는 열분해된 정제 가스를 혼합하면 약 5000~6500kcal의 연량을 갖는 가스를 제조할 수 있게 되는 것이다.The natural gas uses any one of LPG and LNG, and the mixing ratio of the refined gas and natural gas is 1:1. Since the calorific value of the natural gas is 10,000 to 12,000 kcal, when the pyrolyzed refined gas having a calorific value of 500 to 1000 kcal is mixed therewith, it is possible to produce a gas having an annual amount of about 5000 to 6500 kcal.

이와 같은 본 발명은 바이오매스(bio-mass)를 이용하여 천연가스와 일정한 비율로 혼합시켜 내연기관, 산업용 연료, 가정용 연료 등으로 사용할 수 있도록 바이오에너지를 회수하기 위하여 가스화함으로 본 발명은 가스화 잔재물만 매립하므로 매립지 수명연장 및 신규 매립지 확보난을 해소할 수 있으며 천연가스의 사용량을 줄일 수 있으며 신재생에너지 확보가 가능한 이점이 있는 유용한 발명이다.As described above, the present invention uses biomass and mixes it with natural gas in a certain ratio to gasify it to recover bioenergy so that it can be used as an internal combustion engine, industrial fuel, household fuel, etc., so that the present invention provides only gasification residues It is a useful invention that can extend the life of the landfill and solve the problem of securing a new landfill, reduce the amount of natural gas used, and secure new and renewable energy.

S100 : 열분해단계 S200 : 타르제거단계
S210 : 1차 냉각작업 S220 : 2차 냉각작업
S300 : 불순물제거공정 S400 : 수분제거단계
S500 : 여과단계 S700 : 혼합단계
S100: pyrolysis step S200: tar removal step
S210: 1st cooling operation S220: 2nd cooling operation
S300: Impurity removal process S400: Moisture removal step
S500: Filtration step S700: Mixing step

Claims (5)

바이오매스를 열분해하여 얻어진 정제 가스를 혼합한 혼합연료의 제조방법에 있어서,
바이오매스를 연소 치환반응에 의해 열분해 하는 열분해단계와;
상기 열분해단계에 의해 생성된 열분해가스는 냉각기로 도입된 외부공기와 열교환하여 1차 냉각되고, 가온된 상기 외부공기는 열분해로로 공급하되, 1차 냉각된 열분해가스는 냉각수로 2차 냉각되어 타르와 목초액을 제거하는 타르제거단계와;
상기 타르제거단계에 의해 일정한 온도가 된 열분해가스에 가성소다(NaOH)와 암모니아(NH4OH) 용액을 공급하여 PH를 조절하는 불순물제거단계와;
상기 불순물제거단계를 수행한 열분해가스에 생석회 분말을 투입하여 수분을 제거하는 수분제거단계와;
상기 생석회와 수분이 반응하여 생성된 소석회를 여과하며 열분해 연소가스를 여과하는 바이오가스를 취득하는 여과단계와;
상기 여과단계에 의해 생성된 열분해 가스와 천연가스를 일정한 비율로 혼합하는 혼합단계 순으로 이루어지는 것을 특징으로 하는 바이오매스를 열분해하여 얻어진 정제 가스를 혼합한 혼합연료의 제조방법.
In the method for producing a mixed fuel in which purified gas obtained by pyrolyzing biomass is mixed,
a thermal decomposition step of thermally decomposing biomass by a combustion substitution reaction;
The pyrolysis gas generated by the pyrolysis step is first cooled by heat exchange with the outside air introduced into the cooler, and the warmed outside air is supplied to the pyrolysis furnace, but the firstly cooled pyrolysis gas is secondarily cooled with cooling water to tar And a tar removal step of removing the vinegar;
an impurity removal step of adjusting PH by supplying caustic soda (NaOH) and ammonia (NH 4 OH) solutions to the pyrolysis gas having a constant temperature by the tar removal step;
a water removal step of removing moisture by adding quicklime powder to the pyrolysis gas on which the impurity removal step has been performed;
a filtration step of filtering the slaked lime produced by the reaction of the quicklime with moisture and obtaining biogas for filtering the pyrolysis combustion gas;
A method for producing a mixed fuel mixed with purified gas obtained by pyrolyzing biomass, characterized in that the mixing step is performed in the order of mixing the pyrolysis gas and natural gas generated by the filtration step in a predetermined ratio.
삭제delete 삭제delete 삭제delete 삭제delete
KR1020200006555A 2020-01-17 2020-01-17 Manufacturing method of mixed fuel which mixed the refined gas obtained by thermal decomposition of biomass KR102451497B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200006555A KR102451497B1 (en) 2020-01-17 2020-01-17 Manufacturing method of mixed fuel which mixed the refined gas obtained by thermal decomposition of biomass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200006555A KR102451497B1 (en) 2020-01-17 2020-01-17 Manufacturing method of mixed fuel which mixed the refined gas obtained by thermal decomposition of biomass

Publications (2)

Publication Number Publication Date
KR20210093407A KR20210093407A (en) 2021-07-28
KR102451497B1 true KR102451497B1 (en) 2022-10-11

Family

ID=77126206

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200006555A KR102451497B1 (en) 2020-01-17 2020-01-17 Manufacturing method of mixed fuel which mixed the refined gas obtained by thermal decomposition of biomass

Country Status (1)

Country Link
KR (1) KR102451497B1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003238972A (en) 2002-02-15 2003-08-27 Shimane Denko Kk Apparatus for producing lignous biomass gas
JP2007039613A (en) * 2005-08-05 2007-02-15 Nippon Steel Corp Method and apparatus for purifying gasified gas
US20120125760A1 (en) 2010-11-22 2012-05-24 T.H. Elema Eng Co., Ltd. Pyrolysis apparatus of waste material
KR101619325B1 (en) * 2015-11-26 2016-05-11 한국농어촌공사 apparus and process
KR101998858B1 (en) 2018-10-30 2019-09-04 비엔지코리아(주) Energy Recovery System Removing Generated Hazardous Material and Improving Energy Efficiency from Pyrolyzing and Combusting Logs Using Pyrolysis Apparatus

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09202888A (en) * 1996-01-26 1997-08-05 Nippon Steel Corp Desulfurization of coal pyrolytic gas and apparatus therefor
JP5236930B2 (en) * 2007-11-01 2013-07-17 ヤンマー株式会社 Cooling device and biomass gasification system in biomass gasification system
DE102008032166A1 (en) * 2008-07-08 2010-01-14 Karl-Heinz Tetzlaff Process and device for the production of tar-free synthesis gas from biomass

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003238972A (en) 2002-02-15 2003-08-27 Shimane Denko Kk Apparatus for producing lignous biomass gas
JP2007039613A (en) * 2005-08-05 2007-02-15 Nippon Steel Corp Method and apparatus for purifying gasified gas
US20120125760A1 (en) 2010-11-22 2012-05-24 T.H. Elema Eng Co., Ltd. Pyrolysis apparatus of waste material
KR101619325B1 (en) * 2015-11-26 2016-05-11 한국농어촌공사 apparus and process
KR101998858B1 (en) 2018-10-30 2019-09-04 비엔지코리아(주) Energy Recovery System Removing Generated Hazardous Material and Improving Energy Efficiency from Pyrolyzing and Combusting Logs Using Pyrolysis Apparatus

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
H.Yang et al., ACS Catal. 2018, 8, 1248-1258 (2017.12.29)*

Also Published As

Publication number Publication date
KR20210093407A (en) 2021-07-28

Similar Documents

Publication Publication Date Title
Hoang et al. Characteristics of hydrogen production from steam gasification of plant-originated lignocellulosic biomass and its prospects in Vietnam
Akhtar et al. A combined overview of combustion, pyrolysis, and gasification of biomass
KR100819505B1 (en) Unified steam reformer for conversion tar and soot(srts) to syngas and biomass gasification process for heat and electricity production using thereof
Bermudez et al. Production of bio-syngas and bio-hydrogen via gasification
KR100742159B1 (en) Cogeneration system by biomass gasification
RU2562112C2 (en) Device for thermochemical harmonisation and gasification of wet biomass and its application
Masto et al. Comparative evaluation of aquatic biomass feedstocks for energy application and potential for extraction of plant nutrients from their ash
Capareda Biomass energy conversion
CN103060008A (en) Biomass comprehensive transformation device and method thereof
Adeniyi et al. Conversion of biomass to biochar using top‐lit updraft technology: a review
Kaltschmitt et al. Renewable energy from biomass
KR101507956B1 (en) Steam supply and power generation energy system using organic waste and method thereof
Sadeghi et al. An overview of waste-to-energy in Malaysia
KR102451467B1 (en) Manufacturing method of water gas for fuel by low temperature pyrolysis of biomass
Al Afif et al. Experimental and simulation study of hydrochar production from cotton stalks
CN103649410A (en) Gasification of bio-oil and alkali containing energy rich aqueous solutions from pulp mills
KR102451497B1 (en) Manufacturing method of mixed fuel which mixed the refined gas obtained by thermal decomposition of biomass
US20110179716A1 (en) Industrial plant manufacturing its own fuel
TWI822008B (en) Hydrogen production system
CN103074113B (en) Method for preparing gas by using biomass and coal
Ngoc et al. Development of biomass resource conversion technology in Vietnam
Thorin et al. State of the Art in the Waste to Energy Area: Technology and Systems
Sofiaa et al. Environmental impact analysis of flue gases emissions for a 20 kwe biomass gasifier
Blagojević et al. Pyrolysis and gasification in the process of sewage sludge treatment
CN115449404B (en) Solid fuel staged pyrolysis gasification system and method thereof

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right