KR102436964B1 - Micro-bubble generating device - Google Patents

Micro-bubble generating device Download PDF

Info

Publication number
KR102436964B1
KR102436964B1 KR1020200177032A KR20200177032A KR102436964B1 KR 102436964 B1 KR102436964 B1 KR 102436964B1 KR 1020200177032 A KR1020200177032 A KR 1020200177032A KR 20200177032 A KR20200177032 A KR 20200177032A KR 102436964 B1 KR102436964 B1 KR 102436964B1
Authority
KR
South Korea
Prior art keywords
circulating water
pressure tank
pressure
water
water outlet
Prior art date
Application number
KR1020200177032A
Other languages
Korean (ko)
Other versions
KR20220087609A (en
Inventor
박대식
조용현
Original Assignee
주식회사대신정공
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사대신정공 filed Critical 주식회사대신정공
Priority to KR1020200177032A priority Critical patent/KR102436964B1/en
Publication of KR20220087609A publication Critical patent/KR20220087609A/en
Application granted granted Critical
Publication of KR102436964B1 publication Critical patent/KR102436964B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/421Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions by moving the components in a convoluted or labyrinthine path
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/237Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media
    • B01F23/2373Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media for obtaining fine bubbles, i.e. bubbles with a size below 100 µm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/237Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media
    • B01F23/2376Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media characterised by the gas being introduced
    • B01F23/23761Aerating, i.e. introducing oxygen containing gas in liquids
    • B01F23/237612Oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/421Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions by moving the components in a convoluted or labyrinthine path
    • B01F25/422Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions by moving the components in a convoluted or labyrinthine path between stacked plates, e.g. grooved or perforated plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/421Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions by moving the components in a convoluted or labyrinthine path
    • B01F25/423Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions by moving the components in a convoluted or labyrinthine path by means of elements placed in the receptacle for moving or guiding the components
    • B01F25/4231Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions by moving the components in a convoluted or labyrinthine path by means of elements placed in the receptacle for moving or guiding the components using baffles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/421Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions by moving the components in a convoluted or labyrinthine path
    • B01F25/423Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions by moving the components in a convoluted or labyrinthine path by means of elements placed in the receptacle for moving or guiding the components
    • B01F25/4232Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions by moving the components in a convoluted or labyrinthine path by means of elements placed in the receptacle for moving or guiding the components using dams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/421Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions by moving the components in a convoluted or labyrinthine path
    • B01F25/423Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions by moving the components in a convoluted or labyrinthine path by means of elements placed in the receptacle for moving or guiding the components
    • B01F25/4233Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions by moving the components in a convoluted or labyrinthine path by means of elements placed in the receptacle for moving or guiding the components using plates with holes, the holes being displaced from one plate to the next one to force the flow to make a bending movement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/431Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor
    • B01F25/4317Profiled elements, e.g. profiled blades, bars, pillars, columns or chevrons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/45Mixers in which the materials to be mixed are pressed together through orifices or interstitial spaces, e.g. between beads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/50Mixing receptacles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/71Feed mechanisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/71Feed mechanisms
    • B01F35/717Feed mechanisms characterised by the means for feeding the components to the mixer
    • B01F35/71805Feed mechanisms characterised by the means for feeding the components to the mixer using valves, gates, orifices or openings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/75Discharge mechanisms
    • B01F35/754Discharge mechanisms characterised by the means for discharging the components from the mixer
    • B01F35/7547Discharge mechanisms characterised by the means for discharging the components from the mixer using valves, gates, orifices or openings
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/24Treatment of water, waste water, or sewage by flotation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/74Treatment of water, waste water, or sewage by oxidation with air
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/20Activated sludge processes using diffusers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F2101/00Mixing characterised by the nature of the mixed materials or by the application field
    • B01F2101/305Treatment of water, waste water or sewage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Microbiology (AREA)
  • Nanotechnology (AREA)

Abstract

본 발명에 의한 미세기포 발생장치는, 외부로부터 고압의 순환수와 공기가 공급되는 입수관이 일측에 구비되고, 내부에 채워진 고압의 순환수가 대기압으로 감압되면서 배출되는 출수관이 타측에 구비되는 압력탱크; 길이방향 일단이 상기 입수관과 연통되도록 상기 압력탱크의 내부에 설치되는 입수덕트; 길이방향 일단이 상기 출수관과 연통되도록 상기 압력탱크의 내부에 설치되는 출수덕트; 상기 입수덕트와 출수덕트의 내부에 장착되는 스플리터;를 포함하여 구성된다. 본 발명에 의한 미세기포 발생장치를 이용하면, 외부로부터 유입된 공기를 스플리터로 잘게 쪼갠 후 순환수의 압력 강하를 통해 다량의 미세기포를 발생시킴으로써 순환수를 고압으로 압축시키지 아니하더라도 순환수의 용존산소량을 효과적으로 높일 수 있다는 장점이 있다.In the microbubble generator according to the present invention, an inlet pipe to which high-pressure circulating water and air are supplied from the outside is provided on one side, and an outlet pipe through which the high-pressure circulating water filled therein is decompressed to atmospheric pressure is provided on the other side. Tank; an acquisition duct installed inside the pressure tank so that one end of the longitudinal direction communicates with the inlet pipe; a water outlet duct installed in the pressure tank so that one end thereof in the longitudinal direction communicates with the water outlet pipe; It is configured to include; a splitter mounted on the inside of the inlet duct and the outlet duct. Using the device for generating microbubbles according to the present invention, the air introduced from the outside is split finely with a splitter and then a large amount of microbubbles are generated through the pressure drop of the circulating water to dissolve the circulating water even without compressing the circulating water to high pressure. It has the advantage of effectively increasing the amount of oxygen.

Figure R1020200177032
Figure R1020200177032

Description

미세기포 발생장치 {Micro-bubble generating device}Micro-bubble generating device

본 발명은 순환수의 용존산소량을 높이기 위해 순환수 내부에 다량의 미세기포를 발생시키는 장치에 관한 것으로, 더 상세하게는 물리적 충격에 의해 미세기포를 발생시키는 방법과 순환수의 압력 강하를 통해 미세기포를 발생시키는 방법이 혼용된 미세기포 발생장치에 관한 것이다.The present invention relates to a device for generating a large amount of microbubbles in circulating water in order to increase the amount of dissolved oxygen in circulating water, and more particularly, to a method of generating microbubbles by physical impact and It relates to a microbubble generating device in which a method of generating bubbles is mixed.

일반적으로 가정이나 영업장소에서 나오는 생활하수를 포함한 오,폐수와 각종 산업현장의 공장 및 양계장이나 우사가 있는 축산 농가에서 배출되는 각종 오,폐수는 하천에 그대로 방류하거나 땅에 매립할 경우 수질을 심각하게 오염시키고 토양 및 대기 오염의 주원인이 되고 있으므로 이러한 폐수는 폐수처리장치를 통해 깨끗하게 정화 처리한 후 방류되어야만 한다.In general, sewage and wastewater, including domestic sewage from households and business places, and various types of sewage and wastewater discharged from factories in various industrial sites, poultry farms, and livestock farms with barns, if discharged directly into rivers or buried in land, seriously deteriorate the quality of the water. Since it is a major cause of soil and air pollution, such wastewater must be purified and discharged through a wastewater treatment system.

상기 가정이나 영업장소와 산업현장 및 축산 농가 등지에서 발생 되는 각종 부산물이 포함된 폐수의 처리과정은 대부분 전처리과정과 1차 내지 3차의 처리과정으로 이루어진다. 여기서 전처리 과정은 물리적 처리 공정이다. 구체적으로는 스크린 침사지 유수분리가 행하여지는 공정에 의해 협잡물, 모래, 고형물 등이 제거되는 처리과정을 말한다.The treatment process of wastewater containing various by-products generated at the home, business place, industrial site, livestock farm, etc., is mostly composed of a pretreatment process and a first to a third treatment process. Here, the pretreatment process is a physical treatment process. Specifically, it refers to a treatment process in which contaminants, sand, solids, etc. are removed by a process in which oil-water separation is performed on screen sedimentation paper.

상기 1차 처리과정은 화학적 처리과정으로서, 중화 - 반응 - 응집이 이루어져 침전 혹은 부상이 되며, 이에 의해 침전물질이나 부유물질이 제거되는 처리과정이다. 2차 처리과정은 생물학적 처리과정으로서, 활성오니가 행하여지며 이에 의해 용족 유기물질이 제거되는 처리과정이다. 3차 처리과정은 고도 처리과정으로서, 질소 및 인 제거와 흡착, 여과가 행하여지며 이에 의해 고도 처리가 되는 처리과정이다.The primary treatment process is a chemical treatment process, in which neutralization - reaction - agglomeration is formed to precipitate or float, thereby removing sediment or suspended matter. The secondary treatment process is a biological treatment process, in which activated sludge is performed, thereby removing the dragon group organic material. The tertiary treatment process is an advanced treatment process, in which nitrogen and phosphorus removal, adsorption, and filtration are performed, and thereby advanced treatment is performed.

상기의 폐수 처리과정 중 화학적 처리과정에서 부유물질을 강제로 부상시킨 다음 제거하는 공정이 있는데, 이에 의해 폐수 속에서 부유물질을 제거하기 위해서는 고압의 공기를 폐수로부터 부유물질이 단계별로 제거되고 있는 순환수 속에 용해시킨 다음 대기압에서 만들어지는 기포의 부상력을 이용하여 순환수 속의 부유물질이 함께 부상되도록 하면 부유물질을 제거하기가 용이한 것이다.Among the wastewater treatment process, there is a process of forcibly flotation and then removing suspended matter in the chemical treatment process, whereby in order to remove suspended matter from wastewater, high-pressure air is circulated in which suspended matter is removed from wastewater step by step. After dissolving in water, using the buoyancy force of the bubbles created at atmospheric pressure to float the suspended substances in the circulating water together, it is easy to remove the suspended substances.

즉, 이와 같은 수처리 때의 처리 효율 향상과 작업시간 단축은 순환수의 용존산소량에 좌우되는바, 순환수 내부에 다량이 미세기포를 발생시켜 순환수의 용존산소량을 높이는 방안이 다양하게 제안되고 있다. In other words, since the improvement of treatment efficiency and reduction of working time during water treatment is dependent on the amount of dissolved oxygen in the circulating water, various methods have been proposed to increase the amount of dissolved oxygen in the circulating water by generating a large amount of microbubbles in the circulating water. .

일반적으로 순환수 내부에 기포를 발생시키는 장치로는, 임펠러의 회전력으로 순환수 내부에 공기를 주입시켜 기포를 발생시키는 유도공기식 기포발생장치와, 챔버 내부에 다양한 구조의 내부구조물(이하 '스플리터'라 함)을 설치하여 물과 공기가 상기 내부구조물에 부딪히는 과정에서 기포가 발생되도록 하는 스플리터식 기포발생장치와, 순환수를 고압으로 가압한 후 대기압으로 급격하게 강하시켜 순환수 내부에 미세기포가 발생되도록 하는 가압식 기포발생장치가 있다.In general, as a device for generating bubbles in circulating water, an induction air bubble generating device that generates bubbles by injecting air into the circulating water with the rotational force of an impeller, and internal structures of various structures inside the chamber (hereinafter referred to as 'splitters') '), a splitter-type bubble generating device that generates bubbles in the process of colliding with water and air against the internal structure, and pressurizing circulating water to high pressure and then rapidly dropping to atmospheric pressure to create microbubbles inside the circulating water There is a pressurized bubble generator that allows

그러나 유도공기식 기포발생장치와 스플리터식 기포발생장치는 비교적 큰 사이즈의 기포만을 발생시킬 수 있을 뿐 미세기포를 발생시키지는 못하므로 순환수의 용존산량을 높이는데 한계가 있고, 가압식 기포발생장치는 미세기포는 발생시킬 수 있지만 순환수를 5~6kg/cm3의 고압으로 압축시켜야 하므로 장치의 설치비용 및 유지비용이 많이 소요된다는 단점이 있다.However, the guided air bubble generator and the splitter type bubble generator can only generate relatively large-sized bubbles, but do not generate fine bubbles, so there is a limit to increasing the dissolved acid of the circulating water. Bubbles can be generated, but the circulating water has to be compressed to a high pressure of 5-6 kg/cm 3 , so the installation and maintenance costs of the device are high.

KR 10-1279629 B1KR 10-1279629 B1

본 발명은 상기와 같은 문제점을 해결하기 위하여 제안된 것으로, 외부로부터 유입된 공기를 스플리터로 잘게 쪼갠 후 순환수의 압력 강하를 통해 다량의 미세기포를 발생시킴으로써 순환수를 고압으로 압축시키지 아니하더라도 순환수의 용존산소량을 효과적으로 높일 수 있는 미세기포 발생장치를 제공하는데 목적이 있다.The present invention has been proposed to solve the above problems, and after finely splitting the air introduced from the outside with a splitter, a large amount of microbubbles are generated through the pressure drop of the circulating water, so that the circulating water is circulated without compressing the circulating water to a high pressure. An object of the present invention is to provide a microbubble generator capable of effectively increasing the amount of dissolved oxygen in water.

상기와 같은 목적을 달성하기 위한 본 발명에 의한 미세기포 발생장치는, 외부로부터 고압의 순환수와 공기가 공급되는 입수관이 일측에 구비되고, 내부에 채워진 고압의 순환수가 대기압으로 감압되면서 배출되는 출수관이 타측에 구비되는 압력탱크; 길이방향 일단이 상기 입수관과 연통되도록 상기 압력탱크의 내부에 설치되는 입수덕트; 길이방향 일단이 상기 출수관과 연통되도록 상기 압력탱크의 내부에 설치되는 출수덕트; 상기 입수덕트와 출수덕트의 내부에 장착되는 스플리터;를 포함하여 구성된다.The micro-bubble generating device according to the present invention for achieving the above object is provided with a water inlet pipe to which high-pressure circulating water and air are supplied from the outside, and is discharged while the high-pressure circulating water filled therein is reduced to atmospheric pressure. a pressure tank having an outlet pipe on the other side; an acquisition duct installed inside the pressure tank so that one end of the longitudinal direction communicates with the inlet pipe; a water outlet duct installed in the pressure tank so that one end thereof in the longitudinal direction communicates with the water outlet pipe; It is configured to include; a splitter mounted on the inside of the inlet duct and the outlet duct.

상기 스플리터는, 다수 개의 육각홀이 연이어 배열된 둘 이상의 허니컴패널이 두께방향으로 적층되는 구조로 구성되되 상기 허니컴패널의 적층방향이 상기 입수덕트 및 출수덕트의 길이방향과 직각을 이루도록 장착되며, 이웃하는 허니컴패널은 육각홀이 상호 어긋나게 겹쳐지도록 적층된다.The splitter has a structure in which two or more honeycomb panels having a plurality of hexagonal holes arranged in a row are stacked in a thickness direction, and the stacking direction of the honeycomb panel is mounted to form a right angle to the longitudinal direction of the inlet and outlet ducts, The honeycomb panels are stacked so that the hexagonal holes overlap each other.

상기 스플리터는, 상기 육각홀의 내벽으로부터 상기 육각홀의 중심을 향해 연장되는 다수 개의 돌출핀을 구비한다.The splitter includes a plurality of protruding pins extending from the inner wall of the hexagonal hole toward the center of the hexagonal hole.

상기 입수관은 상기 압력탱크의 일측벽 하부에 결합되고, 상기 출수관은 상기 압력탱크의 타측벽 하부에 결합되며, 상기 입수덕트는 수직으로 세워지도록 배열되어 하단이 상기 입수관과 연결되고, 상기 출수덕트는 수직으로 세워지도록 배열되어 하단이 상기 출수관과 연결되며, 상기 입수덕트의 상단으로 인출된 순환수를 상기 압력탱크의 바닥으로 안내하는 가이드판을 더 포함한다.The inlet pipe is coupled to the lower part of the one side wall of the pressure tank, the water outlet pipe is coupled to the lower part of the other wall of the pressure tank, and the inlet duct is arranged to stand vertically so that the lower end is connected to the inlet pipe, and the The water outlet duct is arranged to stand vertically so that the lower end is connected to the water outlet pipe, and further includes a guide plate for guiding the circulating water drawn to the upper end of the inlet duct to the bottom of the pressure tank.

상기 압력탱크의 내벽과 상기 가이드판의 외측면에는, 상기 순환수의 유동방향과 교차하는 방향으로 연장되는 다수 개의 돌출바가 구비된다.A plurality of protruding bars extending in a direction crossing the flow direction of the circulating water are provided on the inner wall of the pressure tank and the outer surface of the guide plate.

상기 돌출바는, V자 형상의 횡단면을 갖도록 폭방향 중단이 절곡된 플레이트 형상으로 형성되어, 절곡된 모서리의 돌출방향이 순환수의 유동방향과 대향하도록 설치된다.The protrusion bar is formed in a plate shape in which the middle of the width direction is bent to have a V-shaped cross section, and the protrusion direction of the bent edge is installed to face the flow direction of the circulating water.

상기 돌출바는 상기 순환수의 유동방향을 따라 관통되는 하나 이상의 관통공을 구비한다.The protrusion bar has one or more through-holes that penetrate in the flow direction of the circulating water.

상기 관통공을 통과하는 순환수가 나선형으로 유동하도록 상기 관통공의 내벽에는 나선홈이 형성된다.A spiral groove is formed in the inner wall of the through hole so that the circulating water passing through the through hole flows in a spiral.

상기 입수관의 개도량을 조절하는 입수밸브와, 상기 출수관의 개도량을 조절하는 출수밸브를 더 포함하며, 상기 입수밸브와 출수밸브는, 상기 압력탱크 내부의 압력이 일정하게 유지되도록 자동 조절된다.It further comprises a water inlet valve for controlling the opening degree of the water inlet pipe, and an outlet valve controlling the opening degree of the water outlet pipe, wherein the inlet valve and the water outlet valve are automatically adjusted so that the pressure inside the pressure tank is maintained constant. do.

상기 압력탱크는, 내부공간 상부에 포집된 공기를 외부로 배출시키는 에어벤트를 구비한다.The pressure tank has an air vent for discharging the air collected in the upper portion of the inner space to the outside.

본 발명에 의한 미세기포 발생장치를 이용하면, 외부로부터 유입된 공기를 스플리터로 잘게 쪼갠 후 순환수의 압력 강하를 통해 다량의 미세기포를 발생시킴으로써 순환수를 고압으로 압축시키지 아니하더라도 순환수의 용존산소량을 효과적으로 높일 수 있다는 장점이 있다.Using the device for generating microbubbles according to the present invention, the air introduced from the outside is split finely with a splitter and then a large amount of microbubbles are generated through the pressure drop of the circulating water to dissolve the circulating water even without compressing the circulating water to high pressure. It has the advantage of effectively increasing the amount of oxygen.

도 1은 본 발명에 의한 미세기포 발생장치의 개략도이다.
도 2는 본 발명에 의한 미세기포 발생장치에 포함되는 스플리터의 사시도이다.
도 3은 본 발명에 의한 미세기포 발생장치에 포함되는 돌출바의 사시도이다.
도 4는 본 발명에 의한 미세기포 발생장치 제2 실시예에 포함되는 허니컴패널의 확대사시도이다.
도 5는 본 발명에 의한 미세기포 발생장치 제3 실시예에 포함되는 돌출바의 사시도이다.
도 6 및 도 7은 본 발명에 의한 미세기포 발생장치 제4 실시예에 포함되는 돌출바의 부분사시도 및 부분단면도이다.
도 8 및 도 9는 본 발명에 의한 미세기포 발생장치 제5 실시예에 포함되는 돌출바의 사시도 및 횡단면도이다.
1 is a schematic diagram of an apparatus for generating microbubbles according to the present invention.
2 is a perspective view of a splitter included in the device for generating microbubbles according to the present invention.
3 is a perspective view of a protruding bar included in the device for generating microbubbles according to the present invention.
4 is an enlarged perspective view of a honeycomb panel included in a second embodiment of the apparatus for generating microbubbles according to the present invention.
5 is a perspective view of a protruding bar included in a third embodiment of the apparatus for generating microbubbles according to the present invention.
6 and 7 are a partial perspective view and a partial cross-sectional view of a protruding bar included in the fourth embodiment of the apparatus for generating microbubbles according to the present invention.
8 and 9 are a perspective view and a cross-sectional view of a protruding bar included in the fifth embodiment of the apparatus for generating microbubbles according to the present invention.

이하 첨부된 도면을 참조하여 본 발명에 의한 미세기포 발생장치의 실시예를 상세히 설명한다.Hereinafter, an embodiment of the apparatus for generating microbubbles according to the present invention will be described in detail with reference to the accompanying drawings.

도 1은 본 발명에 의한 미세기포 발생장치의 개략도이고, 도 2는 본 발명에 의한 미세기포 발생장치에 포함되는 스플리터의 사시도이며, 도 3은 본 발명에 의한 미세기포 발생장치에 포함되는 돌출바의 사시도이다.1 is a schematic view of a microbubble generating device according to the present invention, FIG. 2 is a perspective view of a splitter included in the microbubble generating device according to the present invention, and FIG. 3 is a protruding bar included in the microbubble generating device according to the present invention. is a perspective view of

본 발명에 의한 미세기포 발생장치는 처리수에 다량의 미세기포를 발생시킴으로써 처리수의 용존산소량을 높이기 위한 장치로서, 처리수 내의 기포를 작은 크기로 쪼개는 스플리팅 방식과 처리수의 압력을 급감시켜 미세기포를 발생시키는 가압 방식을 혼용하여 사용한다는 점에 구성상의 가장 큰 특징이 있다.The device for generating microbubbles according to the present invention is a device for increasing the amount of dissolved oxygen in treated water by generating a large amount of microbubbles in the treated water. It has the biggest characteristic in its construction in that it uses a mixed pressurization method to generate microbubbles.

즉, 본 발명에 의한 미세기포 발생장치는, 외부로부터 고압의 순환수와 공기가 공급되는 입수관(110)이 일측에 구비되고 내부에 채워진 고압의 순환수가 대기압으로 감압되면서 배출되는 출수관(120)이 타측에 구비되는 압력탱크(100)와, 길이방향 일단이 상기 입수관(110)과 연통되도록 상기 압력탱크(100)의 내부에 설치되는 입수덕트(300)와, 길이방향 일단이 상기 출수관(120)과 연통되도록 상기 압력탱크(100)의 내부에 설치되는 출수덕트(400)와, 상기 입수덕트(300)와 출수덕트(400)의 내부에 장착되는 스플리터(500)를 기본 구성요소로 구비한다.That is, the microbubble generator according to the present invention is provided with an inlet pipe 110 to which high-pressure circulating water and air are supplied from the outside, and the high-pressure circulating water filled therein is discharged while decompressed to atmospheric pressure. ) is provided on the other side of the pressure tank 100, and the lengthwise one end of the water inlet duct 300 installed inside the pressure tank 100 so that it communicates with the water inlet pipe 110, and the longitudinal end of the water outlet The water outlet duct 400 installed in the inside of the pressure tank 100 so as to communicate with the pipe 120 and the splitter 500 installed in the inlet duct 300 and the outlet duct 400 are basic components. provided with

상기 입수관(110)에는 펌프(220)가 장착되어 있는바 외부로부터 제공된 처리수를 고압으로 압축시킨 압력탱크(100)로 공급할 수 있다. 또한 상기 입수관(110)은 중단이 잘록한 벤튜리관 구조를 갖되 잘록한 부위에 흡기관(230)이 구비되어 있어, 펌프(220)에 의해 고압의 순환수가 공급되는 과정에서 외부의 공기가 입수관(110)으로 빨려 들어가 순환수와 함께 압력탱크(100)로 공급된다.The inlet pipe 110 is equipped with a pump 220 so that the treated water provided from the outside can be supplied to the pressure tank 100 compressed to a high pressure. In addition, the inlet pipe 110 has a venturi tube structure with a constricted middle and an intake pipe 230 is provided in the constricted portion, so that, in the process of supplying high-pressure circulating water by the pump 220, external air is supplied through the inlet pipe ( 110) and supplied to the pressure tank 100 together with circulating water.

이때 입수관(110)의 출구는 입수덕트(300)의 입구와 연통되어 있으므로, 순환수와 함께 압력탱크(100)로 공급된 기포는 상기 입수덕트(300) 내의 스플리터(500)를 지나면서 작은 크기의 기포로 쪼개어지게 된다. 이와 같이 기포가 작은 크기로 쪼개어지면, 기포와 순환수 간의 접촉면적이 증가하게 되므로 순환수의 용존산소량이 증가하게 된다는 장점이 있다. 또한, 압력탱크(100) 내부로 공급된 순환수 및 기포는 출수덕트(400)를 지난 후 출수관(120)을 통해 배출되는데, 상기 출수덕트(400)에도 스플리터(500)가 내장되어 있는바 상기 출수덕트(400)로 유입된 기포는 스플리터(500)에 의해 한 번 더 잘게 쪼개어진 후 출수관(120)을 통해 배출된다.At this time, since the outlet of the inlet pipe 110 is in communication with the inlet of the inlet duct 300, the air bubbles supplied to the pressure tank 100 together with the circulating water pass through the splitter 500 in the inlet duct 300 and are small It is split into sized bubbles. As such, when the bubbles are split into small sizes, the contact area between the bubbles and the circulating water increases, so that the amount of dissolved oxygen in the circulating water increases. In addition, the circulating water and air bubbles supplied into the pressure tank 100 are discharged through the water outlet pipe 120 after passing through the water outlet duct 400. The water outlet duct 400 also has a built-in splitter 500. The air bubbles introduced into the water outlet duct 400 are split once more by the splitter 500 and then discharged through the water outlet pipe 120 .

한편, 상기 압력탱크(100)의 내부는 약 2~3kg/cm3의 고압 상태를 유지하는 반면 출수관(120)의 출구는 외부에 그대로 노출된 상태 즉, 대기압 상태를 유지한다. 따라서 압력탱크(100) 내부에서 고압으로 압축되어 있던 순환수가 출수관(120)을 통해 배출될 때 상기 순환수는 대기압 상태로 급격하게 감압되고, 이에 따라 순환수에는 다량의 미세기포가 발생하게 된다. 이와 같이 순환수에 다량의 미세기포가 발생되면 상기 순환수의 용존산소량이 더욱 높아지는 효과를 얻을 수 있게 된다.On the other hand, the inside of the pressure tank 100 maintains a high pressure state of about 2-3 kg/cm 3 , while the outlet of the water outlet pipe 120 is exposed to the outside, that is, the atmospheric pressure state is maintained. Therefore, when the circulating water compressed at high pressure inside the pressure tank 100 is discharged through the outlet pipe 120, the circulating water is rapidly reduced to atmospheric pressure, and thus a large amount of microbubbles are generated in the circulating water. . As such, when a large amount of microbubbles are generated in the circulating water, it is possible to obtain the effect of further increasing the amount of dissolved oxygen in the circulating water.

상기 언급한 바와 같이 본 발명에 의한 미세기포 발생장치는, 외부로부터 유입된 공기가 스플리터(500)를 통과하면서 작은 크기의 기포로 쪼개어지는 과정과, 고압의 순환수가 대기압으로 감압되는 과정에서 미세기포가 발생하는 과정이 동시에 구현되므로, 상기 압력탱크(100)의 내부압력을 종래의 미세기포 발생장치에 비해 다소 낮게 유지하지 아니하더라도 순환수의 용존산소량을 충분히 높은 수준으로 확보할 수 있다는 장점이 있다.As mentioned above, in the device for generating microbubbles according to the present invention, in the process in which air introduced from the outside is split into small-sized bubbles while passing through the splitter 500, and in the process in which the high-pressure circulating water is reduced to atmospheric pressure, microbubbles Since the process of generating is implemented at the same time, there is an advantage that the dissolved oxygen amount of the circulating water can be secured at a sufficiently high level even if the internal pressure of the pressure tank 100 is not maintained somewhat lower than that of the conventional microbubble generator. .

즉, 본 발명에 의한 미세기포 발생장치는 순환수를 압축시키는 펌프(220)를 저용량으로 사용할 수 있을 뿐만 아니라 압력탱크(100)의 내압 기준을 낮출 수 있어 제조비용이 절감된다는 장점이 있다. 또한, 본 발명에 의한 미세기포 발생장치는 펌프(220)의 전력사용량을 줄일 수 있고 압력탱크(100)의 수명을 증가시킬 수 있어 유지비용이 절감되는 효과를 얻을 수 있다는 장점이 있다.That is, the microbubble generating device according to the present invention has the advantage that the pump 220 for compressing the circulating water can be used at a low capacity, and the internal pressure standard of the pressure tank 100 can be lowered, thereby reducing the manufacturing cost. In addition, the device for generating microbubbles according to the present invention has the advantage that the power consumption of the pump 220 can be reduced and the lifespan of the pressure tank 100 can be increased, so that the maintenance cost can be reduced.

한편, 압력탱크(100) 내의 순환수가 출수관(120)을 통해 배출되는 과정에서 순환수 내부에 다량의 미세기포가 발생되기 위해서는 상기 압력탱크(100) 내의 순환수가 기준치 이상의 압력을 유지해야 한다. 이때 상기 출수관(120)이 항상 최대로 개방되어 있으면 펌프(220)가 순환수를 고압으로 압축시켜 압력탱크(100)로 공급한다 하더라도 상기 압력탱크(100) 내부의 순환수 압력을 기준치 이상으로 유지하기 어렵다는 문제점이 있다. On the other hand, in order to generate a large amount of microbubbles in the circulating water while the circulating water in the pressure tank 100 is discharged through the outlet pipe 120 , the circulating water in the pressure tank 100 must maintain a pressure greater than or equal to a standard value. At this time, if the water outlet pipe 120 is always open to the maximum, even if the pump 220 compresses the circulating water to a high pressure and supplies it to the pressure tank 100 , the pressure of the circulating water inside the pressure tank 100 is higher than the reference value. There is a problem that it is difficult to maintain.

따라서 본 발명에 의한 미세기포 발생장치는 상기 출수관(120)의 개도량을 조절하는 출수밸브(240)를 추가로 구비할 수 있다. 이와 같이 출수관(120)에 출수밸브(240)가 구비되면, 압력탱크(100) 내부의 순환수 압력이 기준치 이상으로 높은 경우에는 상기 출수관(120)의 개도량을 증가시켜 한 번에 많은 양의 미세기포를 발생시킬 수 있고, 상기 압력탱크(100) 내부의 순환수 압력이 기준치 미만인 경우에는 상기 출수관(120)의 개도량을 감소시켜 더 상기 압력탱크(100) 내부의 순환수 압력을 기준치 이상으로 높일 수 있게 된다는 장점이 있다.Therefore, the device for generating microbubbles according to the present invention may further include a water outlet valve 240 for adjusting the opening degree of the water outlet pipe 120 . When the water outlet valve 240 is provided in the water outlet pipe 120 as described above, when the circulating water pressure inside the pressure tank 100 is higher than the reference value, the opening degree of the water outlet pipe 120 is increased to increase the number of Positive microbubbles can be generated, and when the circulating water pressure inside the pressure tank 100 is less than the reference value, the circulating water pressure inside the pressure tank 100 is further reduced by reducing the opening degree of the water outlet pipe 120 . It has the advantage of being able to raise it above the standard value.

또한, 본 발명에 의한 미세기포 발생장치로부터 배출되는 순환수는 여러가지 조건에 따라 사용량이 변경될 수 있다. 즉, 순환수가 많이 필요 없는 경우에는 출수관(120)의 개도량을 감소시켜 상기 출수관(120)을 통해 배출되는 순환수 유량을 줄여야 하는데, 상기 출수관(120)의 개도량이 감소되어 있는 상태에서 입수관(110)이 최대로 개방되면 압력탱크(100) 내부의 압력이 과도하게 높아지는 문제가 발생될 수 있다.In addition, the amount of circulating water discharged from the microbubble generating device according to the present invention may be changed according to various conditions. That is, when a large amount of circulating water is not required, the amount of circulating water discharged through the outlet pipe 120 should be reduced by reducing the opening degree of the outlet pipe 120 , but the opening degree of the outlet pipe 120 is reduced. When the inlet pipe 110 is maximally opened in the pressure tank 100, a problem in which the pressure inside the pressure tank 100 is excessively high may occur.

따라서 본 발명에 의한 미세기포 발생장치는 여러가지 조건에 따라 상기 입수관(110)의 개도량을 증감시킬 수 있도록, 상기 입수관(110)의 개도량을 조절하는 입수밸브(210)를 추가로 구비할 수 있다. 이와 같이 입수관(110)과 출수관(120)에 각각 입수밸브(210)와 출수밸브(240)가 설치되면, 사용자는 입수밸브(210)와 출수밸브(240)를 조작하여 출수관(120)을 통해 배출되는 순환수의 유량을 조절하면서 압력탱크(100) 내부의 압력을 일정하게 유지할 수 있다는 장점이 있다.Therefore, the microbubble generating device according to the present invention is additionally provided with a water inlet valve 210 for adjusting the opening amount of the inlet pipe 110 so as to increase or decrease the opening degree of the inlet pipe 110 according to various conditions. can do. When the water inlet valve 210 and the water outlet valve 240 are installed in the water inlet pipe 110 and the water outlet pipe 120, respectively, the user operates the water inlet valve 210 and the water outlet valve 240 to operate the water outlet pipe 120. ), while controlling the flow rate of the circulating water discharged through the pressure tank 100 has the advantage of being able to maintain a constant pressure inside.

이때 상기 입수밸브(210)와 출수밸브(240)는 작업자에 의해 수동으로 작동되도록 구성될 수도 있고, 출수관(120)을 통해 배출되는 순환수 유량과 압력탱크(100) 내부의 압력을 감지하여 상기 압력탱크(100) 내부의 압력이 일정하게 유지되도록 자동 조절되는 구조로 구성될 수도 있다. 이와 같이 유로의 개도량을 증감시키기 위해 밸브의 작동을 제어하는 장치는 본원발명이 해당하는 기술분야에서 상용화되어 있는바, 상기 입수밸브(210)와 출수밸브(240)를 자동으로 조절하는 장치에 대한 상세한 설명은 생략한다.At this time, the inlet valve 210 and the water outlet valve 240 may be configured to be manually operated by an operator, and by sensing the flow rate of the circulating water discharged through the water outlet pipe 120 and the pressure inside the pressure tank 100 , It may be configured in a structure in which the pressure inside the pressure tank 100 is automatically adjusted so that the pressure is kept constant. As described above, the device for controlling the operation of the valve in order to increase or decrease the opening degree of the flow path is commercialized in the technical field to which the present invention pertains. A detailed description thereof will be omitted.

일반적으로 물과 공기가 혼합되었을 때 물과 공기의 접촉면적과 접촉시간이 증가할수록 용존산소량이 증가하게 된다. 따라서 상기 스플리터(500)는 흡기관(230)을 통해 공급된 공기를 작은 크기의 기포로 쪼갤 뿐만 아니라 순환수와 기포의 접촉시간을 증가시킬 수 있도록 제작됨이 바람직하다.In general, when water and air are mixed, the amount of dissolved oxygen increases as the contact area and contact time between water and air increase. Therefore, it is preferable that the splitter 500 is manufactured to not only split the air supplied through the intake pipe 230 into small-sized bubbles, but also to increase the contact time between the circulating water and the bubbles.

즉, 상기 스플리터(500)는 흡기관(230)을 통해 공급된 기포가 부딪혀 쪼개질 수 있으면서 순환수의 유동방향이 수 회에 걸쳐 변경되도록 구성됨이 바람직하다. 예를 들어 상기 스플리터(500)는 도 2에 도시된 바와 같이, 다수 개의 육각홀(512)이 연이어 배열된 둘 이상의 허니컴패널(510)이 두께방향으로 적층되는 구조로 구성되어, 상기 허니컴패널(510)의 적층방향이 상기 입수덕트(300) 및 출수덕트(400)의 길이방향과 직각을 이루도록 장착될 수 있다. 이때 두께방향으로 적층되는 다수 개의 허니컴패널(510)은 각각에 형성된 육각홀(512) 위치가 일치하도록 적층되는 것이 아니라, 이웃하는 허니컴패널(510)의 육각홀(512)이 상호 어긋나게 겹쳐지도록 적층됨이 바람직하다.That is, it is preferable that the splitter 500 is configured to change the flow direction of the circulating water several times while the air bubbles supplied through the intake pipe 230 can collide and split. For example, as shown in FIG. 2, the splitter 500 has a structure in which two or more honeycomb panels 510 in which a plurality of hexagonal holes 512 are sequentially arranged are stacked in the thickness direction, and the honeycomb panel ( The stacking direction of 510 may be mounted to form a right angle with the longitudinal direction of the inlet duct 300 and the outlet duct 400 . In this case, the plurality of honeycomb panels 510 stacked in the thickness direction are not stacked so that the positions of the hexagonal holes 512 formed therein coincide, but are stacked so that the hexagonal holes 512 of the adjacent honeycomb panels 510 overlap each other misalignedly. It is preferable to be

이와 같이 구성되는 스플리터(500)가 입수덕트(300) 및 출수덕트(400)에 장착되면, 순환수에 혼합되어 있던 기포는 입수덕트(300) 및 출수덕트(400)를 통과하는 동안 스플리터(500)에 수 회에 걸쳐 부딪히게 되어 작은 기포로 쪼개어지고, 이에 따라 순환수와 기포의 접촉면적이 증대된다는 효과를 얻을 수 있게 된다. 또한 순환수는 어긋나게 배열된 육각홀(512)을 통과해 가면서 수 회에 걸쳐 굽이쳐 흐르게 되어 기포와의 접촉시간이 증대되므로, 순환수의 용존산소량이 현저히 증가하게 되는 효과를 얻게 된다.When the splitter 500 configured as described above is mounted on the inlet duct 300 and the outlet duct 400, the bubbles mixed in the circulating water pass through the inlet duct 300 and the outlet duct 400, while the splitter 500 ) is hit several times to split into small bubbles, thereby increasing the contact area between the circulating water and the bubbles. In addition, as the circulating water flows through the hexagonal holes 512 misaligned and flows several times, the contact time with the bubbles is increased, so that the dissolved oxygen amount of the circulating water is significantly increased.

한편 본 발명에 의한 미세기포 발생장치는 상기 입수관(110)은 상기 압력탱크(100)의 일측벽 하부에 결합되고, 상기 출수관(120)은 상기 압력탱크(100)의 타측벽 하부에 결합되며, 상기 입수덕트(300)는 수직으로 세워지도록 배열되어 하단이 상기 입수관(110)과 연결되고, 상기 출수덕트(400)는 수직으로 세워지도록 배열되어 하단이 상기 출수관(120)과 연결된다. 이때 압력탱크(100) 내부에 순환수의 유동방향을 안내하는 별도의 부재가 없으면, 입수덕트(300)를 통과한 순환수가 압력탱크(100)의 천장면을 거쳐 곧바로 출수덕트(400)로 유입되므로, 순환수와 기포와의 접촉시간이 길게 확보되지 아니하여 순환수의 용존산소량 증가에 한계가 발생하게 된다.On the other hand, in the microbubble generating device according to the present invention, the inlet pipe 110 is coupled to the lower part of one side wall of the pressure tank 100 , and the water outlet pipe 120 is coupled to the lower part of the other wall of the pressure tank 100 . and the inlet duct 300 is arranged to stand vertically so that the lower end is connected to the inlet pipe 110, and the water outlet duct 400 is arranged to stand vertically so that the lower end is connected to the water outlet pipe 120 do. At this time, if there is no separate member for guiding the flow direction of the circulating water inside the pressure tank 100 , the circulating water passing through the inlet duct 300 flows directly into the outlet duct 400 through the ceiling surface of the pressure tank 100 . Therefore, the contact time between the circulating water and the bubbles is not secured for a long time, so there is a limit to the increase in the amount of dissolved oxygen in the circulating water.

본 발명에 의한 미세기포 발생장치는 이와 같은 문제점을 해결할 수 있도록 즉, 입수덕트(300)를 통과한 순환수의 유동경로가 최대한 길게 확보될 수 있도록, 상기 순환수의 유동방향을 압력탱크(100)의 바닥면으로 안내하는 가이드판(600)을 더 포함할 수 있다. 이와 같이 압력탱크(100) 내부에 가이드판(600)이 구비되면, 입수덕트(300)를 통과한 순환수는 가이드판(600)을 타고 압력탱크(100) 바닥면을 향해 유동하였다가, 반대로 압력탱크(100)의 천장면을 향해 유동한 후 출수덕트(400)를 통해 외부로 배출된다. 따라서 순환수는 기포와 오랜 시간동안 접촉되어 용존산소량이 현저히 상승하게 되는 효과를 얻을 수 있게 된다.The device for generating microbubbles according to the present invention sets the flow direction of the circulating water in the pressure tank 100 so that the flow path of the circulating water passing through the inlet duct 300 can be secured as long as possible to solve this problem. ) may further include a guide plate 600 for guiding to the bottom surface. As such, when the guide plate 600 is provided inside the pressure tank 100, the circulating water passing through the inlet duct 300 rides the guide plate 600 and flows toward the bottom surface of the pressure tank 100, and vice versa. After flowing toward the ceiling surface of the pressure tank 100, it is discharged to the outside through the water outlet duct 400. Therefore, it is possible to obtain the effect that the circulating water is in contact with the bubbles for a long time and the amount of dissolved oxygen is significantly increased.

이때, 순환수 및 기포가 가이드판(600)을 타고 아래로 내려갔다가 다시 위로 올라가는 과정에서 상기 순환수에 포함되어 있던 기포 중 일부는 하나로 합쳐져 큰 기포가 될 수 있다. 이와 같이 크기가 커진 기포는 순환수의 유동압력보다 부력이 더 크게 발생하게 되므로, 출수덕트(400)로 유입되지 못하고 압력탱크(100)의 내부공간 상부에 모여 하나의 공기층을 이루게 된다. In this case, some of the bubbles included in the circulating water may be merged into one large bubble while the circulating water and the bubbles go down on the guide plate 600 and then go up again. As such, the increased size of the bubbles generates greater buoyancy than the flow pressure of the circulating water, so they cannot flow into the outlet duct 400 and gather at the upper portion of the inner space of the pressure tank 100 to form a single air layer.

압력탱크(100) 내부공간 상부에 포집된 공기층은 순환수의 유동을 저해할 뿐 순환수의 용존산소량 증가에 도움이 되지 못하므로 압력탱크(100) 외부로 배출될 필요가 있다. 따라서 상기 압력탱크(100)는, 내부공간 상부에 포집된 공기를 외부로 배출시키는 에어벤트(800)를 구비할 수 있다. 이와 같이 압력탱크(100) 상측에 에어벤트(800)가 구비되면, 압력탱크(100)의 내부공간 상부에 공기층이 형성되는 현상을 방지할 수 있으므로, 순환수의 유동경로를 최대한 길게 확보할 수 있고, 이에 따라 순환수의 용존산소량 증가에 도움을 줄 수 있게 된다는 장점이 있다.Since the air layer collected in the upper part of the inner space of the pressure tank 100 only inhibits the flow of the circulating water and does not help increase the dissolved oxygen amount of the circulating water, it is necessary to be discharged to the outside of the pressure tank 100 . Accordingly, the pressure tank 100 may include an air vent 800 for discharging the air collected in the upper portion of the inner space to the outside. As such, when the air vent 800 is provided on the upper side of the pressure tank 100, it is possible to prevent the formation of an air layer in the upper portion of the inner space of the pressure tank 100, so that the flow path of the circulating water can be secured as long as possible. There is an advantage in that it can help increase the amount of dissolved oxygen in the circulating water.

한편, 본 발명에 의한 미세기포 발생장치는, 입수덕트(300)를 통과한 순환수가 압력탱크(100)의 내벽과 가이드판(600)의 외측면을 타고 흐르는 동안 순환수 내의 기포에 충격력이 인가되어 작은 크기로 쪼개어질 수 있도록, 상기 압력탱크(100)의 내벽과 상기 가이드판(600)의 외측면에는 상기 순환수의 유동방향과 교차하는 방향으로 연장되는 다수 개의 돌출바(700)가 구비될 수 있다. On the other hand, in the microbubble generating device according to the present invention, the impact force is applied to the bubbles in the circulating water while the circulating water that has passed through the inflow duct 300 flows along the inner wall of the pressure tank 100 and the outer surface of the guide plate 600 . A plurality of protruding bars 700 extending in a direction crossing the flow direction of the circulating water are provided on the inner wall of the pressure tank 100 and the outer surface of the guide plate 600 so that it can be split into smaller sizes. can be

예를 들어 상기 돌출바(700)는 도 3에 도시된 바와 같이 순환수의 유동방향(도 3에서의 화살표 방향)과 직각을 이루는 방향으로 세워져, 상기 순환수와 충돌하도록 배열될 수 있다. 이와 같이 압력탱크(100) 내벽과 가이드판(600) 외측면에 다수 개의 돌출바(700)가 구비되면, 순환수에 포함되어 있던 기포가 더욱 잘게 쪼개어져 순환수와의 접촉면적이 증가하게 되는바, 상기 순환수의 용존산소량 증가 효율이 향상된다는 장점이 있다.For example, the protruding bar 700 may be erected in a direction perpendicular to the flow direction of the circulating water (arrow direction in FIG. 3 ) as shown in FIG. 3 , and may be arranged to collide with the circulating water. As described above, when a plurality of protruding bars 700 are provided on the inner wall of the pressure tank 100 and the outer surface of the guide plate 600, the bubbles included in the circulating water are further broken down to increase the contact area with the circulating water. Bar, there is an advantage that the efficiency of increasing the dissolved oxygen amount of the circulating water is improved.

이때, 상기 돌출바(700)의 형상은 본 실시예에 도시된 원통형 막대 형상으로 한정되지 아니하고, 다각형 횡단면을 갖는 막대 형상이나 플레이트형 막대 등 여러 가지 형상으로 대체될 수 있다. 즉, 상기 돌출바(700)는 다양한 형상으로 변경될 수 있는데, 이와 같이 돌출바(700)의 형상이 변경된 실시예에 대해서는 이하 도 5 내지 도 9를 참조하여 상세히 설명한다.At this time, the shape of the protruding bar 700 is not limited to the cylindrical bar shape shown in the present embodiment, and may be replaced with various shapes such as a bar shape having a polygonal cross section or a plate shape bar. That is, the protruding bar 700 can be changed into various shapes, and an embodiment in which the shape of the protruding bar 700 is changed in this way will be described in detail below with reference to FIGS. 5 to 9 .

도 4는 본 발명에 의한 미세기포 발생장치 제2 실시예에 포함되는 허니컴패널(510)의 확대사시도이다.4 is an enlarged perspective view of the honeycomb panel 510 included in the second embodiment of the apparatus for generating microbubbles according to the present invention.

입수덕트(300) 및 출수덕트(400)를 통과하는 기포는 상기 스플리터(500)와의 충돌 횟수가 증가할수록 작은 크기로 쪼개어지므로, 본 발명에 포함되는 스플리터(500)는 기포와의 충돌 횟수를 증가시킬 수 있도록 제작됨이 바람직하다.Since the bubbles passing through the inlet duct 300 and the outlet duct 400 are split into smaller sizes as the number of collisions with the splitter 500 increases, the splitter 500 included in the present invention increases the number of collisions with the bubbles. It is preferable that it is manufactured so that it can be done.

예를 들어 상기 스플리터(500)는 기포가 하나의 육각홀(512)을 통과하는 동안에도 상기 기포와 충돌할 수 있도록, 도 4에 도시된 바와 같이 상기 육각홀(512)의 내벽으로부터 상기 육각홀(512)의 중심을 향해 연장되는 다수 개의 돌출핀(514)을 구비할 수 있다.For example, the splitter 500 may collide with the bubbles even while passing through one hexagonal hole 512. As shown in FIG. 4, the hexagonal hole from the inner wall of the A plurality of protruding pins 514 extending toward the center of the 512 may be provided.

이와 같이 육각홀(512) 내벽에 다수 개의 돌출핀(514)이 구비되면, 기포가 순환수를 따라 육각홀(512)을 통과하는 동안 수 회에 걸쳐 돌출핀(514)에 부딪히게 되므로, 상기 기포가 더욱 작은 크기로 쪼개어지는 효과를 얻을 수 있게 된다.As such, when a plurality of protruding pins 514 are provided on the inner wall of the hexagonal hole 512, the bubbles collide with the protruding pins 514 several times while passing through the hexagonal hole 512 along the circulating water. It is possible to obtain the effect that the bubble is split into smaller sizes.

본 실시예에서는 육각홀(512)의 각 방향 내벽에 돌출핀(514)이 2개씩 형성되는 경우만을 도시하고 있으나, 상기 돌출핀(514)의 개수 및 형상은 스플리터(500)의 규격이나 형상 등 여러가지 조건에 따라 다양하게 변경될 수 있다.In this embodiment, only the case in which two protruding pins 514 are formed on the inner wall of the hexagonal hole 512 in each direction, but the number and shape of the protruding pins 514 may vary depending on the size and shape of the splitter 500, etc. It can be variously changed according to various conditions.

도 5는 본 발명에 의한 미세기포 발생장치 제3 실시예에 포함되는 돌출바(700)의 사시도이고, 도 6 및 도 7은 본 발명에 의한 미세기포 발생장치 제4 실시예에 포함되는 돌출바(700)의 부분사시도 및 부분단면도이다.5 is a perspective view of the protruding bar 700 included in the third embodiment of the microbubble generator according to the present invention, and FIGS. 6 and 7 are the protruding bars included in the fourth embodiment of the microbubble generator according to the present invention. (700) is a partial perspective view and a partial cross-sectional view.

순환수가 다수 개의 돌출바(700)가 설치된 지점을 통과할 때, 상기 순환수와 돌출바(700) 간의 접촉면적이 넓을수록 기포의 쪼개짐 현상이 증가하게 된다. 따라서 상기 돌출바(700)는 도 5에 도시된 바와 같이 상기 순환수의 유동방향을 따라 관통되는 하나 이상의 관통공(710)을 구비할 수 있다.When the circulating water passes through the point where the plurality of protruding bars 700 are installed, the larger the contact area between the circulating water and the protruding bar 700 is, the larger the bubble splitting phenomenon is. Accordingly, the protruding bar 700 may include one or more through-holes 710 penetrating along the flow direction of the circulating water as shown in FIG. 5 .

이와 같이 돌출바(700)에 다수 개의 관통공(710)이 형성되면, 순환수가 돌출바(700)와 충돌할 때 상기 순환수에 포함된 기포가 관통공(710)의 내벽에 부딪히는 과정에서 다시 한 번 잘게 쪼개어질 수 있을뿐만 아니라, 순환수가 관통공(710)을 통과하는 과정에서 와류가 발생되어 순환수와 기포의 접촉 시간이 증가하게 된다는 효과를 얻을 수 있게 된다.As such, when a plurality of through-holes 710 are formed in the protruding bar 700 , when the circulating water collides with the protruding bar 700 , the bubbles included in the circulating water collide with the inner wall of the through-hole 710 again. It is possible to obtain the effect that not only can it be split once, but also the vortex is generated in the process of the circulating water passing through the through hole 710, and the contact time between the circulating water and the bubbles is increased.

더 나아가 순환수와 기포의 접촉시간을 더욱 증대시킬 수 있도록, 도 6 및 도 7에 도시된 바와 같이 상기 관통공(710)의 내벽에는 나선홈(712)이 형성될 수 있다. 이와 같이 관통공(710) 내벽에 나선홈(712)이 형성되면, 순환수는 상기 관통공(710)을 통과하는 동안 나선홈(712)을 따라 회전하면서 유동하게 되므로 즉, 도 7에 도시된 점선화살표와 같이 나선형으로 유동하게 되므로, 순환수와 기포의 접촉시간이 현저하게 증가할 수 있게 된고, 이에 따라 순환수의 용존산소량 증가효과를 얻을 수 있게 된다.Furthermore, a spiral groove 712 may be formed in the inner wall of the through hole 710 as shown in FIGS. 6 and 7 to further increase the contact time between the circulating water and the bubble. As such, when the spiral groove 712 is formed in the inner wall of the through hole 710, the circulating water flows while rotating along the spiral groove 712 while passing through the through hole 710, that is, as shown in FIG. Since it flows in a spiral like the dotted arrow, the contact time between the circulating water and the bubbles can be significantly increased, and accordingly, an effect of increasing the dissolved oxygen amount of the circulating water can be obtained.

이때 상기 나선홈(712)은 관통공(710)을 통과하는 순환수의 유동방향을 나선형으로 가이드할 수 있다면 어떠한 형상으로도 형성될 수 있다.At this time, the spiral groove 712 may be formed in any shape as long as it can spirally guide the flow direction of the circulating water passing through the through hole 710 .

도 8 및 도 9는 본 발명에 의한 미세기포 발생장치 제5 실시예에 포함되는 돌출바(700)의 사시도 및 횡단면도이다.8 and 9 are perspective and cross-sectional views of the protruding bar 700 included in the fifth embodiment of the apparatus for generating microbubbles according to the present invention.

압력탱크(100)의 내벽 및 가이드판(600)의 외측면에 설치되는 돌출바(700)는, 도 5 내지 도 7에 도시된 원통형 막대 형상으로 형성될 수도 있고, 도 8 및 도 9에 도시된 바와 같이 V자 형상의 횡단면을 갖도록 폭방향 중단이 절곡된 플레이트 형상으로 형성될 수도 있다. 이때 상기 돌출바(700)는 절곡된 모서리의 돌출방향이 순환수의 유동방향과 대향하도록 설치됨이 바람직하다.The protrusion bar 700 installed on the inner wall of the pressure tank 100 and the outer surface of the guide plate 600 may be formed in the cylindrical bar shape shown in FIGS. 5 to 7 , and shown in FIGS. 8 and 9 . As described above, the widthwise middle section may be formed in a bent plate shape to have a V-shaped cross section. At this time, the protruding bar 700 is preferably installed so that the protruding direction of the bent edge faces the flow direction of the circulating water.

이와 같이 돌출바(700)가 절곡 플레이트 형상으로 형성되면, 순환수를 따라 유동하던 기포가 돌출바(700)의 절곡된 모서리에 부딪혀 효과적으로 쪼개어질 수 있다는 장점이 있다. 또한, 상기 돌출바(700)의 횡단면이 유선형이 아니라 V자 형상으로 형성되면, 도 9에 도시된 바와 같이 순환수가 돌출바(700)의 후단(도 9에서는 상단)을 통과할 때 불규칙한 와류를 발생시킨다. 이와 같이 순환수의 유동에 와류가 발생되면 순환수의 유속은 감소하지만, 순환수와 기포의 접촉시간은 증가하게 되므로 순환수의 용존산소량은 높아지는 효과를 얻을 수 있게 된다.As such, when the protruding bar 700 is formed in the shape of a bent plate, there is an advantage that the bubbles flowing along the circulating water can collide with the bent edge of the protruding bar 700 and be effectively split. In addition, if the cross-section of the protruding bar 700 is formed in a V-shape rather than a streamline, irregular vortex when the circulating water passes through the rear end (top in FIG. 9 ) of the protruding bar 700 as shown in FIG. 9 . generate As such, when a vortex is generated in the flow of the circulating water, the flow rate of the circulating water is reduced, but the contact time between the circulating water and the bubbles is increased, so that the dissolved oxygen amount of the circulating water can be increased.

또한, 본 실시예에 도시된 바와 같이 돌출바(700)가 절곡 플레이트 형상으로 형상되면서 상기 돌출바(700)에 나선홈(712)을 갖는 관통공(710)이 다수 개 형성되면, 돌출바(700)의 후단에는 다량의 와류가 발생되므로 순환수의 용존산소량 증가 효과가 더욱 높아진다는 장점이 있다.In addition, as shown in this embodiment, when a plurality of through-holes 710 having a spiral groove 712 are formed in the protruding bar 700 while the protruding bar 700 is shaped in a bent plate shape, the protruding bar ( 700), since a large amount of vortex is generated, the effect of increasing the amount of dissolved oxygen in the circulating water is further increased.

이상, 본 발명을 바람직한 실시예를 사용하여 상세히 설명하였으나, 본 발명의 범위는 특정 실시예에 한정되는 것은 아니며, 첨부된 특허청구범위에 의하여 해석되어야 할 것이다. 또한, 이 기술분야에서 통상의 지식을 습득한 자라면, 본 발명의 범위에서 벗어나지 않으면서도 많은 수정과 변형이 가능함을 이해하여야 할 것이다.As mentioned above, although the present invention has been described in detail using preferred embodiments, the scope of the present invention is not limited to specific embodiments, and should be interpreted by the appended claims. In addition, those skilled in the art should understand that many modifications and variations are possible without departing from the scope of the present invention.

100 : 압력탱크 110 : 입수관
120 : 출수관 210 : 입수밸브
220 : 펌프 230 : 흡기관
240 : 출수밸브 300 : 입수덕트
400 : 출수덕트 500 : 스플리터
510 : 허니컴패널 512 : 육각홀
514 : 돌출핀 600 : 가이드판
700 : 돌출바 710 : 관통공
712 : 나선홈 800 : 에어벤트
100: pressure tank 110: inlet pipe
120: water outlet pipe 210: inlet valve
220: pump 230: intake pipe
240: water outlet valve 300: inlet duct
400: outlet duct 500: splitter
510: honeycomb panel 512: hexagonal hole
514: protrusion pin 600: guide plate
700: protrusion bar 710: through hole
712: spiral groove 800: air vent

Claims (10)

외부로부터 고압의 순환수와 공기가 공급되는 입수관이 일측에 구비되고, 내부에 채워진 고압의 순환수가 대기압으로 감압되면서 배출되는 출수관이 타측에 구비되는 압력탱크;
길이방향 일단이 상기 입수관과 연통되도록 상기 압력탱크의 내부에 설치되는 입수덕트;
길이방향 일단이 상기 출수관과 연통되도록 상기 압력탱크의 내부에 설치되는 출수덕트; 및
상기 입수덕트와 출수덕트의 내부에 장착되는 스플리터;를 포함하고,
상기 입수관은 상기 압력탱크의 일측벽 하부에 결합되고, 상기 출수관은 상기 압력탱크의 타측벽 하부에 결합되며,
상기 입수덕트는 수직으로 세워지도록 배열되어 하단이 상기 입수관과 연결되고, 상기 출수덕트는 수직으로 세워지도록 배열되어 하단이 상기 출수관과 연결되며,
상기 입수덕트의 상단으로 인출된 순환수를 상기 압력탱크의 바닥으로 안내하는 가이드판을 더 포함하고,
상기 압력탱크의 내벽과 상기 가이드판의 외측면에는, 상기 순환수의 유동방향과 교차하는 방향으로 연장되는 다수 개의 돌출바가 구비되고,
상기 돌출바는, V자 형상의 횡단면을 갖도록 폭방향 중단이 절곡된 플레이트 형상으로 형성되어, 절곡된 모서리의 돌출방향이 순환수의 유동방향과 대향하도록 설치되는 것을 특징으로 하는 미세기포 발생장치.
a pressure tank having an inlet pipe to which high-pressure circulating water and air are supplied from the outside and having an outlet pipe discharged while the high-pressure circulating water filled therein is reduced to atmospheric pressure;
an acquisition duct installed inside the pressure tank so that one end of the longitudinal direction communicates with the inlet pipe;
a water outlet duct installed in the pressure tank so that one end thereof in the longitudinal direction communicates with the water outlet pipe; and
Including; a splitter mounted on the inside of the inlet duct and the outlet duct;
The inlet pipe is coupled to a lower portion of one side wall of the pressure tank, and the water outlet pipe is coupled to a lower portion of the other wall of the pressure tank,
The inlet duct is arranged to stand vertically so that the lower end is connected to the inlet pipe, and the water outlet duct is arranged to stand vertically so that the lower end is connected to the water outlet pipe,
Further comprising a guide plate for guiding the circulating water drawn to the upper end of the acquisition duct to the bottom of the pressure tank,
A plurality of protruding bars extending in a direction crossing the flow direction of the circulating water are provided on the inner wall of the pressure tank and the outer surface of the guide plate,
The protrusion bar is formed in a plate shape in which the middle section in the width direction is bent to have a V-shaped cross section, and the protrusion direction of the bent edge is installed so that the direction of flow of the circulating water is opposite to the microbubble generating device.
청구항 1에 있어서,
상기 스플리터는, 다수 개의 육각홀이 연이어 배열된 둘 이상의 허니컴패널이 두께방향으로 적층되는 구조로 구성되되 상기 허니컴패널의 적층방향이 상기 입수덕트 및 출수덕트의 길이방향과 직각을 이루도록 장착되며, 이웃하는 허니컴패널은 육각홀이 상호 어긋나게 겹쳐지도록 적층되는 것을 특징으로 하는 미세기포 발생장치.
The method according to claim 1,
The splitter has a structure in which two or more honeycomb panels having a plurality of hexagonal holes arranged in a row are stacked in a thickness direction, and the stacking direction of the honeycomb panel is mounted to form a right angle to the longitudinal direction of the inlet and outlet ducts, The honeycomb panel is a micro-bubble generating device, characterized in that the hexagonal holes are stacked so as to overlap each other misaligned.
청구항 2에 있어서,
상기 스플리터는, 상기 육각홀의 내벽으로부터 상기 육각홀의 중심을 향해 연장되는 다수 개의 돌출핀을 구비하는 것을 특징으로 하는 미세기포 발생장치.
3. The method according to claim 2,
The splitter is a microbubble generator, characterized in that it comprises a plurality of protruding pins extending from the inner wall of the hexagonal hole toward the center of the hexagonal hole.
삭제delete 삭제delete 삭제delete 청구항 1에 있어서,
상기 돌출바는 상기 순환수의 유동방향을 따라 관통되는 하나 이상의 관통공을 구비하는 것을 특징으로 하는 미세기포 발생장치.
The method according to claim 1,
The protrusion bar is a microbubble generating device, characterized in that provided with one or more through-holes penetrated along the flow direction of the circulating water.
청구항 7에 있어서,
상기 관통공을 통과하는 순환수가 나선형으로 유동하도록 상기 관통공의 내벽에는 나선홈이 형성되는 것을 특징으로 하는 미세기포 발생장치.
8. The method of claim 7,
A microbubble generating device, characterized in that a spiral groove is formed in the inner wall of the through hole so that the circulating water passing through the through hole flows in a spiral.
청구항 1에 있어서,
상기 입수관의 개도량을 조절하는 입수밸브와, 상기 출수관의 개도량을 조절하는 출수밸브를 더 포함하며,
상기 입수밸브와 출수밸브는, 상기 압력탱크 내부의 압력이 일정하게 유지되도록 자동 조절되는 것을 특징으로 하는 미세기포 발생장치.
The method according to claim 1,
It further comprises a water inlet valve for controlling the opening degree of the water inlet pipe, and a water outlet valve controlling the opening degree of the water outlet pipe,
The inlet valve and the water outlet valve are microbubble generating device, characterized in that automatically adjusted so that the pressure inside the pressure tank is maintained constant.
청구항 1에 있어서,
상기 압력탱크는, 내부공간 상부에 포집된 공기를 외부로 배출시키는 에어벤트를 구비하는 것을 특징으로 하는 미세기포 발생장치.
The method according to claim 1,
The pressure tank, microbubble generating device, characterized in that provided with an air vent for discharging the air collected in the upper portion of the inner space to the outside.
KR1020200177032A 2020-12-17 2020-12-17 Micro-bubble generating device KR102436964B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200177032A KR102436964B1 (en) 2020-12-17 2020-12-17 Micro-bubble generating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200177032A KR102436964B1 (en) 2020-12-17 2020-12-17 Micro-bubble generating device

Publications (2)

Publication Number Publication Date
KR20220087609A KR20220087609A (en) 2022-06-27
KR102436964B1 true KR102436964B1 (en) 2022-08-30

Family

ID=82247274

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200177032A KR102436964B1 (en) 2020-12-17 2020-12-17 Micro-bubble generating device

Country Status (1)

Country Link
KR (1) KR102436964B1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200477393Y1 (en) * 2014-07-30 2015-06-03 주식회사 엔트리올 Micro buble car wash device
CN208356549U (en) * 2018-02-11 2019-01-11 周庆初 A kind of honeycomb type nano bubble former

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100902189B1 (en) * 2007-08-31 2009-06-10 주식회사 그레넥스 Ultra micro-bubble generating Apparatus and Sedimentation Apparatus using same as
KR101036227B1 (en) * 2009-05-18 2011-05-20 오우라코리아 주식회사 Micro bubble generator
KR101279629B1 (en) 2011-02-24 2013-06-27 이광헌 Apparatus for making minute bubbles

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200477393Y1 (en) * 2014-07-30 2015-06-03 주식회사 엔트리올 Micro buble car wash device
CN208356549U (en) * 2018-02-11 2019-01-11 周庆初 A kind of honeycomb type nano bubble former

Also Published As

Publication number Publication date
KR20220087609A (en) 2022-06-27

Similar Documents

Publication Publication Date Title
KR101455180B1 (en) Pressure airflotation for stream disperse
DE10350502B3 (en) Reactor and process for anaerobic wastewater treatment
US8632685B2 (en) Multistage DAF-advanced oxidation system
KR100919367B1 (en) Flotation device using high efficiency tank for dissolving a gases into liquids
CA2909759C (en) Aerator/digester for water treatment
KR100989213B1 (en) Advanced treatment flotation method by dissolved nano air bubble water that do not need reaction, coagulation, neutralization tank (naf method)
KR102436964B1 (en) Micro-bubble generating device
KR20150029938A (en) water treatment device
US6821426B1 (en) Process for treating a body of water
KR101841958B1 (en) Slope type rapid air-melt and apparatus generating of micro bubbles for water treatment
KR101723161B1 (en) Flotation apparatus having circulation structure for treated water
CN103285660B (en) A kind of circulating water device for prawn culturing and method of work thereof
CN104909420B (en) A kind of coal chemical industrial waste water carbon dioxide air supporting processing system
DE60201182T2 (en) METHOD AND DEVICE FOR ANAEROBIC CLEANING OF ORGANIC COMPONENTS CONTAINING WASTEWATER
KR101094188B1 (en) Water treatment system using dissolved air flotation
KR102424522B1 (en) Energy-saving Water treatment device
CN108751603B (en) Sewage treatment equipment
KR20120138025A (en) Floatation apparatus
CN111606472A (en) Cavitation air-float treatment method for oil extraction sewage
CN215905954U (en) Cyclone air flotation separation equipment
KR102656572B1 (en) pretreatment system for sewage and wastewater
CN209923046U (en) Deep oil separation device
RU2297978C1 (en) Installation for floatation purification of the waste waters
CN217418469U (en) Industrial reverse osmosis concentrated water recovery treatment recycling device
CN210974326U (en) Portable treatment equipment for black and odorous water body of urban river

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant