KR102431762B1 - Chaga extract enhanced active ingredients and preparation m ethod of the same including two step extraction process with high-temperature pressurization - Google Patents

Chaga extract enhanced active ingredients and preparation m ethod of the same including two step extraction process with high-temperature pressurization Download PDF

Info

Publication number
KR102431762B1
KR102431762B1 KR1020200025869A KR20200025869A KR102431762B1 KR 102431762 B1 KR102431762 B1 KR 102431762B1 KR 1020200025869 A KR1020200025869 A KR 1020200025869A KR 20200025869 A KR20200025869 A KR 20200025869A KR 102431762 B1 KR102431762 B1 KR 102431762B1
Authority
KR
South Korea
Prior art keywords
chaga
extraction
concentration
extract
chaga mushroom
Prior art date
Application number
KR1020200025869A
Other languages
Korean (ko)
Other versions
KR20210035026A (en
Inventor
정용진
황지홍
박다현
오지은
정명기
Original Assignee
애터미주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 애터미주식회사 filed Critical 애터미주식회사
Publication of KR20210035026A publication Critical patent/KR20210035026A/en
Application granted granted Critical
Publication of KR102431762B1 publication Critical patent/KR102431762B1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/105Plant extracts, their artificial duplicates or their derivatives
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/40Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by drying or kilning; Subsequent reconstitution
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L31/00Edible extracts or preparations of fungi; Preparation or treatment thereof
    • A23L31/10Yeasts or derivatives thereof
    • A23L31/15Extracts
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L5/00Preparation or treatment of foods or foodstuffs, in general; Food or foodstuffs obtained thereby; Materials therefor
    • A23L5/20Removal of unwanted matter, e.g. deodorisation or detoxification
    • A23L5/23Removal of unwanted matter, e.g. deodorisation or detoxification by extraction with solvents
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L5/00Preparation or treatment of foods or foodstuffs, in general; Food or foodstuffs obtained thereby; Materials therefor
    • A23L5/51Concentration

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Nutrition Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Mycology (AREA)
  • Microbiology (AREA)
  • Botany (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Medicines Containing Plant Substances (AREA)

Abstract

본 발명은 고온가압 처리와 2단계 추출공법을 이용한 유효성분 강화 차가버섯 추출물 및 그 제조방법으로, (a) 차가버섯 조각을 고온에서 고압처리하는 1단계 고온ㆍ가압 전처리공정과; (b) 상기 전처리공정 (a)에서 얻은 차가버섯을 푸드 프로세서(Food processor)를 이용하여 분쇄하는 분쇄공정과; (c) 상기 분쇄공정 (b)에서 얻은 차가버섯 분말을 열수 추출하는 1차추출공정과; (d) 상기 1차 추출공정 (c)에서 얻은 열수 추출물을 여과한 다음 농축하여 동결건조하는 1차 농축건조공정과; (e) 상기 1차 농축 건조 공정 (d)에서 얻은 차가버섯 박(슬러지)를 2단계 유기용매로 추출하는 2차 추출공정과; (f) 상기 2차 추출공정 (e)에서 얻은 유기용매추출물을 여과한 다음 농축하여 동결건조하는 2차 농축건조공정과; (g) 상기 1차 농축 건조 공정 (d)과 (f) 2차 농축건조공정에서 얻은 1차 및 2차 농축건조물을 추가로 더 농축하는 3차 농축공정 및; (h) 상기 3차 농축공정 (g)에서 얻은 3차 농축물을 동결건조하는 최종 건조공정으로 이루어지는 것을 특징으로 하고 따라서 차가버섯 목질부를 고온가압 처리한 후 열수, 용매 추출 조건에 따른 2단계 추출공법을 이용함으로써 기능성 지표 유효성분의 폴리페놀, 플라보노이드, 베타글루칸, 베툴린 및 베툴린산 함량이 강화된 차가버섯 추출물을 얻는 효과가 있고, 항산화 활성, 유효성분 함량의 안전성이 확인된 추출물 소재를 제공하는 효과가 있을 뿐만 아니라 액상, 분말 및 박(slurry)을 소재로 하는 향미가 우수한 신규한 건강 기능성 식품소재로서 다양한 차가버섯 산물을 제공할 수 있는 뛰어난 효과가 있으므로 가공식품산업상 매무 유용한 발명이다.The present invention provides an active ingredient-enhanced chaga mushroom extract using a high-temperature pressurization process and a two-step extraction method, and a method for producing the same, comprising: (a) a first-stage high-temperature/pressure pretreatment process of high-pressure treatment of chaga mushroom pieces at high temperature; (b) a grinding process of pulverizing the chaga mushrooms obtained in the pretreatment process (a) using a food processor; (c) a primary extraction process of hot water extraction of the chaga powder obtained in the grinding process (b); (d) a first concentration drying step of filtering the hot water extract obtained in the first extraction step (c), then concentrating and freeze-drying; (e) a second extraction process of extracting the chaga mushroom gourd (sludge) obtained in the first concentration and drying process (d) with a two-step organic solvent; (f) a second concentration drying step of filtering the organic solvent extract obtained in the second extraction step (e), then concentrating and freeze-drying; (g) a tertiary concentration step of further concentrating the first and second concentrated dried products obtained in the first concentration and drying step (d) and (f) the second concentration and drying step; (h) characterized in that it consists of a final drying process of freeze-drying the tertiary concentrate obtained in the tertiary concentration process (g), and therefore, after high-temperature pressurization of the woody part of Chaga mushroom, two-step extraction according to hot water and solvent extraction conditions By using the method, there is an effect of obtaining a chaga mushroom extract with enhanced content of polyphenol, flavonoid, beta-glucan, betulin and betulinic acid as functional indicator active ingredients, and provides extract materials with confirmed antioxidant activity and safety of active ingredient content It is a very useful invention in the processed food industry because it has an excellent effect to provide various chaga mushroom products as a novel health functional food material with excellent flavor made from liquid, powder, and slurry as well as having an excellent effect.

Description

고온가압 처리와 2단계 추출공법을 이용한 유효성분이 강화된 차가버섯 추출물 및 그 제조방법{Chaga extract enhanced active ingredients and preparation m ethod of the same including two step extraction process with high-temperature pressurization}Chaga extract enhanced active ingredients and preparation m ethod of the same including two step extraction process with high-temperature pressurization}

본 발명은 차가버섯에 함유된 유효성분을 고농도로 함유하는 차가버섯 추출물 및 그 제조방법에 관한 것으로서, 더욱 상세하게는 차가버섯 목질부를 1단계 고온가압 처리후 세포간 및 세포내 유효성분을 열수 및 유기용매 추출 조건을 포함하는 2단계 추출공법을 적용하여 기능성 식품 지표가 되는 유효성분으로서 폴리페놀, 플라보노이드, 베타글루칸, 베툴린 및 베툴린산 함량이 강화된 차가버섯 추출물 및 이를 제조하기에 가장 바람직한 방법으로 고온가압 처리후 2단계 용매추출공법 포함하는 신규한 차가버섯 추출물의 제조방법에 관한 것이다.The present invention relates to a chaga mushroom extract containing a high concentration of active ingredients contained in chaga, and a method for producing the same, and more particularly, to a chaga mushroom wood part after one-step high-temperature pressurization treatment, and then heating the intercellular and intracellular active ingredients with hot water and The most preferred method for preparing the chaga mushroom extract, which is enhanced in polyphenol, flavonoid, beta glucan, betulin and betulinic acid content as an active ingredient serving as a functional food index by applying a two-step extraction method including organic solvent extraction conditions It relates to a method for producing a novel chaga mushroom extract including a two-step solvent extraction method after high-temperature and pressure treatment.

천연물 소재 또는 천연물 자원은 수천년 동안 단순가공으로 이용되어 왔으나 최근 천연물 연구의 중요성이 대두되면서 자국의 천연물 자원을 보존하고 연구하는 것은 세계적 추세가 되고 있다. 천연물 유래 기능성 물질은 화학적 합성품에 비해 각종 질병이나 상해 회복에 효과적이며 체내 독성이 적어 특별한 부작용 없이 소비자들에게 높은 선호도를 보인다(비특허문헌 1 참조)Natural materials or natural resources have been used as simple processing for thousands of years, but as the importance of natural product research has recently risen, it has become a global trend to preserve and study the natural resources of one's own country. Functional substances derived from natural products are more effective in recovering from various diseases or injuries than chemical synthetic products, and have low toxicity in the body and show high preference among consumers without special side effects (refer to Non-Patent Document 1)

이에 따라 생약 및 천연물에서 기인한 천연유래 기능성 물질의 탐색에 대한 연구가 꾸준히 지속되고 있다.Accordingly, research on the search for naturally-derived functional substances derived from herbal medicines and natural products is continuously continuing.

차가버섯(Chaga;Inonotus obliquus)은 담자균류(Basidiomycetes)의 소나무비늘버섯과(Hymenochaetaceae)에 속하며 다른 버섯과 다르게 기생 균주의 형태로 자작나무 몸통에 침투하여 자라나 나무의 영양분을 축적하며 껍질을 뚫고 점점 외부로 돌출되어 단단한 덩어리 형태로 나무의 표면에 생장하는 특성을 가진 버섯이다(비특허문헌 2 참조).Chaga ( Inonotus obliquus ) belongs to the Hymenochaetaceae of Basidiomycetes and, unlike other mushrooms, penetrates into the trunk of a birch tree in the form of a parasitic strain, grows, accumulates nutrients in the tree, penetrates the bark, and gradually penetrates the bark. It is a mushroom that protrudes to the outside and grows on the surface of a tree in the form of a hard lump (see Non-Patent Document 2).

차가버섯은 16세기 이후 민간에서 암, 위염, 궤양 및 결핵 치료 등에 활용되어 온 것으로 알려져 있고, 차가버섯의 효과들은 관련된 연구를 통하여 항결핵 활성, 비장세포 증식능과 사이토카인(cytokine) 생성능에 미치는 영향, 항산화 및 항암효과, 면역조절에 미치는 영향, 체중증가 억제 및 지방대사 개선작용 등(비특허문헌 3 내지 비특허문헌 8 참조)이 보고되고 있으며, 추출조건에 따른 면역활성 다당 등 생리활성물질 최적 추출조건 탐색에 관한 연구도 진행되었다(비특허문헌 9 참조).It is known that chaga mushroom has been used for cancer, gastritis, ulcer and tuberculosis treatment in folklore since the 16th century. , antioxidant and anticancer effects, effects on immune regulation, suppression of weight gain, and improvement of fat metabolism (refer to Non-Patent Documents 3 to 8) have been reported, and optimal physiologically active substances such as immunoactive polysaccharides according to extraction conditions Research on extraction conditions was also conducted (see Non-Patent Document 9).

차가버섯의 다양한 기능성 물질 중, 많은 양의 폴리페놀과 플라보노이드를 함유하여 강력한 항산화제로 작용한다(비특허문헌 10 참조). 항산화물질이란 유해 활성산소(free radical)를 제거하는 물질로, 노화 현상 및 생활 습관병을 위시한 각종 질병에 뛰어난 예방효과가 인정되고 있어 각종 천연물 유래의 항산화제의 개발이 활발하게 진행되고 있다. 인체의 노화와 질병을 유발하는 활성산소(free radical)는 인체 내의 정상적인 대사과정 중 생물학적 반응으로 형성되고, 세포와 조직 중에 해로운 독성을 일으켜 질병을 유발하는 것으로 알려져 있다(비특허문헌 11 참조).Among the various functional substances of chaga mushroom, it contains a large amount of polyphenols and flavonoids and acts as a strong antioxidant (see Non-Patent Document 10). Antioxidants are substances that remove harmful free radicals, and have been recognized for their excellent preventive effects on various diseases including aging and lifestyle-related diseases, and thus the development of antioxidants derived from various natural products is actively underway. Free radicals that cause aging and diseases of the human body are formed through biological reactions during normal metabolic processes in the human body, and are known to cause harmful toxicity in cells and tissues to cause diseases (see Non-Patent Document 11).

또한, 차가버섯에는 다양한 식이섬유들이 존재하는데, 그 중 가장 주목받는 소재는 β-글루칸(glucan)이다. β-글루칸(glucan)은 자연살해세포(natural killer cell)의 활성을 회복시킴으로 세포면역을 증강시키는 것을 확인함으로써 다양한 암에 항암효과를 보인다고 보고 되어있다(비특허문헌 12, 13 참조).In addition, various dietary fibers exist in chaga, and the most noteworthy material among them is β-glucan. It has been reported that β-glucan has an anticancer effect on various cancers by confirming that it enhances cellular immunity by restoring the activity of natural killer cells (see Non-Patent Documents 12 and 13).

베툴린은 치료제(therapeutic agent)로 유효한 베툴린산(betulinic acid), 베툴론산(betulonic acid) 또는 이들 유도체(their derivatives)의 유기합성( organic synthesis)에 사용되는 원료 물질(starting material)로 많이 사용되고 있는 과학적 사실이 많은 문헌에 발표되어 왔다. 다수 논문들을 통해서 베툴린산이 흑색종양(melanoma;예컨대 MEL-2, MEL-2과 MEL-4)에 항암활성(antitumor activity)을 갖고 있다는 과학적 발견(비특허문헌 14, 15 참조)에서 베툴린산이 H9 림프구(lymphocytic) 세포에서 anti-HIV 활성(activity)을 가지고 있다는 연구 결과들을 발표하였다. 그리고 베툴린을 대유아시클로버켓(acyclovir)과 혼합하여 사용한 결과 헤르페스 심플렉스 바이러스(herpes simplex viruses) 등에 항바이러스성(antiviral) 효과가 있다고 발표하였다(비특허문헌 16 참조).Betulin is widely used as a starting material for organic synthesis of betulinic acid, betulonic acid, or their derivatives, effective as a therapeutic agent. Scientific facts have been published in many literatures. Through a number of papers, the scientific discovery that betulinic acid has antitumor activity on melanoma (eg, MEL-2, MEL-2 and MEL-4) (see Non-Patent Documents 14 and 15), H9 lymphocytes (lymphocytic) cells have an anti-HIV activity (activity) was announced the results of the study. And as a result of using betulin mixed with acyclovir, it was announced that it had an antiviral effect on herpes simplex viruses and the like (see Non-Patent Document 16).

차가버섯의 추출방법에 관한 종래기술로는 단순 열수추출 등의 일반적인 방법으로, 차가버섯을 30 ∼ 100℃에서 5 ∼ 40배 부피의 온수에 5 ∼ 10분간 용출시키거나, 8시간 동안 1.2 ∼ 2.5kg/㎤ 정도의 압을 유지한 상태에서 추출하는 방법 등이 알려져 있다.As a prior art for the extraction method of chaga, it is a general method such as simple hot water extraction, and the chaga is eluted in hot water 5 to 40 times the volume at 30 to 100° C. for 5 to 10 minutes, or 1.2 to 2.5 for 8 hours. A method of extracting while maintaining a pressure of about kg/cm 3 is known.

그러나 버섯과 같은 인체에 유익한 천연물의 경우, 다양한 극성, 비극성 유효성분을 포함하고 있고, 이들 유효성분들은 물리 화학적 성질의 차이에 의해 용해성이나 휘발성이 다르며, 특히 온도에 대한 용해성이 다르기 때문에 추출온도는 유효성분의 효과적인 용출을 위해서 매우 중요한 요인이라 사료된다. 차가버섯 유효성분의 물리적 화학적 특성과 관계없이 가능한 한 많은 유효성분을 섭취하기 위한 추출 가공방법은 매우 중요하다.However, natural products beneficial to the human body, such as mushrooms, contain various polar and non-polar active ingredients, and these active ingredients have different solubility and volatility due to differences in physical and chemical properties. It is considered to be a very important factor for effective dissolution of active ingredients. Regardless of the physical and chemical properties of the active ingredients of Chaga, the extraction and processing method for ingesting as many active ingredients as possible is very important.

현재까지 보고되거나 상용화된 차가 버섯 추출물 제조방법은 대부분 단순 열수 추출방법 또는 유기용매 추출방법에 국한되고(국내 특허등록번호 10-1662185; 특허문헌 1참조), 기타 유효성분 추출에 상업적 규모의 유용한 사례는 공지되어 있지 않다. 특히 차가는 오랜 시간 자작나무에 기생하면서 성장된 단단한 목질 조직을 갖는 버섯으로서 이의 전처리 조건에 대한 문헌은 지금까지 전혀 보고된 바 없다.Most of the reported or commercialized methods for producing chaga extracts reported so far are limited to the simple hot water extraction method or the organic solvent extraction method (domestic patent registration No. 10-1662185; see Patent Document 1), and other useful examples on a commercial scale for extracting active ingredients is not known. In particular, chaga is a mushroom having a hard woody tissue grown while parasitic on birch trees for a long time, and the literature on its pretreatment conditions has not been reported at all so far.

특허 제1662185호(β-글루칸을 고농도로 함유하는 차가버섯 추출물의 제조방법) 등록특허공보,Patent No. 1662185 (Method for producing chaga extract containing high concentration of β-glucan) Registered Patent Publication,

Jung SJ, et al. 2004. Screening for antioxidant activity of plant medicinal extracts. J Korean Soc Appl Biol Chem. 47 135-140.Jung SJ, et al. 2004. Screening for antioxidant activity of plant medicinal extracts. J Korean Soc Appl Biol Chem. 47 135-140. Kahlos K. 1994. ⅩⅡ. Inonotus obliquus (Chaga Fungus): In vitro culture and the production of inotodiol, sterols, and other secondary metabolites. Biotechnology in Agriculture and Forestry 26: 179-198.Kahlos K. 1994. XII. Inonotus obliquus (Chaga Fungus): In vitro culture and the production of inotodiol, sterols, and other secondary metabolites. Biotechnology in Agriculture and Forestry 26: 179-198. Huang NL. 2002. A mysterioys medicinal fungus in Fussia Inonotys obliquus. Chinese J Edible Mushroom 21: 7-8.Huang NL. 2002. A mysterioys medicinal fungus in Fussia Inonotys obliquus. Chinese J Edible Mushroom 21: 7-8. Song HY, Lee DJ, Lee BE. 2011. Studies on the anti-pulmonary tuberculosis of Inonotus obliquus. J. Mushroom Sci. Prod. 9: 190-193.Song HY, Lee DJ, Lee BE. 2011. Studies on the anti-pulmonary tuberculosis of Inonotus obliquus. J. Mushroom Sci. Prod. 9: 190-193. Kim PR, Ko SK, Pyo MY. 2010. Effects of hot water extract of chaga mushroom on the proliferation and cytokines production of mouse splenocytes in vitro. Yakhak Hoeji. 54: 187-191.Kim PR, Ko SK, Pyo MY. 2010. Effects of hot water extract of chaga mushroom on the proliferation and cytokines production of mouse splenocytes in vitro. Yakhak Hoeji. 54: 187-191. Qi Y, Zhao X, Lim YI, Park KY. 2013. Antioxidant and anticancer effects of edible and medicinal mushrooms. J.Korean Soc. Food Sci. Nutr. 42: 655-662).Qi Y, Zhao X, Lim YI, Park KY. 2013. Antioxidant and anticancer effects of edible and medicinal mushrooms. J. Korean Soc. Food Sci. Nutr. 42: 655-662). An CS, Jin HL, Jeon YH, Bak JP, Kim JD, Yoon JH, Lim BO. 2010. Immunoregulatory effects of water extracts of Inonotus obliquus in carbon tetrachlorideinduced liver damage animal model. Korean J.Medicinal Crop Sci.18:1-8.An CS, Jin HL, Jeon YH, Bak JP, Kim JD, Yoon JH, Lim BO. 2010. Immunoregulatory effects of water extracts of Inonotus obliquus in carbon tetrachloride-induced liver damage animal model. Korean J.Medicinal Crop Sci.18:1-8. Kim BB, Kim MS, Hyun CK. 2016. Suppression of adiposity and improvement of fat metabolism in high-fat diet-induced obese mice treated with an Inonotus obliquus extract. Kor. J. Pharmacogn. 47: 172-178.Kim BB, Kim MS, Hyun CK. 2016. Suppression of adiposity and improvement of fat metabolism in high-fat diet-induced obese mice treated with an Inonotus obliquus extract. Kor. J. Pharmacogn. 47: 172-178. Kim JC, Yi HC, Lee KU, Hwang KT, Yoo GC. 2015. Optimization of the extraction of bioactive compounds from chaga mushroom (Inonotus obliquus) by the response surface methodology. Kor. J. Food Sci. Technol. 47: 233-239.Kim JC, Yi HC, Lee KU, Hwang KT, Yoo GC. 2015. Optimization of the extraction of bioactive compounds from chaga mushroom (Inonotus obliquus) by the response surface methodology. Kor. J. Food Sci. Technol. 47: 233-239. Cui Y, Kim DS, Park KC. 2005. Antioxidant effect of Inonotus obliquus. Journal of Ethnopharmacology, 96: 79-85.Cui Y, Kim DS, Park KC. 2005. Antioxidant effect of Inonotus obliquus. Journal of Ethnopharmacology, 96: 79-85. Devy C, Gautier R. 1990. New perspectives on the biochemistry of superoxide anion and the efficiency of superoxide dismutase. Biochem. Pharmacol. 39: 399-405.Devy C, Gautier R. 1990. New perspectives on the biochemistry of superoxide anion and the efficiency of superoxide dismutase. Biochem. Pharmacol. 39: 399-405. Tabata K, Ito W, Kojima T, Kawabata S, Misaki A. 1981. Ultrasonic degradation of schizophyllan, an an-titumor polysaccharide produced by Schizophyllum commune fries. Carbohydrate Research. 89(1):121-135.Tabata K, Ito W, Kojima T, Kawabata S, Misaki A. 1981. Ultrasonic degradation of schizophyllan, an an-titumor polysaccharide produced by Schizophyllum commune fries. Carbohydrate Research. 89(1):121-135. Yamamoto T, Yamashita T, Tsubura E. 1981. Inhibition of pulmonary metastasis of Lewis lung carcinoma by a glucan, Schizophyllan. Invasion Metastasis. 1(1):71-84.Yamamoto T, Yamashita T, Tsubura E. 1981. Inhibition of pulmonary metastasis of Lewis lung carcinoma by a glucan, Schizophyllan. Invasion Metastasis. 1(1):71-84. Pisha, E. et al., (1995) J. M. nature Medicine, 1, 1046-1051.Pisha, E. et al., (1995) J. M. Nature Medicine, 1, 1046-1051. Fujioka, T. et al. (1994) J. Nat. Prod. 57, 243-247.Fujioka, T. et al. (1994) J. Nat. Prod. 57, 243-247. Yunhao Gong et al.은 Antiviral Research 64 (2004) 127-130.Yunhao Gong et al. Antiviral Research 64 (2004) 127-130.

따라서, 본 발명의 목적은 차가 버섯 목질부의 전처리 조건으로 가압처리 조건을 설정하기 위하여 1단계로서 고온ㆍ고압 조건에서 활용도가 높은 장치를 고안 한 후 고온ㆍ가압 조건을 설정하고 2단계로 열수 및 유기용매 추출 조건에 따른 식품의 기능성 지표로서 유효한 활성성분인 폴리페놀, 플라보노이드, 베타글루칸, 베툴린 및 베툴린산 함량이 강화된 2단계 추출 조건을 설정하고, 확인하여 신규한 차가버섯 추출물을 제공하는 데 있다.Therefore, an object of the present invention is to devise a device with high utilization under high temperature and high pressure conditions as a first step in order to set the pressure treatment conditions as pretreatment conditions for the xylem xylem, then set the high temperature and pressure conditions, and then set the high temperature and pressure conditions as the second step. To provide a novel Chaga mushroom extract by setting and confirming two-step extraction conditions with enhanced contents of polyphenol, flavonoid, beta-glucan, betulin, and betulinic acid, which are effective active ingredients as functional indicators of food according to solvent extraction conditions. have.

본 발명의 다른 목적은 상기 방법을 이용하여 제조된 항산화 등, 유효성분 함량의 안전성이 확인된 신규하고 진보된 추출물 소재를 제공함과 동시에 액상, 분말 및 박(slurry)을 소재로 하는 향미가 우수한 제형의 다양한 차가버섯 산물을 제공하는 데 있다.Another object of the present invention is to provide a novel and advanced extract material for which the safety of active ingredient content, such as antioxidants, produced using the above method has been confirmed, and at the same time, a formulation with excellent flavor made from liquid, powder and slurry of various chaga mushroom products.

본 발명의 상기 목적은 1단계 고온가압 전처리 및 용매추출의 2단계 공법을 이용한 포함하는 유효성분이 강화된 차가버섯 추출물의 제조방법은 (a) 절단한 차가버섯 조각을 고온·가압 전처리하는 단계; (b) 상기 (a)단계의 고온·가압 전처리한 차가버섯을 분쇄하는 단계; (c) 상기 (b)단계의 분쇄한 차가버섯 분말에 물을 혼합한 후 열수 추출하는 단계; (d) 상기 (c)단계의 열수 추출한 열수 추출물을 여과한 다음 1차 농축하여 차가버섯 농축액을 제조하는 단계; (e) 상기 (d)단계의 여과하고 남은 차가버섯 박에 주정을 혼합한 후 추출하는 단계; (f) 상기 (e)단계의 추출한 주정 추출물을 여과한 다음 2차 농축하여 차가버섯 박 농축액을 제조하는 단계; (g) 상기 (d)단계의 1차 농축하여 제조한 차가버섯 농축액과 상기 (f)단계의 2차 농축하여 제조한 차가버섯 박 농축액을 혼합하여 3차 농축하여 농축액을 제조하는 단계; 및 (h) 상기 (g)단계의 3차 농축하여 제조한 농축액을 동결건조하는 단계로 이루어진다.The above object of the present invention is to provide a method for preparing a chaga extract fortified with active ingredients using a two-stage method of one-step high-temperature and pressure pretreatment and solvent extraction, comprising the steps of: (a) pre-treating the cut pieces of chaga mushroom with high-temperature and pressure; (b) pulverizing the chaga mushroom pretreated under high temperature and pressure in step (a); (c) extracting hot water after mixing water with the pulverized chaga powder of step (b); (d) filtering the hot water extract extracted from the hot water in step (c) and then first concentrating to prepare a chaga mushroom concentrate; (e) extracting after mixing alcohol with the chaga gourd remaining after the filtration of step (d); (f) filtering the alcohol extract extracted in step (e) and then concentrating the second step to prepare a chaga mushroom gourd concentrate; (g) mixing the chaga mushroom concentrate prepared by the primary concentration of step (d) with the chaga mushroom gourd concentrate prepared by the secondary concentration of the step (f) and concentrating tertiary to prepare a concentrate; and (h) freeze-drying the concentrate prepared by the third concentration in step (g).

상기 고온ㆍ가압 전처리 공정 (a)에서 차가버섯 조각의 크기는 가로 × 세로 × 높이가 3 ∼ 4 × 3 ∼ 4 × 3 ∼ 4(㎝)인 것이 바람직하고, 압력은 3.5 ∼ 4.5bar의 압력을 가하는 것이 바람직하였다. 상기 조각의 크기가 상기 크기보다 큰 크기와 상기 압력이 3.5bar 압력보다 낮은 압력은 차가버섯 조각이 잘 가압되지 않으며, 그보다 작은 크기와 4.5bar 보다 높은 압력은 가압하는 압력에 비해 버섯의 추출 수율이 낮아 바람직하지 않았다.In the high temperature and pressure pretreatment step (a), the size of the chaga mushroom pieces is preferably 3 to 4 × 3 to 4 × 3 to 4 (cm) in width × length × height, and the pressure is 3.5 to 4.5 bar. It was preferable to add If the size of the piece is larger than the size and the pressure is lower than the pressure of 3.5 bar, the chaga mushroom pieces are not well pressed, and when the size of the piece is larger and the pressure is higher than 4.5 bar, the extraction yield of the mushroom is lower than the pressure low was not desirable.

상기 분쇄 처리공정 (b)에서 얻어지는 차가버섯의 분말은 35 ∼ 45 mesh가 바람직하고, 분말도가 35 mesh 보다 작으면, 물과 잘 혼합되지 않아 바람직하지 않고, 45 mesh 보다 크면, 분쇄시간에 비해 수율이 떨어져 바람직하지 않았다.The powder of chaga obtained in the grinding treatment process (b) is preferably 35 to 45 mesh, and if the fineness is less than 35 mesh, it is not preferable because it does not mix well with water, and if it is larger than 45 mesh, compared to the grinding time The yield was low, which was not preferable.

또한 상기 공정(c)의 1차열수 추출공정은 차가버섯 분말과 물의 배합을 1:20(w/v)의 비율로 혼합한 후 95℃ ∼ 130℃에서 3.5 ∼ 4.5시간 추출하는 것이 가장 바람직하였다.In addition, in the primary hot water extraction process of step (c), it was most preferable to mix the mixture of chaga powder and water in a ratio of 1:20 (w/v) and then extract at 95°C to 130°C for 3.5 to 4.5 hours. .

여기서 온도가 95℃ 보다 낮거나 추출시간이 3.5 시간 보다 작으면, 유효성분의 추출이 감소되어 바람직하지 않았고, 온도가 130℃ 보다 높거나 추출시간이 4.5 시간 보다 길면, 에너지 소비와 추출시간에 비해 유효성분의 추출 수율이 떨어져 바람직하지 못하였다.Here, if the temperature is lower than 95°C or the extraction time is less than 3.5 hours, the extraction of the active ingredient is reduced, which is undesirable, and if the temperature is higher than 130°C or the extraction time is longer than 4.5 hours, compared to the energy consumption and extraction time It was not preferable because the extraction yield of the active ingredient was low.

상기 공정(d)의 1차 농축건조공정은 상기 공정(c)에서 얻은 열수 추출물을 원심분리기로 원심분리한 다음 여과지로 여과하고 회전 농축기로 농축하였다.In the first concentration and drying step of step (d), the hot water extract obtained in step (c) was centrifuged with a centrifuge, filtered with a filter paper, and concentrated with a rotary concentrator.

여기서 상기 원심분리는 추출물 4,500Xg ∼ 5,500Xg 당 10분 ∼ 20분 원심분리하는 것이 바람직하다.Here, the centrifugation is preferably centrifugation for 10 to 20 minutes per 4,500Xg to 5,500Xg of the extract.

또한 상기 공정(e)의 2차추출공정은 차가버섯 박(슬러지)을 45 ∼ 55% 주정을 이용하여 7.5 ∼ 8.5 시간 추출하는 것이 가장 바람직하였다.In addition, in the secondary extraction process of step (e), it was most preferable to extract chaga mushroom gourd (sludge) for 7.5 to 8.5 hours using 45 to 55% alcohol.

여기서 45% 미만의 주정 또는 7.5 시간 보다 적은 시간의 추출은 유효성분의 추출 효율이 떨어져 바람직하지 않고, 55% 이상의 주정 또는 8.5 시간을 초과하는 추출은 추출시간에 비해 추출 수율이 낮아 바람직하지 않았다.Here, less than 45% of alcohol or extraction for less than 7.5 hours is not preferable because the extraction efficiency of the active ingredient is low, and extraction of more than 55% of alcohol or more than 8.5 hours is not preferable because the extraction yield is low compared to the extraction time.

삭제delete

본 발명은 차가버섯 목질부를 1단계 고온가압 전처리를 수행한 후 이를 1단계 열수추출 및 2단계 용매 추출하는 2단계 추출공법을 포함하는 신규한 추출방법을 도입하여 식품의 기능성 지표가 되는 유효성분으로서 폴리페놀, 플라보노이드, 베타글루칸, 베툴린 및 베툴린산 함량이 강화된 차가버섯 추출물을 얻을 수 있는 효과가 있고, 항산화 활성, 유효성분 함량에 있어서 안전성이 확인된 추출물 식품 소재를 제공할 수 있을 뿐만 아니라, 액상, 분말 및 박(slurry) 등 다양한 소재로 하는 향미가 우수한 다양한 차가버섯 제형의 산물을 제공할 수 있는 뛰어난 효과가 있다.The present invention is an active ingredient serving as a functional index of food by introducing a novel extraction method including a two-step extraction method of performing a first-step high-temperature pressurization of the wood part of Chaga mushroom and then extracting it with a first-step hot water extraction and a second-step solvent extraction. It has the effect of obtaining a chaga mushroom extract with enhanced polyphenol, flavonoid, beta-glucan, betulin and betulinic acid content, and can provide an extract food material that has been confirmed to be safe in terms of antioxidant activity and active ingredient content. , liquid, powder and slurry, etc., have an excellent effect of providing a variety of chaga mushroom formulations with excellent flavor.

도 1은 본 발명에 사용한 1단계 차가버섯 고온ㆍ가압 전처리 장치를 도식화한 도면,
도 2는 본 발명에 따른 최종 추출분말제품과 N사, B사 추출물의 용해도 비교사진,
도 3은 본 발명 고온가압 처리 후 2단계 추출공법을 이용한 유효성분이 강화된 차가버섯 추출물 제조방법의 실행 순서도이다.
도 4는 본 발명에 따른 러시아산 차가버섯 추출물로 준비한 공시재료를 보인 사진도이다.
1 is a schematic diagram of a first-step high temperature and pressure pretreatment device for chaga mushroom used in the present invention;
Figure 2 is a comparison photo of the solubility of the final extract powder product according to the present invention, N company, B company extract,
3 is an execution flowchart of a method for producing a chaga mushroom extract enhanced with active ingredients using a two-step extraction method after high-temperature pressurization of the present invention.
Figure 4 is a photograph showing the test material prepared with the Russian chaga extract according to the present invention.

이하, 첨부 도면을 참조하여 본 발명의 바람직한 실시예를 상세하게 설명한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

실시예1. 고온ㆍ가압처리 조건에 따른 유효성분 함량 비교Example 1. Comparison of active ingredient content according to high temperature and pressure treatment conditions

1.전처리 장치 설계1. Pretreatment device design

도 1은 본 발명에 따른 차가버섯 전처리 고온ㆍ가압장치를 도식화한 것으로, 본 발명은 가로 × 세로 × 높이를 3 ∼ 4 × 3 ∼ 4 × 3 ∼ 4(㎝)로 절단한 차가버섯 조각으로부터 유효성분이 강화된 차가버섯 추출물을 생산할 수 있도록 고안하며 설계, 제작한 것이다.1 is a schematic diagram of the high temperature and pressure device for pre-treatment of chaga according to the present invention, and the present invention is effective from pieces of chaga that are cut into 3 to 4 × 3 to 4 × 3 to 4 (cm) in width × length × height. It was designed, designed and manufactured to produce powder-enhanced chaga extract.

도 1은 본 발명에 따른 차가버섯 전처리 장치를 도식화한 도면으로서, 1은 내부 몸체, 2는 옆커버, 3은 열림커버, 4는 커버, 5는 유리창을 각각 나타내며, 6은 다리파이프, 7은 다리패드, 8은 다리 지지파이프, 9는 I볼트, 10은 도어힌지를 각각 나타낸다.1 is a schematic diagram of a chaga mushroom pretreatment apparatus according to the present invention, where 1 is an inner body, 2 is a side cover, 3 is an open cover, 4 is a cover, 5 is a glass window, 6 is a leg pipe, 7 is a Reference numeral 8 denotes a leg pad, 8 denotes a leg support pipe, 9 denotes an I-bolt, and 10 denotes a door hinge.

도 1에 도시한 차가버섯 전처리 가압장치는 10개의 트레이로 구성되어 있으며, 수증기를 통해 내부의 압력을 올려주게 된다. 내부로 수증기를 공급하는 급기부가 아래쪽에 위치하고 패널을 통해 설정된 압력을 자동조절하며 내부 압력을 유지시켜준다. 최대 6 bar의 안전장치가 상단에 설치되어 내부압력이 그 이상 상승하는 경우 그 압력을 허용압력 이하로 떨어뜨려 주도록 설계되었다. 스팀(steam)이 직접적으로 차가버섯에 닿지 않도록 하는 것을 본 발명 장치의 현저한 특징으로 한다. 그러나, 본 발명 장치와 유사한 고온ㆍ가압 장치를 사용하는 경우에는 최종 차가버섯의 추출수율 및 유효성분에 차이가 없다면 해당 장치를 사용하여도 무방하다.The chaga pre-treatment pressurization apparatus shown in FIG. 1 is composed of 10 trays, and increases the internal pressure through water vapor. The air supply unit that supplies water vapor to the inside is located at the bottom, and it automatically adjusts the pressure set through the panel and maintains the internal pressure. A safety device of up to 6 bar is installed at the top and is designed to drop the pressure below the allowable pressure when the internal pressure rises more. It is a remarkable feature of the device of the present invention that steam does not directly touch the chaga. However, when using a high-temperature/pressurization device similar to the device of the present invention, the device may be used if there is no difference in the extraction yield and active ingredient of the final chaga mushroom.

2.전처리 조건 설정2. Pre-processing condition setting

상기 기재한 size의 차가버섯 조각을 다양한 가압 전처리 조건(2 bar, 3 bar, 4 bar 및 5 bar)을 설정하고 시간(0.5h 및 1h)별로 처리하고, 그 결과를 표 1에 나타냈다.Chaga pieces of the above-described size were set under various pressure pretreatment conditions (2 bar, 3 bar, 4 bar and 5 bar) and treated for each time (0.5 h and 1 h), and the results are shown in Table 1.

고온ㆍ가압 전처리된 차가버섯을 푸드 프로세서(Food processor)를 사용하여 분쇄한 후, 입자크기 35 ∼ 45 mesh 분말을 물과 1:20(w/v)의 배합 비율로 혼합한 후 100℃, 4시간 조건에서 추출하였다.After grinding the chaga mushroom pretreated under high temperature and pressure using a food processor, a particle size of 35 to 45 mesh powder is mixed with water at a mixing ratio of 1:20 (w/v), and then at 100℃, 4 It was extracted under time conditions.

[실험 재료 준비 1][Preparation of experimental material 1]

열수추출이 끝난 후 5,000Xg에서 15분간 원심분리(Mega21R, Hanil Corp., Seoul, Korea)한 후 와트만 #1여과지(Whatman Co., Maidstone, England)를 이용하여 여과하였다. 상기에서 얻은 여과액은 회전 농축기(N-1000VW, Eyela Co., Tokyo, Japan)를 이용하여 농축한 후 동결건조(NB-504, Ilshin Co., Dongducheon, Korea) 하여 실온 보관하면서 공시 재료로 사용하였다.After hot water extraction was finished, centrifugation was performed at 5,000Xg for 15 minutes (Mega21R, Hanil Corp., Seoul, Korea), and then filtered using Whatman #1 filter paper (Whatman Co., Maidstone, England). The filtrate obtained above is concentrated using a rotary concentrator (N-1000VW, Eyela Co., Tokyo, Japan) and then freeze-dried (NB-504, Ilshin Co., Dongducheon, Korea), stored at room temperature, and used as a test material did.

2-1.폴리페놀, 폴라보노이드 성분 분석2-1. Analysis of polyphenols and flavonoids

미처리 시험구보다 고온ㆍ가압 전처리 조건에서 얻은 차가버섯을 재료로 하여 얻은 열수추출물에서 페놀화합물의 함량은 4bar에서 가장 높게 측정되었으며, 5bar 가압조건의 경우 오히려 페놀화합물의 함량이 감소되는 것을 하기 표 1로부터 확인하였다.The content of phenolic compounds in the hot water extract obtained from chaga mushrooms obtained under high temperature and pressure pretreatment conditions than in the untreated test group was measured to be the highest at 4 bar, and it is shown from Table 1 below that the content of phenolic compounds is rather reduced under the pressure of 5 bar. Confirmed.

한편, 처리시간에 따라 경시적으로 페놀화합물 함량은 처리시간 1시간까지증가 하였지만, 그 차이가 미미한 것을 확인하였다.On the other hand, according to the treatment time, the phenolic compound content increased with time up to 1 hour of the treatment time, but it was confirmed that the difference was insignificant.

이상의 실험결과, 차가버섯에 존재하는 여러 화합물들이 고온ㆍ가압 전처리에 의해 폴리페놀 화합물로 전환되어졌거나, 고온고압처리로 인해 폴리페놀성 화합물의 추출이 용이하도록 물리적인 조직이 변화되어 페놀성 화합물함량이 증가하는 것으로 판단되었다. 가장 바람직한 고온ㆍ가압 처리조건은 100℃, 4bar에서 1시간 이였다.As a result of the above experiment, various compounds present in chaga were converted into polyphenolic compounds by high temperature/pressure pretreatment, or the physical structure was changed to facilitate extraction of polyphenolic compounds due to high-temperature and high-pressure treatment, resulting in phenolic compound content was judged to increase. The most preferable high-temperature and pressure treatment conditions were 100° C. and 4 bar for 1 hour.

mg/g mg/g 처리시간 processing time 2bar 2 bar 3bar 3 bar 4bar 4 bar 5bar 5 bar
폴리페놀
미처리구
(158.6 ± 5.7)

polyphenols
untreated
(158.6 ± 5.7)

0.5시간

0.5 hours

159.5±5.2

159.5±5.2

245.0±6.8

245.0±6.8

348.2±10.4

348.2±10.4

318.02±11.2

318.02±11.2

1시간

1 hours

160.5±8.3

160.5±8.3

258.6±7.3

258.6±7.3

356.2±9.5

356.2±9.5

316.72±8.3

316.72±8.3

폴라보노이드
미처리구
(35.97 ± 2.10)

flavonoids
untreated
(35.97 ± 2.10)

0.5시간

0.5 hours

36.5±1.2

36.5±1.2

40.6±8.5

40.6±8.5

50.8±3.2

50.8±3.2

42.3±8.2

42.3±8.2

1시간

1 hours

36.5±1.3

36.5±1.3

36.5±7.3

36.5±7.3

57.3±4.11

57.3±4.11

52.6±9.3

52.6±9.3

2-2.항산화(DPPH, ABTS)2-2. Antioxidant (DPPH, ABTS)

차가버섯의 항산화 효과를 측정하는 방법으로는 DPPH(α,α-diphenyl-β-picrylhydrazy l)를 이용한 라디칼 소거능, ABTS[2,2'-azinobis-(3-ethyl-benzoth iazoline-6-sulfo nic acid)] 양이온(ABTSㆍ+) 소거능 측정이 대표적이다. 동결건조된 추출분말을 1% 수용액으로 제조한 다음 DPPH를 이용한 라디칼 소거능을 측정한 결과를 하기 표 2에 나타냈다.Methods for measuring the antioxidant effect of chaga include radical scavenging activity using DPPH (α,α-diphenyl-β-picrylhydrazy l), ABTS[2,2'-azinobis-(3-ethyl-benzoth iazoline-6-sulfonic) acid)] cation (ABTS·+) scavenging ability is a representative measurement. The results of measuring the radical scavenging ability using DPPH after preparing the lyophilized extract powder in a 1% aqueous solution are shown in Table 2 below.

표 2로부터 0.5 시간 처리 시 65.7±1.2%, 75.9±1.5%, 81.4±0.7%, 80.3±0.2%로 압력에 따라 항산화도가 증가 되며, 대조구 대비 약 124% 증가되는 것을 확인 할 수 있었다.From Table 2, it can be seen from Table 2 that the degree of antioxidant increased according to pressure to 65.7±1.2%, 75.9±1.5%, 81.4±0.7%, and 80.3±0.2% when treated for 0.5 hours, and it was confirmed that it was increased by about 124% compared to the control.

ABTS를 이용한 양이온 라디칼 소거능을 측정해 본 결과 미처리구, 처리구에서 모두 96% 이상의 양이온 라디칼 소거능을 보여 차가버섯 추출분말의 경우 양이온 라디칼 소거능이 뛰어난 것을 확인할 수 있었다.As a result of measuring the cationic radical scavenging ability using ABTS, both untreated and treated groups showed more than 96% of cationic radical scavenging ability.

% % 처리시간 processing time 2bar 2 bar 3bar 3 bar 4bar 4 bar 5bar 5 bar
DPPH assay
미처리구
(65.1 ± 0.4)

DPPH assay
untreated
(65.1 ± 0.4)

0.5시간

0.5 hours

65.7±1.2

65.7±1.2

75.9±1.5

75.9±1.5

81.4±0.7

81.4±0.7

80.3±0.2

80.3±0.2

1시간

1 hours

67.4±0.7

67.4±0.7

79.3±0.9

79.3±0.9

85.5±1.0

85.5±1.0

84.3±0.5

84.3±0.5

ABTS assay
미처리구
(96.4 ± 0.1)

ABTS assay
untreated
(96.4 ± 0.1)

0.5시간

0.5 hours

96.8±0.2

96.8±0.2

98.6±0.5

98.6±0.5

97.8±8.5

97.8±8.5

96.8±3.2

96.8±3.2

1시간

1 hours

97.5±0.4

97.5±0.4

98.3±0.4

98.3±0.4

98.4±0.1

98.4±0.1

97.5±0.7

97.5±0.7

2-3.베타글루칸2-3. Beta Glucan

본 발명에 따라 동결건조된 추출분말을 사용하여 베타글루칸 함량을 측정한 결과, 하기 표 3과 같이 고온ㆍ가압전처리 시험구에서 미처리 시험구 보다 베타글루칸 함량이 높게 측정되었으며, 전처리 압력이 증가될수록 베타글루칸 함량이 증가되는 것을 확인할 수 있었다 4 및 5 bar에서 1 시간 가압전처리 시험구가 베타글루칸 함량 4.2(w/w, %)로 가장 높게 측정되었다.As a result of measuring the beta-glucan content using the lyophilized extract powder according to the present invention, as shown in Table 3 below, the beta-glucan content was measured to be higher in the high-temperature/pressure pre-treatment test group than in the untreated test group, and as the pre-treatment pressure increased, the beta-glucan content was measured. It was confirmed that the glucan content was increased. At 4 and 5 bar, the 1 hour pretreatment test group had the highest beta-glucan content of 4.2 (w/w, %).

(w/w %) (w/w %) 처리시간 processing time 2bar 2 bar 3bar 3 bar 4bar 4 bar 5bar 5 bar
베타글루칸함량
미처리구
(2.1 ± 0.4)

Beta glucan content
untreated
(2.1 ± 0.4)

0.5시간

0.5 hours

2.2±0.2

2.2±0.2

3.4±0.4

3.4±0.4

3.9±0.6

3.9±0.6

4.1±0.7

4.1±0.7

1시간

1 hours

2.3±0.7

2.3±0.7

3.5±0.9

3.5±0.9

4.2±0.5

4.2±0.5

4.2±0.9

4.2±0.9

이상 실시예를 종합해 볼 때 페놀성 화합물 함량, 항산화 지표, 베타글루칸 함량 및 산업화를 위한 경제적인 측면을 고려할 때 4bar에서 0.5 ∼ 1시간 처리가 차가버섯의 가장 적합한 전처리조건으로 판단된다.When considering the above examples, it is determined that 0.5 to 1 hour treatment at 4 bar is the most suitable pretreatment condition for chaga mushrooms in consideration of the phenolic compound content, antioxidant index, beta glucan content, and economic aspects for industrialization.

실시예2. 2단계 추출공법조건 설정-비극성 유효성분 추출조건 설정Example 2. 2-step extraction method condition setting - non-polar active ingredient extraction condition setting

차가버섯의 공지된 유효성분으로는 페놀성 화합물, β-글루칸, 트리체페놀산, 호로마도겐, 폴리페놀, 옥시페놀카르본산, 휘노친, 차가산(60%), 바닐라산, 파라옥시향산, 프테린, 스테롤, 리그닌, 베툴린, 베툴린산 등의 다양한 극성 및 비극성 생리활성 물질을 포함하고 있으며 1차열수 추출로는 비극성 물질의 추출에 어려움이 있기 때문에 이들 물질의 유효성분을 강화하기 위하여 주정을 이용하여 2차 유기용매 추출을 수행하였다.Known active ingredients of chaga mushroom include phenolic compounds, β-glucan, tricephenolic acid, horomadogen, polyphenol, oxyphenol carboxylic acid, finocin, chaga acid (60%), vanilla acid, paraoxyhyangic acid It contains various polar and non-polar physiologically active substances such as , pterin, sterol, lignin, betulin, and betulinic acid. Secondary organic solvent extraction was performed using alcohol.

1.주정 농도 및 시간 설정1. Alcohol concentration and time setting

동결 건조된 1차 추출 슬러지를 유기용매(50, 70 및 90% 주정)와 1:20(w/v)의 비율로 혼합하여 상온에서 4, 8 및 12시간 추출이 끝난 후 5,000Xg에서 15분간 원심분리(Mega21R, Hanil Corp., Seoul, Korea)한 후 와트만 #1여과지(Whatman Co., Maidst one, England)를 이용하여 여과하였다. 상기 여과액은 회전 농축기(N-1000VW, Eyela Co., Tokyo, Japan)를 이용하여 농축한 후 동결건조(NB-504, Ilshin Co., Do ngducheon, Korea) 하여 실온보관하여 실험에 사용하였다.The freeze-dried primary extraction sludge is mixed with an organic solvent (50, 70, and 90% alcohol) at a ratio of 1:20 (w/v) at room temperature for 4, 8, and 12 hours and then extracted at 5,000Xg for 15 minutes. After centrifugation (Mega21R, Hanil Corp., Seoul, Korea), it was filtered using Whatman #1 filter paper (Whatman Co., Maidst one, England). The filtrate was concentrated using a rotary concentrator (N-1000VW, Eyela Co., Tokyo, Japan), then freeze-dried (NB-504, Ilshin Co., Dongducheon, Korea), stored at room temperature, and used in the experiment.

1-1.폴리페놀과 플라보노이드 함량 변화1-1. Changes in polyphenol and flavonoid content

차가버섯의 페놀성 화합물은 항산화 효과를 내는 대표적인 화합물로 하기 표 4로부터 주정 함량 30, 50 및 70%에 따라 폴리페놀의 함량의 경우 주정 농도, 추출시간이 증가됨에 따라 폴리페놀 함량도 증가 되었으며, 폴리페놀의 대표적인 성분인 플라보노이드 함량도 주정 농도, 추출시간이 증가됨에 따라 플라보노이드 함량도 증가됨을 확인하였다.The phenolic compound of Chaga mushroom is a representative compound that exerts an antioxidant effect. From Table 4 below, according to the alcohol content of 30, 50 and 70%, the polyphenol content increased as the alcohol concentration and extraction time increased. It was confirmed that the flavonoid content, a representative component of polyphenol, also increased as the alcohol concentration and extraction time increased.

실험결과, 주정 함량이 높을수록 용해도 및 추출 수율이 낮게 측정되었다. 따라서, 그 결과 용해도, 폴리페놀 및 플라보노이드 함량을 비교할 때 주정 농도 50% 추출시간 8시간이 가장 경제적인 것으로 판단되어 최적 추출조건으로 설정하였다.As a result of the experiment, the higher the alcohol content, the lower the solubility and extraction yield. Therefore, as a result, when comparing solubility, polyphenol and flavonoid contents, an extraction time of 8 hours at a 50% alcohol concentration was determined to be the most economical, and the optimum extraction conditions were set.

% % 처리시간 processing time 주정 30% alcohol 30% 주정 50% alcohol 50% 주정 70% Alcohol 70%


폴리페놀



polyphenols

4시간

4 hours

170.6±20.4

170.6±20.4

222.4±15.8

222.4±15.8

250.3±14.5

250.3±14.5

8시간

8 hours

200.8±12.6

200.8±12.6

392.4±20.8

392.4±20.8

430.4±8.6

430.4±8.6

12시간

12 hours

230.5±10.5

230.5±10.5

412.4±15.6

412.4±15.6

465.3±4.6

465.3±4.6



플라보노이드



flavonoids

4시간

4 hours

22.8±2.0

22.8±2.0

52.8±8.5

52.8±8.5

68.8±5.2

68.8±5.2

8시간

8 hours

35.2±3.2

35.2±3.2

72.7±5.3

72.7±5.3

98.4±0.1

98.4±0.1

12시간

12 hours

42.8±5.4

42.8±5.4

85.8±5.1

85.8±5.1

92.2±9.6

92.2±9.6

1-2.항산화도 측정 차가버섯의 항산화 효과를 측정하는 방법으로는 DPPH(α,α-diphenyl-β-pi crylhydrazy l)를 이용한 라디칼 소거, ABTS[2,2'-azinobis-(3-ethyl-benzothiazo line-6-sulfo nic acid)] 양이온(ABTS +) 소거능 측정이 대표적이다. 동결 건조된 추출분말을 1% 수용액으로 제조한 다음 DPPH를 이용한 라디칼 소거능을 측정해 본 결과 아래 표 5와 같이 주정 농도, 처리시간이 높아질수록 라디칼 소거능이 증가 되는 것을 확인 할 수 있었다. 1-2. Measurement of Antioxidant Degree As a method to measure the antioxidant effect of chaga mushrooms, radical scavenging using DPPH (α,α-diphenyl-β-pi crylhydrazy l), ABTS[2,2'-azinobis-(3-ethyl) -benzothiazo line-6-sulfonic acid)] cation (ABTS +) scavenging activity measurement is a representative example. After preparing the freeze-dried extract powder as a 1% aqueous solution, the radical scavenging ability using DPPH was measured. As shown in Table 5 below, it was confirmed that the radical scavenging ability increased as the alcohol concentration and treatment time increased.

ABTS를 이용한 양이온 라디칼 소거능을 측정해 본 결과 표 5에 나타낸 바와 같이 본 발명에 따르면 모든 실험구간에서 90% 이상의 양이온 라디칼 소거능을 보여 열수추출한 슬러지를 활용하여 주정 추출물에서도 높은 라디칼 소거능을 확인할 수 있었다.As a result of measuring the cationic radical scavenging ability using ABTS, as shown in Table 5, according to the present invention, it showed a cationic radical scavenging ability of 90% or more in all experimental sections.

% % 처리시간 processing time 주정 30% alcohol 30% 주정 50% alcohol 50% 주정 70% Alcohol 70%


DPPH assay



DPPH assay

4시간

4 hours

54.7±1.2

54.7±1.2

60.9±4.6

60.9±4.6

61.0±0.7

61.0±0.7

8시간

8 hours

57.9±0.5

57.9±0.5

68.3±0.2

68.3±0.2

71.5±1.0

71.5±1.0

12시간

12 hours

60.7±2.2

60.7±2.2

78.9±1.5

78.9±1.5

79.4±1.6

79.4±1.6



ABTS assay



ABTS assay

4시간

4 hours

93.8±2.2

93.8±2.2

95.5±0.7

95.5±0.7

95.8±0.3

95.8±0.3

8시간

8 hours

95.8±1.2

95.8±1.2

97.8±0.8

97.8±0.8

97.1±0.2

97.1±0.2

12시간

12 hours

96.8±0.4

96.8±0.4

98.3±0.4

98.3±0.4

98.4±0.8

98.4±0.8

1-3.베타글루칸1-3. Beta Glucan

본 발명에 따른 동결 건조된 추출분말을 이용해 베타글루칸 함량을 측정한 결과 하기 표 6과 같이 가압 전처리 시험구에서 미처리 시험구 보다 베타글루칸 함량이 높게 측정되었으며, 전처리 압력이 증가 될수록 베타글루칸 함량이 증가 되는 것을 확인할 수 있었다. 특히 4 및 5bar에서 1 시간 가압 전처리 시험구에서 4.2(w/w, %)로 가장 높게 측정되었다.As a result of measuring the beta-glucan content using the freeze-dried extract powder according to the present invention, as shown in Table 6 below, the beta-glucan content was measured to be higher in the pressurized pretreatment test group than in the untreated test group, and the beta-glucan content increased as the pretreatment pressure increased. was able to confirm that In particular, it was measured the highest as 4.2 (w/w, %) in the 1 hour pressure pre-treatment test group at 4 and 5 bar.

(w/w,%) (w/w,%) 처리시간 processing time 주정 30% alcohol 30% 주정 50% alcohol 50% 주정 70% Alcohol 70%


베타글루칸 함량



Beta glucan content

4시간

4 hours

1.2±0.4

1.2±0.4

2.5±0.8

2.5±0.8

2.4±0.1

2.4±0.1

8시간

8 hours

1.9±0.1

1.9±0.1

2.9±0.6

2.9±0.6

2.8±0.4

2.8±0.4

12시간

12 hours

1.9±0.9

1.9±0.9

3.2±0.7

3.2±0.7

3.3±0.5

3.3±0.5

1-4.베툴린, 베툴린산1-4. Betulin, betulinic acid

동결건조된 추출분말을 이용해 베툴린, 베툴린산 함량을 HPLC로 분석해본 결과 하기 표 7과 같이 측정되었으며, 열수추출 분말에서는 검출되지 않았다.As a result of analyzing the content of betulin and betulinic acid using the lyophilized extract powder by HPLC, it was measured as shown in Table 7 below, and was not detected in the hot water extract powder.

표 7로부터 측정결과를 확인 해보면 추출시간에 따른 베툴린, 베툴린산의 증가보다는 주정 함량에 따른 함량변화가 높게 나타났으며, 베툴린, 베툴린산의 경우 주정 50% 이상 조건에서 500mg/100g, 200mg/100g 이상이 추출되는 것을 확인하였다.When checking the measurement results from Table 7, the content change according to the alcohol content was higher than the increase in betulin and betulinic acid according to the extraction time. In the case of betulin and betulinic acid, 500mg/100g, 200mg under 50% alcohol It was confirmed that /100g or more was extracted.

% % 처리시간 processing time 주정 30% alcohol 30% 주정 50% alcohol 50% 주정 70% Alcohol 70%


Betulin



Betulin

4시간

4 hours

354.4±9.7

354.4±9.7

505.6±25.4

505.6±25.4

608.5±21.4

608.5±21.4

8시간

8 hours

362.7±10.4

362.7±10.4

531.5±10.4

531.5±10.4

616.9±25.6

616.9±25.6

12시간

12 hours

360.5±9.4

360.5±9.4

546.4±19.7

546.4±19.7

626.6±30.4

626.6±30.4



Betulinic acid



Betulinic acid

4시간

4 hours

130.2±1.4

130.2±1.4

180.8±5.5

180.8±5.5

201.5±12.4

201.5±12.4

8시간

8 hours

142.0±2.3

142.0±2.3

182.5±12.5

182.5±12.5

210.5±10.6

210.5±10.6

12시간

12 hours

153.5±5.5

153.5±5.5

207.6±10.4

207.6±10.4

230.8±5.4

230.8±5.4

조건별 추출분말은 동일농도(1% 수용액)에서 품질 분석결과 열수에서 추출되지 않는 비극성 유효 성분들이 주정 용매에서 추출되었으며, 주정의 함량이 증가할수록 폴리페놀, 플라보노이드, 베툴린 및 베툴린산 함량은 증가하였지만, 추출 수율이 낮아 산업화를 위한 경제적인 측면을 고려할 때 주정 농도는 50%에서 8시간으로 설정하였다.As a result of quality analysis at the same concentration (1% aqueous solution) of the extraction powder for each condition, non-polar active ingredients that were not extracted from hot water were extracted from alcoholic solvents, and as the content of alcohol increased, the content of polyphenols, flavonoids, betulin and betulinic acid increased. However, considering the economical aspect for industrialization due to the low extraction yield, the alcohol concentration was set at 50% for 8 hours.

실시예3. 최종 추출물의 품질측정Example 3. Quality measurement of final extract

1.유효성분 분석1. Active ingredient analysis

본 발명의 최종 추출분말과 타사제품의 유효성분의 품질 비교 결과 하기 표 8과 같이 타사대비 월등히 높은 것을 확인할 수 있었고, 베툴린과 베툴린산의 경우 타사제품에서는 검출되지 않는 것을 확인할 수 있었다.As a result of comparing the quality of the final extract powder of the present invention and the active ingredient of other companies' products, it was confirmed that they were significantly higher than those of other companies as shown in Table 8 below, and it was confirmed that betulin and betulinic acid were not detected in other companies' products.

구분 division 추출분말 extract powder N사 N company B사 Company B Total polyphenol(mg/g) Total polyphenol (mg/g) 317.9±1.8 317.9±1.8 189.5±6.5 189.5±6.5 235.3±22.4 235.3±22.4 Total flavonoid(mg/g) Total flavonoids (mg/g) 47.50±2.92 47.50±2.92 43.19±6.79 43.19±6.79 44.44±3.37 44.44±3.37 항산화도(%)_DPPH assay Antioxidation (%)_DPPH assay 60.23±1.59 60.23±1.59 67.41±0.85 67.41±0.85 67.99±0.64 67.99±0.64 항산화도(%)_ABTS assay Antioxidation (%)_ABTS assay 98.42±0.10 98.42±0.10 56.57±0.74 56.57±0.74 76.28±1.29 76.28±1.29 Beta-Glucan(w/w, %) Beta-Glucan (w/w, %) 3.7±0.5 3.7±0.5 1.3±0.5 1.3±0.5 2.8±0.8 2.8±0.8 Betulin(mg/100g) Betulin (mg/100g) 413.1±15.4 413.1±15.4 Not detected Not detected Not detected Not detected Betulinic acid(mg/100g) Betulinic acid (mg/100g) 175.4±7.0 175.4±7.0 Not detected Not detected Not detected Not detected

2.용해도 비교2. Solubility Comparison

본 발명 제품 시료 0.5 g을 물 500 mL에 용해시 도 2에 도시한 바와 같이 타사제품 대비 투명하고 용해 속도가 매우 빠름을 확인할 수 있었다.When 0.5 g of a sample of the present invention was dissolved in 500 mL of water, it was confirmed that it was transparent and had a very fast dissolution rate compared to other products as shown in FIG. 2 .

실시예4. 차가버섯 추출박의 향미 성분 발현Example 4. Expression of flavor components of chaga mushroom extract

당 또는 아미노산은 식품 중에 널리 분포되어 있으므로 Maillard 반응이 가장 주된 갈변 반응이다. Maillard 반응은 식품의 갈색화와 flavor의 생성에 영향을 줄 뿐 아니라 식품의 항산화성과 항균성에도 중요한 역할을 하며 노화, 성인병 및 돌연변이성 억제작용과도 관련이 있는 것으로 밝혀지고 있다.Since sugars or amino acids are widely distributed in food, the Maillard reaction is the most common browning reaction. The Maillard reaction not only affects the browning of food and the generation of flavor, but also plays an important role in the antioxidant and antibacterial properties of food, and has been found to be related to aging, geriatric disease and mutagenic inhibition.

차가버섯 슬러지 분말을 아미노산 분석해 본 결과 하기 표 9와 같았으며, 추출이 끝난 슬러지에서도 다양한 아미노산들로 구성되어 있는 것을 확인하였다.As a result of amino acid analysis of the chaga mushroom sludge powder, it was shown in Table 9 below, and it was confirmed that the extracted sludge was also composed of various amino acids.

Amino acids(mg/g) Amino acids (mg/g) 차가버섯 슬러지 chaga mushroom sludge



Non polar




non polar
Alanine Alanine 0.69 0.69
Glycine Glycine 0.58 0.58 Isoleucine Isoleucine 0.52 0.52 Leucine Leucine 0.81 0.81 Methionine Methionine ND ND Proline Proline 0.82 0.82 Valine Valine 0.78 0.78
Polar

Polar
Serine Serine 0.58 0.58
Threonine Threonine 0.71 0.71 Cystein Cystein 0.04 0.04
Basic

Basic
Lysine Lysine 0.33 0.33
Arginine Arginine 0.28 0.28 Histidine Histidine 0.19 0.19
Acid

Acid
Aspartic acid Aspartic acid 1.11 1.11
Glutamic acid Glutamic acid 1.18 1.18
Aromatic

Aromatic
Phenylalanine Phenylalanine 0.26 0.26
Tyrosine Tyrosine ND ND
Total amino acid contents(mg/g)Total amino acid contents (mg/g)

8.87 8.87

추출이 끝난 슬러지에서는 향미가 나타나지 않으므로 차가버섯 침출차를 제조하기 위해 우선, 여러 종류의 당을 첨가하고 혼합하여 실험하였다. 이때 직화볶음조건은 100℃, 4분으로 고정하여 실시하였다.The sludge after extraction did not show any flavor, so in order to prepare leaching tea for Chaga mushroom, various types of sugar were first added and mixed. At this time, the direct fire roasting conditions were fixed at 100° C. for 4 minutes.

1.당 종류에 따른 관능검사1. Sensory test according to sugar type

당의 종류로는 glucose(포도당), fructose(과당) 및 sucrose(설탕, 자당)를 각각 1%로 사용하였다. 관능 평가한 결과를 하기 표 10에 나타내었다. 관능적 품질평가는 10명의 연구원에게 차가버섯의 특성을 인지시킨 후 색상, 향미 및 전반적 기호도에 대한 관능평가를 5점 채점법(5: 매우 좋다, 4: 좋다, 3: 보통이다, 2: 좋지 않다, 1: 매우 좋지 않다)으로 실시하였다. 관능 및 색상을 확인하였을 때 당은 Sucrose가 가장 양호한 것으로 나타났다.As sugars, glucose (glucose), fructose (fructose), and sucrose (sugar, sucrose) were used at 1% each. The results of sensory evaluation are shown in Table 10 below. For sensory quality evaluation, 10 researchers were asked to recognize the characteristics of chaga, and then sensory evaluation of color, flavor, and overall acceptability was assessed using a 5-point scoring method (5: very good, 4: good, 3: average, 2: not good, 1: Very poor). When sensory and color were checked, Sucrose was found to be the best sugar.


구분

division
Organoleptic properties organoleptic properties
Color Color flavor flavor overall overall glucose(포도당) glucose 3 3 0.5 0.5 1 One fructose(과당) fructose (fructose) 2 2 0.5 0.5 1 One sucrose(설탕, 자당) sucrose (sugar, sucrose) 3 3 4 4 4 4

2.당 농도에 따른 관능검사2.Sensory test according to sugar concentration

Sucrose를 농도별로 처리하여 관능평가 한 결과를 하기 표 11에 나타내었다. 색상에 대한 관능평가에서 2, 4, 6%에서 가장 높게 나타났고, 향에 대한 관능평가에서는 4%, 6% 순으로 높게 나타났으며, 전반적 평가에서는 4% 농도가 높은 평가를 받았다. Sucrose 농도가 높아질수록 캐러맬화가 많이 진행되어 향에 영향을 미치는 것으로 판단되었다.The results of sensory evaluation by treating sucrose by concentration are shown in Table 11 below. In the sensory evaluation of color, 2, 4, and 6% showed the highest values, and in the sensory evaluation of fragrance, 4% and 6% were high in that order, and 4% concentration was evaluated as high in the overall evaluation. It was judged that the higher the sucrose concentration, the more caramelization proceeded, affecting the flavor.


농도(%, w/w)

Concentration (%, w/w)
Organoleptic properties organoleptic properties
Color Color flavor flavor overall overall 2 2 3 3 2 2 2 2 4 4 3 3 4 4 4 4 6 6 3 3 3 3 2 2 8 8 2 2 1 One 2 2 10 10 2 2 1 One 1 One

실험결과, 향미 개선을 위한 최적의 볶음 조건은 Sucrose 4%, 100℃, 4분, 직화볶음 조건으로 설정 하였다.As a result of the experiment, the optimal roasting conditions for flavor improvement were set to 4% sucrose, 100℃, 4 minutes, and direct fire roasting conditions.

[실험 재료 준비 및 실험방법 2][Experimental material preparation and test method 2]

기능성식품 및 RTD(Ready to drink) 음료 시장 확대에 따라 본 발명에서는 차가버섯 추출액의 저장온도(25, 35, 45℃)별 저장기간에 따은 이화학적(폴리페놀, 베타글루칸, 베툴린 및 베툴린산, 항산화 활성)과 미생물학적 품질 안정성을 분석하였다.In accordance with the expansion of the functional food and RTD (Ready to Drink) beverage market, in the present invention, the physicochemical (polyphenol, beta-glucan, betulin and betulinic acid , antioxidant activity) and microbiological quality stability were analyzed.

2-1.시료준비 및 저장조건2-1. Sample preparation and storage conditions

러시아 시베리아산 차가버섯을 구매하여 표면을 깨끗이 헹구어 실험에 사용하였다.We purchased chaga from Siberia, Russia, and rinsed the surface cleanly and used it in the experiment.

증자기를 통해 전 처리 후 1차 열수추출, 여과 박을 2차 용매 추출한 추출액을 혼합한 후 10Brix로 농축하여 분석 실험에 사용하였다. After pretreatment through a steamer, the first hot water extraction and the second solvent extraction of the filtration foil were mixed, and then concentrated with 10Brix and used for the analysis experiment.

차가버섯 추출물은 20 ml 유리병에 10 ml씩 담아 95℃ 이상에서 10분 살균하고 밀봉하였다. 직사광선이 있는 조건에서의 품질변화를 측정하기 위하여 빛이 잘 드는 창가에 보관하였다.The chaga mushroom extract was sterilized at 95°C or higher for 10 minutes and sealed in 10 ml each in a 20 ml glass bottle. In order to measure the quality change under the conditions of direct sunlight, it was stored in a well-lit window.

빛이 차단된 조건에서는 유통기한 설정 저장온도 가속실험 조건을 기준으로 실온 유통제품의 유통온도인 35℃와 실험구로 25℃, 45℃를 설정하여 각 온도의 incubator에서 보관하였으며. 냉동 후 해동 상태의 품질안정성을 확인하기 위해 -20℃를 추가로 설정 보관 하였다.In the condition where the light is blocked, based on the shelf life setting storage temperature accelerated test conditions, 35℃, the distribution temperature of the products distributed at room temperature, and 25℃ and 45℃ as the experimental zone were set and stored in the incubator at each temperature. After freezing, -20℃ was additionally set and stored to check the quality stability of the thawed state.

또한, pH 변화에 따른 침전안정성을 확인하기 위하여 pH를 4, 8로 조절하여 35 ℃에 보관하면서 pH에 대한 저장안정성을 조사하였다.In addition, in order to confirm the stability of the precipitation according to the change in pH, the pH was adjusted to 4 and 8 and stored at 35 °C, and the storage stability with respect to pH was investigated.

각각의 조건에서 저장된 차가버섯 추출물은 2달 간격으로 꺼내어 실험을 진행하였다(도 4). The chaga extract stored in each condition was taken out every 2 months and the experiment was carried out (FIG. 4).

2-2.이화학적 특성 측정2-2. Measurement of physicochemical properties

각각의 저장온도에서 20ml 유리병에 보관되어 있던 차가버섯 추출물을 일정량 취하여 pH meter(STAR-A111, Orion), 굴절당도계(PR-101, ATAGO Co., Tokyo, Japan)를 사용하여 측정하였다.A certain amount of the chaga extract stored in a 20ml glass bottle at each storage temperature was taken and measured using a pH meter (STAR-A111, Orion) and a refractometer (PR-101, ATAGO Co., Tokyo, Japan).

차가버섯 추출물의 저장기간별 저장온도에 따른 이화학적 특성의 변화는 표 12와 같다. 저장 초기 pH는 5.30, 저장 중 최고치는 5.46, 최저치는 5.38, 그리고 최종 저장일에는 pH 5.45~5.46로 나타나 저장기간 동안 저장온도는 pH에 유의적인 영향을 미치지 않은 것으로 사료되었다. 당도 또한 저장 초기값이 저장 8달째 측정한 값과 차이를 거의 보이지 않았다.Table 12 shows the changes in physicochemical properties of the chaga extract according to the storage temperature for each storage period. The initial pH of storage was 5.30, the highest during storage was 5.46, the lowest was 5.38, and the pH was 5.45~5.46 on the last day of storage. The sugar content also showed little difference between the initial value of storage and the value measured at the 8th month of storage.

기간
(month)
period
(month)
온도temperature
-20 ℃-20℃ 25 ℃25 ℃ 35 ℃35 45 ℃45 ℃ pHpH 00 5.305.30 22 5.385.38 5.425.42 5.425.42 5.415.41 44 5.415.41 5.445.44 5.435.43 5.465.46 66 5.415.41 5.435.43 5.425.42 5.415.41 88 5.455.45 5.465.46 5.455.45 5.465.46 °Brix°Brix 00 10.010.0 22 10.010.0 10.010.0 10.110.1 10.010.0 44 9.99.9 9.99.9 1010 9.99.9 66 10.010.0 10.010.0 10.010.0 10.010.0 88 10.010.0 10.110.1 10.110.1 10.010.0

2-3.항산화도 측정2-3. Antioxidant level measurement

항산화도 측정을 위해 시료는 유의한 흡광도 값을 얻을 수 있도록 0.1 Brix로 희석하여 실험에 사용하였다.For the measurement of antioxidant, the sample was diluted with 0.1 Brix to obtain a significant absorbance value and used in the experiment.

DPPH법은 tocopherol, ascorbate, flavonoid 화합물, glutation과 같은 황함유 아미노산류, maillard형 갈변 생성 물질, peptide 등의 항산화물질에 의해 환원됨으로써 짙은 자색이 탈색되는 정도에 따라 항산화 효과를 전자공여작용으로 측정하는 방법이다.The DPPH method is a method of measuring the antioxidant effect by electron donating action according to the degree of discoloration of dark purple by reduction by antioxidant substances such as tocopherol, ascorbate, flavonoid compounds, sulfur-containing amino acids such as glutation, maillard-type browning substances, and peptides. way.

저장기간별 저장온도에 따른 차가버섯 추출물을 0.1 Brix로 희석한 다음 DPPH를 이용한 라디칼 소거능을 측정해 본 결과 -20℃, 25℃, 35℃, 45℃모두 70% 이상의 전자공여 효과가 있는 것으로 나타났으며 저장 기간이 증가하여도 항산화 효과가 유지되는 것이 확인되었다. As a result of measuring the radical scavenging ability using DPPH after diluting the chaga extract according to the storage temperature for each storage period to 0.1 Brix, it was found that all of -20℃, 25℃, 35℃, and 45℃ had an electron donating effect of more than 70%. It was confirmed that the antioxidant effect was maintained even when the storage period was increased.

ABTS를 이용한 양이온 라디칼 소거능을 측정해 본 결과 온도가 증가할수록 항산화도가 감소하였지만 모든 실험구간에서 70% 이상의 양이온 라디칼 소거능을 보여 저장기간이 증가하여도 항산화력이 높은 수준인 것으로 나타났다(표 13).As a result of measuring the cation radical scavenging ability using ABTS, the degree of antioxidant decreased as the temperature increased, but it showed a cationic radical scavenging ability of 70% or more in all experimental sections, indicating that the antioxidant activity was high even with an increase in the storage period (Table 13). .

기간
(month)
period
(month)
온도temperature
-20 ℃-20℃ 25 ℃25 ℃ 35 ℃35 45 ℃45 ℃ 항산화도 (%)
DPPH assay
Antioxidant degree (%)
DPPH assay
00 70.53 ± 0.3170.53 ± 0.31
22 73.23 ± 0.0773.23 ± 0.07 73.15 ± 0.2973.15 ± 0.29 72.85 ± 0.3272.85 ± 0.32 72.82 ± 0.1372.82 ± 0.13 44 71.72 ± 0.3871.72 ± 0.38 71.28 ± 0.2371.28 ± 0.23 71.28 ± 0.4071.28 ± 0.40 71.54 ± 0.1271.54 ± 0.12 66 71.61 ± 0.0371.61 ± 0.03 71.44 ± 0.0871.44 ± 0.08 71.41 ± 0.1071.41 ± 0.10 71.14 ± 0.1071.14 ± 0.10 88 71.49 ± 0.6071.49 ± 0.60 71.42 ± 0.5771.42 ± 0.57 71.38 ± 0.5571.38 ± 0.55 71.03 ± 0.4171.03 ± 0.41 항산화도 (%)
ABTS assay
Antioxidant degree (%)
ABTS assay
00 81.44 ± 0.3081.44 ± 0.30
22 77.60 ± 1.5377.60 ± 1.53 74.68 ± 1.2974.68 ± 1.29 73.97 ± 1.9973.97 ± 1.99 74.17 ± 1.0074.17 ± 1.00 44 80.86 ± 0.1580.86 ± 0.15 77.97 ± 0.3777.97 ± 0.37 77.24 ± 0.3477.24 ± 0.34 76.96 ± 0.2276.96 ± 0.22 66 80.44 ± 0.2780.44 ± 0.27 76.69 ± 0.2876.69 ± 0.28 76.27 ± 0.2376.27 ± 0.23 75.75 ± 0.5575.75 ± 0.55 88 80.38 ± 0.3180.38 ± 0.31 76.24 ± 0.1676.24 ± 0.16 75.61 ± 0.1675.61 ± 0.16 75.02 ± 0.1675.02 ± 0.16

3-1.DPPH(a,a-diphenyl-β-picrylhydrazyl)를 이용한 유리 라디칼 소거 효과3-1. Free radical scavenging effect using DPPH (a,a-diphenyl-β-picrylhydrazyl)

산화적 스트레스의 원인이 되는 유리기 소거효과를 확인을 위하여 유리기인 DPPH 라디칼에 대한 차가버섯 물 추출물의 전자공여능(electron-donating ability) 또는 라디칼 소거능(radical-scavenging activity)을 Blois MS(1958)의 수정법(Kim JH 등 2002)으로 측정하였다. 즉, 빛을 차단시킨 용기를 사용하고 99.9% 메탄올에 녹인 0.15 mM DPPH 용액 1 mL와 각각의 추출 시료액 0.25 mL을 가하여 잘 혼합한 후 30분 후에 517 nm에서 흡광도를 측정하여 비교하였다.In order to confirm the free radical scavenging effect that causes oxidative stress, the electron-donating ability or radical-scavenging activity of the chaga water extract for the DPPH radical, which is a free radical, was evaluated by Blois MS (1958)'s modification method. (Kim JH et al. 2002). That is, in a container that blocks light, 1 mL of 0.15 mM DPPH solution dissolved in 99.9% methanol and 0.25 mL of each extraction sample solution were added, mixed well, and absorbance was measured at 517 nm after 30 minutes for comparison.

3-2.ABTS[2,2'-azinobis-(3-ethyl-benzothiazoline-6-sulfonic acid)] 양이온(ABTS·+) 소거효과3-2.ABTS[2,2'-azinobis-(3-ethyl-benzothiazoline-6-sulfonic acid)] cation (ABTS·+) scavenging effect

Leong과 Shui(19. Leong LP, Shui G. 2002. An investigation of antioxidant capacity of fruits in Singapore markets. Food Chem 76:69-75)의 방법에 따라 차가버섯 추출물의 항산화력의 측정은 ABTS 양이온의 소거능을 실험하였다.According to the method of Leong and Shui (19. Leong LP, Shui G. 2002. An investigation of antioxidant capacity of fruits in Singapore markets. Food Chem 76:69-75), the antioxidative activity of chaga extract was measured for the scavenging ability of ABTS cations. was tested.

ABTS는 유리기들(hydroxyl, peroxyl, alkoxyl, inorganic radicals)과 반응하여 414 nm에서 흡광하는 상대적으로 안정한 양이온(ABTS·+)을 생성한다. 용액의 조제는 7.4 mM ABTS 용액에 2.6 mM 과황산칼륨(potassium persulphate) 용액을 혼합하여 암소에서 12시간~16시간 반응시켜 414 nm에서 흡광도가 1.5 정도가 되도록 희석하였다. 이 희석액 1 mL에 시료 50 μL를 혼합하고 실온에서 90분간 반응시킨 후 414 nm에서 흡광도를 측정하여 비교하였다.ABTS reacts with free radicals (hydroxyl, peroxyl, alkoxyl, inorganic radicals) to produce a relatively stable cation (ABTS·+) that absorbs at 414 nm. To prepare the solution, a 2.6 mM potassium persulphate solution was mixed with a 7.4 mM ABTS solution and reacted in a dark place for 12 to 16 hours, and then diluted so that the absorbance at 414 nm was about 1.5. 50 μL of the sample was mixed with 1 mL of this dilution, reacted at room temperature for 90 minutes, and absorbance was measured at 414 nm for comparison.

3-3.폴리페놀 함량 측정3-3.Measurement of polyphenol content

시료의 총 페놀 함량은 Folin-Ciocalteu 시약이 추출물의 페놀성 화합물에 의해 환원되어 몰리브덴 청색으로 발색되는 원리를 이용하여 정량 분석하였다(Choi Y, Him M, Shin J, Park J, Lee J. 2003. The antioxidant activities of the some commercial teas. J Korean Soc Foof Sci Nutr 32: 723-727). 각각의 추출물 시료 100 μL에 2% Na2CO3 용액 2 mL를 가하고 3분 동안 방치한 다음 50% Folin-Ciocalteu 시약을 100 μL 가하여 30분 후 750 nm에서 흡광도를 측정하였다. 그리고 각 추출물의 흡광도를 표준물질로 사용한 갈산 검량선과 비교하여 총 페놀의 함량(μg gallic acid equivalent/mL)을 구했으며 공시험은 반응 혼합물에서 50% Folin-Ciocalteu 시약 대신 각 추출물을 녹인 용매를 가한 혼합액을 사용하였다. 실험 측정은 세 번 반복 실험하여 평균값을 사용하였다.The total phenol content of the sample was quantitatively analyzed using the principle that the Folin-Ciocalteu reagent is reduced by the phenolic compound of the extract to develop a molybdenum blue color (Choi Y, Him M, Shin J, Park J, Lee J. 2003. The antioxidant activities of the some commercial teas. J Korean Soc Foof Sci Nutr 32: 723-727). 2 mL of 2% Na2CO3 solution was added to 100 μL of each extract sample, left for 3 minutes, and then 100 μL of 50% Folin-Ciocalteu reagent was added to measure absorbance at 750 nm after 30 minutes. And the absorbance of each extract was compared with the gallic acid calibration curve used as a standard to determine the total phenol content (μg gallic acid equivalent/mL). was used. Experimental measurements were repeated three times and the average value was used.

Polyphenol은 tannin을 포함하여 그 종류가 매우 다양하며, 최근 다양한 기능성을 가진 것으로 보고되고 있다. (Lee KW, Kundu KJ, Kim SO, Chun KS, Lee HJ, Surh YJ, CoCoa Polyphenols inhibit phorbol ester-induced superoxide anion formation in cultured HL-60 cells and expression of cyclooxygenase-2 and activation of NF-kappaB and MAPKs in mouse skin in vivo. Journal of Nutrition. 2006;136(5):1150-5). (superoxide anion formation in cultured HL-60 cells and expression of cyclooxygenase-2 and activation of NF-kappaB and MAPKs in mouse skin in vivo. Journal of Nutrition. 2006;136(5):1150-5). 차가버섯 추출물에 함유된 polyphenol 함량은 처음 26.79 mg/ml에서 8달 후 45℃ 보관에서 25.90 mg/ml로 거의 비슷하였다. 따라서 저장기간과 온도에 따른 폴리페놀 함량은 거의 변화가 없는 것으로 나타났다(표 14).Polyphenols are very diverse, including tannins, and have recently been reported to have various functions. (Lee KW, Kundu KJ, Kim SO, Chun KS, Lee HJ, Surh YJ, CoCoa Polyphenols inhibit phorbol ester-induced superoxide anion formation in cultured HL-60 cells and expression of cyclooxygenase-2 and activation of NF-kappaB and MAPKs in mouse skin in vivo.Journal of Nutrition.2006;136(5):1150-5). (superoxide anion formation in cultured HL-60 cells and expression of cyclooxygenase-2 and activation of NF-kappaB and MAPKs in mouse skin in vivo. Journal of Nutrition. 2006;136(5):1150-5). The polyphenol content in the chaga extract was almost the same from 26.79 mg/ml at the beginning to 25.90 mg/ml at 45°C after 8 months. Therefore, the polyphenol content according to the storage period and temperature showed almost no change (Table 14).

기간
(month)
period
(month)
온도temperature
-20 ℃-20℃ 25 ℃25 ℃ 35 ℃35 45 ℃45 ℃ 폴리페놀 함량
(mg/ml)
polyphenol content
(mg/ml)
00 26.79 ± 0.1726.79 ± 0.17
22 25.93 ± 0.3325.93 ± 0.33 25.46 ± 0.4825.46 ± 0.48 24.02 ± 0.9624.02 ± 0.96 24.99 ± 0.5824.99 ± 0.58 44 25.62 ± 0.8025.62 ± 0.80 26.75 ± 0.7826.75 ± 0.78 25.08 ± 0.8125.08 ± 0.81 26.24 ± 1.1326.24 ± 1.13 66 26.79 ± 1.7526.79 ± 1.75 25.50 ± 1.5725.50 ± 1.57 25.97 ± 0.6025.97 ± 0.60 26.93 ± 1.0726.93 ± 1.07 88 26.53 ± 1.0526.53 ± 1.05 26.37 ± 1.0926.37 ± 1.09 27.22 ± 0.3427.22 ± 0.34 25.90 ± 1.9625.90 ± 1.96

3-4.베타글루칸 함량 측정3-4.Measurement of beta-glucan content

베타글루칸 함량 측정을 위해 각 시료를 동결건조 하여 분말 상태로 실험하였다.For measurement of beta-glucan content, each sample was freeze-dried and tested in a powder state.

Mushroom and Yeast β-glucan 키트(Megazyme, 아일랜드)를 사용하여 전체 글루칸과 글루칸 이외의 당 함량을 구한 후 α-글루칸과 글루칸 이외의 당 함량 차이로 β-글루칸 함량(% w/w)을 측정하였다.After determining the total glucan and non-glucan sugar contents using the Mushroom and Yeast β-glucan kit (Megazyme, Ireland), the β-glucan content (% w/w) was measured as the difference between α-glucan and non-glucan sugar contents. .

조 β-글루칸 분말 시료에 37% 염산을 첨가하여 100℃에서 2시간 동안 가수분해 시킨 후 2N KOH를 이용하여 pH를 조정하였다. 가수분해액을 200 mM 아세트산나트륨 버퍼(pH 5.0)로 희석한 후 원심분리 하였다. 상층액 100 ㎕를 취하여 엑소 1,3-β-글루카나아제와 β-글루코시다제를 첨가하여 1시간 동안 40℃에서 반응시켰다.After adding 37% hydrochloric acid to the crude β-glucan powder sample and hydrolyzing it at 100° C. for 2 hours, the pH was adjusted using 2N KOH. The hydrolyzate was diluted with 200 mM sodium acetate buffer (pH 5.0) and centrifuged. Take 100 μl of the supernatant, add exo 1,3-β-glucanase and β-glucosidase, and react at 40° C. for 1 hour.

그 후 글루코스 확인 시약(glucose determination reagent)을 첨가하여 20분 동안 40℃에서 반응시킨 후 510nm에서 흡광도를 측정(UV/VIS Spectrophtometer V-530, JASCO, 일본)하여 전체 글루칸과 글루칸 이외의 당 함량을 분석하였다.After that, a glucose determination reagent was added and reacted at 40° C. for 20 minutes, and absorbance was measured at 510 nm (UV/VIS Spectrophtometer V-530, JASCO, Japan) to determine the total glucan and sugar content other than glucan. analyzed.

α-글루칸과 글루칸 이외의 당 함량은 시료에 2 M KOH 2 ㎖를 넣고 얼음이 채워진 용기에 고정시켜 교반기(Magnetic Stirrer C-MAG HS7, IKA Labortechnik, 독일)로 20분간 교반하였다. 1.2M 아세트산나트륨 버퍼(pH3.8) 8 ㎖를 첨가하고 아밀로글루코시다아제(amyloglucosidase)와 인베르타아제(invertase) 200 ㎕를 넣어 40℃ 워터 배스(Water bath C-WBE, Chang Shin Science Co.)에서 30분간 반응시킨 후 원심분리(1500g, 10분)하였다. 원심분리 한 상층액 100 ㎕을 취하여 200 mM 아세트산나트륨 버퍼(pH 5.0) 100 ㎕와 글루코스 확인 시약 3 ㎖을 넣어 40℃에서 20분간 반응시킨 후 510 nm에서 흡광도를 측정하였다.For α-glucan and sugar content other than glucan, 2 ml of 2 M KOH was added to the sample, fixed in a container filled with ice, and stirred with a stirrer (Magnetic Stirrer C-MAG HS7, IKA Labortechnik, Germany) for 20 minutes. 8 ml of 1.2M sodium acetate buffer (pH3.8) was added, and 200 μl of amyloglucosidase and invertase was added thereto, followed by a 40° C. water bath (Water bath C-WBE, Chang Shin Science Co.). ), followed by centrifugation (1500 g, 10 minutes) for 30 minutes. 100 µl of the centrifuged supernatant was taken, 100 µl of 200 mM sodium acetate buffer (pH 5.0) and 3 ml of a glucose confirmation reagent were added, reacted at 40°C for 20 minutes, and absorbance was measured at 510 nm.

전체 글루칸, α-글루칸 및 β-글루칸의 함량은 하기의 수학식에 의하여 산출하였다. The contents of total glucan, α-glucan and β-glucan were calculated by the following equation.

[수학식][Equation]

전체 글루칸(% w/w) = ΔE × F/W × 90Total glucans (% w/w) = ΔE × F/W × 90

α-글루칸(% w/w) = ΔE × F/W × 9.27α-glucan (% w/w) = ΔE × F/W × 9.27

β-글루칸 = 전체 글루칸 - α-글루칸β-glucan = total glucan - α-glucan

상기 수학식에서, ΔE = eaction absorbance - blank absorbanceIn the above formula, ΔE = eaction absorbance - blank absorbance

F = 100 / GOPOD reagent absorbance for 100μg of D-glucose standardF = 100 / GOPOD reagent absorbance for 100μg of D-glucose standard

W = weight of sampleW = weight of sample

동결건조된 추출분말을 이용해 베타글루칸 함량을 측정해본 결과 표 와 같이 모든 처리구에서 베타글루칸 함량은 25 mg/g 이상으로 측정되어, 저장기간 및 온도에 따라 베타글루칸 함량의 유의적인 변화는 없는 것으로 확인되었다(표 15).As a result of measuring the beta-glucan content using the lyophilized extract powder, as shown in the table, the beta-glucan content was measured to be 25 mg/g or more in all treatment groups, and it was confirmed that there was no significant change in the beta-glucan content depending on the storage period and temperature became (Table 15).

기간
(month)
period
(month)
온도temperature
-20 ℃-20℃ 25 ℃25 ℃ 35 ℃35 45 ℃45 ℃ 베타글루칸 함량
(mg/g)
Beta glucan content
(mg/g)
00 25.78 ± 0.0525.78 ± 0.05
22 26.67 ± 0.9526.67 ± 0.95 25.95 ± 1.0025.95 ± 1.00 24.80 ± 0.8324.80 ± 0.83 24.69 ± 0.4124.69 ± 0.41 44 24.08 ± 0.2024.08 ± 0.20 25.14 ± 0.2025.14 ± 0.20 25.32 ± 0.2025.32 ± 0.20 25.34 ± 0.4425.34 ± 0.44 66 26.37 ± 0.3326.37 ± 0.33 27.54 ± 0.8927.54 ± 0.89 24.11 ± 0.5624.11 ± 0.56 22.83 ± 0.6322.83 ± 0.63 88 24.91 ± 0.2824.91 ± 0.28 24.46 ± 0.2524.46 ± 0.25 24.76 ± 0.1024.76 ± 0.10 23.65 ± 0.4323.65 ± 0.43

3-5.베툴린, 베툴린산 함량3-5. Betulin, betulinic acid content

베툴린(Sigma: B8795, minimum 98%)과 베툴린산(Sigma: 855057, minimum 90%)를 표준시료로 사용하였다. 표준시료 베툴린 100mg을 상온에서 HPLC 급 에탄올 20mL에 용해시켜 농도가 5.0g/L인 모액(mother solution)을 만들었고, 이 모액을 희석해서 농도가 4.0g/L, 3.0g/L, 2.0g/L의 시약을 만들어서 HPLC로 분석하였다. 표준시료인 베툴린산 10mg을 HPLC급 에탄올 20mL에 용해를 시켜서 0.5g/L인 모액을 만들어서 분석을 하였고, 이 모액을 희석해서 0.4g/L, 0.3g/L, 0.2g/L의 시약을 만들어 HPLC로 분석하였다 [HPLC Column: Nova-Pak C18-ODS 역상, 4μm, 3.9x300mm, eluent: CH3CN:H2O=86:14 v/v). 각각 시료를 분석하여서 얻어진 HPLC 피크의 면적을 농도로 plotting하여서 linear regression을 하여서 만들어진 검량곡선을 활용하여 미지의 시약에 함유된 베툴린의 농도를 결정하였다.Betulin (Sigma: B8795, minimum 98%) and betulinic acid (Sigma: 855057, minimum 90%) were used as standard samples. 100 mg of standard sample betulin was dissolved in 20 mL of HPLC-grade ethanol at room temperature to prepare a mother solution with a concentration of 5.0 g/L. L of reagent was prepared and analyzed by HPLC. The standard sample, 10 mg of betulinic acid, was dissolved in 20 mL of HPLC-grade ethanol to prepare a 0.5 g/L mother solution and analyzed. Analyzed by HPLC [HPLC Column: Nova-Pak C18-ODS reversed phase, 4 μm, 3.9×300 mm, eluent: CH3CN:H2O=86:14 v/v). The concentration of betulin contained in an unknown reagent was determined using a calibration curve made by linear regression by plotting the area of the HPLC peak obtained by analyzing each sample as the concentration.

10 Brix로 농축한 차가버섯 추출물의 베툴린, 베툴린산의 함량을 HPLC로 분석해본 결과 표 와 같이 측정되었다. 동결건조된 추출분말을 이용한 측정 결과와는 다르게 베툴린산은 검출되지 않았으며, 베툴린은 기간에 따른 변화보다 온도가 증가함에 따라 함량이 감소되는 것으로 확인되었다(표 16).The content of betulin and betulinic acid in the chaga extract concentrated with 10 Brix was analyzed by HPLC and measured as shown in the table. Contrary to the measurement results using the lyophilized extract powder, betulinic acid was not detected, and it was confirmed that the content of betulinic acid decreased as the temperature increased rather than the change over time (Table 16).

기간
(month)
period
(month)
온도temperature
-20 ℃-20℃ 25 ℃25 ℃ 35 ℃35 45 ℃45 ℃ Betulin
(ppm)
Betulin
(ppm)
00 11.9311.93
22 11.9311.93 11.7311.73 9.659.65 8.028.02 44 12.5612.56 10.2810.28 11.4211.42 9.269.26 66 10.1410.14 12.4312.43 10.2110.21 7.027.02 88 10.6410.64 9.419.41 9.569.56 8.068.06 Betulinic acid
(ppm)
Betulinic acid
(ppm)
00 --
22 -- -- -- -- 44 -- -- -- -- 66 -- -- -- -- 88 -- -- -- --

3-6.미생물 검사3-6. Microbial test

차가버섯 추출물에 들어 있는 미생물 균수를 측정하기 위하여 세균수 및 대장균군 건조필름배지를 사용하였으며, 각각의 배지에 시료 희석액 1 ml씩 분주하여 표준평판법으로 35℃에서 48시간 배양한 후 콜로니를 계수하여 시료 1 ml당 Colony Forming Unit (CFU)로 나타내었다.To measure the number of microorganisms in the chaga extract, dry film medium for the number of bacteria and coliform group was used, and 1 ml of the sample dilution was dispensed into each medium and cultured at 35°C for 48 hours using the standard plate method, followed by counting colonies. It was expressed as Colony Forming Unit (CFU) per 1 ml of sample.

차가버섯 추출물의 저장기간 및 온도에 따른 미생물의 변화는 표 와 같다. 일반세균 및 대장균군은 저장기간동안 모든 시료에서 검출되지 않아 미생물학적으로 안전한 것으로 나타났다. 따라서 차가버섯 추출물의 섭취는 식품위생학적으로 안전한 것으로 판단되며 식품 공전상의 기준치(세균수 1 ml당 100 이하, 대장균군: 음성)에 적합한 것으로 나타났다(표 17).The changes in microorganisms according to the storage period and temperature of the chaga mushroom extract are shown in the table. Normal bacteria and coliform groups were not detected in all samples during storage, indicating that they were microbiologically safe. Therefore, ingestion of chaga mushroom extract is judged to be food hygienic and suitable for food standards (100 or less per 1 ml of number of bacteria, coliform group: negative) (Table 17).

기간
(month)
period
(month)
온도temperature
-20 ℃-20℃ 25 ℃25 ℃ 35 ℃35 45 ℃45 ℃ 일반세균
(CFU/ml)
common bacteria
(CFU/ml)
22 00 00 00 00 00 00 00 00
44 00 00 00 00 00 00 00 00 66 00 00 00 00 00 00 00 00 88 00 00 00 00 00 00 00 00 대장균군
(CFU/ml)
coliform
(CFU/ml)
22 -- -- -- --
44 -- -- -- -- 66 -- -- -- -- 88 -- -- -- --

3-7.침전 안정성 검사3-7. Sedimentation stability test

각 온도별로 보관된 차가버섯 추출물 및 pH 변화에 따른 차가버섯 추출물의 침전안정성을 평가하기 위하여 침전된 정도를 O, △, X 3가지로 나타내었다.In order to evaluate the precipitation stability of the chaga extract stored at each temperature and the chaga extract according to the change in pH, the degree of precipitation was shown as O, Δ, and X.

저장기간이 길어지고 온도가 증가하여도 침전이 발생하지 않는 것이 확인되어 차가버섯 추출물은 수용성 상태로 저장 중 침전 안전성이 우수한 것으로 나타났다(표 18).It was confirmed that precipitation did not occur even when the storage period was prolonged and the temperature was increased, and the chaga extract showed excellent sedimentation stability during storage in a water-soluble state (Table 18).

기간
(month)
period
(month)
온도temperature pHpH
-20 ℃-20 15 ℃15 ℃ 35 ℃35 45 ℃45 44 88 침전 유무
(O, △, X)
Precipitation
(O, △, X)
22 ×× ×× ×× ×× ×× ××
44 ×× ×× ×× ×× ×× ×× 66 ×× ×× ×× ×× ×× ×× 88 ×× ×× ×× ×× ×× ××

3-8.색도 측정3-8. Chromaticity measurement

차가버섯 추출물의 직사광선에서의 색도 변화를 측정하기 위하여 빛이 잘 드는 창가에서 20 ml 유리병에 보관되어 있던 시료를 일정량 취하여 색차계(Spectrophotometer CM-3500d, Konica Minolta Co., Ltd., Japan)를 사용하여 L(명도), a(+ 적색, - 녹색), b(+황색, - 청색)값을 3회 반복하여 측정하여 평균값으로 나타내었다.To measure the chromaticity change of the chaga extract under direct sunlight, take a certain amount of a sample stored in a 20 ml glass bottle near a well-lit window and use a colorimeter (Spectrophotometer CM-3500d, Konica Minolta Co., Ltd., Japan). L (brightness), a (+ red, - green), and b (+ yellow, - blue) values were repeatedly measured three times and expressed as an average value.

직사광선에서 저장기간 동안 차가버섯 추출물의 색도 변화는 L, a, b 값 모두 큰 변화를 나타내지 않아 차가버섯 추출물은 직사광선에서의 색도 변화에 안정적인 것으로 확인되었다(표 19). The chromaticity change of the chaga extract during storage in direct sunlight did not show significant changes in L, a, and b values, so it was confirmed that the chaga extract was stable to chromaticity change in direct sunlight (Table 19).

기간
(month)
period
(month)
L (명도)L (brightness) a (적색도)a (redness) b (황색도)b (yellowness)
00 4.19 ± 0.224.19 ± 0.22 -0.03 ± 0.02-0.03 ± 0.02 -0.32 ±0.12-0.32 ±0.12 22 3.06 ± 0.143.06 ± 0.14 -0.02 ± 0.01-0.02 ± 0.01 -0.13 ± 0.08-0.13 ± 0.08 44 4.96 ± 0.964.96 ± 0.96 -0.09 ± 0.07-0.09 ± 0.07 -0.76 ± 0.63-0.76 ± 0.63 66 4.19 ± 0.374.19 ± 0.37 -0.07 ± 0.04-0.07 ± 0.04 -0.70 ± 0.21-0.70 ± 0.21 88 3.74 ± 0.623.74 ± 0.62 -0.02 ± 0.01-0.02 ± 0.01 -0.21 ± 0.13-0.21 ± 0.13

1 : 내부 몸체 2 : 옆커버
3 : 열림커버 4 : 커버
5 : 유리창 6 : 다리 파이프
7 : 다리패드 8 : 다리 지지파이프
9 : I볼트 10 : 도어힌지
1: inner body 2: side cover
3: open cover 4: cover
5: glass window 6: bridge pipe
7: leg pad 8: leg support pipe
9: I bolt 10: door hinge

Claims (7)

(a) 가로 ×세로 ×높이를 3∼4 × 3∼4 × 3∼4 ㎝로 절단한 차가버섯 조각을 100℃ 및 3.5∼4.5 bar에서 1시간 동안 고온·가압 전처리하는 단계;
(b) 상기 (a)단계의 고온·가압 전처리한 차가버섯을 35∼45 mesh로 분쇄하는 단계;
(c) 상기 (b)단계의 분쇄한 차가버섯 분말에 물을 1:20(w:v) 비율로 혼합한 후 95∼130℃에서 3.5∼4.5시간 동안 열수 추출하는 단계;
(d) 상기 (c)단계의 열수 추출한 열수 추출물을 여과한 다음 1차 농축하여 차가버섯 농축액을 제조하는 단계;
(e) 상기 (d)단계의 여과하고 남은 차가버섯 박에 45∼55% 주정을 1:20(w:v) 비율로 혼합한 후 7.5∼8.5시간 동안 추출하는 단계;
(f) 상기 (e)단계의 추출한 주정 추출물을 여과한 다음 2차 농축하여 차가버섯 박 농축액을 제조하는 단계;
(g) 상기 (d)단계의 1차 농축하여 제조한 차가버섯 농축액과 상기 (f)단계의 2차 농축하여 제조한 차가버섯 박 농축액을 혼합하여 3차 농축하여 농축액을 제조하는 단계; 및
(h) 상기 (g)단계의 3차 농축하여 제조한 농축액을 동결건조하는 단계를 포함하여 제조하는 것을 특징으로 하는 베툴린 및 베툴린산 함량이 증진된 차가버섯 추출물의 제조방법.
(a) pre-treating the chaga mushroom pieces cut into 3 to 4 × 3 to 4 × 3 to 4 cm in width × length × height at 100° C. and 3.5 to 4.5 bar for 1 hour at high temperature and pressure;
(b) pulverizing the chaga mushroom pretreated under high temperature and pressure in step (a) to 35-45 mesh;
(c) mixing the pulverized chaga powder of step (b) with water in a ratio of 1:20 (w:v), followed by hot water extraction at 95-130° C. for 3.5-4.5 hours;
(d) filtering the hot water extract extracted from the hot water in step (c) and then first concentrating to prepare a chaga mushroom concentrate;
(e) mixing 45-55% alcohol with the remaining chaga mushroom gourd after the filtration of step (d) in a 1:20 (w:v) ratio, followed by extraction for 7.5-8.5 hours;
(f) filtering the alcohol extract extracted in step (e) and then concentrating the second step to prepare a chaga mushroom gourd concentrate;
(g) mixing the chaga mushroom concentrate prepared by the first concentration in step (d) with the chaga mushroom gourd concentrate prepared in the second concentration in step (f), and then concentrating tertiary to prepare a concentrate; and
(h) A method for producing a chaga extract with enhanced content of betulin and betulinic acid, characterized in that it comprises the step of freeze-drying the concentrate prepared by tertiary concentration of step (g).
삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete
KR1020200025869A 2019-09-23 2020-03-02 Chaga extract enhanced active ingredients and preparation m ethod of the same including two step extraction process with high-temperature pressurization KR102431762B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20190116893 2019-09-23
KR1020190116893 2019-09-23

Publications (2)

Publication Number Publication Date
KR20210035026A KR20210035026A (en) 2021-03-31
KR102431762B1 true KR102431762B1 (en) 2022-08-11

Family

ID=75237964

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200025869A KR102431762B1 (en) 2019-09-23 2020-03-02 Chaga extract enhanced active ingredients and preparation m ethod of the same including two step extraction process with high-temperature pressurization

Country Status (1)

Country Link
KR (1) KR102431762B1 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2965490B2 (en) * 1995-08-23 1999-10-18 株式会社バイオックス Extraction method of Reishi Extract
KR100574356B1 (en) * 2004-06-01 2006-04-27 주식회사 네스코 Extract of Inonotus obliquus using method for extrcting by multi-step of temperature and healthful food contained it
KR101662185B1 (en) 2014-12-18 2016-10-10 유기춘 - Method for preparing inonotus obliquus extract comprising high concentrations of -glucan

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
황아영. 차가버섯의 유용 성분 추출에 대한 비전통적 추출 방법과 열수 추출 방법의 비교. 서울대학교 대학원 생활과학석사학위논문. 2018년 1부.*

Also Published As

Publication number Publication date
KR20210035026A (en) 2021-03-31

Similar Documents

Publication Publication Date Title
WO2006090935A1 (en) Acerola fruit-derived pectin and use thereof
KR102298042B1 (en) Composition for antioxidant and anti-inflammatory comprising extract of pepper seeds
KR20140086329A (en) Method for Preparing Black Jujube Enriched with Physiological Active Ingredients
KR20170062563A (en) Method of increasing antioxidant and anti-inflammatory activity of Cassiae semen and the fermented extract having increased activity by that
KR20120037587A (en) Food and beverage composition containing extract of black waxy rice with giant embryo
KR102236071B1 (en) Composition for Improving Skin Trouble Using an Extract of Centella asiatica or Paeonia lactiflora Cultured with Magma Seawater
KR102431762B1 (en) Chaga extract enhanced active ingredients and preparation m ethod of the same including two step extraction process with high-temperature pressurization
KR102290225B1 (en) Bluberry fermented vinegar having antioxidant activity and method of manufacturing thereof
Son et al. Inhibitory activities of the edible brown alga Laminaria japonica on glucose-mediated protein damage and rat lens aldose reductase
CN116019187A (en) Anti-glycation composition of natural source, preparation method and application in oral cosmetic product
Lee et al. Functional properties of newly-bred ‘Summer king’apples
CN114259515A (en) Composition with anti-saccharification effect and application
KR20210089345A (en) Manufacturing method of the Poria cocos Wolf extract
KR101900480B1 (en) Antioxidant Composition Using an Extract of Polygonum amphibium
KR20160042349A (en) Antioxidant or immunostimulating composition comprising artemisia annua l. baby leaf extract
KR20160101578A (en) Functional health food composition and mathod for manufacturing the same
KR102590758B1 (en) Antioxidant or anti-inflammatory composition comprising extract of bilberry containing anthocyanidin components
KR20150141028A (en) Method for production of small colored potato extract with antioxidative materials
KR101146115B1 (en) Beverage containing fermened extract of rhus verniciflura having anticancerous and antioxidative activity, and the preparation method thereof
KR102216618B1 (en) Fermentation method of lactic acid bacteria using artichoke and its use
KR102322090B1 (en) Functional food composition having antioxidant property and/or improved blood circulation property and method for manufacturing the same
KR102278649B1 (en) Anti-inflammatory composition comprising plasma-treated Persimmon tannin as effective component and manufacturing method thereof
KR102390837B1 (en) Functional composition for antioxidation comprising extract of Astragalus membranaceus Bunge leaves fermented by lactic acid bacteria as an active ingredient
KR102147238B1 (en) Composition for preventing or treating a cancer comprising cheonggukjang extract containing Sparassis crispa poder
KR20110081435A (en) Chrysanthemum indicum extract with improved anti-inflammatory activity by far infrared ray drying process and production method thereof

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant