KR102427852B1 - Carbon dioxide Reduction Catalyst using Graphitic Frustrated Lewis Pair and Carbon dioxide Reduction Battery System in Seawater using the same - Google Patents

Carbon dioxide Reduction Catalyst using Graphitic Frustrated Lewis Pair and Carbon dioxide Reduction Battery System in Seawater using the same Download PDF

Info

Publication number
KR102427852B1
KR102427852B1 KR1020200110606A KR20200110606A KR102427852B1 KR 102427852 B1 KR102427852 B1 KR 102427852B1 KR 1020200110606 A KR1020200110606 A KR 1020200110606A KR 20200110606 A KR20200110606 A KR 20200110606A KR 102427852 B1 KR102427852 B1 KR 102427852B1
Authority
KR
South Korea
Prior art keywords
carbon dioxide
seawater
lewis acid
gflp
carbon
Prior art date
Application number
KR1020200110606A
Other languages
Korean (ko)
Other versions
KR20220028949A (en
Inventor
권태혁
김현탁
강석주
박재현
Original Assignee
울산과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 울산과학기술원 filed Critical 울산과학기술원
Priority to KR1020200110606A priority Critical patent/KR102427852B1/en
Priority to PCT/KR2021/011490 priority patent/WO2022045816A1/en
Publication of KR20220028949A publication Critical patent/KR20220028949A/en
Application granted granted Critical
Publication of KR102427852B1 publication Critical patent/KR102427852B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/343Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of ultrasonic wave energy
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/042Electrodes formed of a single material
    • C25B11/043Carbon, e.g. diamond or graphene
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/20Processes
    • C25B3/25Reduction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9041Metals or alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

본 발명은 그래피틱 불완전 루이스 산-염기 쌍 촉매를 이용한 해수 내 이산화탄소 환원 배터리 시스템에 관한 것으로, 보다 상세하게는 해수 내 용존 이산화탄소를 에탄올, 프로판올 등의 다중탄소화합물로 환원하고, pH가 높아져 해수 산성화를 방지할 수 있는 배터리 시스템에 관한 것이다.The present invention relates to a carbon dioxide reduction battery system in seawater using a graffiti incomplete Lewis acid-base pair catalyst. It relates to a battery system that can prevent

Description

그래피틱 불완전 루이스 산-염기 쌍(GFLP)을 이용한 이산화탄소 환원용 촉매제 및 이를 이용한 해수 내 이산화탄소 환원 배터리 시스템{Carbon dioxide Reduction Catalyst using Graphitic Frustrated Lewis Pair and Carbon dioxide Reduction Battery System in Seawater using the same}Carbon dioxide Reduction Catalyst using Graphitic Frustrated Lewis Pair and Carbon dioxide Reduction Battery System in Seawater using the same

본 발명은 그래피틱 불완전 루이스 산-염기 쌍 촉매를 이용한 해수 내 이산화탄소 환원 배터리 시스템에 관한 것으로, 보다 상세하게는 해수 내 용존 이산화탄소를 에탄올, 프로판올 등의 다중탄소화합물로 환원하고, pH가 높아져 해수 산성화를 방지할 수 있는 배터리 시스템에 관한 것이다.The present invention relates to a carbon dioxide reduction battery system in seawater using a graffiti incomplete Lewis acid-base pair catalyst. It relates to a battery system that can prevent

기존 화석연료 기반의 발전 시스템으로 인한 CO2 배출량의 증가 및 해수 중 용존 CO2 농도의 증가로 인해 지구온난화와 해수의 산성화가 지속적으로 심화되어 지구 생태계가 위협 받고 있다.Due to the increase in CO 2 emission and the increase in dissolved CO 2 concentration in seawater due to the existing fossil fuel-based power generation system, global warming and acidification of seawater continue to deepen, threatening the global ecosystem.

CO2의 감축에서 나아가 산업의 원료로 변환하는 전기촉매제에 대한 연구가 1869년부터 이어져오고 있으나, CO2의 화학적으로 매우 안정한 구조에 의한 전자 및 정공을 기피하는 성질 때문에 화학적인 변환을 위해 높은 에너지가 필요하다.Research on electrocatalysts that convert CO 2 into industrial raw materials in addition to reduction of CO 2 has been continuing since 1869, but due to the chemically stable structure of CO 2 , which avoids electrons and holes, high energy for chemical conversion is needed

이를 극복하기 위해 정교한 양자계산법과 전기촉매 구조 구현 및 합성법의 진보에 더불어, CO2 변환의 핵심 반응이 카르복실화라는 것이 밝혀졌으며, 성능이 좋은 금속(Cu, Pt, Au, Ag, Mo, Pd, Co, Pb, Sn, Ce), MOF(Metal-Oranic-Framework), 탄소나노재료 기반의 전기촉매에 대한 연구가 제시되어 왔다.To overcome this, with the advancement of sophisticated quantum calculation methods and electrocatalyst structure implementation and synthesis, it was found that the key reaction of CO 2 conversion is carboxylation, and metals with good performance (Cu, Pt, Au, Ag, Mo, Pd , Co, Pb, Sn, Ce), MOF (Metal-Oranic-Framework), and carbon nanomaterial-based electrocatalysts have been studied.

이와 같은 전기촉매는 전자가 결핍된 metal-center 또는 전자가 풍부한 이원자종에 의해 CO2를 변환시키기 위한 활성 사이트(activation site)를 제공하고 외부 전압을 가해줌에 따라 전기화학적으로 CO2를 메탄, 메탄올, 포름산, 아세트산 등의 산업 원료로 변환시킬 수 있다.Such an electrocatalyst provides an activation site for converting CO 2 by electron-deficient metal-center or electron-rich diatomic species and electrochemically converts CO 2 into methane, It can be converted into industrial raw materials such as methanol, formic acid and acetic acid.

그러나, 대부분 값비싼 희소금속을 사용할 뿐만 아니라, 유기용매, 강산(pH 1), 또는 강염기(pH 14) 기반의 CO2가 과포화된 전해질 환경에서 높은 외부전압 하에서만 CO2 환원반응이 가능하기 때문에, 대기 중 CO2 농도(0.016 mM) 및 해수(pH ~8.2)에서의 CO2변환을 수행하기에 근본적으로 부적합하다는 문제가 있다.However, since most expensive rare metals are used, and CO 2 reduction reaction is possible only under high external voltage in an electrolyte environment in which CO 2 based on organic solvents, strong acids (pH 1), or strong bases (pH 14) is supersaturated, , is fundamentally unsuitable for performing CO 2 conversion in atmospheric CO 2 concentrations (0.016 mM) and seawater (pH ˜8.2).

한국등록특허 제10-1833755호Korean Patent No. 10-1833755

본 발명에 따른 해수 내 이산화탄소 환원 배터리 시스템은 상기한 문제점을 해결하고자 하는 것으로, 본 발명의 목적은 초음파 스프레이 합성법을 이용하여 그래핀 프레임워크 상에 이종 원소 또는 루이스 산과 염기를 쌍으로 도입함으로써 환원 반응을 위한 활성 사이트가 증가된 촉매를 이용하여 이산화탄소를 효율적으로 환원시킬 수 있는 배터리 시스템을 제공하기 위한 것이다.The carbon dioxide reduction battery system in seawater according to the present invention is to solve the above problems, and an object of the present invention is to introduce a heterogeneous element or a Lewis acid and a base as a pair on a graphene framework using an ultrasonic spray synthesis method for a reduction reaction An object of the present invention is to provide a battery system capable of efficiently reducing carbon dioxide using a catalyst having an increased active site.

한편으로, 본 발명은On the one hand, the present invention

루이스 산 및 염기 성분이 서로 쌍을 이루어 분자 내에 도입된 탄소나노물질로 구성되는 음극;a cathode composed of carbon nanomaterials in which Lewis acid and base components are paired with each other and introduced into the molecule;

금속으로 구성되는 양극; 및an anode made of metal; and

해수 전해질;을 포함하되,seawater electrolyte; including,

상기 해수에 용해된 이산화탄소가 상기 음극의 탄소나노물질의 루이스 산 및 염기 성분과 반응하고,Carbon dioxide dissolved in the seawater reacts with Lewis acid and base components of the carbon nanomaterial of the negative electrode,

상기 이산화탄소의 산소가 루이스 산에, 탄소가 루이스 염기에 각각 동적 공유결합을 형성하여 다중 활성 사이트를 확보하면서 발열반응을 통해 환원되는 것을 특징으로 하는, 그래피틱 불완전 루이스 산-염기 쌍(GFLP) 촉매를 이용한 해수 내 이산화탄소 환원 배터리 시스템을 제공한다.Graffiti incomplete Lewis acid-base pair (GFLP) catalyst, characterized in that the oxygen of the carbon dioxide is reduced through an exothermic reaction while securing multiple active sites by forming a dynamic covalent bond with each of the carbon to the Lewis acid and the carbon to the Lewis base, respectively It provides a carbon dioxide reduction battery system in seawater using

다른 한편으로, 본 발명은On the other hand, the present invention

이산화탄소 환원용 촉매제에 있어서,In the catalyst for carbon dioxide reduction,

그래핀; 및graphene; and

상기 그래핀 분자 내에 서로 쌍을 이루어 배치된 루이스 산 및 염기 성분;으로 구성되고,Consists of; Lewis acid and base components arranged in pairs in the graphene molecule;

상기 루이스 산에 이산화탄소의 산소가 공유결합을 형성하고, 상기 루이스 염기에 이산화탄소의 탄소가 공유결합을 형성하도록 하여 상기 이산화탄소가 환원되는 것을 특징으로 하는, 그래피틱 불완전 루이스 산-염기 쌍(GFLP)을 이용한 이산화탄소 환원용 촉매제를 제공한다.A graphic incomplete Lewis acid-base pair (GFLP), characterized in that the oxygen of carbon dioxide forms a covalent bond with the Lewis acid, and the carbon dioxide forms a covalent bond with the Lewis base, so that the carbon dioxide is reduced A catalyst for reducing carbon dioxide is provided.

본 발명에 따른 배터리 시스템은, 값비싼 희소금속을 사용하지 않고 종래 촉매들의 내구성의 한계 및 촉매 개질의 한계를 극복한 촉매를 음극으로 사용하여 경제성이 우수할 뿐만 아니라, 해수 내 용존 이산화탄소를 80% 이상의 효율로 에탄올, 프로판올 등의 다중탄소화합물로 변환시킬 수 있다.The battery system according to the present invention not only uses a catalyst that overcomes the limitations of durability and catalyst reforming of conventional catalysts without using expensive rare metals as an anode, but also has excellent economic feasibility and reduces dissolved carbon dioxide in seawater by 80% With the above efficiency, it can be converted into multi-carbon compounds such as ethanol and propanol.

또한, 상기 배터리 시스템을 이용하여 해수 내 이산화탄소가 환원되면서 pH가 높아져 해수 산성화를 방지할 수 있다.In addition, as the carbon dioxide in seawater is reduced using the battery system, the pH increases, thereby preventing seawater acidification.

도 1은 본 발명의 일 실시예에 따른 BN-GFLP 구조의 초음파 스프레이 합성법 및 특성을 나타낸 것이다((A) BN-GFLP 합성 및 BN-GFLP와 CO2 사이의 분자 상호 작용을 위한 USC 공정의 개략도. (B) 측량 XPS 스캔(C1s로 정규화됨) 및 (C) 10K에서 GN, N-GN, B-GN 및 BN-GFLP의 EPR 스펙트럼. (D) BN-GFLP에서 TMP의 31P MAS NMR 스펙트럼. (E) BN-GFLP에 흡착된 피롤의 1H MAS NMR 스펙트럼).
도 2는 본 발명의 일 실시예에 따른 그래핀 나노분말에서의 질소 도핑 농도(A) 및 붕소 도핑 농도(B) 제어를 나타낸 그래프이다.
도 3은 본 발명의 일 실시예에 따른 해수 내 BN-GFLP 전극의 이산화탄소 전기화학적 환원에 대한 그래프이다.
도 4는 본 발명의 일 실시예에 따른 해수 내 이산화탄소 환원 배터리 시스템에서 B-GN 및 N-GN으로 물리적 혼합된 음극의 CO2R 성능을 나타낸 그래프이다.
도 5는 본 발명의 일 실시예에 따른 해수 내 이산화탄소 환원 배터리 시스템에서 CO2R 동안 전기에너지 저장 및 안정성을 확인한 것이다((A) 지그형 CBS 시스템의 개략도. (B) CBS 시스템으로 구동되는 36 개의 LED 전구 디지털 사진. (C) 고정 전류 밀도가 0.13 mA cm-2 인 CO2R 중 해수 pH의 변화(pH는 해수의 이산화탄소 버블링을 통해 제어됨). (D) BN-GFLP 및 대조군 GN 음극을 갖는 지그형 CBS 셀의 Galvanostatic 충전-방전 전압 플롯).
도 6은 본 발명의 일 실시예에 따른 CO2R을 위한 BN-GFLP 촉매의 DFT 계산을 나타낸 것이다.
도 7은 본 발명의 일 실시예에 따른 BN-GFLP 촉매의 HPLC 및 ESI-MS 결과를 나타낸 그래프이다.
도 8은 본 발명의 일 실시예에 따른 BN-GFLP 촉매의 환원 생성물에 대한 정량적인 CO2 환원효율 및 다중탄소(C2+) 생성물에 대한 선택성(Selectivity, 95%)을 나타낸 그래프이다.
1 shows the ultrasonic spray synthesis method and properties of the BN-GFLP structure according to an embodiment of the present invention ((A) Schematic diagram of the USC process for BN-GFLP synthesis and molecular interaction between BN-GFLP and CO 2 (B) Survey XPS scans (normalized to C1s) and (C) EPR spectra of GN, N-GN, B-GN and BN-GFLP at 10 K. (D) 31 P MAS NMR spectra of TMP at BN-GFLP (E) 1 H MAS NMR spectrum of pyrrole adsorbed to BN-GFLP).
2 is a graph showing the control of nitrogen doping concentration (A) and boron doping concentration (B) in graphene nanopowder according to an embodiment of the present invention.
3 is a graph showing the electrochemical reduction of carbon dioxide in the BN-GFLP electrode in seawater according to an embodiment of the present invention.
Figure 4 is a graph showing the CO 2 R performance of the negative electrode physically mixed with B-GN and N-GN in the carbon dioxide reduction battery system in seawater according to an embodiment of the present invention.
Figure 5 confirms the electrical energy storage and stability during CO 2 R in the carbon dioxide reduction battery system in seawater according to an embodiment of the present invention ((A) a schematic diagram of a jig-type CBS system. (B) 36 driven by the CBS system (C) Change in seawater pH in CO 2 R with a fixed current density of 0.13 mA cm −2 (pH is controlled via carbon dioxide bubbling in seawater) (D) BN-GFLP and control GN Galvanostatic charge-discharge voltage plot of a jig-shaped CBS cell with cathode).
Figure 6 shows the DFT calculation of the BN-GFLP catalyst for CO 2 R according to an embodiment of the present invention.
7 is a graph showing HPLC and ESI-MS results of a BN-GFLP catalyst according to an embodiment of the present invention.
8 is a graph showing the quantitative CO 2 reduction efficiency and the selectivity (selectivity, 95%) for the multi-carbon (C 2+ ) product for the reduction product of the BN-GFLP catalyst according to an embodiment of the present invention.

이하, 본 발명을 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail.

본 발명의 일 실시형태에 따른 그래피틱 불완전 루이스 산-염기 쌍(GFLP) 촉매를 이용한 해수 내 이산화탄소 환원 배터리 시스템은, Carbon dioxide reduction battery system in seawater using a graffiti incomplete Lewis acid-base pair (GFLP) catalyst according to an embodiment of the present invention,

루이스 산 및 염기 성분이 서로 쌍을 이루어 분자 내에 도입된 탄소나노물질로 구성되는 음극;a cathode composed of carbon nanomaterials in which Lewis acid and base components are paired with each other and introduced into the molecule;

금속으로 구성되는 양극; 및an anode made of metal; and

해수 전해질;을 포함하되,seawater electrolyte; including,

상기 해수에 용해된 이산화탄소가 상기 음극의 탄소나노물질의 루이스 산 및 염기 성분과 반응하고,Carbon dioxide dissolved in the seawater reacts with Lewis acid and base components of the carbon nanomaterial of the negative electrode,

상기 이산화탄소의 산소가 루이스 산에, 탄소가 루이스 염기에 각각 동적 공유결합을 형성하여 다중 활성 사이트를 확보하면서 발열반응을 통해 환원되는 것을 특징으로 한다.It is characterized in that the oxygen of the carbon dioxide is reduced through an exothermic reaction while securing multiple active sites by forming dynamic covalent bonds with the Lewis acid and the carbon with the Lewis base, respectively.

본 발명에 따른 해수 내 이산화탄소 환원 배터리(CO2 Reduction Battery in Seawater, CBS) 시스템은, 초음파 스프레이 합성법(USC)을 이용하여 제조된 그래피틱 불완전 루이스 산-염기 쌍(GFLP) 촉매를 음극으로 사용하는 것을 특징으로 한다(도 1 참조). The carbon dioxide reduction battery (CO 2 Reduction Battery in Seawater, CBS) system according to the present invention uses a graffiti incomplete Lewis acid-base pair (GFLP) catalyst prepared using ultrasonic spray synthesis (USC) as a negative electrode. It is characterized in that (see FIG. 1).

상기 GFLP 촉매는 그래핀 상에 이종 원소가 도핑된 구조로, 보다 구체적으로는 그래핀 분자 내에 루이스 산 및 염기 성분이 서로 쌍을 이루어 배치되는 것을 특징으로 한다.The GFLP catalyst has a structure in which a heterogeneous element is doped on graphene, and more specifically, a Lewis acid and a base component are arranged in pairs in a graphene molecule.

FLP(Frustrated Lewis Pair)는 입체적 특성에 의해 동적평형 상태를 가지는 루이스 산-염기 쌍의 구조 화합물을 의미하며, 산(Acid, A)의 전자 받게(electron acceptor)와 염기(Base, B)의 전자 주게(electron donor) 성질을 모두 가지고 있다. FLP (Frustrated Lewis Pair) refers to a structural compound of a Lewis acid-base pair having a dynamic equilibrium state due to steric properties, and an electron acceptor of an acid (Acid, A) and an electron of a base (Base, B) They all have electron donor properties.

따라서 상기 루이스 산 및 염기 쌍은, 보란(BH3)과 같은 루이스 산과 포스핀이나 아민과 같은 루이스 염기가 결합하면 두 분자 간의 입체장애로 인해서 완전한 산-염기 쌍으로 결합되지 않는 불완전 결합 루이스 쌍(Frustrated Lewis Pairs: FLPs)을 형성하며, 이로 인해 각각의 활성이 유지될 수 있다. Therefore, the Lewis acid and base pair is an incompletely bonded Lewis pair ( Frustrated Lewis Pairs (FLPs) are formed, whereby their respective activities can be maintained.

종래 일반 전이금속을 사용한 경우에는 활성 사이트(Active Site)가 1개였으나, 상기 루이스 산 및 염기의 각각의 활성으로 인해 활성 사이트가(Active Site) 2개가 되기 때문에 피어 메커니즘(Pier mechanism)에 의해 상온에서 CO2 분자와 C···B 및 O···A의 동적 공유결합(dynamic covalent bonding)이 형성되고, 이로 인하여 상기 이산화탄소를 에탄올, 프로판올 등의 다중 탄소 물질로 환원 가능하다. Conventionally, in the case of using a general transition metal, there was one active site, but since the active site becomes two due to the respective activities of the Lewis acid and the base, it is heated at room temperature by the peer mechanism. Dynamic covalent bonding between the CO 2 molecule and C ... B and O ... A is formed, thereby converting the carbon dioxide into multiple carbons such as ethanol and propanol can be reduced to a substance.

루이스 산 및 염기에 각각 이산화탄소의 산소와 탄소가 공유결합을 형성한 후, 기본적으로 메탄올은 CO2+ 6H+ + 6e-, 에탄올은 CO2+ 12H+ + 12e-, 프로판올은 CO2+ 18H+ + 18e-의 전기화학반응으로 환원생성물이 나오게 되며, 다중탄소생성물(에탄올, 프로판올)의 경우, 처음 중간체 CO와 두 번째 CO2가 결합한 C2O3 중간체가 자발적으로 생성된 이후 반응이 진행될 수 있다. After oxygen and carbon of carbon dioxide form covalent bonds with Lewis acids and bases, respectively, methanol is basically CO 2 + 6H + + 6e - , ethanol is CO 2 + 12H + + 12e - , propanol is CO 2 + 18H + + 18e - The electrochemical reaction produces a reduction product, and in the case of multi-carbon products (ethanol, propanol), the reaction can proceed after the spontaneous generation of the C 2 O 3 intermediate in which the first intermediate CO and the second CO 2 are combined. have.

또한, 해수 내 이산화탄소가 환원되면서 산성화된 해수의 pH가 약 6.4에서 8.0으로 높아지는 효과를 나타낼 수 있다. In addition, as the carbon dioxide in the seawater is reduced, the pH of the acidified seawater may exhibit an effect of increasing from about 6.4 to 8.0.

본 발명의 일 실시형태에서, 상기 FLP(Frustrated Lewis Pair)는 탄소나노물질, 즉 그래피틱 프레임워크(Graphitic Framework) 상에 결합되어, 상기 그래피틱 프레임워크로부터 π-electron을 FLP의 활성 사이트에 지속적으로 공급받을 수 있으므로 영구적인 촉매 내구성을 나타낼 수 있을 뿐만 아니라 고성능 특성을 나타낼 수 있다.In one embodiment of the present invention, the FLP (Frustrated Lewis Pair) is bonded to a carbon nanomaterial, that is, a graphic framework, and π-electrons from the graphic framework are continuously applied to the active site of the FLP. As it can be supplied with

본 발명의 일 실시형태에서, 상기 촉매는 독자적인 이원자 도입법인 초음파 스프레이 합성법을 이용함으로써 Acidic 및 Basic 도펀트 선택의 제약이 적고, 초음파 노즐에서의 고주파수에 의한 공동현상(Cavitation)에 의해 양자역학적으로 높은 활성화 에너지(5000 ℃, 2000 atm)를 이용하여 수 마이크로초 내에 반응 및 원자 단위의 결합이 가능하며, 그래핀 분자 전체적으로 균일하게 이원자를 도입할 수 있다. In one embodiment of the present invention, the catalyst uses an ultrasonic spray synthesis method, which is a unique dual atom introduction method, so that there are few restrictions on acidic and basic dopant selection, and quantum mechanically high activation by cavitation by high frequency in an ultrasonic nozzle Using energy (5000 °C, 2000 atm), reaction and atomic bonding are possible within a few microseconds, and diatoms can be uniformly introduced throughout the graphene molecule.

본 발명의 일 실시형태에서, 상기 루이스 산 성분은 붕소, 주석, 아연, 구리, 비스무스, 몰리브덴, 텅스텐 및 바나듐으로 구성된 군으로부터 선택된 1종일 수 있고, 상기 루이스 염기 성분은 질소, 산소, 황, 인, 셀레늄, 텔루륨, 비소, 및 안티모니으로 구성된 군으로부터 선택된 1종일 수 있으나, 이에 제한되는 것은 아니다.In one embodiment of the present invention, the Lewis acid component may be one selected from the group consisting of boron, tin, zinc, copper, bismuth, molybdenum, tungsten and vanadium, and the Lewis base component is nitrogen, oxygen, sulfur, phosphorus , selenium, tellurium, arsenic, and may be one selected from the group consisting of antimony, but is not limited thereto.

상기 루이스 산 성분은 구체적으로 비스(피나콜라토)디보론(Bis(pinacolato)diboron), 금속 염화물(Metal chloride) 등을 사용하는 것이 바람직하고, 상기 루이스 염기 성분은 구체적으로 가스상으로서, N2, O2를 사용하는 것이 바람직하며, 이에 제한되는 것은 아니다. The Lewis acid component is specifically bis (pinacolato) diboron (Bis (pinacolato) diboron), it is preferable to use a metal chloride (Metal chloride), etc., the Lewis base component is specifically as a gaseous phase, N 2 , It is preferable to use O 2 , but is not limited thereto.

본 발명의 일 실시형태에서, 상기 탄소나노물질은 그래핀, 환원 그래핀 옥사이드(reduced grapheme oxide, rGO), 탄소나노튜브, 탄소나노섬유, 흑연 또는 활성 탄소를 사용할 수 있으나, 이에 제한되는 것은 아니다.In one embodiment of the present invention, the carbon nanomaterial may use graphene, reduced graphene oxide (rGO), carbon nanotubes, carbon nanofibers, graphite, or activated carbon, but is not limited thereto. .

본 발명의 일 실시형태에서, 상기 양극에 사용되는 금속은 나트륨, 리튬, 니켈, 망간 또는 상기 금속들의 합금 및 산화물 등을 사용할 수 있으나, 이에 제한되는 것은 아니다.In one embodiment of the present invention, the metal used for the positive electrode may include sodium, lithium, nickel, manganese, or alloys and oxides of the above metals, but is not limited thereto.

본 발명의 일 실시형태에 따른 그래피틱 불완전 루이스 산-염기 쌍(GFLP)을 이용한 이산화탄소 환원용 촉매제는, A catalyst for carbon dioxide reduction using a graphic incomplete Lewis acid-base pair (GFLP) according to an embodiment of the present invention,

이산화탄소 환원용 촉매제에 있어서,In the catalyst for carbon dioxide reduction,

그래핀; 및graphene; and

상기 그래핀 분자 내에 서로 쌍을 이루어 배치된 루이스 산 및 염기 성분;으로 구성되고,Consists of; Lewis acid and base components arranged in pairs in the graphene molecule;

상기 루이스 산에 이산화탄소의 산소가 공유결합을 형성하고, 상기 루이스 염기에 이산화탄소의 탄소가 공유결합을 형성하도록 하여 상기 이산화탄소가 환원되는 것을 특징으로 한다.Oxygen of carbon dioxide forms a covalent bond with the Lewis acid, and carbon of carbon dioxide forms a covalent bond with the Lewis base, whereby the carbon dioxide is reduced.

본 발명의 일 실시형태에서, 붕소 및 질소의 이종 원소가 도핑된 그래피틱 불완전 루이스 산-염기 쌍(BN-GFLP)을 이용한 이산화탄소 환원용 촉매제는 CO2 환원 촉매와 동시에 이산화탄소 환원 배터리의 음극(Cathode)의 역할을 할 수 있다. 이산화탄소 환원 배터리의 방전(Discharging) 과정에서 BN-GFLP 음극이 CO2를 환원시키며, 환원 생성물은 High performance liquid chromatography(HPLC)와 Electrospray ionization mass spectroscopy(ESI-MS)으로 분석하여 CO2 환원 생성물(메탄올, 에탄올 및 프로판올)을 확인할 수 있다(도 7 참조). In one embodiment of the present invention, the catalyst for carbon dioxide reduction using a graffiti incomplete Lewis acid-base pair (BN-GFLP) doped with heteroelement of boron and nitrogen is a CO 2 reduction catalyst and a cathode of a carbon dioxide reduction battery at the same time. ) can play a role. During the discharging process of the carbon dioxide reduction battery, the BN-GFLP anode reduces CO 2 , and the reduction product is analyzed by high performance liquid chromatography (HPLC) and electrospray ionization mass spectroscopy (ESI-MS) to obtain a CO 2 reduction product (methanol , ethanol and propanol) can be identified (see FIG. 7).

또한, 상기 HPLC의 Internal standard 방법을 통해, 각각의 생성물에 대한 정량적인 CO2 환원효율(Faradaic efficiency, 87.6%)와 다중탄소(C2+) 생성물에 대한 선택성(Selectivity, 95%)을 계산할 수 있으며(도 8 참조), Gibbs 에너지 계산을 통하여 BN-GFLP의 촉매 구조에 의해 어떻게 CO2를 다중탄소생성물로 환원시키는지를 이론적으로 메커니즘을 규명할 수 있다.In addition, through the internal standard method of HPLC, quantitative CO 2 reduction efficiency for each product (Faradaic efficiency, 87.6%) and selectivity for multi-carbon (C 2+ ) products (Selectivity, 95%) can be calculated. And (see FIG. 8), the mechanism of how to reduce CO 2 to a multi-carbon product by the catalyst structure of BN-GFLP through Gibbs energy calculation can be elucidated theoretically.

본 발명에 따른 그래피틱 불완전 루이스 산-염기 쌍(GFLP)은 종래 금속 및 비금속 촉매들 보다 우수한 성능을 나타낼 수 있으므로, 배터리 뿐만 아니라 연료전지, 슈퍼커패시터, 염료감응형 태양전지 등 다양한 전기화학 소자로 적용이 가능하다.Since the graffiti incomplete Lewis acid-base pair (GFLP) according to the present invention can exhibit superior performance than conventional metal and non-metal catalysts, it can be used as a variety of electrochemical devices such as fuel cells, supercapacitors, and dye-sensitized solar cells as well as batteries. applicable.

이하, 실시예에 의해 본 발명을 보다 구체적으로 설명하고자 한다. 이들 실시예는 오직 본 발명을 설명하기 위한 것으로, 본 발명의 범위가 이들 실시예에 국한되지 않는다는 것은 당업자에게 있어서 자명하다.Hereinafter, the present invention will be described in more detail by way of Examples. These examples are only for illustrating the present invention, and it will be apparent to those skilled in the art that the scope of the present invention is not limited to these examples.

실시예 1: 초음파 스프레이 합성법(USC)에 의한 이종원자 도핑 GFLP의 제조Example 1: Preparation of Heteroatom Doped GFLP by Ultrasonic Spray Synthesis (USC)

실시예 1-1:Example 1-1: 전구체 용액의 제조Preparation of precursor solution

N-메틸-2-피롤리돈에 그래핀 나노분말(Graphene Nanopowder) 및 붕소 도펀트인 비스(피나콜라토)디보론) (bis(pinacolato)diboron)을 용해시킨 용액을 주사기 펌프를 사용하여 초음파 노즐을 통과시키고, 고주파 초음파를 적용하여 용액 내부에 진공 기포를 생성시킬 수 있었다(180 kHz). 이들 기포 내의 GN 전구체는 이온 또는 라디칼을 형성할 수 있으며, 이는 붕소 도펀트 및 불활성 질소 가스와 직접 반응할 수 있다. A solution in which graphene nanopowder and boron dopant bis(pinacolato)diboron) (bis(pinacolato)diboron) were dissolved in N-methyl-2-pyrrolidone using an ultrasonic nozzle using a syringe pump It was possible to create a vacuum bubble inside the solution by passing through it and applying high-frequency ultrasound (180 kHz). The GN precursors in these bubbles can form ions or radicals, which can react directly with the boron dopant and inert nitrogen gas.

보다 상세하게는, 그래핀 나노분말(Graphene nanopowder) (15 mg)을 NMP (30 mL)에 첨가하고, 초음파 프로브 (750 W, 20 kHz, Sonics and Materials Inc., USA)로 2 시간 동안 초음파 처리하여 스프레이 용액 0.5 mg mL-1을 형성하였다. 상기 스프레이 용액을 USC를 통해 루이스 염기 도펀트(Lewis base dopant)로서 N2가스를 이용하여 N-GN을 합성하는데 직접 사용하였다. B-GN 및 BN-GFLP를 합성하기 위해, 루이스 산 도펀트(Lewis acid dopant) 또는 붕소 도펀트로서 비스(피나콜라토)디보론(Bis(pinacolato)diboron)) (30 mg)을 상기 제조된 GN 스프레이 용액 (0.5 mg mL-1, 30 mL)에 첨가하고, 1 시간 동안 초음파 처리하여 전구체 용액을 제조하였다.More specifically, graphene nanopowder (15 mg) was added to NMP (30 mL) and sonicated with an ultrasonic probe (750 W, 20 kHz, Sonics and Materials Inc., USA) for 2 hours. to form a spray solution of 0.5 mg mL -1 . The spray solution was directly used to synthesize N-GN using N 2 gas as a Lewis base dopant through USC. To synthesize B-GN and BN-GFLP, Lewis acid dopant or Bis(pinacolato)diboron) (30 mg) as a boron dopant (30 mg) was used in the GN spray prepared above. A precursor solution was prepared by adding to the solution (0.5 mg mL -1 , 30 mL) and sonicating for 1 hour.

실시예 1-2:Examples 1-2: 초음파 스프레이 합성법Ultrasonic Spray Synthesis

동시에 펌핑된 스프레이 코팅은 임팩트(impact) 초음파 노즐 (Sono-Tek Co.)로 고정된 ExactaCoat 시스템으로 수행하였다. 제조된 전구체 용액을 0.3 mL min-1의 분무 속도로 초음파 노즐 (180 kHz) 시스템에 순차적으로 공급하였다. 노즐 대 기판 거리를 10 cm로 조절하고, 압축된 N2 또는 Ar 가스 압력 (3.0 psi)을 사용하여 150 ℃의 온도, 20 mm s-1의 스프레이 속도 조건 하에서 가스 확산층 기판 (탄소 펠트, 면적 : 5 cm x 5 cm, 두께 : ~ 4.1 mm)을 분무하였다. 그런 다음, 제조된 생성물을 실온으로 냉각시키고 물, 에탄올 및 아세톤으로 세척하여 미 반응 전구체 및 불순물을 제거하였다. 잔류 용매는 200 ℃의 진공 오븐에서 24 시간 동안 증발시켰다. Simultaneously pumped spray coatings were performed with an ExactaCoat system fixed with an impact ultrasonic nozzle (Sono-Tek Co.). The prepared precursor solution was sequentially supplied to an ultrasonic nozzle (180 kHz) system at a spray rate of 0.3 mL min -1 . Adjust the nozzle-to-substrate distance to 10 cm, and use compressed N 2 or Ar gas pressure (3.0 psi) under the conditions of a temperature of 150 °C, a spray rate of 20 mm s -1 5 cm x 5 cm, thickness: ~ 4.1 mm). Then, the prepared product was cooled to room temperature and washed with water, ethanol and acetone to remove unreacted precursors and impurities. The residual solvent was evaporated in a vacuum oven at 200 °C for 24 h.

결과적으로, 전구체 용액인 GN 스프레이 용액을 이용한 USC 공정을 통해 GN (Ar 가스 캐리어 포함) 및 N-GN (N2 가스 캐리어 포함) 촉매 캐소드를 제조하였다. 또한, 붕소 도펀트가 혼합된 GN 용액을 이용한 USC 공정을 통해 B-GN (Ar 가스 캐리어 포함) 및 BN-GFLP (N2 가스 캐리어 포함) 촉매 캐소드를 제조하였다.As a result, GN (including Ar gas carrier) and N-GN (including N 2 gas carrier) catalyst cathodes were prepared through the USC process using GN spray solution as a precursor solution. In addition, B-GN (including Ar gas carrier) and BN-GFLP (including N 2 gas carrier) catalyst cathodes were prepared through the USC process using a GN solution mixed with boron dopant.

도 1B를 참조로, X-선 광전자 분광법(XPS)은 제조된 탄소 나노 물질이 B-GN에서 3.1 at% B, N-GN에서 4.1 at% N, 및 BN-GFLP에서 6.8 at% B 및 4.2 at% N의 높은 헤테로 원자 도핑 농도를 달성했음을 확인하였다. 1B, X-ray photoelectron spectroscopy (XPS) showed that the prepared carbon nanomaterial was 3.1 at% B in B-GN, 4.1 at% N in N-GN, and 6.8 at% B and 4.2 in BN-GFLP. It was confirmed that a high heteroatom doping concentration of at% N was achieved.

도 1C를 참조로, 헤테로 원자 도핑된 GN은 전자 상자성 공명(EPR) 분광법에 의해 측정된 바와 같이 도핑된 B 및 N으로부터의 라디칼 결함의 존재로 인해 10K 미만의 상자성 특성을 나타냈다. BN-GFLP의 이러한 라디칼 결함은 CO2의 제 1 흡착 단계를 그 표면으로 가속화시키는데 기여한다.Referring to Figure 1C, the heteroatom doped GNs exhibited paramagnetic properties of less than 10 K due to the presence of radical defects from the doped B and N as measured by electron paramagnetic resonance (EPR) spectroscopy. This radical defect of BN-GFLP contributes to accelerating the first adsorption step of CO 2 to its surface.

도 1D 및 1E를 참조로, BN-GFLP의 Lewis Acid(LA) 및 Lewis Base(LB)는 매직 앵글 방사 핵 자기 공명 (MAS NMR)을 특징으로 한다). 먼저, BN-GFLP 샘플에 흡착 된 인 프로브 분자 31P-트리메틸포스핀(TMP)을 사용하여 31P MAS NMR에 의해 산도를 측정하였다(도 1D 참조). 35.47 ppm에서 δ31P 피크가 BN-GFLP 상에서 관찰되었으며, 이는 TMP와 산소 작용기의 반응에 의해 BN-GFLP 표면 상의 TMP 산화물 (TMPO)의 물리적 흡착에 할당될 수 있다. 55.04 ppm의 δ31P 피크는 TMPO가 BN-GFLP의 LA 붕소 부위에서 화학 흡착되었을 때 나타났으며, 이는 50 에서 55 ppm 범위의 Lewis 산도에 해당한다. BN-GFLP의 브뢴스테드 산 피크는 흡착된 TMP에 의해 -8.79 및 -15.69 ppm에 나타났지만, 신호는 약했다. 1D and 1E, Lewis Acid (LA) and Lewis Base (LB) of BN-GFLP are characterized by magic angle radiation nuclear magnetic resonance (MAS NMR). First, the acidity was measured by 31 P MAS NMR using the phosphorus probe molecule 31 P-trimethylphosphine (TMP) adsorbed to the BN-GFLP sample (see Fig. 1D). A δ 31 P peak at 35.47 ppm was observed on BN-GFLP, which could be assigned to the physical adsorption of TMP oxide (TMPO) on the surface of BN-GFLP by reaction of TMP with oxygen functional groups. The δ 31 P peak at 55.04 ppm appeared when TMPO was chemisorbed on the LA boron site of BN-GFLP, which corresponds to a Lewis acidity ranging from 50 to 55 ppm. The Brønsted acid peak of BN-GFLP appeared at -8.79 and -15.69 ppm by the adsorbed TMP, but the signal was weak.

다음으로, 염기도를 결정하기 위해 피롤을 1H MAS NMR의 프로브로 사용하였다(그림 1E 참조). 5.95ppm에서의 강한 피크는 방향족 피롤 고리의 양성자에 할당된다. 피롤 (8.26 ppm)에서 NH 기의 정상 피크와 비교하여, BN-GFLP 샘플에 흡착 된 피롤은 BN-GFLP에서 LB 질소와의 수소 결합 상호 작용으로 인해 약 13.89 ppm에서 숄더(shoulder) 피크에서 1H 화학적 이동이 크게 나타났다. 이와 같은 결과는 초염기성 물질로 알려진 KX 제올라이트에서 관찰되는 화학적 이동과 유사하다. 31P 및 1H MAS NMR 결과에서, LA 및 LB 부위의 확장된 피크는 BN-GFLP의 sp2-하이브리드화된 프레임 워크의 π-전자 공여 능력에 의해 야기된다는 것도 주목할 만하다.Next, pyrrole was used as a probe for 1 H MAS NMR to determine basicity (see Figure 1E). The strong peak at 5.95 ppm is assigned to the proton of the aromatic pyrrole ring. Compared with the normal peak of the NH group at pyrrole (8.26 ppm), the pyrrole adsorbed on the BN-GFLP sample was 1 H at the shoulder peak at about 13.89 ppm due to hydrogen bonding interaction with the LB nitrogen in BN-GFLP. A large chemical shift was observed. This result is similar to the chemical shift observed in KX zeolite, which is known as a superbasic material. It is also noteworthy that in the 31 P and 1 H MAS NMR results, the broadened peaks of the LA and LB sites are caused by the π-electron donating ability of the sp 2 -hybridized framework of BN-GFLP.

도 2를 참조로, GN의 이종원자 도핑 함량은 N2 압력(도 2A 참조)과 붕소 도펀트의 농도(도 2B 참조)에 의해 제어되었다. 도 2A를 참조로, USC에서 임팩트 N2 캐리어 기체의 압력에 따라, X- 선 광전자 분광법 (XPS) 분석에서 GN의 N 도핑 함량을 0.76 at%(0.5psi)에서 4.10 at% (3.0psi)까지 정확하게 제어 할 수 있었다. 또한, 도 2B를 참조로, GN의 붕소 도핑 함량을 제어하기 위해, USC 공정에서 붕소 도펀트 용액의 농도를 0.5 내지 3.0 mg/ml로 최적화함으로써, 도핑된 붕소 함량을 1.08 at %에서 3.20 at%로 선형적으로 증가시켰다. 3.0 mg/ml보다 높은 붕소 도펀트 농도에서, 미반응된 붕소 도펀트 (bis(pinacolato) diboron)로 인해 B-GN에서 바람직하지 않은 붕산염 작용기가 증가하였다. BN-GFLP에서 더 높은 붕소 함량 (6.8 at%)은 USC 공정의 B 및 N 도펀트의 존재 하에 B-N 결합 형성에 의해 유도될 수 있음을 확인하였다.Referring to FIG. 2 , the heteroatom doping content of GN was controlled by the N 2 pressure (see FIG. 2A ) and the concentration of boron dopant (see FIG. 2B ). Referring to Figure 2A, the N doping content of GN in X-ray photoelectron spectroscopy (XPS) analysis, according to the pressure of the impact N 2 carrier gas in USC, from 0.76 at% (0.5 psi) to 4.10 at% (3.0 psi) in the USC. could be precisely controlled. In addition, referring to FIG. 2B, in order to control the boron doping content of GN, by optimizing the concentration of the boron dopant solution in the USC process from 0.5 to 3.0 mg/ml, the doped boron content was changed from 1.08 at % to 3.20 at %. increased linearly. At boron dopant concentrations higher than 3.0 mg/ml, undesirable borate functionality increased in B-GN due to unreacted boron dopant (bis(pinacolato) diboron). It was confirmed that the higher boron content (6.8 at%) in BN-GFLP could be induced by BN bond formation in the presence of B and N dopants of the USC process.

실시예 2: COExample 2: CO 22 환원 해수 배터리 시스템(CBS)의 CO CO in Reduced Seawater Battery System (CBS) 22 R 선택성 평가R selectivity evaluation

비양자성 전해질 기반 해수 하이브리드 시스템을 형성할 수 있는 NaSICON (Na-ion superionic Conductor membrane)이 있는 수정된 2465형 코인 셀로 구성된 Swagelok형 CBS 시스템을 제조하였다. CBS는 압력 측정 시스템에 연결되어 배출 과정에서 내부 CO2 가스 압력의 변화를 연속적으로 측정할 수 있다.A Swagelok-type CBS system consisting of a modified 2465-type coin cell with Na-ion superionic conductor membrane (NaSICON) capable of forming an aprotic electrolyte-based seawater hybrid system was fabricated. The CBS can be connected to a pressure measuring system to continuously measure the change in internal CO 2 gas pressure during the discharge process.

그런 다음, 전기화학적 질량분석(DEMS) 시스템을 사용하여 현장 분석을 통해 수소 발생 반응(HER)에 대한 BN-GFLP의 이산화탄소 환원반응(CO2R)의 선택성을 정량적으로 검증하였다(도 3 참조). 순수 CO2 가스로 채워진 Swagelok형 CBS 셀의 압력 붕괴는 전기 화학 방전 공정 동안 모니터링되었다. 도 3A와 C는 고정된 전류 밀도 0.13 mA cm-2에서 제조된 촉매 전극의 정전류 방전 전압 프로파일과 해당 CO2 감소 결과를 각각 보여준다. 소비된 CO2 가스의 선형 강하로 관찰된 안정적인 전압 안정기는 공동 도핑된 BN-GFLP가 GN, N-GN 및 B-GN 촉매보다 낮은 CO2 감소 과전위 및 상당히 향상된 CO2 감소 성능을 제공함을 보여주었다. Then, the selectivity of the carbon dioxide reduction reaction (CO 2 R) of BN-GFLP to the hydrogen evolution reaction (HER) was quantitatively verified through in situ analysis using an electrochemical mass spectrometry (DEMS) system (see Fig. 3). . The pressure decay of the Swagelok-type CBS cell filled with pure CO 2 gas was monitored during the electrochemical discharge process. 3A and 3C show the constant current discharge voltage profile of the prepared catalyst electrode at a fixed current density of 0.13 mA cm -2 and the corresponding CO 2 reduction results, respectively. The observed stable voltage stabilization with the linear drop of the consumed CO 2 gas shows that the co-doped BN-GFLP provides a lower CO 2 reduction overpotential and significantly improved CO 2 reduction performance than the GN, N-GN and B-GN catalysts. gave.

단일-헤테로 원자-도핑된 촉매 B-GN은 높은 CO2 감소를 보였으나 대조군 (GN)과 유사한 과전위를 보인 반면, N-GN 단일 촉매 전극은 과전위는 낮지만 CO2 소비는 대조군과 비슷한 것으로 나타났다. 이러한 결과로부터, LA가 촉매 활성을 향상시키는 반면, LB는 반응 속도를 증가시킬 수 있다는 것을 알 수 있었다. The single-heteroatom-doped catalyst B-GN showed a high CO2 reduction but similar overpotential to the control (GN), whereas the N-GN single catalyst electrode showed a low overpotential but CO2 consumption similar to the control. appeared to be From these results, it was found that LA enhances the catalytic activity, whereas LB can increase the reaction rate.

따라서, FLP 구조의 BN-GFLP는 LA와 LB의 시너지 효과를 통해 CO2R 효율을 높일 수 있다. 특히, 물리적으로 혼합된 N-GN 및 B-GN은 BN-GFLP와 완전히 다른 CO2R 성능을 보여주었다(도 4 참조).Therefore, BN-GFLP of the FLP structure can increase the CO 2 R efficiency through the synergistic effect of LA and LB. In particular, physically mixed N-GN and B-GN showed CO 2 R performance completely different from BN-GFLP (see FIG. 4 ).

또한, 다른 가스 분위기 하에서 2-전극 Swagelok형 CBS 시스템의 선형 스위프 전압전류법 (LSV) 분석을 수행하여 HER에 대한 CO2R 선택성을 추가로 확인하였다(도 3B 및 D 참조). 도 3B에 나타난 바와 같이, BN-GFLP의 LSV 곡선은 해수 전해질에서 CO2 포화 상태에서의 CO2R (2.6V vs Na/Na+)과 Ar 포화 상태에서의 HER (1.7V vs Na/Na+) 사이의 시작 전위에서 큰 차이를 나타냈다. 특히, Swagelok형 CBS 시스템의 내부 압력 붕괴 및 실시간 DEMS 측정 결과 CO2가 2.0 V까지 감소했으며 1.8V의 스윕 전압에서 H2 가스 발생이 발생했음을 알 수 있었다(도 3D 참조). 이와 같은 결과는 정전류 방전 (도 3A) 및 LSV 곡선 (도 3B)의 시작 전위와 일치한다. 따라서, BN-GFLP가 HER에 비해 신뢰성 있는 CO2R 선택성을 나타내는 것을 확인하였다.In addition, linear sweep voltammetry (LSV) analysis of the two-electrode Swagelok-type CBS system was performed under different gas atmospheres to further confirm the CO 2 R selectivity for HER (see FIGS. 3B and D). As shown in Figure 3B, the LSV curve of BN-GFLP is CO 2 R (2.6V vs Na/Na + ) in the seawater electrolyte saturated with CO 2 and HER (1.7V vs Na/Na + ) in the Ar saturated state. ) showed a large difference in the starting potential between In particular, as a result of internal pressure collapse and real-time DEMS measurement of the Swagelok-type CBS system, it was found that CO 2 decreased to 2.0 V and H 2 gas generation occurred at a sweep voltage of 1.8 V (see FIG. 3D ). These results are consistent with the starting potentials of the constant current discharge (Fig. 3A) and the LSV curve (Fig. 3B). Therefore, it was confirmed that BN-GFLP showed reliable CO 2 R selectivity compared to HER.

도 3E 및 F를 참조로, 11B 및 15N NMR 분광 분석을 수행하여 CO2에 결합하는 BN-GFLP의 용량을 확인하였다. CO2 가스 자극 이전에, BN-GFLP는 흑연 골격에서 불균질 붕소 도핑으로 인해 넓은 11B 피크를 나타냈다(도 2E). 대조적으로, CO2가있는 BN-GFLP에서 BO 결합과 관련된 27.58 ppm에서 현저하게 강한 11B 신호가 관찰되었다. 15N NMR의 경우, 동위 원소 15N 우레아가 BN-GFLP에서 15N 도펀트로 사용되었다.3E and F, 11 B and 15 N NMR spectroscopic analysis was performed to confirm the capacity of BN-GFLP to bind CO 2 . Prior to CO 2 gas stimulation, BN-GFLP exhibited a broad 11 B peak due to heterogeneous boron doping in the graphite framework ( FIG. 2E ). In contrast, a remarkably strong 11 B signal at 27.58 ppm associated with BO binding was observed in BN - GFLP with CO2. For 15 N NMR, the isotope 15 N urea was used as the 15 N dopant in BN-GFLP.

CO2가 없으면, 15N NMR 스펙트럼은 BN-GFLP 샘플의 흑연 골격에서 15N으로부터 64.41ppm에서 넓은 피크를 나타냈다(도 3F). 반면, CO2가 함유된 BN-GFLP에서 N-C 상호 작용 모드는 두 가지로 인해 71.05 및 91.72ppm에서 두 개의 급격한 피크가 나타났다. N-C와 B-O의 두자리 배위는 71.05ppm에서의 한자리 N-C 배위와 비교했을 때 전하 국소화 효과로 인해 91.72ppm에서 더 하향 변이된 피크에 해당한다. 이러한 NMR 결과를 통해, 붕소를 통해 BN-GFLP에 CO2가 흡착되어 LA가 CO2의 산소에 결합하고 LB가 탄소에 결합하는 것을 확인하였다.In the absence of CO 2 , the 15 N NMR spectrum showed a broad peak at 64.41 ppm from 15 N in the graphite backbone of the BN-GFLP sample ( FIG. 3F ). On the other hand, two sharp peaks at 71.05 and 91.72 ppm appeared due to two NC interaction modes in BN-GFLP containing CO 2 . The bidentate coordination of NC and BO corresponds to a more downshifted peak at 91.72 ppm due to the charge localization effect compared to the monodentate NC coordination at 71.05 ppm. Through these NMR results, it was confirmed that CO 2 was adsorbed to BN-GFLP through boron, so that LA binds to oxygen of CO 2 and LB binds to carbon.

도 5를 참조로, 해수 환경에서의 실제 CO2R 작동을 위해, 지그(Zig)형 CBS 셀을 제조하였다. CO2 버블링 하에서 지그형 CBS 셀은 발광 다이오드 (LED) 장치를 작동시키기에 충분한 전기 에너지를 제공하였다 (도 5B). 또한, 인위적인 CO2 배출에 의한 자연 해양 산성화를 반영하기 위해 의도적으로 2 시간의 CO2 버블링으로 CO2 포화 해수를 준비하여 pH를 6.4로 대폭 줄여주었다. 산성 해수 전해질은 BN-GFLP 캐소드의 CO2R 활성에 의해 복원되어, 90 시간의 CBS 배출 후 pH가 6.4에서 8.0으로 점차 증가하였다 (도 5C). CO2 분위기 하에서 CBS 셀의 충 방전 사이클 안정성은 GN 촉매보다 낮은 방전-충전 과전위로 200 시간 동안 잘 유지되었다(도 5D).Referring to Figure 5, for actual CO 2 R operation in a seawater environment, a jig (Zig) type CBS cell was prepared. Under CO 2 bubbling, the jig-shaped CBS cell provided sufficient electrical energy to operate the light emitting diode (LED) device ( FIG. 5B ). In addition, in order to reflect the natural ocean acidification caused by anthropogenic CO 2 emission, CO 2 saturated seawater was prepared with CO 2 bubbling for 2 hours, and the pH was drastically reduced to 6.4. The acidic seawater electrolyte was restored by the CO 2 R activity of the BN-GFLP cathode, and the pH gradually increased from 6.4 to 8.0 after 90 hours of CBS discharge ( FIG. 5C ). The charge-discharge cycle stability of the CBS cell under CO 2 atmosphere was well maintained for 200 h with a lower discharge-charge overpotential than that of the GN catalyst (Fig. 5D).

CBS 셀의 방전 과정 중 생성된 CO2 환원물을 High performance liquid chromatography (HPLC)와 Electrospray ionization mass spectroscopy (ESI-MS)으로분석한 결과, 메탄올, 에탄올 및 프로판올이 검출되었으며(도 7), 상기 HPLC의 Internal standard 방법을 통해, 생성물에 대한 정량적인 CO2 환원효율(Faradaic efficiency, 87.6%)과 다중탄소생성물(에탄올, 프로판올)에 대한 선택성(Selectivity, 95%)이 종래 보고된 어떠한 CO2 환원 촉매보다 우수함을 증명하였다(도 8). As a result of analyzing the reduced CO 2 produced during the discharging process of the CBS cell by high performance liquid chromatography (HPLC) and electrospray ionization mass spectroscopy (ESI-MS), methanol, ethanol and propanol were detected (FIG. 7), the HPLC Through the internal standard of It was proven to be superior (FIG. 8).

해수에서의 CO2R 공정 동안 CaCO3의 침전은 pH의 국소적인 증가에 의해 유발될 수 있는데, 이는 금속성 CO2R 촉매의 주요 안정성 문제로 알려져있다. 본 발명에 따른 CBS 시스템에서는 의도적으로 해수 전해질에 0.5M CaCl2를 첨가한 후에도 BN-GFLP 표면에서 CaCO3가 검출되지 않고, C2+ 생성물 만이 검출되었다. 이들 결과는 본 발명에 따른 BN-GFLP가 CaCO3의 형성 전에 HCO3 - 및 CO2 감소에 대해 높은 반응성을 갖는다는 것을 보여준다. The precipitation of CaCO 3 during the CO 2 R process in seawater can be caused by a local increase in pH, which is known to be a major stability problem of metallic CO 2 R catalysts. In the CBS system according to the present invention, even after intentionally adding 0.5M CaCl 2 to the seawater electrolyte, CaCO 3 was not detected on the BN-GFLP surface, and only the C 2+ product was detected. These results show that BN-GFLP according to the present invention has high reactivity to HCO 3 and CO 2 reduction before formation of CaCO 3 .

도 6을 참조로, CO2R에 대한 BN-GFLP 촉매의 C2+ 생산 메커니즘을 확인하기 위하여 밀도 기능 이론 (DFT) 계산을 수행하였다(도 6A 참조).Referring to FIG. 6 , density functional theory (DFT) calculations were performed to confirm the C 2+ production mechanism of the BN-GFLP catalyst for CO 2 R (see FIG. 6A ).

BN-GFLP는 11B 및 15N MAS NMR 분석에 따른 N-C의 한자리 구조보다 N-C 및 B-O의 두자리 구조에서 CO2와 더 강하게 결합하는 것으로 확인되었다. 또한, 두자리 구조는 -1.4 eV의 유리한 Gibbs 에너지(ΔG)로 CO2 및 HCO3 -로부터 출발하는 일산화탄소(CO) 중간체를 형성할 수 있다. CO 중간체와 다른 CO2 사이의 직접적인 C-C 결합 커플링은 대략 -3.2 eV의 매우 안정적인 ΔG를 갖는 C2O3를 형성하게 된다.BN-GFLP was confirmed to bind more strongly to CO 2 in the bidentate structures of NC and BO than in the monodentate structures of NC according to 11 B and 15 N MAS NMR analysis. In addition, the bidentate structure can form carbon monoxide (CO) intermediates starting from CO 2 and HCO 3 with a favorable Gibbs energy (ΔG) of -1.4 eV. Direct CC bond coupling between the CO intermediate and another CO 2 results in the formation of C 2 O 3 with a very stable ΔG of approximately -3.2 eV.

또한, BN-GFLP상의 모든 종의 에너지 수준은 CO2에서 에탄올, 프로판올 등 C2+로의 전환에 유리한 Gibbs 자유 결합 에너지를 나타낸다. 전체 반응의 결정 단계는 첫번째 CO 형성 (*CO2H + H+ + e- → *CO + H2O)이며, U = 0 V에서 오르막 1.57 eV로 계산되었다. 이를 통해, BN-GFLP상에서 CO2R의 DFT-계산된 자유 에너지는 해수 중의 CO2로부터 C2+를 형성할 수 있음을 알 수 있었다.In addition, the energy levels of all species on BN-GFLP exhibit Gibbs free binding energies favorable for the conversion of CO 2 to C 2+ such as ethanol and propanol. The crystalline phase of the overall reaction is the first CO formation (*CO 2 H + H + + e - → *CO + H 2 O), calculated to be 1.57 eV uphill at U = 0 V. Through this, it was found that the DFT-calculated free energy of CO 2 R on BN-GFLP can form C 2+ from CO 2 in seawater.

종합하면, 본 발명에 따른 이종원소 도핑 그래피틱 불완전 루이스 산-염기 쌍(GFLP) 촉매 캐소드를 이용하여 해수의 용존 CO2를 줄이기 위한 CO2 환원 배터리(CBS) 시스템을 개발하고, 87.6 % 패러데이 효율성으로 산성 해수를 회수하였다. 또한, 본 발명에 따른 GFLP는 새로운 이중 CO2 결합 모드를 제공하여 발열성 C-C 커플링으로 CO2R에서 유용한 다중 탄소 제품을 제공할 수 있고, 친환경적일 뿐만 아니라 다양한 분야에서 전기 화학적 촉매로 사용 가능하다.In summary, a CO 2 reduction battery (CBS) system for reducing dissolved CO 2 in seawater was developed using a heteroelement doped graphic incomplete Lewis acid-base pair (GFLP) catalyst cathode according to the present invention, and 87.6% Faraday efficiency to recover acidic seawater. In addition, the GFLP according to the present invention can provide a new double CO 2 bonding mode to provide a useful multi-carbon product in CO 2 R by exothermic CC coupling, and is environmentally friendly and can be used as an electrochemical catalyst in various fields do.

이상으로 본 발명의 특정한 부분을 상세히 기술하였는 바, 본 발명이 속한 기술분야에서 통상의 지식을 가진 자에게 있어서 이러한 구체적인 기술은 단지 바람직한 구현예일 뿐이며, 이에 본 발명의 범위가 제한되는 것이 아님은 명백하다. 본 발명이 속한 기술분야에서 통상의 지식을 가진 자라면 상기 내용을 바탕으로 본 발명의 범주 내에서 다양한 응용 및 변형을 행하는 것이 가능할 것이다.As the specific part of the present invention has been described in detail above, for those of ordinary skill in the art to which the present invention pertains, it is clear that these specific techniques are only preferred embodiments, and the scope of the present invention is not limited thereto. do. Those of ordinary skill in the art to which the present invention pertains will be able to make various applications and modifications within the scope of the present invention based on the above contents.

따라서, 본 발명의 실질적인 범위는 첨부된 특허청구범위와 그의 등가물에 의하여 정의된다고 할 것이다.Accordingly, the substantial scope of the present invention will be defined by the appended claims and their equivalents.

Claims (8)

루이스 산 및 염기 성분이 서로 쌍을 이루어 분자 내에 도입된 탄소나노물질로 구성되는 음극;
금속으로 구성되는 양극; 및
해수 전해질;을 포함하되,
상기 해수에 용해된 이산화탄소가 상기 음극의 탄소나노물질의 루이스 산 및 염기 성분과 반응하고,
상기 이산화탄소의 산소가 루이스 산에, 탄소가 루이스 염기에 각각 동적 공유결합을 형성하여 다중 활성 사이트를 확보하면서 발열반응을 통해 환원되는 것을 특징으로 하는, 그래피틱 불완전 루이스 산-염기 쌍(GFLP) 촉매를 이용한 해수 내 이산화탄소 환원 배터리 시스템.
a cathode composed of carbon nanomaterials in which Lewis acid and base components are paired with each other and introduced into the molecule;
an anode made of metal; and
seawater electrolyte; including,
Carbon dioxide dissolved in the seawater reacts with Lewis acid and base components of the carbon nanomaterial of the negative electrode,
Graffitially incomplete Lewis acid-base pair (GFLP) catalyst, characterized in that the oxygen of the carbon dioxide is reduced through an exothermic reaction while securing multiple active sites by forming dynamic covalent bonds with the Lewis acid and the carbon with the Lewis base, respectively Carbon dioxide reduction battery system in seawater using
제1항에 있어서, 상기 루이스 산 성분은 붕소, 주석, 아연, 구리, 비스무스, 몰리브덴, 텅스텐 및 바나듐으로 구성된 군으로부터 선택된 1종인 것을 특징으로 하는, 그래피틱 불완전 루이스 산-염기 쌍(GFLP) 촉매를 이용한 해수 내 이산화탄소 환원 배터리 시스템.According to claim 1, wherein the Lewis acid component is characterized in that one selected from the group consisting of boron, tin, zinc, copper, bismuth, molybdenum, tungsten and vanadium, a graffiti incomplete Lewis acid-base pair (GFLP) catalyst Carbon dioxide reduction battery system in seawater using 제1항에 있어서, 상기 루이스 염기 성분은 질소, 산소, 황, 인, 셀레늄, 텔루륨, 비소 및 안티모니로 구성된 군으로부터 선택된 1종인 것을 특징으로 하는, 그래피틱 불완전 루이스 산-염기 쌍(GFLP) 촉매를 이용한 해수 내 이산화탄소 환원 배터리 시스템.According to claim 1, wherein the Lewis base component is nitrogen, oxygen, sulfur, phosphorus, selenium, tellurium, arsenic and antimony, characterized in that one selected from the group consisting of, Graffitially incomplete Lewis acid-base pair (GFLP) ) Catalyst-based carbon dioxide reduction battery system in seawater. 제1항에 있어서, 상기 탄소나노물질은 그래핀, 환원 그래핀 옥사이드(reduced grapheme oxide, rGO), 탄소나노튜브, 탄소나노섬유, 흑연 또는 활성 탄소인 것을 특징으로 하는, 그래피틱 불완전 루이스 산-염기 쌍(GFLP) 촉매를 이용한 해수 내 이산화탄소 환원 배터리 시스템.According to claim 1, wherein the carbon nanomaterial is graphene, reduced graphene oxide (reduced grapheme oxide, rGO), carbon nanotubes, carbon nanofibers, graphite or activated carbon, characterized in that the graphitic incomplete Lewis acid- Carbon dioxide reduction battery system in seawater using base pairing (GFLP) catalysts. 제1항에 있어서, 상기 금속은 나트륨, 리튬, 니켈, 망간 및 상기 금속들의 합금 및 산화물로 구성된 군으로부터 선택된 1종인 것을 특징으로 하는, 그래피틱 불완전 루이스 산-염기 쌍(GFLP) 촉매를 이용한 해수 내 이산화탄소 환원 배터리 시스템.According to claim 1, wherein the metal is sodium, lithium, nickel, manganese, characterized in that one selected from the group consisting of alloys and oxides of the metals, Seawater using a graffiti incomplete Lewis acid-base pair (GFLP) catalyst My carbon dioxide reduction battery system. 제1항에 있어서, 상기 이산화탄소가 환원되면서 해수의 pH가 높아져 해수의 산성화를 방지하는 것을 특징으로 하는, 그래피틱 불완전 루이스 산-염기 쌍(GFLP) 촉매를 이용한 해수 내 이산화탄소 환원 배터리 시스템.The battery system for reducing carbon dioxide in seawater using a graffiti incomplete Lewis acid-base pair (GFLP) catalyst according to claim 1, wherein the pH of seawater increases as the carbon dioxide is reduced to prevent acidification of seawater. 제1항에 있어서, 상기 이산화탄소가 환원되어 에탄올 및 프로판올로 변환되는 것을 특징으로 하는, 그래피틱 불완전 루이스 산-염기 쌍(GFLP) 촉매를 이용한 해수 내 이산화탄소 환원 배터리 시스템.The carbon dioxide reduction battery system in seawater using a graffiti incomplete Lewis acid-base pair (GFLP) catalyst according to claim 1, wherein the carbon dioxide is reduced and converted into ethanol and propanol. 이산화탄소 환원용 촉매제에 있어서,
그래핀; 및
상기 그래핀 분자 내에 서로 쌍을 이루어 배치된 루이스 산 및 염기 성분;으로 구성되고,
상기 루이스 산에 이산화탄소의 산소가 공유결합을 형성하고, 상기 루이스 염기에 이산화탄소의 탄소가 공유결합을 형성하도록 하여 상기 이산화탄소가 환원되는 것을 특징으로 하는, 그래피틱 불완전 루이스 산-염기 쌍(GFLP)을 이용한 이산화탄소 환원용 촉매제.
In the catalyst for carbon dioxide reduction,
graphene; and
Consists of; Lewis acid and base components arranged in pairs in the graphene molecule;
A graphic incomplete Lewis acid-base pair (GFLP), characterized in that the oxygen of carbon dioxide forms a covalent bond with the Lewis acid and the carbon of carbon dioxide forms a covalent bond with the Lewis base, so that the carbon dioxide is reduced A catalyst for the reduction of carbon dioxide.
KR1020200110606A 2020-08-31 2020-08-31 Carbon dioxide Reduction Catalyst using Graphitic Frustrated Lewis Pair and Carbon dioxide Reduction Battery System in Seawater using the same KR102427852B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020200110606A KR102427852B1 (en) 2020-08-31 2020-08-31 Carbon dioxide Reduction Catalyst using Graphitic Frustrated Lewis Pair and Carbon dioxide Reduction Battery System in Seawater using the same
PCT/KR2021/011490 WO2022045816A1 (en) 2020-08-31 2021-08-27 Reduction catalyst using graphitic frustrated lewis acid-base pair (gflp), and reduction system using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200110606A KR102427852B1 (en) 2020-08-31 2020-08-31 Carbon dioxide Reduction Catalyst using Graphitic Frustrated Lewis Pair and Carbon dioxide Reduction Battery System in Seawater using the same

Publications (2)

Publication Number Publication Date
KR20220028949A KR20220028949A (en) 2022-03-08
KR102427852B1 true KR102427852B1 (en) 2022-08-01

Family

ID=80813542

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200110606A KR102427852B1 (en) 2020-08-31 2020-08-31 Carbon dioxide Reduction Catalyst using Graphitic Frustrated Lewis Pair and Carbon dioxide Reduction Battery System in Seawater using the same

Country Status (1)

Country Link
KR (1) KR102427852B1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003326173A (en) 2002-05-13 2003-11-18 Asahi Kasei Corp Lewis acid catalyst composition
JP2017127863A (en) * 2016-01-20 2017-07-27 国立大学法人 筑波大学 Oxygen reduction catalyst, activation method of the same, and fuel cell catalyst

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101833755B1 (en) 2016-11-02 2018-03-02 한국과학기술연구원 Catalyst for electrochemically converting carbon dioxide and method for preparing the same, apparatus and method for electrochemically converting carbon dioxide using the same
US11165090B2 (en) * 2017-09-22 2021-11-02 HHeLI, LLC Construction of ultra high capacity performance battery cells

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003326173A (en) 2002-05-13 2003-11-18 Asahi Kasei Corp Lewis acid catalyst composition
JP2017127863A (en) * 2016-01-20 2017-07-27 国立大学法人 筑波大学 Oxygen reduction catalyst, activation method of the same, and fuel cell catalyst

Also Published As

Publication number Publication date
KR20220028949A (en) 2022-03-08

Similar Documents

Publication Publication Date Title
Zhang et al. Multiwall carbon nanotube encapsulated Co grown on vertically oriented graphene modified carbon cloth as bifunctional electrocatalysts for solid-state Zn-air battery
Guo et al. Electrochemical nitrogen fixation and utilization: theories, advanced catalyst materials and system design
Zhang et al. Liquid-phase exfoliated ultrathin Bi nanosheets: Uncovering the origins of enhanced electrocatalytic CO2 reduction on two-dimensional metal nanostructure
Xue et al. Graphdiyne‐supported NiCo2S4 nanowires: a highly active and stable 3D bifunctional electrode material
Yan et al. Callistemon-like Zn and S codoped CoP nanorod clusters as highly efficient electrocatalysts for neutral-pH overall water splitting
Xing et al. Electro-synthesis of 3D porous hierarchical Ni–Fe phosphate film/Ni foam as a high-efficiency bifunctional electrocatalyst for overall water splitting
Wang et al. An Fe-doped NiV LDH ultrathin nanosheet as a highly efficient electrocatalyst for efficient water oxidation
Zhao et al. Facile fabrication of robust 3D Fe–NiSe nanowires supported on nickel foam as a highly efficient, durable oxygen evolution catalyst
Guo et al. A rechargeable Al–N 2 battery for energy storage and highly efficient N 2 fixation
Wang et al. A Zn–CO2 flow battery generating electricity and methane
Mori Electrochemical properties of a rechargeable aluminum–air battery with a metal–organic framework as air cathode material
Sun et al. Recent advances in rechargeable Li–CO2 batteries
Lu et al. Dissolution of the heteroatom dopants and formation of ortho-quinone moieties in the doped carbon materials during water electrooxidation
Hao et al. Plasma-treated ultrathin ternary FePSe3 nanosheets as a bifunctional electrocatalyst for efficient zinc–air batteries
Zhang et al. A high‐performance transition‐metal phosphide electrocatalyst for converting solar energy into hydrogen at 19.6% STH efficiency
Tian et al. Bi–Sn oxides for highly selective CO2 electroreduction to formate in a wide potential window
Yao et al. Functionalizing titanium disilicide nanonets with cobalt oxide and palladium for stable Li oxygen battery operations
Xu et al. Hierarchical nanoporous V2O3 nanosheets anchored with alloy nanoparticles for efficient electrocatalysis
US10450663B2 (en) Electrochemical catalyst for conversion of nitrogen gas to ammonia
JP2023522183A (en) Manufacturing method for electrocatalyst electrode
Li et al. A pyrene-modified cobalt salophen complex immobilized on multiwalled carbon nanotubes acting as a precursor for efficient electrocatalytic water oxidation
Alsabban et al. Design and Mechanistic Study of Highly Durable Carbon-Coated Cobalt Diphosphide Core–Shell Nanostructure Electrocatalysts for the Efficient and Stable Oxygen Evolution Reaction
Yang et al. Phosphorus‐Doped Graphene Aerogel as Self‐Supported Electrocatalyst for CO2‐to‐Ethanol Conversion
Liao et al. Lithium/bismuth co-functionalized phosphotungstic acid catalyst for promoting dinitrogen electroreduction with high Faradaic efficiency
Chen et al. Tuning the d-band center of NiC 2 O 4 with Nb 2 O 5 to optimize the Volmer step for hydrazine oxidation-assisted hydrogen production

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant