KR102425951B1 - Method of preparing transition metal nanoparticle-decorated manganese oxide nanorod electrocatalysts and nanorod electrocatalysts prepared thereby - Google Patents

Method of preparing transition metal nanoparticle-decorated manganese oxide nanorod electrocatalysts and nanorod electrocatalysts prepared thereby Download PDF

Info

Publication number
KR102425951B1
KR102425951B1 KR1020220023218A KR20220023218A KR102425951B1 KR 102425951 B1 KR102425951 B1 KR 102425951B1 KR 1020220023218 A KR1020220023218 A KR 1020220023218A KR 20220023218 A KR20220023218 A KR 20220023218A KR 102425951 B1 KR102425951 B1 KR 102425951B1
Authority
KR
South Korea
Prior art keywords
transition metal
manganese
mno
nanorod
manganese oxide
Prior art date
Application number
KR1020220023218A
Other languages
Korean (ko)
Inventor
오석중
쿠마르 아니켓
나지르 아크사
Original Assignee
주식회사 에코나인
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 에코나인 filed Critical 주식회사 에코나인
Priority to KR1020220023218A priority Critical patent/KR102425951B1/en
Application granted granted Critical
Publication of KR102425951B1 publication Critical patent/KR102425951B1/en
Priority to PCT/KR2023/002467 priority patent/WO2023163485A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/70Catalysts, in general, characterised by their form or physical properties characterised by their crystalline properties, e.g. semi-crystalline
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/32Manganese, technetium or rhenium
    • B01J23/34Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • B01J23/52Gold
    • B01J35/0033
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • H01M4/8626Porous electrodes characterised by the form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8882Heat treatment, e.g. drying, baking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2235/00Indexing scheme associated with group B01J35/00, related to the analysis techniques used to determine the catalysts form or properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2235/00Indexing scheme associated with group B01J35/00, related to the analysis techniques used to determine the catalysts form or properties
    • B01J2235/15X-ray diffraction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2235/00Indexing scheme associated with group B01J35/00, related to the analysis techniques used to determine the catalysts form or properties
    • B01J2235/30Scanning electron microscopy; Transmission electron microscopy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Catalysts (AREA)
  • Inert Electrodes (AREA)

Abstract

The present invention provides an electrodecatalyst which is cheaper than Pt-C which is currently widely used commercially and has excellent electrochemical activity comparable thereto, and a preparation method thereof. The catalyst of the present invention is prepared through a combustion path and transition metal nanoparticles are decorated on manganese oxide.

Description

전이금속 나노입자가 장식된 망간산화물 나노로드 전극촉매의 제조 방법 및 그에 의해 제조된 나노로드 전극촉매 {METHOD OF PREPARING TRANSITION METAL NANOPARTICLE-DECORATED MANGANESE OXIDE NANOROD ELECTROCATALYSTS AND NANOROD ELECTROCATALYSTS PREPARED THEREBY} Manufacturing method of manganese oxide nanorod electrocatalyst decorated with transition metal nanoparticles and nanorod electrocatalyst prepared thereby

본 발명은 연료전지용 촉매 및 촉매 제조 방법에 관한 것이다. 보다 구체적으로는, 물분해 산화/환원 반응, 수소 생산반응, CO2 환원반응 등 다양한 전기화학 촉매반응에 적용 가능한 연료전지용 촉매, 전극 및 전기화학반응에 관한 것이다. The present invention relates to a catalyst for a fuel cell and a method for preparing the catalyst. More specifically, it relates to a catalyst for a fuel cell, an electrode, and an electrochemical reaction applicable to various electrochemical catalytic reactions such as water decomposition oxidation/reduction reaction, hydrogen production reaction, and CO 2 reduction reaction.

연료전지(Fuel Cell)는 화학에너지를 전기에너지로 변환하는 장치로서, 기존의 내연기관에 비해 효율이 뛰어나며 공해물질의 배출도 거의 없다는 장점을 지닌 미래의 대체 에너지 기술이다.A fuel cell is a device that converts chemical energy into electrical energy, and it is a future alternative energy technology that has the advantage of being more efficient than the existing internal combustion engine and emitting almost no pollutants.

연료전지는 일반적으로 산화극, 환원극, 전해질로 구성되며, 사용되는 전해질에 따라 크게 저온형과 고온형으로 분류되어진다. 작동 온도가 300℃ 이하인 저온형 연료전지의 경우 낮은 온도에서 높은 촉매반응성과 이온투과성을 가져야 원하는 양의 에너지를 얻을 수 있으므로, 전해질과 더불어 전극촉매가 연료전지의 전체 성능을 결정하는 중요한 요소이다. 현재 산업계에서는 연료전지의 전극촉매로 백금이 널리 사용되고 있는데, 백금 자체가 고가이므로 백금의 사용량을 줄이거나 단위 무게당 활성을 최대화하는 것이 매우 중요하다. 상기와 같은 목적을 달성하면서도 촉매의 반응 활성 영역을 증대시키기 위해서는 백금 입자의 크기를 나노 크기로 조절하여야 한다. 그러나 백금 입자의 크기를 나노 크기로 조절한다 하더라도 Pt-C는 안정성이 부족하여 촉매로서 한계가 있다. 예를 들어, 연료전지로 작동되는 자동차는 정지 및 시동이 필요한데 더 높은 캐소드 전위 동안, 전기 촉매의 백금 및 탄소지지체의 일부는 산화되는 경향이 있어 탄소 부식이 일어나는 동안 백금 이온의 용해를 유발한다. 백금 이온은 적어도 양성자 전도성 막까지 이동가능하다. 양극에서 양성자 전도성 막을 통과하는 수소는 백금이온을 백금 나노입자로 후속 환원시킨다. 따라서, 백금이 음극에서 고갈되는 반면 양성자 전도막에 백금이 축적되면 수소가 음극으로 이동하는 것을 방해하고 탄소부식으로 인해 전자전도성이 감속하게 된다. 이러한 문제는 연료전지의 작동 중 전위 손실을 유발하여 연료전지 효율성을 떨어지게 만든다. A fuel cell is generally composed of an oxidizing electrode, a reducing electrode, and an electrolyte, and is largely classified into a low-temperature type and a high-temperature type depending on the electrolyte used. In the case of a low-temperature fuel cell with an operating temperature of 300° C. or less, a desired amount of energy can be obtained by having high catalytic reactivity and ion permeability at a low temperature. Currently, platinum is widely used as an electrode catalyst for fuel cells in the industry. Since platinum itself is expensive, it is very important to reduce the amount of platinum used or to maximize the activity per unit weight. In order to achieve the above object and increase the reactive active area of the catalyst, the size of the platinum particles should be adjusted to a nano size. However, even if the size of the platinum particles is adjusted to a nano size, Pt-C is limited as a catalyst due to lack of stability. For example, a fuel cell powered vehicle needs to be stopped and started. During higher cathode potentials, the platinum of the electrocatalyst and some of the carbon support tend to oxidize, causing dissolution of platinum ions during carbon corrosion. Platinum ions are mobile at least to the proton conducting membrane. Hydrogen passing through the proton-conducting membrane at the anode subsequently reduces the platinum ions to platinum nanoparticles. Therefore, while platinum is depleted at the cathode, if platinum accumulates in the proton conducting film, it prevents hydrogen from moving to the cathode and the electron conductivity is slowed down due to carbon corrosion. This problem causes potential loss during operation of the fuel cell, thereby reducing fuel cell efficiency.

상기와 같은 문제점을 해결하고자, 본 발명자는 경제적이면서도 제조가 용이하고, 산화 및 용해 효과에 내성이 있는 전이금속 산화물계 전기촉매를 개발하기에 이른 것이다. 따라서, 본 발명의 전기촉매는 기존의 Pt-C를 대체하여 비용 및 기능면에서 효율적인 촉매로서 연료전지의 상업화를 크게 촉진할 수 있을 것이다. 본 발명은 전이금속-MnxOy 복합 전기촉매로서, 전이금속-MnxOy 복합 입자는 원자가가 0이거나 또는 부분적으로 대전된 금속 원자의 얇은 층에 의해 부분적으로 캡슐화된 MnxOy 코어를 포함한다. 즉, MnxOy 코어는 원자가가 0이거나 또는 부분적으로 하전된 금속 클러스터에 결합된다. 상기 얇은 층은 서브단일층, 단층, 이중층 또는 삼중층이다. 이러한 특징을 갖는 본 발명은 Pt-C와 견줄만하거나 개선된 내구성을 갖게 한다. 즉, 본 발명에서 지지체 역할을 하는 MxOy와 전이금속과의 결합상호작용은 Pt-C의 백금과 탄소지지체의 결합에 비해 강하기 때문에 금속이 침출되는 문제를 억제할 수 있을 것이다. 연료전지 등 작동 조건에서 훨씬 안정적인 전이금속 산화물 지지체의 결정구조와 상을 정밀하게 제어할 수 있을 것이다.In order to solve the above problems, the present inventors have come to develop a transition metal oxide-based electrocatalyst that is economical, easy to manufacture, and resistant to oxidation and dissolution effects. Therefore, the electrocatalyst of the present invention can greatly promote the commercialization of fuel cells as an efficient catalyst in terms of cost and function by replacing the existing Pt-C. The present invention is a transition metal-Mn x O y composite electrocatalyst, wherein the transition metal-Mn x O y composite particles have a Mn x O y core partially encapsulated by a thin layer of valence zero or partially charged metal atoms. includes That is, the Mn x O y core is bound to a zero-valence or partially charged metal cluster. The thin layer may be a sub-monolayer, a single layer, a double layer or a triple layer. The present invention with these characteristics has comparable or improved durability to Pt-C. That is, since the bonding interaction between M x O y serving as a support in the present invention and the transition metal is stronger than the bonding between platinum and carbon support of Pt-C, the problem of metal leaching can be suppressed. It will be possible to precisely control the crystal structure and phase of the transition metal oxide support, which is much more stable under operating conditions such as fuel cells.

본 발명의 목적은 높은 안정성과 다양한 화학반응에 활용 가능한 연료전지용 전극촉매의 제조 방법을 제공하기 위한 것이다.An object of the present invention is to provide a method for manufacturing an electrode catalyst for a fuel cell that has high stability and can be used for various chemical reactions.

본 발명의 다른 목적은 높은 촉매 효율을 갖는 연료전지용 전극촉매의 제조 방법을 제공하기 위한 것이다.Another object of the present invention is to provide a method for preparing an electrode catalyst for a fuel cell having high catalytic efficiency.

본 발명의 또다른 목적은 경제성이 높은 연료전지용 전극촉매의 제조 방법을 제공하기 위한 것이다.Another object of the present invention is to provide a method for manufacturing an electrode catalyst for a fuel cell that is highly economical.

본 발명의 또다른 목적은 제조공정이 단순하여 효율성이 높은 연료전지용 전극촉매의 제조 방법을 제공하기 위한 것이다.Another object of the present invention is to provide a method for manufacturing an electrode catalyst for a fuel cell with high efficiency due to a simple manufacturing process.

본 발명의 또다른 목적은 상기의 방법으로 제조된 연료전지용 전극촉매를 제공하기 위한 것이다. Another object of the present invention is to provide an electrode catalyst for a fuel cell prepared by the above method.

본 발명의 상기 목적은 하기 설명되는 본 발명에 의하여 모두 달성될 수 있고 이상에서 언급한 목적으로 제한되지 않는다.The above objects of the present invention can all be achieved by the present invention described below and are not limited to the above-mentioned objects.

상기 과제를 해결하기 위해, 본 발명의 나노로드(nanorod) 전극촉매는 단분산 전이금속 나노입자(NPs)가 장식된 망간산화물로, 산소 결핍이 존재하는 헤테로구조를 갖고 하기 화학식 1로 표현된다:In order to solve the above problems, the nanorod electrocatalyst of the present invention is a manganese oxide decorated with monodisperse transition metal nanoparticles (NPs), has a heterostructure in which oxygen deficiency exists, and is represented by the following Chemical Formula 1:

[화학식 1] A-MnxOy [Formula 1] A-Mn x O y

상기 화학식 1에서, A는 금(Au), 백금(Pt), 팔라듐(Pd), 루테늄(Ru), 은(Ag), 니켈(Ni), 철(Fe), 코발트(Co)로 이루어진 군에서 선택된 적어도 하나 이상의 원소를 포함할 수 있고, x는 1≤x≤3, y는 1≤y≤7이다. 전이금속 나노입자(NPs)가 장식된 망간산화물은 원자가가 0이거나 또는 부분적으로 대전된 금속 원자의 얇은 층에 의해 부분적으로 캡슐화된 MnxOy 코어를 포함한다.In Formula 1, A is gold (Au), platinum (Pt), palladium (Pd), ruthenium (Ru), silver (Ag), nickel (Ni), iron (Fe), from the group consisting of cobalt (Co) It may include at least one selected element, x is 1≤x≤3, y is 1≤y≤7. Manganese oxides decorated with transition metal nanoparticles (NPs) contain a Mn x O y core partially encapsulated by a thin layer of zero valence or partially charged metal atoms.

상기 화학식 1에서 지지체의 역할을 하는 MnxOy는 MnO, Mn3O4, Mn2O3, α-MnO2, β-MnO2, γ-MnO2, δ-MnO2, MnO3, Mn2O7, Mn2O4 중 어느 하나일 수 있다. Mn x O y serving as a support in Formula 1 is MnO, Mn 3 O 4 , Mn 2 O 3 , α-MnO 2 , β-MnO 2 , γ-MnO 2 , δ-MnO 2 , MnO 3 , Mn It may be any one of 2 O 7 and Mn 2 O 4 .

본 발명의 나노로드(nanorod) 전극촉매의 제조 방법은, The method for preparing a nanorod electrocatalyst of the present invention comprises:

망간 전구체를 증류수에 용해시켜 망간 전구체 수용액을 제조하는 단계; preparing a manganese precursor aqueous solution by dissolving the manganese precursor in distilled water;

상기 망간 전구체 수용액에 연료(fuel)를 교반 하에 첨가하는 단계; adding fuel to the aqueous manganese precursor solution under stirring;

상기 망간 전구체 수용액에 전이금속 화합물 용액 및 착화제(complexing agent)를 첨가하여 단분산(monodispersed) 전이금속 나노입자(NPs)가 장식된(decorated) 망간 산화물을 생성하는 단계;generating a manganese oxide decorated with monodispersed transition metal nanoparticles (NPs) by adding a transition metal compound solution and a complexing agent to the aqueous manganese precursor solution;

상기 망간 산화물을 겔(gel)화하기 위해 교반하는 단계; stirring to gel the manganese oxide;

상기 겔화된 망간 산화물에서 휘발성 불순물을 제거하고 고체화하기 위하여 가열하는 단계;heating to remove volatile impurities from the gelled manganese oxide and solidify;

상기 고체화된 망간 산화물을 분쇄하여 분말형태의 혼합물을 얻는 단계; 및 pulverizing the solidified manganese oxide to obtain a powdery mixture; and

상기 혼합물을 소성하여 휘발성 불순물을 제거하고 결정도를 높이는 단계를 포함한다.and calcining the mixture to remove volatile impurities and increase crystallinity.

상기 망간 전구체는 질산망간, 아세트산 망간 및 황산망간 중에서 선택된 하나 이상인 것을 특징으로 한다. The manganese precursor is characterized in that at least one selected from manganese nitrate, manganese acetate, and manganese sulfate.

상기 연료(fuel)는 우레아(CH4N2O), 글리신(C2H5NO2), 글루코오스(C6H12O6), 수크로오스(C12H22O11), 카르보히드라지드(CH6N4O), 옥살리다히드라지드(C2H6N4O2), 헥사메틸렌테트라민(C6H12N4) 및 아세틸아세톤(C5H8O2) 중에서 선택되는 하나 이상인 것일 수 있다. The fuel is urea (CH 4 N 2 O), glycine (C 2 H 5 NO 2 ), glucose (C 6 H 12 O 6 ), sucrose (C 12 H 22 O 11 ), carbohydrazide ( CH 6 N 4 O), oxalidahydrazide (C 2 H 6 N 4 O 2 ), hexamethylenetetramine (C 6 H 12 N 4 ) and acetylacetone (C 5 H 8 O 2 ) at least one selected from it could be

상기 착화제(complexing agent)는 환원제(reducing agent)로서 구연산(citric acid) 및 타닌산(tannic acid) 중에서 선택되는 하나 이상인 것일 수 있고 양이온 금속과 2:1 비율의 양으로 첨가된다. The complexing agent may be one or more selected from citric acid and tannic acid as a reducing agent, and is added in an amount of 2:1 with a cationic metal.

상기 망간 전구체 수용액을 실온에서 상기 연료와 2:1 비율로 혼합하여 교반한다. The aqueous solution of the manganese precursor is mixed with the fuel in a 2:1 ratio at room temperature and stirred.

상기 망간 전구체 수용액에 상기 전이금속 화합물 용액을 10 내지 20중량%로 첨가한 다음 착화제를 첨가한다.10 to 20 wt% of the transition metal compound solution is added to the manganese precursor aqueous solution, and then a complexing agent is added.

상기 전이금속 화합물은 전이금속 질산염, 전이금속 아세트산염 및 전이금속 할로겐화물 중에서 선택되는 하나 이상인 것일 수 있다.The transition metal compound may be at least one selected from transition metal nitrate, transition metal acetate, and transition metal halide.

상기 단분산 전이금속 나노입자가 장식된 망간 산화물은 산소 결핍이 존재하는 헤테로구조를 가질 수 있다. The manganese oxide decorated with the monodisperse transition metal nanoparticles may have a heterostructure in which oxygen deficiency exists.

상기 망간 산화물을 겔(gel)화하기 위해 교반하는 단계에서 교반은 50 내지 90℃에서 용매의 60% 내지 70%가 증발되어 겔이 될 때까지 수행된다.In the stirring step to gel the manganese oxide, stirring is performed at 50 to 90° C. until 60% to 70% of the solvent is evaporated to form a gel.

상기 겔화된 망간 산화물에서 휘발성 불순물을 제거하고 고체화하기 위하여 가열하는 단계는 수소(H2) 가스와 질소(N2) 가스와 같은 불활성 가스의 혼합가스 하에서 이루어진다. 수열 합성 온도는 불순물 제거 및 망간 산화물을 고체화하기 위해 2 내지 5시간 동안 200 내지 250℃ 까지 증가된다. 상기 혼합가스 중 수소 가스는 10 내지 40vol%를 갖는다. The step of heating to remove volatile impurities from the gelled manganese oxide and solidify is performed under a mixed gas of an inert gas such as hydrogen (H 2 ) gas and nitrogen (N 2 ) gas. The hydrothermal synthesis temperature is increased to 200 to 250° C. for 2 to 5 hours to remove impurities and solidify manganese oxide. Hydrogen gas in the mixed gas has 10 to 40 vol%.

상기 고체화된 망간 산화물을 모르타르를 이용하여 분쇄하여 분말 형태의 혼합물을 만드는데, 상기 분말 형태의 혼합물의 입자크기는 20nm 이상 100nm 이하인 것을 특징으로 한다. The solidified manganese oxide is pulverized using a mortar to make a powder mixture, and the particle size of the powder mixture is 20 nm or more and 100 nm or less.

상기 혼합물을 소성(calcinating)하여 휘발성 불순물을 제거하고 결정도를 높이는 단계는 1 내지 4시간 동안 500 내지 800℃에서 수행된다.The step of calcinating the mixture to remove volatile impurities and increase crystallinity is performed at 500 to 800° C. for 1 to 4 hours.

이하 본 발명의 구체적인 내용을 하기에 상세히 설명한다.Hereinafter, the specific content of the present invention will be described in detail.

본 발명에 따른 전극촉매의 제조 방법 및 그에 의해 제조된 전극촉매에 의하면, 전극 내에서 발생되는 지지체와 촉매의 분리를 막을 수 있어 높은 안정성과 높은 촉매 효율을 지닌다. 또한, 용액 연소 경로를 통해 전극촉매의 제조공정을 단순화하고, 백금 사용량을 줄일 수 있어 경제성이 높은 효과가 있다. 본 발명의 효과는 이상에서 언급한 효과로 한정되지 않는다. 본 발명의 효과는 이하의 설명에서 추론 가능한 모든 효과를 포함하는 것으로 이해되어야 할 것이다.According to the method for producing an electrocatalyst according to the present invention and the electrocatalyst prepared thereby, it is possible to prevent separation of the catalyst and the support generated in the electrode, and thus has high stability and high catalytic efficiency. In addition, it is possible to simplify the manufacturing process of the electrocatalyst through the solution combustion route and reduce the amount of platinum used, so that it is highly economical. The effects of the present invention are not limited to the above-mentioned effects. It should be understood that the effects of the present invention include all effects that can be inferred from the following description.

도 1은 연소 경로에 따른 MnxOy 및 Au-MnxOy 각각의 X선 회절(XRD)을 측정한 결과이다.
도 2는 연소 경로에 따른 MnxOy 및 Au-MnxOy 각각의 BET(Brunauer- Emmett-Teller) 표면적을 도시한다.
도 3은 MnxOy 및 Au-MnxOy 전기촉매의 전계방사형 주사전자현미경(FESEM)으로 촬영한 이미지를 나타낸다.
도 4a는 MnxOy 및 Au-MnxOy 전기촉매의 조사 스캔 이미지, 도 4b는 Mn2p의 디콘볼팅된(deconvoluted) 원소 스캔 이미지, 도 4c는 O1s의 디콘볼팅된 원소 스캔 이미지, 4d는 MnxOy 및 Au-MnxOy 전기촉매의 Au4f 스펙트럼의 디콘볼팅된 원소 스캔 이미지를 나타낸다.
도 5는 Pt-MnxOy, Pd-MnxOy 및 Au-MnxOy 전기촉매에 대한 TEM(Transmission Electron Microscopy) 및 HR-TEM(High-Resolution Transmission Electron Microscopy) 이미지이다.
도 6은 Pt-MnxOy 전기촉매에 대한 화학량 적량의 망간(Mn), 산소(O) 및 백금(Pt), Pd-MnxOy 전기촉매에 대한 화학량 적량의 망간(Mn), 산소(O) 및 팔라듐(Pd) 및 Au-MnxOy 전기촉매에 대한 화학량 적량의 망간(Mn), 산소(O) 및 금(Au)의 존재를 보여주는 EDS(Energy Dispersive Spectroscopy) 분석 이미지이다.
도 7은 회전 디스크 전극(RDE)을 사용하여 MnxOy, Au-MnxOy, Pt-C, Pt-MnxOy Pd-MnxOy의 전기화학적 활성의 정도를 측정한 LSV(Linear Sweep Voltammetry) 그래프이다.
1 is a result of measuring X-ray diffraction (XRD) of each of Mn x O y and Au-Mn x O y along a combustion path.
Figure 2 shows the BET (Brunauer- Emmett-Teller) surface area of each of Mn x O y and Au-Mn x O y along the combustion path.
3 shows images taken with a field emission scanning electron microscope (FESEM) of Mn x O y and Au-Mn x O y electrocatalysts.
Figure 4a is an irradiation scan image of Mn x O y and Au-Mn x O y electrocatalyst, Figure 4b is a deconvoluted elemental scan image of Mn2p, Figure 4c is a deconvolted elemental scan image of O1s, 4d is Deconvolted elemental scan images of Au4f spectra of Mn x O y and Au-Mn x O y electrocatalysts are shown.
5 is Pt-Mn x O y , Transmission Electron Microscopy (TEM) and High-Resolution Transmission Electron Microscopy (HR-TEM) images of Pd-Mn x O y and Au-Mn x O y electrocatalysts.
6 shows stoichiometric amounts of manganese (Mn), oxygen (O) and platinum (Pt) for Pt-Mn x O y electrocatalyst; stoichiometric amounts of manganese (Mn), oxygen (O) and palladium (Pd) and Au-Mn x O y electrocatalyst for stoichiometric amounts of manganese (Mn), oxygen (O) for Pd-Mn x O y electrocatalyst and EDS (Energy Dispersive Spectroscopy) analysis images showing the presence of gold (Au).
7 shows Mn x O y , using a rotating disk electrode (RDE). Au-Mn x O y , Pt-C, Pt-Mn x O y and This is a linear sweep voltammetry (LSV) graph measuring the degree of electrochemical activity of Pd-Mn x O y .

이하, 본 발명의 구체적인 실시형태에 대하여 더 상세하게 설명한다.Hereinafter, specific embodiments of the present invention will be described in more detail.

본 발명의 전기촉매는 용액 연소 방법(solution combustion route)을 사용하여 얻어지는데 모든 반응물들을 하나의 비커에 모두 넣고 가열하여 반응하기 때문에 별도의 복잡한 실험도구나 여과과정을 필요로 하지 않아 효율성 및 경제성이 높다. The electrocatalyst of the present invention is obtained using a solution combustion route, and since all reactants are put in a single beaker and heated to react, it does not require a separate complicated experimental tool or filtration process, resulting in efficiency and economical efficiency. high.

전극촉매Electrocatalyst

본 발명의 나노로드(nanorod) 전극촉매는 단분산 전이금속 나노입자(NPs)가 장식된 망간산화물로, 산소 결핍이 존재하는 헤테로구조를 갖고 하기 화학식 1로 표현된다: The nanorod electrocatalyst of the present invention is a manganese oxide decorated with monodisperse transition metal nanoparticles (NPs), has a heterostructure in which oxygen deficiency exists, and is represented by the following Chemical Formula 1:

[화학식 1] A-MnxOy [Formula 1] A-Mn x O y

상기 화학식 1에서, A는 금(Au), 백금(Pt), 팔라듐(Pd), 루테늄(Ru), 은(Ag), 니켈(Ni), 철(Fe), 코발트(Co)로 이루어진 군에서 선택된 적어도 하나 이상의 원소를 포함할 수 있고, x는 1≤x≤3, y는 1≤y≤7이다. 전이금속 나노입자(NPs)가 장식된 망간산화물은 원자가가 0이거나 또는 부분적으로 대전된 금속 원자의 얇은 층에 의해 부분적으로 캡슐화된 MnxOy 코어를 포함한다.In Formula 1, A is gold (Au), platinum (Pt), palladium (Pd), ruthenium (Ru), silver (Ag), nickel (Ni), iron (Fe), from the group consisting of cobalt (Co) It may include at least one selected element, x is 1≤x≤3, y is 1≤y≤7. Manganese oxides decorated with transition metal nanoparticles (NPs) contain a Mn x O y core partially encapsulated by a thin layer of zero valence or partially charged metal atoms.

상기 화학식 1에서 지지체의 역할을 하는 MnxOy는 MnO, Mn3O4, Mn2O3, α-MnO2, β-MnO2, γ-MnO2, δ-MnO2, MnO3, Mn2O7, Mn2O4 중 어느 하나일 수 있다.Mn x O y serving as a support in Formula 1 is MnO, Mn 3 O 4 , Mn 2 O 3 , α-MnO 2 , β-MnO 2 , γ-MnO 2 , δ-MnO 2 , MnO 3 , Mn It may be any one of 2 O 7 and Mn 2 O 4 .

전극촉매의 제조 방법Method for manufacturing electrocatalyst

본 발명의 나노로드 전극촉매의 제조 방법은, The manufacturing method of the nanorod electrocatalyst of the present invention comprises:

망간 전구체를 증류수에 용해시켜 망간 전구체 수용액을 제조하는 단계; preparing a manganese precursor aqueous solution by dissolving the manganese precursor in distilled water;

상기 망간 전구체 수용액에 연료(fuel)를 교반 하에 첨가하는 단계; adding fuel to the aqueous manganese precursor solution under stirring;

상기 망간 전구체 수용액에 전이금속 화합물 용액 및 착화제(complexing agent)를 첨가하여 단분산(monodispersed) 전이금속 나노입자(NPs)가 장식된 망간 산화물을 생성하는 단계;generating a manganese oxide decorated with monodispersed transition metal nanoparticles (NPs) by adding a transition metal compound solution and a complexing agent to the aqueous manganese precursor solution;

상기 망간 산화물을 겔(gel)화하기 위해 교반하는 단계; stirring to gel the manganese oxide;

상기 겔화된 망간 산화물에서 휘발성 불순물을 제거하고 고체화하기 위하여 가열하는 단계;heating to remove volatile impurities from the gelled manganese oxide and solidify;

상기 고체화된 망간 산화물을 분쇄하여 분말형태의 혼합물을 얻는 단계; 및 pulverizing the solidified manganese oxide to obtain a powdery mixture; and

상기 혼합물을 소성하여 휘발성 불순물을 제거하고 결정도를 높이는 단계를 포함한다.and calcining the mixture to remove volatile impurities and increase crystallinity.

상기 망간 전구체는 질산망간, 아세트산 망간 및 황산망간 중에서 선택된 하나 이상인 것을 특징으로 한다. The manganese precursor is characterized in that at least one selected from manganese nitrate, manganese acetate, and manganese sulfate.

상기 연료(fuel)는 우레아(CH4N2O), 글리신(C2H5NO2), 글루코오스(C6H12O6), 수크로오스(C12H22O11), 카르보히드라지드(CH6N4O), 옥살리다히드라지드(C2H6N4O2), 헥사메틸렌테트라민(C6H12N4) 및 아세틸아세톤(C5H8O2) 중에서 선택되는 하나 이상인 것일 수 있다. The fuel is urea (CH 4 N 2 O), glycine (C 2 H 5 NO 2 ), glucose (C 6 H 12 O 6 ), sucrose (C 12 H 22 O 11 ), carbohydrazide ( CH 6 N 4 O), oxalidahydrazide (C 2 H 6 N 4 O 2 ), hexamethylenetetramine (C 6 H 12 N 4 ) and acetylacetone (C 5 H 8 O 2 ) at least one selected from it could be

상기 착화제(complexing agent)는 환원제(reducing agent)로서 구연산(citric acid) 및 타닌산(tannic acid) 중에서 선택되는 하나 이상인 것일 수 있고 양이온 금속과 2:1 비율의 양으로 첨가된다. 상기 착화제를 첨가하는 것은 혼합물의 적절한 균질성과 점도를 유지하기 위함이다.The complexing agent may be one or more selected from citric acid and tannic acid as a reducing agent, and is added in an amount of 2:1 with a cationic metal. The addition of the complexing agent is to maintain proper homogeneity and viscosity of the mixture.

상기 망간 전구체 수용액을 실온에서 상기 연료와 2:1 비율로 혼합하여 교반한다. 이를 MG(Manganese-Glycine) 용액이라 한다. The aqueous solution of the manganese precursor is mixed with the fuel in a 2:1 ratio at room temperature and stirred. This is called MG (Manganese-Glycine) solution.

상기 망간 전구체 수용액에 상기 전이금속 화합물 용액을 10 내지 20중량%로 첨가한 다음 착화제를 첨가한다.10 to 20 wt% of the transition metal compound solution is added to the manganese precursor aqueous solution, and then a complexing agent is added.

상기 전이금속 화합물은 전이금속 질산염, 전이금속 아세트산염 및 전이금속 할로겐화물 중에서 선택되는 하나 이상인 것일 수 있다. The transition metal compound may be at least one selected from transition metal nitrate, transition metal acetate, and transition metal halide.

상기 단분산 전이금속 나노입자가 장식된 망간 산화물은 산소 결핍이 존재하는 헤테로구조를 가질 수 있다. The manganese oxide decorated with the monodisperse transition metal nanoparticles may have a heterostructure in which oxygen deficiency exists.

상기 망간 산화물을 겔(gel)화하기 위해 교반하는 단계에서 교반은 50 내지 90℃에서 용매의 60% 내지 70%가 증발되어 겔이 될 때까지 수행된다.In the stirring step to gel the manganese oxide, stirring is performed at 50 to 90° C. until 60% to 70% of the solvent is evaporated to form a gel.

상기 겔화된 망간 산화물에서 휘발성 불순물을 제거하고 고체화하기 위하여 가열하는 단계는 수열 합성(hydrothermal synthesis)을 통하여 즉, 수소(H2) 가스와 질소(N2) 가스와 같은 불활성 가스의 혼합가스 하에서 이루어진다. 수열 합성 온도는 불순물 제거 및 망간 산화물을 고체화하기 위해 2 내지 5시간 동안 200 내지 250℃ 까지 증가된다. 그러나 이는 통상적인 열처리 온도로서 전구체로 사용하는 물질의 열분해가 가능한 온도에서 이루어져야 하는 것이 당연하고, 전구체의 종류에 따라 적절한 온도를 선택할 수 있으므로 상기 범위에 한정되는 것은 아니다. 상기 수소(H2) 가스와 불활성 가스의 혼합가스 하에서의 반응은 부분환원반응으로 단분산 전이금속 망간산화물 헤테로구조체에 산소결함을 형성한다. 상기 혼합가스 중 수소 가스는 10 내지 40vol%를 갖는다. 상기와 같은 방법을 용액 연소 경로라 한다. The step of heating to remove volatile impurities from the gelled manganese oxide and solidify is performed through hydrothermal synthesis, that is, under a mixed gas of an inert gas such as hydrogen (H 2 ) gas and nitrogen (N 2 ) gas. . The hydrothermal synthesis temperature is increased to 200 to 250° C. for 2 to 5 hours to remove impurities and solidify manganese oxide. However, this is a normal heat treatment temperature, and it is natural that it should be made at a temperature at which thermal decomposition of a material used as a precursor is possible, and an appropriate temperature can be selected according to the type of the precursor, so it is not limited to the above range. The hydrogen (H 2 ) gas and the reaction under a mixed gas of an inert gas form oxygen defects in the monodisperse transition metal manganese oxide heterostructure as a partial reduction reaction. Hydrogen gas in the mixed gas has 10 to 40 vol%. Such a method is referred to as a solution combustion route.

상기 고체화된 망간 산화물을 모르타르를 이용하여 분쇄하여 분말 형태의 혼합물을 만드는데, 상기 분말 형태의 혼합물의 입자크기는 20nm 이상 100nm 이하인 것을 특징으로 한다. The solidified manganese oxide is pulverized using a mortar to make a powder mixture, and the particle size of the powder mixture is 20 nm or more and 100 nm or less.

상기 혼합물을 소성(calcinating)하여 휘발성 불순물을 제거하고 결정도를 높이는 단계는 1 내지 4시간 동안 500 내지 800℃에서 수행된다. 상기 소성(calcinating)은 순수한 상을 얻기 위함이다.The step of calcinating the mixture to remove volatile impurities and increase crystallinity is performed at 500 to 800° C. for 1 to 4 hours. The calcinating is to obtain a pure phase.

후술하는 본 발명에 대한 상세한 설명은, 본 발명이 실시될 수 있는 특정 실시예를 예시로서 도시하는 첨부 도면을 참조한다. 이들 실시예는 당업자가 본 발명을 실시할 수 있기에 충분하도록 상세히 설명된다. 본 발명의 다양한 실시예는 서로 다르지만 상호 배타적일 필요는 없음이 이해되어야 한다. 예를 들어, 여기에 기재되어 있는 특정 형상, 구조 및 특성은 일 실시예에 관련하여 본 발명의 정신 및 범위를 벗어나지 않으면서 다른 실시예로 구현될 수 있다. 또한, 각각의 개시된 실시예 내의 개별 구성요소의 위치 또는 배치는 본 발명의 정신 및 범위를 벗어나지 않으면서 변경될 수 있음이 이해되어야 한다. 따라서, 후술하는 상세한 설명은 한정적인 의미로서 취하려는 것이 아니며, 본 발명의 범위는, 적절하게 설명된다면, 그 청구항들이 주장하는 것과 균등한 모든 범위와 더불어 첨부된 청구항에 의해서만 한정된다. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS [0012] DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS [0014] DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS [0016] Reference is made to the accompanying drawings, which show by way of illustration specific embodiments in which the present invention may be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to practice the present invention. It should be understood that the various embodiments of the present invention are different but need not be mutually exclusive. For example, certain shapes, structures, and characteristics described herein with respect to one embodiment may be implemented in other embodiments without departing from the spirit and scope of the invention. In addition, it should be understood that the location or arrangement of individual components within each disclosed embodiment may be changed without departing from the spirit and scope of the present invention. Accordingly, the detailed description set forth below is not intended to be taken in a limiting sense, and the scope of the present invention, if properly described, is limited only by the appended claims, along with all scope equivalents to those claimed.

이하에서는, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명을 용이하게 실시할 수 있도록 하기 위하여, 본 발명의 바람직한 실시예들에 관하여 첨부된 도면을 참조하여 상세히 설명하기로 한다. Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those of ordinary skill in the art can easily practice the present invention.

실시예1 - Au-MnExample 1 - Au-Mn xx OO yy 나노로드 전극촉매의 제조 Preparation of nanorod electrocatalyst

망간 전구체로는 망간 질산염(Mn(NO3)2)(Alfa Aesar), 전이금속 화합물로는 염화금(III)(AuCl3)(Sigma Alderich)을, 연료로는 글리신(C2H5NO2)(Alfa Aesar)을, 착화제 및 환원제로 구연산(Alfa Aesar)을 사용하였다. 800mg의 망간 질산염을 증류수에 용해시켜 전구체 수용액을 제조한 후, 자석교반기를 사용하여 교반 하에 1,600g의 글리신을 첨가하였다. 이 용액을 MG 용액이라 명명하였다. 그 다음, 0.2M 염화금산(choloroauric acid) 용액 5ml를 MG용액에 10중량%로 첨가한 다음 1,200mg의 구연산을 첨가한 후 용매의 60% 내지 70%가 증발되어 겔이 나타날 때까지 80℃를 유지하면서 교반하였다. 그 후, 겔화된 망간 산화물에서 휘발성 불순물을 제거하고 고체화하기 위하여 수소분위기(20%(v/v H2/N2)), 200-250℃에서 4시간 가열하였다. 이를 통해 고체화된 망간 산화물은 모르타르를 이용하여 20nm 이상 100nm 이하의 분말형태가 되도록 분쇄하였다. 마지막으로, 상기 분말을 500℃에서 2시간 동안 열처리하였다.Manganese nitrate (Mn(NO 3 ) 2 ) (Alfa Aesar) as a manganese precursor, gold(III) chloride (AuCl 3 ) (Sigma Alderich) as a transition metal compound, and glycine (C 2 H 5 NO 2 ) as a fuel (Alfa Aesar) was used, and citric acid (Alfa Aesar) was used as a complexing agent and a reducing agent. After dissolving 800 mg of manganese nitrate in distilled water to prepare an aqueous precursor solution, 1,600 g of glycine was added under stirring using a magnetic stirrer. This solution was named MG solution. Then, 5 ml of 0.2M choloroauric acid solution was added to the MG solution at 10% by weight, and then 1,200 mg of citric acid was added, and then 80° C. until 60% to 70% of the solvent was evaporated and a gel appeared. It was stirred while maintaining. Then, in order to remove volatile impurities from the gelled manganese oxide and solidify, it was heated in a hydrogen atmosphere (20% (v/v H 2 /N 2 )), 200-250° C. for 4 hours. The solidified manganese oxide was pulverized to a powder form of 20 nm or more and 100 nm or less using a mortar. Finally, the powder was heat treated at 500° C. for 2 hours.

실시예2- Pt-MnExample 2- Pt-Mn xx OO yy 나노로드 전극촉매의 제조 Preparation of nanorod electrocatalyst

망간 전구체로는 망간 질산염(Mn(NO3)2)(Alfa Aesar), 전이금속 화합물로는 염화백금(PtCl4)(Sigma Alderich)을, 연료로는 글리신(C2H5NO2)(Alfa Aesar)을, 착화제 및 환원제로 구연산(Alfa Aesar)을 사용하였다. 800mg의 망간 질산염을 증류수에 용해시켜 전구체 수용액을 제조한 후, 자석교반기를 사용하여 교반 하에 1,600g의 글리신을 첨가하였다. 이 용액을 MG 용액이라 명명하였다. 그 다음, 0.2M 염화백금산(choloroplatinic acid) 용액 5ml를 MG용액에 10중량%로 첨가한 다음 1,200mg의 구연산을 첨가한 후 용매의 60% 내지 70%가 증발되어 겔이 나타날 때까지 80℃를 유지하면서 교반하였다. 그 후, 겔화된 망간 산화물에서 휘발성 불순물을 제거하고 고체화하기 위하여 수소분위기(20%(v/v H2/N2)), 200-250℃에서 4시간 가열하였다. 이를 통해 고체화된 망간 산화물은 모르타르를 이용하여 20nm 이상 100nm 이하의 분말형태가 되도록 분쇄하였다. 마지막으로, 상기 분말을 500℃에서 2시간 동안 열처리하였다.Manganese nitrate (Mn(NO 3 ) 2 ) (Alfa Aesar) as a manganese precursor, platinum chloride (PtCl 4 ) (Sigma Alderich) as a transition metal compound, and glycine (C 2 H 5 NO 2 ) (Alfa) as a fuel Aesar) and citric acid (Alfa Aesar) as a complexing agent and a reducing agent. After dissolving 800 mg of manganese nitrate in distilled water to prepare an aqueous precursor solution, 1,600 g of glycine was added under stirring using a magnetic stirrer. This solution was named MG solution. Then, 5 ml of 0.2M choloroplatinic acid solution was added to the MG solution at 10% by weight, and then 1,200 mg of citric acid was added, and then 80° C. until 60% to 70% of the solvent was evaporated and a gel appeared. It was stirred while maintaining. Then, in order to remove volatile impurities from the gelled manganese oxide and solidify, it was heated in a hydrogen atmosphere (20% (v/v H 2 /N 2 )), 200-250° C. for 4 hours. The solidified manganese oxide was pulverized to a powder form of 20 nm or more and 100 nm or less using a mortar. Finally, the powder was heat treated at 500° C. for 2 hours.

실시예3- Pd-MnExample 3- Pd-Mn xx OO yy 나노로드 전극촉매의 제조 Preparation of nanorod electrocatalyst

망간 전구체로는 망간 질산염(Mn(NO3)2)(Alfa Aesar), 전이금속 화합물로는 팔라듐(II) 아세테이트(Sigma Alderich)을, 연료로는 글리신(C2H5NO2)(Alfa Aesar)을, 착화제 및 환원제로 구연산(Alfa Aesar)을 사용하였다. 800mg의 망간 질산염을 증류수에 용해시켜 전구체 수용액을 제조한 후, 자석교반기를 사용하여 교반 하에 1,600g의 글리신을 첨가하였다. 이 용액을 MG 용액이라 명명하였다. 그 다음, 0.2M 팔라듐 아세테이트(Palladium(II) acetate) 용액을 MG용액에 10중량%로 첨가한 다음 1,200mg의 구연산을 첨가한 후 용매의 60% 내지 70%가 증발되어 겔이 나타날 때까지 80℃를 유지하면서 교반하였다. 그 후, 겔화된 망간 산화물에서 휘발성 불순물을 제거하고 고체화하기 위하여 수소분위기(20%(v/v H2/N2)), 200-250℃에서 4시간 가열하였다. 이를 통해 고체화된 망간 산화물은 모르타르를 이용하여 20nm 이상 100nm 이하의 분말형태가 되도록 분쇄하였다. 마지막으로, 상기 분말을 500℃에서 2시간 동안 열처리하였다.Manganese nitrate (Mn(NO 3 ) 2 ) (Alfa Aesar) as a manganese precursor, palladium(II) acetate (Sigma Alderich) as a transition metal compound, and glycine (C 2 H 5 NO 2 ) (Alfa Aesar) as a fuel ), citric acid (Alfa Aesar) was used as a complexing agent and a reducing agent. After dissolving 800 mg of manganese nitrate in distilled water to prepare an aqueous precursor solution, 1,600 g of glycine was added under stirring using a magnetic stirrer. This solution was named MG solution. Then, a 0.2M palladium (II) acetate solution was added to the MG solution at 10% by weight, and then 1,200 mg of citric acid was added, until 60% to 70% of the solvent was evaporated until a gel appeared. Stirring while maintaining ℃. Then, in order to remove volatile impurities from the gelled manganese oxide and solidify, it was heated in a hydrogen atmosphere (20% (v/v H 2 /N 2 )), 200-250° C. for 4 hours. The solidified manganese oxide was pulverized to a powder form of 20 nm or more and 100 nm or less using a mortar. Finally, the powder was heat treated at 500° C. for 2 hours.

비교예1 - MnComparative Example 1 - Mn xx OO yy 나노로드 전극촉매의 제조 Preparation of nanorod electrocatalyst

망간 전구체로는 망간 질산염(Mn(NO3)2)(Alfa Aesar), 연료로는 글리신(C2H5NO2)(Alfa Aesar)을, 착화제 및 환원제로 구연산(Alfa Aesar)을 사용하였다. 800mg의 망간 질산염을 증류수에 용해시켜 전구체 수용액을 제조한 후, 자석교반기를 사용하여 교반 하에 1,600g의 글리신을 첨가하였다. 이 용액을 MG 용액이라 명명하였다. 그 다음, 1,200mg의 구연산을 첨가한 후 용매의 60% 내지 70%가 증발되어 겔이 나타날 때까지 80℃를 유지하면서 교반하였다. 그 후, 겔화된 망간 산화물에서 휘발성 불순물을 제거하고 고체화하기 위하여 수소분위기(20%(v/v H2/N2)), 200-250℃에서 4시간 가열하였다. 이를 통해 고체화된 망간 산화물은 모르타르를 이용하여 20nm 이상 100nm 이하의 분말형태가 되도록 분쇄하였다. 마지막으로, 상기 분말을 500℃에서 2시간 동안 열처리하였다.Manganese nitrate (Mn(NO 3 ) 2 ) (Alfa Aesar) was used as a manganese precursor, glycine (C 2 H 5 NO 2 ) (Alfa Aesar) as a fuel, and citric acid (Alfa Aesar) as a complexing agent and reducing agent. . After dissolving 800 mg of manganese nitrate in distilled water to prepare an aqueous precursor solution, 1,600 g of glycine was added under stirring using a magnetic stirrer. This solution was named MG solution. Then, after adding 1,200 mg of citric acid, the mixture was stirred while maintaining 80° C. until 60% to 70% of the solvent was evaporated and a gel appeared. Then, in order to remove volatile impurities from the gelled manganese oxide and solidify, it was heated in a hydrogen atmosphere (20% (v/v H 2 /N 2 )), 200-250° C. for 4 hours. The solidified manganese oxide was pulverized to a powder form of 20 nm or more and 100 nm or less using a mortar. Finally, the powder was heat treated at 500° C. for 2 hours.

비교예 2 - Pt-C 촉매Comparative Example 2 - Pt-C catalyst

별도의 제조공정 없이 시판 중인 Pt-C 촉매(Alfa Aesar)를 사용하였다. A commercially available Pt-C catalyst (Alfa Aesar) was used without a separate manufacturing process.

비교예3 -Au Comparative Example 3 -Au

별도의 제조공정 없이 시판 중인Au(Alfa Aesar)를 사용하였다.Commercially available Au (Alfa Aesar) was used without a separate manufacturing process.

촉매의 전기화학적 특성 평가Evaluation of the electrochemical properties of catalysts

전기촉매 측정(Electrocatalyst Measurement) - 회전 디스크 전극(RDE) 측정Electrocatalyst Measurement - Rotating Disk Electrode (RDE) Measurement

회전 디스크 전극(RDE) 측정은 기존의 3전극 시스템을 사용하는 보나텍 전기화학 워크스테이션에서 수행되었다. 직경이 5mm인 유리 탄소 디스크 전극이 작업 전극으로 사용되었다. Pt와이어와 Hg/HgO 전극은 각각 카운터 전극과 기준 전극으로 사용되었다. 작업 전극을 준비하기 위해 5mg의 준비된 촉매와 5mg의 탄소 분말을 4ml 에탄올과 5중량% 나피온 용액(Dupont) 80ml와 혼합하였다. 초소화를 통해 잘 뿌려진 잉크를 만든 후 유리 탄소 전극에 10ml의 잉크를 피펫팅한 후 상온에서 0.5시간 동안 증발시켜 촉매막을 만들었다. 유리 탄소 디스크 전극에 가해지는 촉매 하중은 0.063 mg m-2이었다. LSV를 0.1V에서 -0.8V까지 스캔하였으며 부품번호 EF-1100F로 BASI에서 획득한 디스크 전극에 5mVs-1의 스캔속도로 기록하였다. 측정하기 전 용액은 산소(O2)로 포함되었고 측정 중 O2 대기가 유지되었다. 비교를 위해 시판 중인 20중량% Pt-C촉매(Sigma Aldrich.)를 동일한 절차에 따라 테스트하였다. 전기화학적 테스트 후 RHE(Reversible Hydrogen Electrode) 척도로 보정하였다. 모든 실험은 상온에서 진행되었다. Rotating disk electrode (RDE) measurements were performed on a Bonatec electrochemical workstation using a conventional three-electrode system. A glass carbon disk electrode with a diameter of 5 mm was used as the working electrode. Pt wire and Hg/HgO electrode were used as counter electrode and reference electrode, respectively. To prepare a working electrode, 5 mg of the prepared catalyst and 5 mg of carbon powder were mixed with 4 ml of ethanol and 80 ml of a 5 wt% Nafion solution (Dupont). After making well-sprayed ink through micro-digestion, 10 ml of ink was pipetted onto a glass carbon electrode and evaporated at room temperature for 0.5 hour to form a catalyst film. The catalytic load applied to the free carbon disk electrode was 0.063 mg m −2 . The LSV was scanned from 0.1V to -0.8V and recorded at a scan rate of 5mVs -1 on a disk electrode obtained from BASI with part number EF-1100F. Before the measurement, the solution was contained with oxygen (O 2 ) and an O 2 atmosphere was maintained during the measurement. For comparison, a commercially available 20 wt% Pt-C catalyst (Sigma Aldrich.) was tested according to the same procedure. After the electrochemical test, it was calibrated with a RHE (Reversible Hydrogen Electrode) scale. All experiments were conducted at room temperature.

제조된 MnxOy 및 Au-MnxOy 나노로드 전극촉매의 일반적인 XRD 패턴은 도1과 같다. 회절 피크는 MnO2의 (110), (101), (200), (111), (210), (211), (220), (310), (221) 및 (301) 결정면에 해당한다(JCPDS No. 24-0735, 정방형, I4/m, a=b=0.78Å, c=2.86Å). 또한, MnxOy의 회절 피크가 약하고 넓은 것을 알 수 있는데, 이는 MnxOy의 결정도가 약하다는 것을 나타낸다. 반면, Au-MnxOy 나노로드 전극촉매의 경우 Au(JCPDS No. 65-2870)에 추가 (111), (200) 및 (220) 피크가 관찰되었다. 날카로운 회절 피크는 Au의 높은 결정도를 나타낸다. 따라서, 본 실험 결과는 Au-MnxOy 복합체가 생성된 것임을 확인시켜준다.The general XRD patterns of the prepared Mn x O y and Au-Mn x O y nanorod electrode catalysts are shown in FIG. 1 . The diffraction peaks correspond to the (110), (101), (200), (111), (210), (211), (220), (310), (221) and (301) crystal planes of MnO 2 ( JCPDS No. 24-0735, square, I4/m, a=b=0.78 Å, c=2.86 Å). In addition, it can be seen that the diffraction peak of Mn x O y is weak and broad, indicating that the crystallinity of Mn x O y is weak. On the other hand, in the case of Au-Mn x O y nanorod electrocatalyst, additional (111), (200) and (220) peaks were observed in Au (JCPDS No. 65-2870). The sharp diffraction peak indicates high crystallinity of Au. Therefore, the results of this experiment confirm that the Au-Mn x O y complex is generated.

XPS 스펙트럼은 Au-MnxOy 나노로드 전극촉매 내 결합 상호작용 유형에 따라 금속 중심의 산화 상태를 찾기 위해 분석하는 데 사용된다. 도 4a의 조사 스펙트럼은 불순물 없이 Mn, Au 및 O의 존재를 확인한다. 도 4b에 도시된 바와 같은 Mn 2p3/2 피크는 642.3 eV에서 캔터링(cantering)되었다. 반면, Mn 2p1/2 피크는 654.1 eV에서 11.8 eV의 스핀 에너지 분리로 관찰되었는데, 이는 Au-MnxOy 나노 촉매의 Mn 원자가 Mn 2p형태임을 나타낸다. The XPS spectrum is used to analyze to find the oxidation state of the metal center according to the type of bonding interaction in the Au-Mn x O y nanorod electrocatalyst. The irradiation spectrum of FIG. 4a confirms the presence of Mn, Au and O without impurities. The Mn 2p3/2 peak as shown in Fig. 4b was cantered at 642.3 eV. On the other hand, the Mn 2p1/2 peak was observed with a spin energy separation of 654.1 eV to 11.8 eV, indicating that the Mn atom of the Au-Mn x O y nanocatalyst is in the Mn 2p form.

도 4c에서 나타낸 바와 같이, O1s 피크는 각각 Mn-O-Mn(529.9eV), Mn-O-H(531.5eV) 및 H-O-H(532.9eV)에 해당하는 3개의 피크로 분해될 수 있다.As shown in Fig. 4c, the O1s peak can be resolved into three peaks corresponding to Mn-O-Mn (529.9 eV), Mn-O-H (531.5 eV) and H-O-H (532.9 eV), respectively.

도 4d에서 나타낸 바와 같이, 87.95 및 84.27 eV에서 두 개의 주요 피크가 있는 XPS 스펙트럼은 각각 Au 4f5/2 및 Au 4f7/2에 해당하며, 이는 금이 Au-MnxOy 나노로드 전극촉매에서 금속 상태(metallic state)임을 의미한다.As shown in Fig. 4d, XPS spectra with two main peaks at 87.95 and 84.27 eV correspond to Au 4f5/2 and Au 4f7/2, respectively, indicating that gold is a metal in Au-Mn x O y nanorod electrocatalyst. It means a metallic state.

도 3은 MnxOy 및 Au-MnxOy의 FESEM을, 도 5는 Pt-MnxOy, Pd-MnxOy 및 Au-MnxOy의 TEM 및 HR-TEM을 도시한다. 도 3 및 도 5에 따르면 Pt-MnxOy, Pd-MnxOy, Au-MnxOy MnxOy가 막대 모양의 형태를 갖는 것을 알 수 있다. 이를 나노로드라 명명한다. 본 발명의 나노로드는 표면이 매끄럽고 길이가 2~10mm, 폭이 30~100nm로 측정되었다. 3 shows MnxOy and Au-MnxOyFESEM, Figure 5 is Pt-MnxOy, Pd-MnxOyand Au-MnxOyTEM and HR-TEM are shown. According to Figures 3 and 5, Pt-MnxOy, Pd-MnxOy, Au-MnxOyand MnxOyIt can be seen that has a rod-shaped shape. This is called a nanorod. The nanorods of the present invention had a smooth surface and were measured to have a length of 2 to 10 mm and a width of 30 to 100 nm.

도 7은 0.1M KOH에서 취한 LSV 데이터를 보여준다. KOH 용액을 2시간 동안 산소 가스로 퍼지(purge)하여 O2-포화 KOH 용액으로 만들고 회전 디스크 전극(RDE)의 회전 속도를 1600rpm으로 하여 MnxOy, 10중량% Au-MnxOy, 20중량% Pt-C, 10중량% Pt-MnxOy 및 10중량% Pd-MnxOy,의 LSV를 측정한 결과이다. 10중량% Au-MnxOy, 10중량% Pt-MnxOy 및 10중량% Pd-MnxOy의 개시 전위(전류 밀도 100mA-2에서의 전위)는 MnxOy의 촉매보다 더 양성이다. 또한, 10중량% Au-MnxOy, 10중량% Pt-MnxOy 및 10중량% Pd-MnxOy 촉매의 한계 전류 밀도(4.9mA-2)도 MnxOy보다 훨씬 높다. 개시 전위의 관점에서 테스트된 촉매의 전기화학적 촉매활성은 10중량% Pt-MnxOy > 10중량% Pd-MnxOy > 20중량% Pt-C > 10중량% Au-MnxOy > MnxOy의 순서를 따른다. 10중량% Pt-MnxOy, 10중량% Pd-MnxOy 10중량% Au-MnxOy의 우수한 촉매활성은 Pt, Pd 및 Au각각의 전이금속 원소와 MnxOy의 시너지 효과에 기인한다. 7 shows LSV data taken at 0.1M KOH. The KOH solution was purged with oxygen gas for 2 hours to make an O 2 -saturated KOH solution, and the rotation speed of the rotating disk electrode (RDE) was set to 1600 rpm to Mn x O y , 10 wt% Au-Mn x O y , LSV of 20 wt% Pt-C, 10 wt% Pt-Mn x O y and 10 wt% Pd-Mn x O y, is measured. The onset potential of 10 wt% Au-Mn x O y , 10 wt % Pt-Mn x O y and 10 wt % Pd-Mn x O y (potential at a current density of 100 mA -2 ) was higher than that of the Mn x O y catalyst. more positive In addition, the limiting current density (4.9 mA -2 ) of the 10 wt% Au-Mn x O y , 10 wt % Pt-Mn x O y and 10 wt % Pd-Mn x O y catalysts is also much higher than that of Mn x O y . . The electrochemical catalytic activity of the tested catalyst in terms of initiation potential is 10 wt% Pt-Mn x O y > 10 wt % Pd-Mn x O y > 20 wt % Pt-C > 10 wt % Au-Mn x O y > Follow the order of Mn x O y . 10 wt % Pt-Mn x O y , 10 wt % Pd-Mn x O y and The excellent catalytic activity of 10 wt% Au-Mn x O y is due to the synergistic effect of Mn x O y with the transition metal elements of Pt, Pd and Au, respectively.

따라서, 본 발명에 따른 전이금속이 장식된 MnxOy계 전기촉매는 도 7에 도시된 바와 같이 시판되는 Pt-C에 필적하거나 개선된 전기촉매 활성을 나타낼 수 있다.Therefore, the Mn x O y -based electrocatalyst decorated with a transition metal according to the present invention can exhibit comparable or improved electrocatalytic activity to commercially available Pt-C, as shown in FIG. 7 .

이에 따라, 본 발명은 상술한 바와 같이 전극 내에서 발생되는 지지체와 촉매의 분리를 막을 수 있어 높은 안정성과 높은 촉매 효율을 지니고, 용액 연소 경로를 통해 전극촉매의 제조공정을 단순화하고, 백금 사용량을 줄일 수 있다.Accordingly, the present invention can prevent the separation of the support and the catalyst generated in the electrode as described above, so it has high stability and high catalytic efficiency, simplifies the manufacturing process of the electrode catalyst through the solution combustion route, and reduces the amount of platinum used. can be reduced

본 발명의 단순한 변형 내지 변경은 이 분야의 통상의 지식을 가진 자에 의하여 용이하게 실시될 수 있으며, 이러한 변형이나 변경은 모두 본 발명의 영역에 포함되는 것으로 볼 수 있다.Simple modifications or changes of the present invention can be easily carried out by those of ordinary skill in the art, and all such modifications or changes can be considered to be included in the scope of the present invention.

Claims (17)

나노로드(nanorod) 전극촉매의 제조 방법에 있어서,
망간 전구체를 증류수에 용해시켜 망간 전구체 수용액을 제조하는 단계;
상기 망간 전구체 수용액에 연료(fuel)를 교반 하에 첨가하는 단계;
상기 망간 전구체 수용액에 전이금속 화합물 용액 및 착화제(complexing agent)를 첨가하여 단분산(monodispersed) 전이금속 나노입자(NPs)가 장식된(decorated) 망간 산화물을 생성하는 단계;
상기 망간 산화물을 겔(gel)화하기 위해 교반하는 단계;
상기 겔화된 망간 산화물에서 휘발성 불순물을 제거하고 고체화하기 위하여 가열하는 단계;
상기 고체화된 망간 산화물을 분쇄하여 분말형태의 혼합물을 얻는 단계; 및
상기 혼합물을 소성(calcinating)하여 휘발성 불순물을 제거하고 결정도를 높이는 단계;
를 포함하고, 상기 단분산 전이금속 나노입자가 장식된 망간 산화물이 산소 결핍이 존재하는 헤테로구조를 갖고 하기 화학식 1로 표현되는 것을 특징으로 하는 연료전지용 나노로드 전극촉매의 제조방법:
[화학식 1] A-MnxOy
상기 화학식 1에서, A는 금(Au), 백금(Pt), 팔라듐(Pd), 루테늄(Ru), 은(Ag), 니켈(Ni), 철(Fe), 코발트(Co)로 이루어진 군에서 선택된 적어도 하나 이상의 원소를 포함할 수 있고, x는 1≤x≤3, y는 1≤y≤7임.
In the method for manufacturing a nanorod electrode catalyst,
preparing a manganese precursor aqueous solution by dissolving the manganese precursor in distilled water;
adding fuel to the aqueous manganese precursor solution under stirring;
generating a manganese oxide decorated with monodispersed transition metal nanoparticles (NPs) by adding a transition metal compound solution and a complexing agent to the aqueous manganese precursor solution;
stirring to gel the manganese oxide;
heating to remove volatile impurities from the gelled manganese oxide and solidify;
pulverizing the solidified manganese oxide to obtain a powdery mixture; and
calcinating the mixture to remove volatile impurities and increase crystallinity;
A method for producing a nanorod electrode catalyst for a fuel cell, characterized in that it has a heterostructure in which the monodisperse transition metal nanoparticles are decorated with the monodisperse transition metal nanoparticles and has a heterostructure in which oxygen deficiency is present and is represented by the following Chemical Formula 1:
[Formula 1] A-Mn x O y
In Formula 1, A is gold (Au), platinum (Pt), palladium (Pd), ruthenium (Ru), silver (Ag), nickel (Ni), iron (Fe), from the group consisting of cobalt (Co) It may include at least one selected element, wherein x is 1≤x≤3, and y is 1≤y≤7.
제1항에 있어서, 상기 망간 전구체 수용액은 질산망간, 아세트산 망간 및 황산망간 중에서 선택된 하나 이상인 것을 특징으로 하는 연료전지용 나노로드 전극촉매의 제조 방법.The method according to claim 1, wherein the manganese precursor aqueous solution is at least one selected from among manganese nitrate, manganese acetate, and manganese sulfate. 제1항에 있어서, 상기 연료(fuel)는 우레아(CH4N2O), 글리신(C2H5NO2), 글루코오스(C6H12O6), 수크로오스(C12H22O11), 카르보히드라지드(CH6N4O), 옥살리다히드라지드(C2H6N4O2), 헥사메틸렌테트라민(C6H12N4) 및 아세틸아세톤(C5H8O2) 중에서 선택되는 하나 이상인 것을 특징으로 하는 연료전지용 나노로드 전극촉매의 제조 방법. According to claim 1, wherein the fuel (fuel) is urea (CH 4 N 2 O), glycine (C 2 H 5 NO 2 ), glucose (C 6 H 12 O 6 ), sucrose (C 12 H 22 O 11 ) , carbohydrazide (CH 6 N 4 O), oxalidahydrazide (C 2 H 6 N 4 O 2 ), hexamethylenetetramine (C 6 H 12 N 4 ) and acetylacetone (C 5 H 8 O 2 ) ) A method of manufacturing a nanorod electrode catalyst for a fuel cell, characterized in that at least one selected from the group consisting of. 제1항에 있어서, 상기 착화제(complexing agent)는 구연산(citraic acid) 및 타닌산(tannic acid) 중에서 선택되는 하나 이상인 것일 수 있고 양이온 금속과 2:1 중량비로 첨가되는 것을 특징으로 하는 연료전지용 나노로드 전극촉매의 제조 방법. According to claim 1, wherein the complexing agent (complexing agent) is citric acid (citraic acid) and tannic acid (tannic acid) may be at least one selected from the fuel cell nano, characterized in that added to the cationic metal in a weight ratio of 2:1 A method for manufacturing a rod electrocatalyst. 제1항 또는 제3항에 있어서, 상기 망간 전구체 수용액을 실온에서 상기 연료와 2:1 중량비로 혼합하여 교반하는 것을 특징으로 하는 연료전지용 나노로드 전극촉매의 제조 방법.The method according to claim 1 or 3, wherein the aqueous solution of the manganese precursor is mixed with the fuel at a 2:1 weight ratio at room temperature and stirred. 제1항에 있어서, 상기 망간 전구체 수용액에 상기 전이금속 화합물 용액을 10 내지 20 중량%로 첨가하는 것을 특징으로 하는 연료전지용 나노로드 전극촉매의 제조 방법. The method according to claim 1, wherein 10 to 20 wt% of the transition metal compound solution is added to the manganese precursor aqueous solution. 제1항에 있어서, 상기 전이금속 화합물은 전이금속 질산염, 전이금속 아세트산염 및 전이금속 할로겐화물 중에서 선택되는 하나 이상인 것을 특징으로 하는 연료전지용 나노로드 전극촉매의 제조 방법. The method according to claim 1, wherein the transition metal compound is at least one selected from transition metal nitrate, transition metal acetate, and transition metal halide. 제1항에 있어서, 상기 화학식 1에서 MnxOy가 MnO, Mn3O4, Mn2O3, α-MnO2, β-MnO2, γ-MnO2, δ-MnO2, MnO3, Mn2O7, Mn2O4 중 어느 하나인 것을 특징으로 하는 연료전지용 나노로드 전극촉매의 제조 방법.The method according to claim 1, wherein Mn x O y in Formula 1 is MnO, Mn 3 O 4 , Mn 2 O 3 , α-MnO 2 , β-MnO 2 , γ-MnO 2 , δ-MnO 2 , MnO 3 , Mn 2 O 7 , Mn 2 O 4 A method of manufacturing a nanorod electrode catalyst for a fuel cell, characterized in that any one. 제1항에 있어서, 상기 망간 산화물을 겔(gel)화하기 위해 교반하는 단계에서 교반은 50 내지 90℃에서 용매의 60% 내지 70%가 증발되어 겔이 될 때까지 수행되는 것을 특징으로 하는 연료전지용 나노로드 전극촉매의 제조 방법.The fuel according to claim 1, wherein in the step of stirring to gel the manganese oxide, stirring is performed at 50 to 90°C until 60% to 70% of the solvent is evaporated to form a gel. A method for manufacturing a nanorod electrocatalyst for a battery. 제1항에 있어서, 상기 가열하는 단계의 온도는 2시간 내지 5시간 동안 200 내지 250℃ 까지 증가되는 것을 특징으로 하는 연료전지용 나노로드 전극촉매의 제조 방법.The method of claim 1 , wherein the heating temperature is increased to 200 to 250° C. for 2 to 5 hours. 제1항에 있어서, 상기 분말 형태의 혼합물의 입자크기는 20 nm 이상 100nm 이하인 것을 특징으로 하는 연료전지용 나노로드 전극촉매의 제조 방법. The method according to claim 1, wherein the particle size of the powder mixture is 20 nm or more and 100 nm or less. 제1항에 있어서, 상기 혼합물을 소성(calcinating)하여 휘발성 불순물을 제거하고 결정도를 높이는 단계는 1 내지 4시간 동안 500 내지 800℃에서 수행되는 것을 특징으로 하는 연료전지용 나노로드 전극촉매의 제조 방법.The method of claim 1, wherein the step of calcinating the mixture to remove volatile impurities and increase crystallinity is performed at 500 to 800° C. for 1 to 4 hours. 제1항 또는 제10항 중 어느 한 항에 있어서, 상기 겔화된 망간 산화물에서 휘발성 불순물을 제거하고 고체화하기 위하여 가열하는 단계는 수소(H2) 가스와 불화성 가스의 혼합가스 하에서 이루어지는 것을 특징으로 하는 연료전지용 나노로드 전극촉매의 제조 방법.11. The method according to any one of claims 1 to 10, wherein the step of heating to remove volatile impurities from the gelled manganese oxide and solidify is performed under a mixed gas of hydrogen (H 2 ) gas and inert gas. A method for manufacturing a nanorod electrode catalyst for a fuel cell. 제13항에 있어서, 불활성 가스는 질소(N2) 가스인 것을 특징으로 하는 연료전지용 나노로드 전극촉매의 제조 방법.The method of claim 13, wherein the inert gas is nitrogen (N 2 ) gas. 제13항에 있어서, 상기 혼합가스 중 수소 가스(H2)는 10 내지 40vol%를 갖는 것을 특징으로 하는 연료전지용 나노로드 전극촉매의 제조 방법.14. The method of claim 13, wherein the hydrogen gas (H 2 ) in the mixed gas has an amount of 10 to 40 vol%. 제1항 내지 제15항 중 어느 한 항의 방법에 따라 제조되고, 전이금속 나노입자가 장식된 망간산화물이 산소 결핍이 존재하는 헤테로구조를 갖고 하기 화학식 1로 표현되는 것을 특징으로 하는 연료전지용 나노로드 전극촉매:
[화학식 1] A-MnxOy
상기 화학식 1에서, A는 금(Au), 백금(Pt), 팔라듐(Pd), 루테늄(Ru), 은(Ag), 니켈(Ni), 철(Fe), 코발트(Co)로 이루어진 군에서 선택된 적어도 하나 이상의 원소를 포함할 수 있고, x는 1≤x≤3, y는 1≤y≤7임.
A fuel cell nanorod, characterized in that the manganese oxide prepared according to any one of claims 1 to 15 and decorated with transition metal nanoparticles has a heterostructure in which oxygen deficiency exists and is represented by the following Chemical Formula 1 Electrocatalyst:
[Formula 1] A-Mn x O y
In Formula 1, A is gold (Au), platinum (Pt), palladium (Pd), ruthenium (Ru), silver (Ag), nickel (Ni), iron (Fe), from the group consisting of cobalt (Co) It may include at least one selected element, wherein x is 1≤x≤3, and y is 1≤y≤7.
제16항에 있어서, 상기 화학식 1에서 MnxOy가 MnO, Mn3O4, Mn2O3, α-MnO2, β-MnO2, γ-MnO2, δ-MnO2, MnO3, Mn2O7, Mn2O4 중 어느 하나인 것을 특징으로 하는 연료전지용 나노로드 전극촉매.The method according to claim 16, wherein Mn x O y in Formula 1 is MnO, Mn 3 O 4 , Mn 2 O 3 , α-MnO 2 , β-MnO 2 , γ-MnO 2 , δ-MnO 2 , MnO 3 , Mn 2 O 7 , Mn 2 O 4 Nanorod electrode catalyst for a fuel cell, characterized in that any one.
KR1020220023218A 2022-02-22 2022-02-22 Method of preparing transition metal nanoparticle-decorated manganese oxide nanorod electrocatalysts and nanorod electrocatalysts prepared thereby KR102425951B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020220023218A KR102425951B1 (en) 2022-02-22 2022-02-22 Method of preparing transition metal nanoparticle-decorated manganese oxide nanorod electrocatalysts and nanorod electrocatalysts prepared thereby
PCT/KR2023/002467 WO2023163485A1 (en) 2022-02-22 2023-02-21 Method for preparing transition metal nanoparticle-decorated manganese oxide nanorod electrocatalyst and nanorod electrocatalyst prepared thereby

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020220023218A KR102425951B1 (en) 2022-02-22 2022-02-22 Method of preparing transition metal nanoparticle-decorated manganese oxide nanorod electrocatalysts and nanorod electrocatalysts prepared thereby

Publications (1)

Publication Number Publication Date
KR102425951B1 true KR102425951B1 (en) 2022-07-29

Family

ID=82606307

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020220023218A KR102425951B1 (en) 2022-02-22 2022-02-22 Method of preparing transition metal nanoparticle-decorated manganese oxide nanorod electrocatalysts and nanorod electrocatalysts prepared thereby

Country Status (2)

Country Link
KR (1) KR102425951B1 (en)
WO (1) WO2023163485A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023163485A1 (en) * 2022-02-22 2023-08-31 주식회사 에코나인 Method for preparing transition metal nanoparticle-decorated manganese oxide nanorod electrocatalyst and nanorod electrocatalyst prepared thereby

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120090795A (en) * 2011-01-13 2012-08-17 삼성전자주식회사 Catalyst including active particles, method of preparing the catalyst, fuel cell including the catalyst, electrode for lithium air battery inclucing the active particles, and lithium air battery including the electrode
KR20130067476A (en) * 2011-12-12 2013-06-24 삼성전자주식회사 Electrode catalyst for fuel cell, method for preparing the same, membrane electrode assembly and fuel cell including the same
KR20130139577A (en) * 2012-06-13 2013-12-23 고려대학교 산학협력단 Process for preparing highly efficient carbon supported platinum-metal catalyst and carbon supported platinum-metal catalyst thereof
KR20140056544A (en) * 2012-10-29 2014-05-12 한국에너지기술연구원 Cathode catalyst for lithium-air battery, method of manufacturing the same, and lithium-air battery comprising the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102425951B1 (en) * 2022-02-22 2022-07-29 주식회사 에코나인 Method of preparing transition metal nanoparticle-decorated manganese oxide nanorod electrocatalysts and nanorod electrocatalysts prepared thereby

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120090795A (en) * 2011-01-13 2012-08-17 삼성전자주식회사 Catalyst including active particles, method of preparing the catalyst, fuel cell including the catalyst, electrode for lithium air battery inclucing the active particles, and lithium air battery including the electrode
KR20130067476A (en) * 2011-12-12 2013-06-24 삼성전자주식회사 Electrode catalyst for fuel cell, method for preparing the same, membrane electrode assembly and fuel cell including the same
KR20130139577A (en) * 2012-06-13 2013-12-23 고려대학교 산학협력단 Process for preparing highly efficient carbon supported platinum-metal catalyst and carbon supported platinum-metal catalyst thereof
KR20140056544A (en) * 2012-10-29 2014-05-12 한국에너지기술연구원 Cathode catalyst for lithium-air battery, method of manufacturing the same, and lithium-air battery comprising the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
APPLIED SURFACE SCIENCE 388 (2016) 631-639 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023163485A1 (en) * 2022-02-22 2023-08-31 주식회사 에코나인 Method for preparing transition metal nanoparticle-decorated manganese oxide nanorod electrocatalyst and nanorod electrocatalyst prepared thereby

Also Published As

Publication number Publication date
WO2023163485A1 (en) 2023-08-31

Similar Documents

Publication Publication Date Title
Esfahani et al. Highly active platinum supported on Mo-doped titanium nanotubes suboxide (Pt/TNTS-Mo) electrocatalyst for oxygen reduction reaction in PEMFC
Wu et al. Synthesis and electrocatalytic oxygen reduction properties of truncated octahedral Pt 3 Ni nanoparticles
EP1922777B1 (en) Electrocatalysts having gold monolayers on platinum nanoparticle cores, and uses thereof
US7855021B2 (en) Electrocatalysts having platium monolayers on palladium, palladium alloy, and gold alloy core-shell nanoparticles, and uses thereof
JP4401059B2 (en) Process for preparing anode catalyst for fuel cell and anode catalyst prepared using the process
KR100868756B1 (en) Pt/Ru alloy supported catalyst, manufacturing method thereof, and fuel cell using the same
CN103227333B (en) Compound, the catalyst containing it, fuel cell and lithium-air battery containing it
KR101117066B1 (en) Synthesis method of Pt alloy/supporter catalysts, catalysts and fuel cell using the same
Yang et al. Bimetallic PdZn nanoparticles for oxygen reduction reaction in alkaline medium: The effects of surface structure
KR20120024889A (en) Catalyst for electrochemical applications
CN103022518B (en) Electrode catalyst for fuel cell and method of preparation, membrane electrode assembly (MEA) including the catalyst, and fuel cell including the MEA
KR20130139577A (en) Process for preparing highly efficient carbon supported platinum-metal catalyst and carbon supported platinum-metal catalyst thereof
KR20200001064A (en) The platinum-transition metal composite supported on carbon and method for preparing the same
Chalgin et al. Ternary Pt–Pd–Ag alloy nanoflowers for oxygen reduction reaction electrocatalysis
CN115704097A (en) M 1 M 2 Preparation method and application of diatomic catalyst with support structure
KR101484188B1 (en) Method for preparing Pt catalyst, the Pt catalyst for oxygen reduction reaction prepared therefrom, and PEMFC including the Pt catalyst
JP2010242179A (en) Alloy fine particle, method for production thereof and use thereof
KR102425951B1 (en) Method of preparing transition metal nanoparticle-decorated manganese oxide nanorod electrocatalysts and nanorod electrocatalysts prepared thereby
Cao et al. Impact of CuFe bimetallic core on the electrocatalytic activity and stability of Pt shell for oxygen reduction reaction
Liu et al. A facile strategy to prepare FeNx decorated PtFe intermetallic with excellent acidic oxygen reduction reaction activity and stability
Mukherjee et al. Methodical designing of Pt3− xCo0. 5+ yNi0. 5+ y/C (x= 0, 1, 2; y= 0, 0.5, 1) particles using a single-step solid state chemistry method as efficient cathode catalyst in H2-O2 fuel cells
JP4539086B2 (en) ELECTRODE CATALYST, CATALYST CARRIER ELECTRODE, MEA FOR FUEL CELL AND FUEL CELL
Mohanraju et al. Surfactant free synthesis of high surface area Pt@ PdM 3 (M= Mn, Fe, Co, Ni, Cu) core/shell electrocatalysts with enhanced electrocatalytic activity and durability for PEM fuel cell applications
KR101994088B1 (en) Method for manufacturing palladium catalysts for fuel cells and palladium catalysts for fuel cells thereby
Luo et al. Au-Doped intermetallic Pd 3 Pb wavy nanowires as highly efficient electrocatalysts toward the oxygen reduction reaction

Legal Events

Date Code Title Description
GRNT Written decision to grant