KR102405371B1 - Method for removing Ni coating layer - Google Patents

Method for removing Ni coating layer Download PDF

Info

Publication number
KR102405371B1
KR102405371B1 KR1020210177650A KR20210177650A KR102405371B1 KR 102405371 B1 KR102405371 B1 KR 102405371B1 KR 1020210177650 A KR1020210177650 A KR 1020210177650A KR 20210177650 A KR20210177650 A KR 20210177650A KR 102405371 B1 KR102405371 B1 KR 102405371B1
Authority
KR
South Korea
Prior art keywords
activated carbon
nickel
plating layer
nickel plating
gas
Prior art date
Application number
KR1020210177650A
Other languages
Korean (ko)
Other versions
KR102405371B9 (en
Inventor
김리나
김관호
권지회
유광석
이훈
Original Assignee
한국지질자원연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국지질자원연구원 filed Critical 한국지질자원연구원
Priority to KR1020210177650A priority Critical patent/KR102405371B1/en
Application granted granted Critical
Publication of KR102405371B1 publication Critical patent/KR102405371B1/en
Publication of KR102405371B9 publication Critical patent/KR102405371B9/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/10Etching compositions
    • C23F1/14Aqueous compositions
    • C23F1/16Acidic compositions
    • C23F1/28Acidic compositions for etching iron group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C1/00Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods
    • B24C1/08Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods for polishing surfaces, e.g. smoothing a surface by making use of liquid-borne abrasives
    • B24C1/086Descaling; Removing coating films
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/10Etching compositions
    • C23F1/12Gaseous compositions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

본 발명은 니켈도금층을 제거하는 방법에 관한 것으로, 활성탄이 1 내지 10w/v%로 포함되어 있는 산성용액에 상기 니켈도금층이 코팅되어 있는 물품을 침지하는 단계; 및 상기 침지 상태에서 상기 산성용액에 산소를 포함하는 기체를 가하면서 상기 니켈도금층을 제거하는 단계를 포함한다.The present invention relates to a method for removing a nickel plating layer, comprising the steps of immersing an article coated with the nickel plating layer in an acidic solution containing 1 to 10 w/v% of activated carbon; and removing the nickel plating layer while applying a gas containing oxygen to the acid solution in the immersion state.

Description

니켈도금층을 제거하는 방법{Method for removing Ni coating layer}Method for removing Ni coating layer

본 발명은 활성탄을 이용하여 니켈도금층을 제거하는 방법에 관한 것이다.The present invention relates to a method for removing a nickel plating layer using activated carbon.

네오디뮴 등을 이용하여 제조되는 희토류 영구자석은 높은 자성을 가지고 있으며, 자동차 및 전자제품 등에 많이 사용되고 있다.Rare earth permanent magnets manufactured using neodymium, etc. have high magnetism and are widely used in automobiles and electronic products.

희토류 영구자석은 공기 중에서 쉽게 부식되기 때문에 부식을 방지하기 위해 표면에 니켈코팅층이 형성되어 있다.Since rare earth permanent magnets are easily corroded in air, a nickel coating layer is formed on the surface to prevent corrosion.

사용된 희토류 영구자석을 재활용하기 위해서는 영구자석 표면에 코팅되어 있는 코팅층을 제거할 필요가 있다. 영구자석에 코팅되어 있는 코팅층은 산화를 방지하는 것뿐만 아니라 영구자석의 희토류 추출 시 매질과의 반응을 막아 반응률을 저하시키는 원인으로 작용한다. 따라서 희토류 자석의 코팅층 제거를 위한 종래 기술은 코팅층에 맞는 상용 박리제를 사용하였으나, 대부분의 상용 박리제는 코팅층 제거의 효율을 향상시키기 위해서 알칼리 계열의 경우 시안화물이 포함되어 있거나 산성 계열의 경우 산화제 성분이 함유되어 있다. 시안화물은 공정 운영 시 외부로 유출될 경우 인간과 환경에 치명적인 독극물이므로 매우 높은 수준의 주의를 필요로 하며, 산화제 성분은 박리제의 가격을 높이는 요인으로 작용할 수 있다. 따라서 종래의 기술을 대체하여 작업자의 안정성을 향상시키며, 환경적인 부하를 감소시키고 화학적 산화제의 함량을 저감시킨 효과적인 코팅층 제거 방법이 필요하다.In order to recycle the used rare-earth permanent magnet, it is necessary to remove the coating layer coated on the surface of the permanent magnet. The coating layer coated on the permanent magnet not only prevents oxidation, but also prevents the reaction with the medium during rare earth extraction of the permanent magnet, thereby reducing the reaction rate. Therefore, in the prior art for removing the coating layer of rare earth magnets, a commercial release agent suitable for the coating layer was used, but most commercial release agents contain cyanide in the case of an alkali or an oxidizer component in the case of an acid in order to improve the efficiency of removing the coating layer. is contained. If cyanide is leaked to the outside during process operation, it is a fatal poison to humans and the environment, so it requires a very high level of attention, and the oxidizing agent may act as a factor to increase the price of the exfoliant. Therefore, there is a need for an effective method for removing the coating layer that replaces the prior art, improves the safety of the worker, reduces the environmental load, and reduces the content of the chemical oxidizing agent.

한국공개등록 제10-1073326호(공고일자 : 2011. 10. 12)Korean Public Registration No. 10-1073326 (Announcement Date: 2011. 10. 12)

본 발명의 목적은 활성탄을 이용하며 산성 환경에서 산화제 약품의 사용량을 감소시킨 니켈도금층을 제거하는 방법에 관한 것이다. An object of the present invention relates to a method for removing a nickel plating layer using activated carbon and reducing the amount of oxidizing agent used in an acidic environment.

상기 본 발명의 목적은 니켈도금층을 제거하는 방법에 있어서, 활성탄이 1 내지 10w/v%로 포함되어 있는 산성용액에 상기 니켈도금층이 코팅되어 있는 물품을 침지하는 단계; 및 상기 침지 상태에서 상기 산성용액에 산소를 포함하는 기체를 가하면서 상기 니켈도금층을 제거하는 단계를 포함하는 것에 의해 달성된다.An object of the present invention is to provide a method for removing the nickel plating layer, comprising: immersing the article coated with the nickel plating layer in an acidic solution containing 1 to 10 w/v% of activated carbon; and removing the nickel plating layer while applying a gas containing oxygen to the acidic solution in the immersion state.

상기 산성용액은 0.3M 내지 5M의 황산용액일 수 있다.The acidic solution may be a 0.3M to 5M sulfuric acid solution.

상기 활성탄은, 4 내지 12메쉬의 입도를 가지며, 상기 산성용액에 3 내지 5w/v%로 포함되어 있을 수 있다.The activated carbon has a particle size of 4 to 12 mesh, and may be included in the acidic solution in an amount of 3 to 5 w/v%.

상기 기체는 산소기체 및 공기 중 어느 하나일 수 있다.The gas may be any one of oxygen gas and air.

상기 기체는 산소기체를 포함하며, 공급량은 상기 산성용액 1L에 대해 1.0 내지 2.5L/분일 수 있다.The gas includes oxygen gas, and the supply amount may be 1.0 to 2.5 L/min with respect to 1 L of the acidic solution.

상기 물품은 희토류 영구자석을 포함할 수 있다.The article may include a rare earth permanent magnet.

본 발명에 따르면, 본 발명은 활성탄을 이용하며 산성 환경에서 산화제 약품의 사용량을 감소시킨 니켈도금층을 제거하는 방법이 제공된다.According to the present invention, there is provided a method for removing a nickel plating layer using activated carbon and reducing the amount of oxidizing agent used in an acidic environment.

도 1은 본 발명의 제거방법을 모식화한 것이고,
도 2는 본 발명의 일부 실험예에서의 시간에 따른 Ni 농도를 나타낸 것이고,
도 3a와 도 3b는 각각 3번 실험과 6번 실험에서의 코팅층 표면을 표면분석한 결과이다.
1 is a schematic representation of the removal method of the present invention,
Figure 2 shows the Ni concentration over time in some experimental examples of the present invention,
3A and 3B are results of surface analysis of the coating layer surface in Experiment 3 and Experiment 6, respectively.

이하 도면을 참조하여 본 발명을 더욱 상세히 설명한다.Hereinafter, the present invention will be described in more detail with reference to the drawings.

첨부된 도면은 본 발명의 기술적 사상을 더욱 구체적으로 설명하기 위하여 도시한 일 예에 불과하므로 본 발명의 사상이 첨부된 도면에 한정되는 것은 아니다.Since the accompanying drawings are merely examples shown in order to explain the technical idea of the present invention in more detail, the spirit of the present invention is not limited to the accompanying drawings.

이하의 설명에서 제거대상인 니켈도금층은 희토류 영구자석의 표면에 코팅되어 있으나, 본 발명에서의 니켈도금층은 이에 한정되지 않는다.In the following description, the nickel plated layer to be removed is coated on the surface of the rare earth permanent magnet, but the nickel plated layer in the present invention is not limited thereto.

본 발명은 산화 환경의 산성 용액에서 희토류 영구자석 표면의 니켈 도금층 제거 시 기존의 산화제 약품 첨가를 대체할 수 있는 활성탄과 산소의 병용에 의해 산화 환경을 조성하여 니켈 도금층을 제거하는 방법에 관한 것이다. The present invention relates to a method for removing a nickel plating layer by creating an oxidizing environment by using activated carbon and oxygen in combination with oxygen, which can replace the existing oxidizing agent, when removing the nickel plating layer on the surface of a rare earth permanent magnet in an acidic solution in an oxidizing environment.

니켈 도금층을 용해·제거하기 위해서는 산성 조건 및 산화 환경 형성이 필요한데, 산성 용액에 활성탄을 투입하고 공기 또는 산소를 주입하여 활성탄 표면에서 산화제로 작용할 수 있는 작용기 생성 반응을 유도함으로써 산화 환경 형성이 가능하다.In order to dissolve and remove the nickel plating layer, acidic conditions and an oxidizing environment are required. Activated carbon is added to an acidic solution and air or oxygen is injected to induce a functional group-generating reaction that can act as an oxidizing agent on the surface of the activated carbon, thereby forming an oxidizing environment. .

활성탄과 산소의 병용에 의한 산화 환경 형성 방법은 기존의 산화제 약품 투입 방법과 비교하여 반영구적인 방법이다. 활성탄의 넓은 표면적으로 인해 기체 투입이 원활히 이루어져 산화제로서 지속적인 역할을 할 수 있다.The method of forming an oxidizing environment by using activated carbon and oxygen in combination is a semi-permanent method compared to the existing method of injecting oxidizing agents. Due to the large surface area of the activated carbon, gas can be introduced smoothly, and thus it can continue to play a role as an oxidizing agent.

또한 기존의 값비싼 산화제(예. 과산화수소)나 산화력이 강한 산(예. 질산)과 비교하였을 때 비용이 저렴한 황산, 활성탄, 공기를 사용함으로써 공정 비용을 낮출 수 있는 장점이 있다.In addition, there is an advantage in that the process cost can be lowered by using sulfuric acid, activated carbon, and air, which are inexpensive compared to conventional expensive oxidizers (eg hydrogen peroxide) or acids with strong oxidizing power (eg nitric acid).

본 발명에 따른 니켈도금층을 제거하는 방법은 도 1과 같이 활성탄이 포함되어 있는 산성용액에 산소를 포함하는 기체를 가하고, 니켈도금층이 코팅되어 있는 물품(예를 들어 영구자석)을 침지하여 침지 상태에서 니켈코팅층을 제거한다.In the method of removing the nickel plating layer according to the present invention, as shown in FIG. 1, a gas containing oxygen is added to an acidic solution containing activated carbon, and an article (eg, a permanent magnet) coated with a nickel plating layer is immersed in the immersion state. Remove the nickel coating layer.

산성용액, 영구자석 및 활성탄의 접촉순서는 한정되지 않는다. 즉, 산성용액에 영구자석을 먼저 침지시키고 활성탄을 가할 수도 있다.The contact order of the acid solution, the permanent magnet and the activated carbon is not limited. That is, it is also possible to first immerse the permanent magnet in an acidic solution and then add activated carbon.

또한 기체를 가하는 단계 역시 다양하게 변형할 수 있다. 예를 들어, 산성용액에 활성탄을 넣고 영구자석을 침지한 후 기체를 가할 수 있으며, 산성용액에 기체를 가한 후 활성탄을 넣을 수도 있다.In addition, the step of applying the gas may also be variously modified. For example, after putting activated carbon in an acidic solution and immersing a permanent magnet, gas may be applied, or activated carbon may be added after adding gas to the acidic solution.

활성탄이 입도크기는 4 내지 12메시, 2 내지 20메시 또는 6내지 8메시일 수 있다. 활성탄의 사용량은 1 내지 15w/v%, 1 내지 10w/v%, 3 내지 10w/v% 또는 3 내지 5w/v%일 수 있다.The activated carbon may have a particle size of 4 to 12 mesh, 2 to 20 mesh, or 6 to 8 mesh. The amount of activated carbon used may be 1 to 15w/v%, 1 to 10w/v%, 3 to 10w/v%, or 3 to 5w/v%.

기체는 산소 또는 공기일 수 있다. 산소기준으로 기체의 공급량은 분당 산성용액 1L당 0.1L 내지 5L, 0.2L 내지 3L 또는 1.0L 내지 2.5L일 수 있다.The gas may be oxygen or air. The supply amount of the gas based on oxygen may be 0.1L to 5L, 0.2L to 3L, or 1.0L to 2.5L per 1L of the acidic solution per minute.

니켈코팅층의 제거는 상온 또는 10℃ 내지 40℃에서 1시간 내지 48시간 또는 2시간 내지 36시간 동안 수행될 수 있다.The removal of the nickel coating layer may be performed at room temperature or 10° C. to 40° C. for 1 hour to 48 hours or 2 hours to 36 hours.

제거대상인 니켈코팅층의 두께는 5 내지 50㎛ 또는 15 내지 30㎛일 수 있다.The thickness of the nickel coating layer to be removed may be 5 to 50 μm or 15 to 30 μm.

산성용액은, 질산용액, 염산용액 또는 황산용액과 같은 무기산 용액을 사용할 수 있으며, 특히 황산용액을 사용할 수 있다. 황산용액의 농도는 0.3M 내지 5M 또는 0.5M 내지 1.5M일 수 있다.As the acidic solution, an inorganic acid solution such as a nitric acid solution, a hydrochloric acid solution or a sulfuric acid solution may be used, and in particular, a sulfuric acid solution may be used. The concentration of the sulfuric acid solution may be 0.3M to 5M or 0.5M to 1.5M.

니켈 금속이 용해되는 데에는 산성 pH의 용액과 산화제를 필요로 한다. 본 발명에서는 활성탄을 산화제로 사용하여 니켈 도금층을 효과적으로 제거할 수 있다.Dissolution of nickel metal requires an acidic pH solution and an oxidizing agent. In the present invention, the nickel plating layer can be effectively removed by using activated carbon as an oxidizing agent.

이하 실험예를 통해 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail through experimental examples.

산성용액으로는 황산용액을 사용하였으며 농도는 0.5M 또는 1M이었다. 사용한 산성용액의 부피는 250 ml 였다.A sulfuric acid solution was used as the acidic solution, and the concentration was 0.5M or 1M. The volume of the acid solution used was 250 ml.

활성탄은 Sig, 242233, DARCOㄾ, 4-12 mesh particle size, granular를 사용하였으며, 사용량은 0, 2w/v%, 4w/v% 또는 10w/v%였다.The activated carbon used was Sig, 242233, DARCO, 4-12 mesh particle size, and granular, and the amount used was 0, 2w/v%, 4w/v%, or 10w/v%.

기체는 산소 또는 공기를 사용하였으며, 공급량은 0.1, 0.2 또는 0.4L/min이었다.Oxygen or air was used as the gas, and the feed rate was 0.1, 0.2 or 0.4 L/min.

영구자석은 폐하드디스크에서 분리한 것으로 탈자한 후 사용하였으며, 니켈도금층은 Ni-Cu-Ni로 이루어져 있었다. 니켈도금층의 두께는 30μm, 영구자석은 개당 7 내지 9g 되는 것으로 실험 1회 당 1개를 투입하였으며, 분쇄 등의 처리없이 온전한 상태로 투입하였다.The permanent magnet was separated from the waste hard disk and used after demagnetization, and the nickel plating layer was made of Ni-Cu-Ni. The thickness of the nickel plated layer was 30 μm, and the permanent magnet was 7 to 9 g per piece, and 1 piece was added per experiment, and was added in an intact state without pulverization or other treatment.

실험은 상온에서 수행되었으며, 분해되어 산성용액에 녹아있는 니켈의 농도를 측정하였다. 니켈 농도는 유도결합플라즈마 분광분석기 (ICP-OES)를 사용하여 측정하였다.The experiment was performed at room temperature, and the concentration of nickel dissolved in the decomposed and acidic solution was measured. The nickel concentration was measured using an inductively coupled plasma spectrometer (ICP-OES).

실험에서는 먼저 산성용액에 활성탄을 넣고, 기체 상태의 산소 또는 공기를 용액에 버블링하여 1시간동안 안정화시킨 후 영구자석을 침지시켰다.In the experiment, activated carbon was first put in an acidic solution, gaseous oxygen or air was bubbled into the solution to stabilize it for 1 hour, and then a permanent magnet was immersed.

각 실험의 조건 및 결과는 표 1과 같으며, 실험 3, 5, 6, 8번에서의 시간에 따른 니켈농도는 도 2와 같다.The conditions and results of each experiment are shown in Table 1, and the nickel concentration according to time in Experiments 3, 5, 6, and 8 is shown in FIG.

No.No. 산 용액acid solution 산화제 조건Oxidant conditions 시간hour Ni 용해량 (mg)Ni dissolved (mg) 1One 1 M H2SO4 1 MH 2 SO 4 -- 4주4 weeks 2323 22 1 M H2SO4 1 MH 2 SO 4 0.1 L/min O2 0.1 L/min O 2 31시간31 hours 2424 33 1 M H2SO4 1 MH 2 SO 4 2% AC + 0.1 L/min Air2% AC + 0.1 L/min Air 24시간24 hours 6565 44 1 M H2SO4 1 MH 2 SO 4 4% AC + 0.1 L/min Air4% AC + 0.1 L/min Air 4시간4 hours 170170 55 1 M H2SO4 1 MH 2 SO 4 2% AC + 0.2 L/min O2 2% AC + 0.2 L/min O 2 24시간24 hours 194194 66 1 M H2SO4 1 MH 2 SO 4 2% AC + 0.4 L/min O2 2% AC + 0.4 L/min O 2 24시간24 hours 249249 77 1 M H2SO4 1 MH 2 SO 4 10% AC + 0.4 L/min O2 10% AC + 0.4 L/min O 2 4시간4 hours 161161 88 1 M H2SO4 1 MH 2 SO 4 10% AC + 0.4 L/min O2 10% AC + 0.4 L/min O 2 24시간24 hours 229229

1 M 황산을 산 용액으로 사용하여 산화제 조건을 달리하였을 때, 산화제가 사용되지 않은 1번의 경우 4주간 23 mg 의 니켈이 코팅층으로부터 용해되는 것으로 나타났다. 산소를 산화제로 사용하여 0.1 L/min 유량으로 주입한 2번의 경우 니켈 용해 속도가 다소 증가하였으나 용해량은 31시간 후 24 mg에 그쳤다.When the oxidizing agent conditions were changed using 1 M sulfuric acid as an acid solution, it was found that 23 mg of nickel was dissolved from the coating layer for 4 weeks in case 1 where the oxidizing agent was not used. In the case of No. 2 injection at a flow rate of 0.1 L/min using oxygen as an oxidizing agent, the nickel dissolution rate slightly increased, but the dissolution amount was only 24 mg after 31 hours.

활성탄을 2 w/v%의 농도(예. 용액 1 L당 활성탄 20 g)로 1 M 황산용액에 투입하고 0.1 L/min의 유량으로 공기를 함께 주입하여 24시간 동안 반응시킨 3번의 경우, 용해된 니켈의 양은 65 mg으로 1번과 2번에 비해 니켈 용해 속도가 현저히 향상되었다. Activated carbon was added to a 1 M sulfuric acid solution at a concentration of 2 w/v% (eg, 20 g of activated carbon per 1 L of solution), and air was injected at a flow rate of 0.1 L/min to react for 24 hours. The amount of nickel used was 65 mg, and the nickel dissolution rate was significantly improved compared to No. 1 and No. 2.

산화 반응을 향상시키기 위해 활성탄의 농도를 4 w/v%로 2배 늘리고 0.1 L/min의 유량으로 공기를 주입한 4번의 경우 4시간 이내에 170 mg의 니켈이 용해되어 용해 속도가 상당히 증가함을 확인할 수 있었다. In order to improve the oxidation reaction, 170 mg of nickel was dissolved within 4 hours and the dissolution rate was significantly increased in the 4 times when the concentration of activated carbon was doubled to 4 w/v% and air was injected at a flow rate of 0.1 L/min. could check

산화제 중 공기를 산소로 바꾸어 유량을 0.2 내지 0.4 L/min으로 상승시킨 5번 내지 6번의 경우 니켈 용해량은 194에서 249 mg으로 산소 유량이 증가함에 따라 니켈 용해량 또한 증가하는 것으로 나타나 활성탄과 순수 산소의 병용이 산화제로서 더욱 효과가 있는 것으로 나타났다. In the case of Nos. 5 to 6, in which the flow rate was increased to 0.2 to 0.4 L/min by changing the air in the oxidizing agent to oxygen, the amount of nickel dissolved from 194 to 249 mg was found to increase as the oxygen flow rate increased. The combined use of oxygen was found to be more effective as an oxidizing agent.

활성탄 농도를 10 w/v%로 늘리고 0.4 L/min 유량으로 산소를 주입하여 4시간동안 반응한 7번의 경우 니켈 용해량은 161 mg으로 측정되었다. 이는 4번의 경우와 유사한 결과로 활성탄 투입량이 어느 정도 이상이 되면 니켈 용해 속도에 영향을 주지 않음을 나타낸다.In the case of No. 7 reaction for 4 hours by increasing the activated carbon concentration to 10 w/v% and injecting oxygen at a flow rate of 0.4 L/min, the amount of nickel dissolved was measured to be 161 mg. This is a result similar to the case of No. 4, indicating that the nickel dissolution rate is not affected when the amount of activated carbon input exceeds a certain level.

8번의 경우는 7번과 같은 산화제 조건에서 24시간 후 니켈 용해량을 측정하였는데, 229 mg으로 측정되었다. 6번 실험과 비교하였을 때 8번 실험 또한 활성탄 투입량의 상한선이 있음을 의미한다.In the case of No. 8, the amount of nickel dissolution was measured after 24 hours under the same oxidizing agent conditions as No. 7, and it was measured to be 229 mg. Compared to the 6th experiment, the 8th experiment also means that there is an upper limit on the amount of activated carbon input.

도 2로부터는 산화제 중 활성탄의 양을 늘리거나 주입되는 가스를 순수 산소로 하였을 때 반응 속도가 상승함을 확인할 수 있다. 또한 활성탄 투입량은 도 2의 4, 6, 8번 그래프를 비교함으로써 상한선이 있음을 확인할 수 있다.From FIG. 2, it can be seen that the reaction rate is increased when the amount of activated carbon among the oxidizing agent is increased or when the injected gas is pure oxygen. In addition, it can be confirmed that the amount of activated carbon input has an upper limit by comparing graphs 4, 6, and 8 of FIG. 2 .

도 3a와 도 3b는 각각 3번 실험과 6번 실험에서의 코팅층 표면을 표면분석한 결과이다.3A and 3B are results of surface analysis of the coating layer surface in Experiment 3 and Experiment 6, respectively.

도 3a로부터 3번 실험의 경우 코팅층 제거 실험 종료 후 코팅층 표면은 대부분 니켈로 이루어져 있는 것으로 확인되었다 (Ni 약 95%). 반면, 도 3b와 같이 6번 실험의 경우 대부분의 니켈이 제거된 것으로 확인되었다 (Ni 약 1.8%). 따라서 표면분석 결과 또한 산화제 투입량 (활성탄 또는 산소의 양)을 적정선까지 늘리는 것이 니켈코팅층 제거에 더욱 효과적임을 나타낸다.In the case of experiment 3 from FIG. 3A, it was confirmed that most of the coating layer surface was made of nickel after the coating layer removal experiment was completed (Ni about 95%). On the other hand, it was confirmed that most of the nickel was removed in the 6th experiment as shown in FIG. 3b (Ni about 1.8%). Therefore, the surface analysis results also indicate that increasing the amount of oxidizing agent (the amount of activated carbon or oxygen) to the appropriate line is more effective in removing the nickel coating layer.

Claims (6)

니켈도금층을 제거하는 방법에 있어서,
활성탄이 1 내지 10w/v%로 포함되어 있는 산성용액에 상기 니켈도금층이 코팅되어 있는 물품을 침지하는 단계;및
상기 침지 상태에서 상기 산성용액에 산소를 포함하는 기체를 가하면서 상기 니켈도금층을 제거하는 단계를 포함하며,
상기 산성용액은 0.3M 내지 5M의 황산용액이고,
상기 활성탄은,
4 내지 12메쉬의 입도를 가지며,
상기 산성용액에 3 내지 5w/v%로 포함되어 있으며,
상기 기체는 산소기체 및 공기 중 어느 하나이고,
상기 기체는 산소기체를 포함하며, 공급량은 상기 산성용액 1L에 대해 1.0 내지 2.5L/분이고,
상기 물품은 희토류 영구자석을 포함하는 방법.
In the method of removing the nickel plating layer,
immersing the article coated with the nickel plating layer in an acidic solution containing 1 to 10 w/v% of activated carbon; and
and removing the nickel plating layer while applying a gas containing oxygen to the acid solution in the immersion state,
The acidic solution is a 0.3M to 5M sulfuric acid solution,
The activated carbon is
It has a particle size of 4 to 12 mesh,
It is contained in the acidic solution in an amount of 3 to 5 w/v%,
The gas is any one of oxygen gas and air,
The gas contains oxygen gas, and the supply amount is 1.0 to 2.5 L/min with respect to 1 L of the acidic solution,
wherein the article comprises a rare earth permanent magnet.
삭제delete 삭제delete 삭제delete 삭제delete 삭제delete
KR1020210177650A 2021-12-13 2021-12-13 Method for removing Ni coating layer KR102405371B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020210177650A KR102405371B1 (en) 2021-12-13 2021-12-13 Method for removing Ni coating layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210177650A KR102405371B1 (en) 2021-12-13 2021-12-13 Method for removing Ni coating layer

Publications (2)

Publication Number Publication Date
KR102405371B1 true KR102405371B1 (en) 2022-06-07
KR102405371B9 KR102405371B9 (en) 2023-02-23

Family

ID=81987087

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210177650A KR102405371B1 (en) 2021-12-13 2021-12-13 Method for removing Ni coating layer

Country Status (1)

Country Link
KR (1) KR102405371B1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5629672A (en) * 1979-08-20 1981-03-25 Ibiden Co Ltd Surface treatment of metal
JPH10298783A (en) * 1997-04-22 1998-11-10 Murayama Mekki:Kk Method for reproducing rare earth permanent magnet
KR101073326B1 (en) 2002-11-29 2011-10-12 히타치 긴조쿠 가부시키가이샤 Method for producing corrosion-resistant rare earth based permanent magnet corrosion-resistant rare earth based permanent magnet dip spin coating method for work piece and method for coating film on work piece

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5629672A (en) * 1979-08-20 1981-03-25 Ibiden Co Ltd Surface treatment of metal
JPH10298783A (en) * 1997-04-22 1998-11-10 Murayama Mekki:Kk Method for reproducing rare earth permanent magnet
KR101073326B1 (en) 2002-11-29 2011-10-12 히타치 긴조쿠 가부시키가이샤 Method for producing corrosion-resistant rare earth based permanent magnet corrosion-resistant rare earth based permanent magnet dip spin coating method for work piece and method for coating film on work piece

Also Published As

Publication number Publication date
KR102405371B9 (en) 2023-02-23

Similar Documents

Publication Publication Date Title
Xu et al. Current status and future perspective of recycling copper by hydrometallurgy from waste printed circuit boards
CN108249613B (en) Alkaline zinc-nickel alloy wastewater treatment method
KR20100108040A (en) Reduction method of nitrate using bimetallic nano zero-valent iron
CN109628934B (en) Environment-friendly tin removing liquid and preparation method thereof
JPS63111186A (en) Metal etching method
CN105018725A (en) Gold leaching solution and method for recycling gold
KR102405371B1 (en) Method for removing Ni coating layer
WO2022227571A1 (en) Method for mxene-enhanced fenton-like oxidative degradation of heavy metal complex and recovery of heavy metal
US20080149885A1 (en) Etchant for etching workpieces made of aluminum and aluminum alloys
CN103540748B (en) A kind of metal of waste printed circuit board substrate and nonmetallic separation method
US7704936B2 (en) Methods and removers for removing anodized films
JP2002513163A (en) How to lower the radioactivity level of metal parts
JPWO2007018158A1 (en) Ion nitriding method
JP4669375B2 (en) Steel pickling method and steel pickling solution
KR20160077180A (en) Ambient temperature decontamination of nuclear power plant component surfaces containing radionuclides in a metal oxide
Chang et al. Recovery of precious metals from discarded mobile phones by thiourea leaching
CN103667704B (en) The metal of separating waste, worn printed wiring base board and nonmetallic method
CN110552007A (en) Efficient and environment-friendly method for deplating and extracting gold elements
Enescu et al. The Effect of the Action of Impurities Present in Methanol as a Basis for Automobile Fuel and Their Impact on the Environment
CN111411362B (en) Chemical nickel removing agent and method for iron matrix
KR101475869B1 (en) Method of regenerated the used ferric chloride etchant
CA3099352C (en) Method for decontaminating oxide layer
US6716402B2 (en) Dissolution and decontamination process
CN113832534B (en) Electrolytic stripping agent for chromium-containing coating of aluminum alloy and stripping method thereof
Yan et al. Catalytic degradation of tetracycline hydrochloride by peroxymonosulfate activated with CuFe 2 O 4.

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
G170 Re-publication after modification of scope of protection [patent]