KR102404666B1 - Catalyst for hydrogen evolution reaction comprising Ni-Cu alloy layer - Google Patents

Catalyst for hydrogen evolution reaction comprising Ni-Cu alloy layer Download PDF

Info

Publication number
KR102404666B1
KR102404666B1 KR1020200120563A KR20200120563A KR102404666B1 KR 102404666 B1 KR102404666 B1 KR 102404666B1 KR 1020200120563 A KR1020200120563 A KR 1020200120563A KR 20200120563 A KR20200120563 A KR 20200120563A KR 102404666 B1 KR102404666 B1 KR 102404666B1
Authority
KR
South Korea
Prior art keywords
catalyst
alloy layer
hydrogen
hydrogen evolution
evolution reaction
Prior art date
Application number
KR1020200120563A
Other languages
Korean (ko)
Other versions
KR20220037730A (en
Inventor
엄광섭
조승현
권준화
조기엽
Original Assignee
광주과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 광주과학기술원 filed Critical 광주과학기술원
Priority to KR1020200120563A priority Critical patent/KR102404666B1/en
Publication of KR20220037730A publication Critical patent/KR20220037730A/en
Application granted granted Critical
Publication of KR102404666B1 publication Critical patent/KR102404666B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • B01J35/0033
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/075Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound
    • C25B11/089Alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

본 발명은 카본 기판 위에 Ni-Cu 합금층을 1차 도금한 후 그 위에 니켈 기반 촉매를 2차 도금함으로써, 상기 Ni-Cu 합금층의 거친 표면으로 인해 반응 표면적이 증가되며, 상기 Ni-Cu 합금층이 핵의 역할을 하여 니켈 기반 촉매 물질과 기판 사이의 접착성이 향상되어 수소 발생 활성도와 수명을 향상시킬 수 있는 수소발생 반응용 촉매에 관한 것이다.In the present invention, the reaction surface area is increased due to the rough surface of the Ni-Cu alloy layer by first plating a Ni-Cu alloy layer on a carbon substrate and then secondary plating a nickel-based catalyst thereon, and the Ni-Cu alloy The present invention relates to a catalyst for a hydrogen evolution reaction, in which the layer acts as a nucleus to improve the adhesion between the nickel-based catalyst material and the substrate, thereby improving the hydrogen generation activity and lifespan.

Description

Ni-Cu 합금층을 포함하는 수소발생 반응용 촉매{Catalyst for hydrogen evolution reaction comprising Ni-Cu alloy layer}Catalyst for hydrogen evolution reaction comprising Ni-Cu alloy layer

본 발명은 Ni-Cu 합금층을 포함하는 수소발생 반응용 촉매에 관한 것으로서, 보다 상세하게는 카본 기판 위에 도금된 Ni-Cu 합금층의 거친 표면으로 인해 반응 표면적이 증가되며 상기 Ni-Cu 합금층이 핵의 역할을 하여 니켈 기반 촉매 물질과 기판 사이의 접착성이 향상되어, 수소 발생 활성도와 수명 향상이 가능한 수소발생 반응용 촉매 에 관한 것이다.The present invention relates to a catalyst for hydrogen generation reaction comprising a Ni-Cu alloy layer, and more particularly, the reaction surface area is increased due to the rough surface of the Ni-Cu alloy layer plated on a carbon substrate, and the Ni-Cu alloy layer It relates to a catalyst for hydrogen generation reaction capable of improving the hydrogen generation activity and lifespan by improving the adhesion between the nickel-based catalyst material and the substrate by playing the role of this nucleus.

최근 화석 연료 사용으로 인한 환경오염이 심각한 문제가 되면서, 수소가 화석 연료의 대체물로 대두되기 시작했으며. 이와 관련하여 효율적인 수소 생산 기술은 수소의 저장 및 운송만큼 중요해 지고 있다.Recently, as environmental pollution caused by the use of fossil fuels has become a serious problem, hydrogen has begun to emerge as a substitute for fossil fuels. In this regard, efficient hydrogen production technology is becoming as important as the storage and transportation of hydrogen.

기존에는 천연 가스를 이용한 증기 개질 방식이 가장 상용화된 수소 생산 방법이었지만, 이러한 기존 방법은 여전히 온실 가스가 발생하므로 환경 오염의 문제가 여전히 존재하였다. 따라서 많은 연구자들은 고순도 수소를 생산이 가능하면서도 친환경 장점을 가지는 효율성이 우수한 물 전기분해 시스템을 개발하기 위해 노력해 오고 있다. 그러나 물 전기분해 시스템에서는 백금으로 대표되는 귀금속 촉매가 사용되는데, 이러한 촉매 비용이 매우 높아 현재 수소 가스의 약 4 % 정도 만이 물 전기 분해 방식으로 생성되고 있다. 상기 백금은 산성 매질의 균질 촉매 중에서 가장 높은 수소 발생 반응(Hydrogen Evolution Reaction; HER) 활성을 가지고 있으나, 그 매장량이 풍부하지 않다는 한계가 있다.In the past, steam reforming using natural gas was the most commercialized hydrogen production method, but the existing method still generates greenhouse gases, so there is still a problem of environmental pollution. Therefore, many researchers have been working to develop an efficient water electrolysis system that can produce high-purity hydrogen and has environmental advantages. However, in the water electrolysis system, a noble metal catalyst typified by platinum is used, but the cost of such a catalyst is very high, and currently only about 4% of hydrogen gas is generated by the water electrolysis method. The platinum has the highest hydrogen evolution reaction (HER) activity among homogeneous catalysts in an acidic medium, but there is a limitation that its reserves are not abundant.

이러한 백금 촉매를 대체하기 위해, 최근 전이금속(대표적으로 코발트 및 니켈 등) 기반 이종 촉매가 많은 관심을 받고 있다. 전이금속은 촉매 활성이 뛰어나지 않기 때문에 전이금속 합금(transition metal alloy), 황화물(sulfide), 셀레나이드(selenide), 탄화물(carbide), 질화물(nitride), 인화물(phosphide), 붕화물(boride) 등과 같이 다양한 화합물의 형태로 사용되고 있다. In order to replace such a platinum catalyst, a heterogeneous catalyst based on a transition metal (typically, cobalt and nickel, etc.) has recently received a lot of attention. Since transition metals do not have excellent catalytic activity, transition metal alloys, sulfide, selenide, carbide, nitride, phosphide, boride, etc. It is used in the form of various compounds.

참고로 P 또는 B는 Ni에 비해 동역학이 훨씬 느리고 금속판 기판과의 접착력이 나쁘기 때문에 전기 도금 방법을 사용하여 촉매를 제조함에 있어, 모든 촉매 원자를 동시에 전기 도금하기가 쉽지 않으며, 이로 인해 도금 반응 및 기판과 촉매 사이의 접착에 대한 동역학. 접착력이 떨어지게 되어 입자가 응집되고 촉매에 대한 안정성이 낮아지게 되는 문제가 있었다.For reference, since P or B has much slower kinetics compared to Ni and has poor adhesion to metal plate substrates, it is not easy to electroplate all catalyst atoms at the same time in preparing a catalyst using an electroplating method. Kinetics of adhesion between substrate and catalyst. There was a problem in that the adhesion was decreased, so that the particles were agglomerated and the stability to the catalyst was lowered.

대한민국 특허공개공보 제10-2019-0092868호 (공개일자 : 2019.08.08)Korean Patent Laid-Open Publication No. 10-2019-0092868 (published date: August 8, 2019)

본 발명은 상기와 같은 문제를 해결하기 위하여 도출된 것으로서, Ni-Cu 합금층을 카본 기판 위에 먼저 1차 도금 후 그 위에 니켈 기반 촉매를 2차 도금함으로써, 상기 Ni-Cu 합금층의 거친 표면으로 인해 반응 표면적이 증가되며, 상기 Ni-Cu 합금층이 핵의 역할을 하여 니켈 기반 촉매 물질과 기판 사이의 접착성이 향상되어 수소 발생 활성도와 수명을 향상시킬 수 있는 수소발생 반응용 촉매를 제공하는데 그 목적이 있다.The present invention has been derived to solve the above problems, and by first plating a Ni-Cu alloy layer on a carbon substrate and then secondary plating a nickel-based catalyst thereon, a rough surface of the Ni-Cu alloy layer is obtained. Due to this, the reaction surface area is increased, and the Ni-Cu alloy layer acts as a nucleus to improve the adhesion between the nickel-based catalyst material and the substrate, thereby providing a catalyst for hydrogen generation reaction that can improve hydrogen generation activity and lifespan. There is a purpose.

본 발명의 다른 목적은 하기의 발명의 상세한 설명, 청구범위 및 도면에 의해 보다 명확하게 된다.Other objects of the present invention are made clearer by the following detailed description of the invention, claims and drawings.

본 발명의 일 구현 예에 따른 수소발생 반응용 촉매는 카본 기판에 1차로 전기 도금된 Ni-Cu 합금층 및 상기 Ni-Cu 합금층 위에 2차 전기 도금된 니켈 기반 전이금속 촉매를 포함하는 것을 특징으로 한다.The catalyst for hydrogen generation reaction according to an embodiment of the present invention comprises a Ni-Cu alloy layer first electroplated on a carbon substrate and a nickel-based transition metal catalyst that is secondarily electroplated on the Ni-Cu alloy layer do it with

상기 니켈 기반 전이금속 촉매는 Ni-P일 수 있다.The nickel-based transition metal catalyst may be Ni-P.

상기 수소발생 반응용 촉매는 산성 또는 염기성 전해질에서 수소 발생 반응의 활성화를 가지는 것을 특징으로 한다.The catalyst for the hydrogen evolution reaction is characterized in that it has activation of the hydrogen evolution reaction in an acidic or basic electrolyte.

상기 카본 기판은 카본 페이퍼일 수 있다.The carbon substrate may be carbon paper.

본 발명에 따르면, 상기 Ni-Cu 합금층의 거친 표면으로 인해 반응 표면적이 증가되며, 상기 Ni-Cu 합금층이 핵의 역할을 하여 니켈 기반 촉매와 카본 기판 사이의 접착성이 향상되어 수소 발생 활성도와 수명을 향상시킬 수 있는 효과가 있다.According to the present invention, the reaction surface area is increased due to the rough surface of the Ni-Cu alloy layer, and the Ni-Cu alloy layer serves as a nucleus to improve the adhesion between the nickel-based catalyst and the carbon substrate, thereby increasing the hydrogen generation activity and can improve lifespan.

도 1은 Ni-P 촉매를 카본페이퍼(CP)에 직접 도금하는 과정과 본 발명에 따른 Ni-Cu 합금층을 1차 도금 후 Ni-P 촉매를 추가 도금하는 과정을 함께 설명한 모식도이다.
도 2는 카본페이퍼(CP)에 Ni-Cu 합금층을 1차 도금한 것을 나타낸 SEM 이미지들이다.
도 3는 카본페이퍼(CP)에 Ni-P 촉매를 직접 도금한 것과, 카본페이퍼(CP)에 Ni-Cu 합금층을 1차 도금한 후 Ni-P 촉매를 추가 도금한 것을 나타낸 SEM 이미지이다.
도 4는 카본페이퍼(CP)에 Ni-P 촉매를 직접 도금한 경우와, 카본페이퍼(CP)에 Ni-Cu 합금층을 1차 도금한 후 Ni-P 촉매를 추가 도금한 경우의 수소 발생 반응의 성능을 비교한 그래프이다.
도 5는 카본페이퍼(CP)에 Ni-P 촉매를 직접 도금한 경우와, 카본페이퍼(CP)에 Ni-Cu 합금층을 1차 도금한 후 Ni-P 촉매를 추가 도금한 경우의 수소 발생 반응의 촉매 성능의 지속성을 비교한 그래프이다.
1 is a schematic diagram illustrating a process of directly plating a Ni-P catalyst on carbon paper (CP) and a process of additionally plating a Ni-P catalyst after primary plating of a Ni-Cu alloy layer according to the present invention.
2 is an SEM image showing the primary plating of a Ni-Cu alloy layer on carbon paper (CP).
3 is an SEM image showing that Ni-P catalyst is directly plated on carbon paper (CP), and Ni-Cu alloy layer is first plated on carbon paper (CP), and then Ni-P catalyst is additionally plated.
4 is a hydrogen evolution reaction in the case of directly plating the Ni-P catalyst on the carbon paper (CP) and in the case of additional plating with the Ni-P catalyst after the primary plating of the Ni-Cu alloy layer on the carbon paper (CP) It is a graph comparing the performance of
5 is a hydrogen evolution reaction in the case of directly plating the Ni-P catalyst on carbon paper (CP) and in the case of additional plating of the Ni-P catalyst after the primary plating of the Ni-Cu alloy layer on the carbon paper (CP) It is a graph comparing the sustainability of catalytic performance of

이하, 본 발명의 바람직한 실시형태들을 설명한다. 그러나, 본 발명의 실시형태는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 이하 설명하는 실시 형태로 한정되는 것은 아니다. 또한, 본 발명의 실시형태는 당해 기술분야에서 평균적인 지식을 가진 자에게 본 발명을 더욱 완전하게 설명하기 위해서 제공되는 것이다.Hereinafter, preferred embodiments of the present invention will be described. However, the embodiment of the present invention may be modified in various other forms, and the scope of the present invention is not limited to the embodiments described below. In addition, the embodiments of the present invention are provided in order to more completely explain the present invention to those of ordinary skill in the art.

이하, 구체적인 실시예를 통해 본 발명을 보다 상세히 설명하기로 한다.Hereinafter, the present invention will be described in more detail through specific examples.

[실시예][Example]

Ni-P / Ni-Cu / CP 촉매 제조Ni-P/Ni-Cu/CP catalyst preparation

카본페이퍼(CP, Sigracet 39BB)에서 전기도금을 수행하였다. Ni rod와 포화 칼로멜 전극(saturated calomel electrode; SCE)을 각각 카운터 및 기준 전극으로 사용하였다. Electroplating was performed on carbon paper (CP, Sigracet 39BB). A Ni rod and a saturated calomel electrode (SCE) were used as counter and reference electrodes, respectively.

Ni-Cu층 전기도금을 위한 욕조 조성은 다음과 같다. 0.05M CuSO4 (98.0%, Sigma Aldrich), NiSO4 (98.5%, DAEJUNG), 0.1M Glycine (99%, DAEJUNG) 및 0.5M H3BO3 (99.5%, Sigma Aldrich)수용액이 30 분 동안 N2 퍼징 후 전해질로 사용하였다. The bath composition for the Ni-Cu layer electroplating is as follows. 0.05M CuSO 4 (98.0%, Sigma Aldrich), NiSO 4 (98.5%, DAEJUNG), 0.1M Glycine (99%, DAEJUNG) and 0.5MH 3 BO 3 (99.5%, Sigma Aldrich) aqueous solution of N 2 for 30 minutes After purging, it was used as an electrolyte.

Ni-P 촉매는 1M NiSO4 (98.5%, DAEJUNG), 0.5M NaH2PO2·H2O (99%, ALDRICH Chemistry), 0.3 M NaCl (99.5%, Sigma Aldrich) 및 0.7M H3BO3 (99.5%, SIGMA Life Science) 전구체를 사용하여 도금하였고, 이 용액은 N2 가스로 30분 동안 퍼지하였다. Ni-P catalyst was 1M NiSO 4 (98.5%, DAEJUNG), 0.5M NaH 2 PO 2 .H 2 O (99%, ALDRICH Chemistry), 0.3 M NaCl (99.5%, Sigma Aldrich) and 0.7MH 3 BO 3 ( 99.5%, SIGMA Life Science) precursor was plated, and the solution was purged with N 2 gas for 30 minutes.

Ni-P / Ni-Cu / CP 촉매를 제조하기 위해 Co-Ni 층을 먼저 -10 mAcm-2에서 CFP 위에 30 분 동안 도금하였다. 다음으로, Ni-P를 -10mAcm-2에서 상기 Ni-Cu 전극 위에 30 분 동안 전기 도금하였다. 상기 모든 전착 공정은 18 ℃에서 수행되었다.To prepare the Ni-P / Ni-Cu / CP catalyst, a Co-Ni layer was first plated on CFP at -10 mAcm -2 for 30 min. Next, Ni-P was electroplated on the Ni-Cu electrode at -10 mAcm -2 for 30 min. All of the above electrodeposition processes were carried out at 18 °C.

[비교예][Comparative example]

상기 촉매를 30분 동안 -10 mA cm-2에서 CP에 직접 전기 도금하였다. 상기 모든 전착 공정은 18 ℃에서 수행되었다.The catalyst was directly electroplated on CP at -10 mA cm -2 for 30 min. All of the above electrodeposition processes were carried out at 18 °C.

실험결과Experiment result

1. 전계 방출 주사 전자 현미경(FE-SEM, JEOL, JSM-7500F) 및 X-선 회절(XRD, Rigaku, Smartlab)을 사용하여 상기 실시예 및 비교예에서 제조한 각각의 촉매를 조사하였으며, 그 결과는 도 3과 같다.1. Using a field emission scanning electron microscope (FE-SEM, JEOL, JSM-7500F) and X-ray diffraction (XRD, Rigaku, Smartlab ), each of the catalysts prepared in the Examples and Comparative Examples was investigated, and the The result is shown in FIG. 3 .

도 3에서 확인할 수 있듯이, Cabon Paper에 Ni-P 촉매를 직접 도금한 경우(Ni-P/CP) 보다 Ni-Cu 합금층을 1차 도금 후 Ni-P 촉매를 추가 도금하는 경우(Ni-P/Ni-Cu/CP)에 보다 많은 Ni-P 촉매를 도금할 수 있음을 확인할 수 있다. 아울러, Ni-P의 경우 Ni-Cu 구조의 날카로운 부분에 구형 구조로 형성됨을 알 수 있었다. 따라서, 1차 전착된 Ni-Cu 합금층이 Ni-P 촉매의 핵 역할을 하기 때문에 Ni-P를 도금하기 전에 이미 많은 핵이 형성되며, Ni-P 입자는 전착된 Ni-Cu 합금층 표면에 더욱 안정적으로 성장할 수 있게 된다. 참고로, Ni-Cu 합금층의 다공성 구조는 전기 도금 과정에서 발생하는 수소 가스를 쉽게 제거할 수 있는 장점을 가지는데, 만약 수소 가스가 CP 표면에 남아 있으면 전기 도금된 Ni-P촉매의 전기 도금 및 부착을 위해 접근하는 반응물을 차단하게 된다. 따라서 CP에 직접 전기 도금한 Ni-P 촉매는 CP층에 균열이 발생할 수 있지만 본 발명에 따른 Ni-P/Ni-Cu/CP는 이러한 균열이 발생하지 않게 된다.As can be seen in FIG. 3, when Ni-P catalyst is additionally plated after the first Ni-Cu alloy layer is plated (Ni-P/CP) than when Ni-P catalyst is directly plated on Cabon Paper (Ni-P/CP) It can be seen that more Ni-P catalysts can be plated on /Ni-Cu/CP). In addition, it was found that in the case of Ni-P, a spherical structure was formed on the sharp part of the Ni-Cu structure. Therefore, since the primary electrodeposited Ni-Cu alloy layer serves as the nucleus of the Ni-P catalyst, many nuclei are already formed before Ni-P plating, and the Ni-P particles are deposited on the surface of the electrodeposited Ni-Cu alloy layer. more stable growth. For reference, the porous structure of the Ni-Cu alloy layer has the advantage that hydrogen gas generated during the electroplating process can be easily removed. If the hydrogen gas remains on the CP surface, the electroplating of the electroplated Ni-P catalyst and blocking reactants from accessing for attachment. Therefore, the Ni-P catalyst directly electroplated on the CP may cause cracks in the CP layer, but the cracks do not occur in the Ni-P/Ni-Cu/CP according to the present invention.

도 4에서는 수소 발생 반응 성능 결과를 도시하고 있다. 도 4의 수소 발생 반응 성능 실험은 0.5M H2SO4을 N2 가스로 30분 동안 퍼징 후 전해질로 사용하였으며, -0.2 ~ -0.8VSCE의 전압범위에서 10mAcm-2의 전압주사속도 조건에서 linear sweep voltammetry (LSV)로 진행되었다. 상기 실험은 18 ℃에서 수행되었다. 상기 실험에서, Ni-P/Ni-Cu/CP 촉매가 Ni-P/CP 촉매에 비해 수소 발생 반응 성능이 우수함을 확인할 수 있다.4 shows the hydrogen evolution reaction performance results. The hydrogen generation reaction performance experiment of FIG. 4 was used as an electrolyte after purging 0.5MH 2 SO 4 with N 2 gas for 30 minutes, and was linear at a voltage scan rate of 10mAcm -2 in a voltage range of -0.2 to -0.8V SCE . It was performed by sweep voltammetry (LSV). The experiment was carried out at 18 °C. In the above experiment, it can be confirmed that the Ni-P/Ni-Cu/CP catalyst has superior hydrogen generation reaction performance compared to the Ni-P/CP catalyst.

도 5에서는 촉매 성능 지속성 결과를 도시하고 있다. 도 5의 촉매 성능 지속성실험은 0.5M H2SO4을 N2 가스로 30분 동안 퍼징 후 전해질로 사용하였으며, -0.5VSCE의 전압에서 정전압 실험을 통해 진행되었다. 상기 실험은 18 ℃에서 수행되었다. 상기 실험에서, 5.5 시간이 경과한 시점에서 Ni-P/Ni-Cu/CP 촉매는 43.9% 성능이 잔존하였으나, Ni-P/CP 촉매는 33.9%에 불과함을 알 수 있다. 이는 Ni-P/CP 촉매가 CP 기재로부터 상대적으로 더 빠르게 분리된 것에 기인하며, 이는 촉매와 CP 기재 사이의 접착력이 약하기 때문이다. 이는 반응 과정에서 생성된 수소 가스가 CP 기판과 Ni-P 촉매 사이에 균열을 일으키고, 이러한 균열에서 수소 발생 반응이 발생하면 촉매가 물리적으로 쉽게 분리되기 때문이다. 5 shows the results of the catalytic performance persistence. The catalytic performance continuity experiment of FIG. 5 was conducted by purging 0.5MH 2 SO 4 with N 2 gas for 30 minutes and then using the electrolyte as an electrolyte, and a constant voltage experiment at a voltage of -0.5V SCE . The experiment was carried out at 18 °C. In the above experiment, it can be seen that 43.9% of the Ni-P/Ni-Cu/CP catalyst remained at the time of 5.5 hours, but only 33.9% of the Ni-P/CP catalyst. This is due to the relatively faster separation of the Ni-P/CP catalyst from the CP substrate, which is due to the weak adhesion between the catalyst and the CP substrate. This is because the hydrogen gas generated during the reaction causes a crack between the CP substrate and the Ni-P catalyst, and when a hydrogen evolution reaction occurs in this crack, the catalyst is easily physically separated.

반면 본 발명에 따른 Ni-P/Ni-Cu/CP 촉매의 경우에는 1차 증착된 Ni-Cu 합금층으로 인해 균열이 없는 우수한 접착력을 가지게 되어 기판에서의 분리가 상대적으로 덜 발생하게 된다.On the other hand, in the case of the Ni-P/Ni-Cu/CP catalyst according to the present invention, it has excellent adhesion without cracks due to the first deposited Ni-Cu alloy layer, and thus separation from the substrate is relatively less.

상기 결과를 이상에서 본 발명에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고, 청구범위에 기재된 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 다양한 수정 및 변형이 가능하다는 것은 당 기술분야의 통상의 지식을 가진 자에게는 자명할 것이다.Although the above results have been described in detail with respect to the present invention above, the scope of the present invention is not limited thereto, and various modifications and variations are possible within the scope without departing from the technical spirit of the present invention described in the claims. It will be apparent to those of ordinary skill in the art.

Claims (4)

카본 페이퍼에 전기 도금된 Ni-Cu 합금층; 및
상기 Ni-Cu 합금층 위에 전기 도금된 Ni-P 합금 촉매;를 포함하는 것을 특징으로 하는 수소발생 반응용 촉매.
Ni-Cu alloy layer electroplated on carbon paper; and
Catalyst for hydrogen generation reaction comprising a; Ni-P alloy catalyst electroplated on the Ni-Cu alloy layer.
삭제delete 제1항에 있어서,
상기 수소발생 반응용 촉매는 산성 또는 염기성 전해질에서 수소 발생 반응의 활성화를 가지는 것을 특징으로 하는 수소발생 반응용 촉매.

The method of claim 1,
The catalyst for hydrogen evolution reaction is a catalyst for hydrogen evolution reaction, characterized in that it has activation of the hydrogen evolution reaction in an acidic or basic electrolyte.

삭제delete
KR1020200120563A 2020-09-18 2020-09-18 Catalyst for hydrogen evolution reaction comprising Ni-Cu alloy layer KR102404666B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200120563A KR102404666B1 (en) 2020-09-18 2020-09-18 Catalyst for hydrogen evolution reaction comprising Ni-Cu alloy layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200120563A KR102404666B1 (en) 2020-09-18 2020-09-18 Catalyst for hydrogen evolution reaction comprising Ni-Cu alloy layer

Publications (2)

Publication Number Publication Date
KR20220037730A KR20220037730A (en) 2022-03-25
KR102404666B1 true KR102404666B1 (en) 2022-06-07

Family

ID=80935412

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200120563A KR102404666B1 (en) 2020-09-18 2020-09-18 Catalyst for hydrogen evolution reaction comprising Ni-Cu alloy layer

Country Status (1)

Country Link
KR (1) KR102404666B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114908366A (en) * 2022-06-08 2022-08-16 湘潭大学 Preparation method of porous Ni-Cu/CNTs-Ni cathode material

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101860763B1 (en) 2016-09-08 2018-05-25 한국과학기술연구원 Non-precious Metal Electrocatalyst, Proton Exchange Membrane Water Electrolyzer Using The Same And Method For Preparing The Same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102065680B1 (en) 2018-01-31 2020-01-13 공주대학교 산학협력단 Hierarchical Nanostructure of Transition Metal Sulfides, Hydrogen Evolution Reaction Catalysts, and the Fabrication Method Thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101860763B1 (en) 2016-09-08 2018-05-25 한국과학기술연구원 Non-precious Metal Electrocatalyst, Proton Exchange Membrane Water Electrolyzer Using The Same And Method For Preparing The Same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
M.Y. Gao, et al., "Electrochemical fabrication of porous Ni-Cu alloy nanosheets with high catalytic activity for hydrogen evolution", Electrochimica Acta, Vol.215, pp.609-616(2016.08.31.)*
Seunghyun Jo et al., "Enhanced activity and stability of Co-Ni-P-B catalyst for the hydrogen evolution reaction via predeposition of Co-Ni on a Cu substrate", Catalysis Today, pp.1-8(2019.)*

Also Published As

Publication number Publication date
KR20220037730A (en) 2022-03-25

Similar Documents

Publication Publication Date Title
Solmaz et al. Preparation, characterization and application of alkaline leached CuNiZn ternary coatings for long-term electrolysis in alkaline solution
US4801368A (en) Ni/Sn cathode having reduced hydrogen overvoltage
JP7457724B2 (en) Hydrogen generation reaction catalyst
CN112626552B (en) Method for electrodepositing Ni-Fe-Sn-P alloy on surface of foam nickel
Yang et al. Electrocatalytic properties of porous Ni-Co-WC composite electrode toward hydrogen evolution reaction in acid medium
Wang et al. Facile Synthesis of Nanostructural High‐Performance Cu–Pb Electrocatalysts for CO2 Reduction
KR102404666B1 (en) Catalyst for hydrogen evolution reaction comprising Ni-Cu alloy layer
KR20150103864A (en) method of preparing electrocatalyst for hydrogen production in alkaline water electrolysis, method for controlling a electrocatalyst composition by changing electrolysis condition and electrocatalyst for hydrogen production in alkaline water electrolysis thereby
Sh et al. Electrocatalysts for water electrolysis
CN112853394A (en) Foam nickel-molybdenum alloy doped with carbon quantum dots and preparation method thereof
Elias et al. Electrodeposition and electrocatalytic study of Ni-W alloy coating
CN114921823A (en) Preparation method of coating, electrode and household appliance applying preparation method
KR20170058352A (en) Polymer electrolyte membrane water electrolysis anode and method for preparing the same using IrO₂electrodeposited porous carbon material, polymer electrolyte membrane water electrolysis apparatus and method using the same
Elias et al. A comparative study on the electrocatalytic activity of electrodeposited Ni-W and Ni-P alloy coatings
CN110665509B (en) FeNi with dendritic crystal morphology3Preparation method and application of phase electrocatalyst powder
CN108404923B (en) Catalyst alumina/CeO for hydrolysis hydrogen production2Preparation method of/Ni composite nanotube, catalyst and application
CN115094469B (en) Preparation method of trace Cu doped porous NiFe oxygen evolution electrocatalyst
CN115323392B (en) Preparation of efficient Co/NiCoP/CC heterogeneous nanoparticle hydrogen evolution reaction electrocatalyst
Gaikwad et al. Ni-P-based Alloy Coatings Prepared by Direct and Pulsed Electrodeposition for Hydrogen Evolution Reaction in Alkaline Media
KR20230120404A (en) Catalysts for water electrolysis and preparation method thereof
Yang Comparison of Electrocatalytic Hydrogen Evolution Properties of Ni-Co and Ni-Co-WC Porous Electrodes
CN108998809B (en) Electrode catalytic material with double-layer nickel array structure and preparation method and application thereof
Lin et al. Electrodeposited Ni-W-Zn Alloys as Promising Electrocatalysts for Hydrogen Production by Micro-Anode Guided Electroplating
Niorettini Electroreduction of carbon dioxide over nanostructured metallic cathodes: a route towards artificial photosynthesis
KR20240026795A (en) Fabrication method of Porous Co-Se catalyst for alkaline water electrolysis and water electrolysis catalyst using thereof

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right