KR102401402B1 - 지능형 밸브 고장 예측 장치 - Google Patents

지능형 밸브 고장 예측 장치 Download PDF

Info

Publication number
KR102401402B1
KR102401402B1 KR1020200177520A KR20200177520A KR102401402B1 KR 102401402 B1 KR102401402 B1 KR 102401402B1 KR 1020200177520 A KR1020200177520 A KR 1020200177520A KR 20200177520 A KR20200177520 A KR 20200177520A KR 102401402 B1 KR102401402 B1 KR 102401402B1
Authority
KR
South Korea
Prior art keywords
valve
current
lissajous
failure prediction
voltage
Prior art date
Application number
KR1020200177520A
Other languages
English (en)
Inventor
송영철
이남형
김병각
유용웅
민인홍
Original Assignee
한국수자원공사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국수자원공사 filed Critical 한국수자원공사
Priority to KR1020200177520A priority Critical patent/KR102401402B1/ko
Application granted granted Critical
Publication of KR102401402B1 publication Critical patent/KR102401402B1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K37/00Special means in or on valves or other cut-off apparatus for indicating or recording operation thereof, or for enabling an alarm to be given
    • F16K37/0025Electrical or magnetic means
    • F16K37/0041Electrical or magnetic means for measuring valve parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/04Actuating devices; Operating means; Releasing devices electric; magnetic using a motor
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/15Leakage reduction or detection in water storage or distribution

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Computational Linguistics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Evolutionary Computation (AREA)
  • Artificial Intelligence (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Health & Medical Sciences (AREA)
  • Indication Of The Valve Opening Or Closing Status (AREA)

Abstract

본 발명은 지능형 밸브 고장 예측 장치에 관한 것으로, 밸브 조작기 또는 밸브를 구동하는 모터의 전류와 전압을 검출하는 검출부와, 상기 검출부에서 검출된 전류와 전압을 이용하여 리사주 도형을 구하는 프로세서와, 상기 리사주 도형을 과거 도형의 학습 데이터와 함께 학습하여 고장 예측을 수행하는 인공지능 예측부를 포함할 수 있다.

Description

지능형 밸브 고장 예측 장치{Intelligent prediction device for valve failure}
본 발명은 지능형 밸브 고장 예측 장치에 관한 것으로, 더 상세하게는 밸브에 센서를 부착하지 않고도 외부에서 진단을 수행할 수 있는 지능형 밸브 고장 예측 장치에 관한 것이다.
일반적으로, 모터 또는 액츄에이터에 의해 구동되는 밸브는 거의 모든 산업 전반에서 사용되는 중요한 기술적 요소이며, 물관리 관련 기간시설에서도 매우 중요하게 취급되는 요소이다.
모터 등의 구동 수단에 의해 자동으로 개폐량이 조절되는 밸브는 유체의 공급, 차단 또는 공급유량의 제어를 수행할 수 있으며, 적절한 때에 적절한 유량제어가 항시 가능한 상태로 유지될 필요가 있다.
따라서 밸브 상태를 주기적 또는 지속적으로 감시하고, 밸브의 고장을 예측하여 적절한 시기에 교체할 수 있어야 한다.
공개특허 10-2016-0029846호(2016년 3월 15일 공개, 선형 밸브들의 고장을 무선으로 모니터링 및 예측하기 위한 시스템)에는 센서를 사용하여 변위를 검출하고, 그 검출결과를 무선으로 송신하여, 원격에서 모니터링할 수 있는 시스템이 기재되어 있다.
또한, 공개특허 10-2020-0095556호(2020년 8월 10일 공개, 자동차의 고압 연료 펌프의 압력 제한 밸브의 고장 시간을 예측하기 위한 방법 및 장치)에는 자동차가 스위칭 오프된 때마다 압력 제한 밸브의 특성 파라미터를 측정하고, 특성 파라미터들로부터 변수를 추출하여, 변수의 시간 프로파일을 구하고, 이후의 프로파일을 예측하여 밸브의 고장 시간을 예측하는 구성이 기재되어 있다.
이와 같이 종래의 밸브 모니터링 장치들은 밸브의 특성을 검출하는 센서를 구비하고 있으나, 밸브를 구성하는 다양한 부품들의 상태를 확인하기 위한 센서들을 밸브에 취부하는 것은 현실적으로 어렵고, 비용도 많이 소요되는 문제점이 있었다.
또한, 밸브에 장착된 센서를 이용하여 파라미터를 검출하는 종래의 방식은 물리적인 기준값을 적어도 하나 이상 설정하고, 그 기준값의 초과 여부에 따라 경보 또는 차단을 판정하는 것이어서, 밸브의 다양한 사용 환경의 고려 없이 일괄적인 기준으로 고장을 예측하기 때문에 신뢰성이 저하되는 문제점이 있었다.
상기와 같은 문제점을 감안한 본 발명이 해결하고자 하는 과제는, 밸브 내부에 센서를 장착하지 않고, 밸브 외부에서 밸브의 고장을 예측할 수 있는 지능형 밸브 고장 예측 장치를 제공함에 있다.
또한, 본 발명은 단일한 기준값에 따른 일괄적인 고장예측이 아닌 다양한 환경 변수를 고려한 인공지능학습을 통해 진단 대상 밸브의 환경 변수를 고려한 고장 예측을 수행할 수 있는 지능형 밸브 고장 예측 장치를 제공함에 있다.
상기와 같은 기술적 과제를 해결하기 위한 본 발명의 지능형 밸브 고장 예측 장치는, 밸브 조작기 또는 밸브를 구동하는 모터의 전류와 전압을 검출하는 검출부와, 상기 검출부에서 검출된 전류와 전압을 이용하여 리사주 도형을 구하는 프로세서와, 상기 리사주 도형을 과거 도형의 학습 데이터와 함께 학습하여 고장 예측을 수행하는 인공지능 예측부를 포함할 수 있다.
본 발명의 실시예에서, 상기 프로세서는, x축을 전류, y축을 전압으로 설정하여 타원형의 리사주 도형을 구할 수 있다.
본 발명의 실시예에서, 상기 타원형의 리사주 도형의 1회전은 전압과 전류의 1주기와 동일하며, 기울기와 꼭지점의 위치가 역률정보가 될 수 있다.
본 발명의 실시예에서, 상기 인공지능 예측부는, 상기 밸브의 구동 환경 정보를 입력받아, 입력된 환경 정보를 함께 학습하여 밸브 고장을 예측할 수 있다.
본 발명의 실시예에서, 상기 환경 정보는, 온도와 습도를 포함하는 일반 환경 정보와, 자기장과 전자기장을 포함하는 특수 환경 정보를 포함할 수 있다.
본 발명의 실시예에서, 상기 환경 정보는, 사용자에 의해 입력되거나 센서에서 검출되어 입력될 수 있다.
본 발명은 밸브 자체에 장착된 센서가 아닌 밸브 조작기 또는 모터의 전류와 전압을 소스로하여 밸브의 고장을 예측할 수 있어, 밸브의 구성을 단순화하며 비용을 줄일 수 있는 효과가 있다.
또한, 밸브 자체에 장착된 센서의 이상여부를 고려하지 않고도 밸브의 고장을 예측할 수 있으므로 신뢰성을 향상시킬 수 있는 효과가 있다.
그리고 본 발명은 단순히 기준값을 적용하는 고장 예측 방식이 아닌 밸브가 구동되는 환경 요인을 고려하여 밸브의 고장 예측을 수행함으로써, 고장 예측의 정확도를 향상시킬 수 있는 효과가 있다.
도 1은 본 발명의 바람직한 실시예에 따른 지능형 밸브 고장 예측 장치의 블록 구성도이다.
도 2는 기어가 정상 상태의 리사주 도형의 예시도이다.
도 3은 마모된 기어의 리사주 도형의 예시도이다.
본 발명의 구성 및 효과를 충분히 이해하기 위하여, 첨부한 도면을 참조하여 본 발명의 바람직한 실시예들을 설명한다. 그러나 본 발명은 이하에서 개시되는 실시예에 한정되는 것이 아니라, 여러가지 형태로 구현될 수 있고 다양한 변경을 가할 수 있다. 단지, 본 실시예에 대한 설명은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위하여 제공되는 것이다. 첨부된 도면에서 구성요소는 설명의 편의를 위하여 그 크기를 실제보다 확대하여 도시한 것이며, 각 구성요소의 비율은 과장되거나 축소될 수 있다.
'제1', '제2' 등의 용어는 다양한 구성요소를 설명하는데 사용될 수 있지만, 상기 구성요소는 위 용어에 의해 한정되어서는 안 된다. 위 용어는 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용될 수 있다. 예를 들어, 본 발명의 권리범위를 벗어나지 않으면서 '제1구성요소'는 '제2구성요소'로 명명될 수 있고, 유사하게 '제2구성요소'도 '제1구성요소'로 명명될 수 있다. 또한, 단수의 표현은 문맥상 명백하게 다르게 표현하지 않는 한, 복수의 표현을 포함한다. 본 발명의 실시예에서 사용되는 용어는 다르게 정의되지 않는 한, 해당 기술분야에서 통상의 지식을 가진 자에게 통상적으로 알려진 의미로 해석될 수 있다.
이하에서는, 도면을 참조하여 본 발명의 일실시예에 따른 지능형 밸브 고장 예측 장치에 대하여 상세히 설명한다.
도 1은 본 발명의 바람직한 실시예에 따른 지능형 밸브 고장 예측 장치의 블록 구성도이다.
도 1을 참조하면 본 발명 지능형 밸브 고장 예측 장치(10)는, 밸브 조작기(1) 또는 밸브(3)를 구동하는 모터(2)의 전류 또는 전압을 검출하는 검출부(11)와, 상기 검출부(11)의 검출 파라미터를 선택하는 파라미터 선택부(12)와, 검출부(11)에서 검출된 전류와 전압을 이용하여 리사주 도형을 구하는 프로세서(13)와, 상기 리사주 도형을 표시하는 표시부(15)와, 밸브(3)의 구동 환경 정보를 입력할 수 있는 사용자 인터페이스(14)와, 상기 리사주 도형을 과거 도형의 학습 데이터와 함께 학습하여 고장 예측을 수행하되, 사용자 인터페이스(14)를 통해 입력된 환경 정보를 고려하여 예측하는 인공지능 예측부(16)를 포함하여 구성된다.
이하, 상기와 같이 구성되는 본 발명 지능형 밸브 고장 예측 장치(10)의 구성과 작용에 대하여 보다 상세히 설명한다.
먼저, 밸브(3)는 모터(2)의 구동에 따라 개폐되거나, 개도량의 조절이 가능한 것으로 한다.
본 발명은 밸브(3)를 구성하는 기어의 손상 등을 모터(2)에 공급되는 전류와 전압으로 검출할 수 있다.
기어가 부분적으로 마모 등으로 손상된 경우 또는 기타의 이유로 마찰계수가 변화된 경우, 토크와 회전속도가 정상과는 차이가 발생하게 된다.
즉, 기어 마모 등이 발생한 밸브(3)는 회전 중 마모 발생 부분에서의 전류 역률과 크기가 순간 변동된다.
이를 검출하기 위해서 검출부(11)는 모터(2)를 구동하는 밸브 조작기(1)의 출력 전류와 전압을 검출한다.
이때, 검출부(11)에서 검출되는 파라미터인 전류, 전압은 프로세서(13)의 제어에 따른 파라미터 선택부(12)의 선택에 의해 결정될 수 있다.
또한, 파라미터의 결정은 사용자가 사용자 인터페이스(14)를 통해 직접 선택할 수 있는 것으로 한다.
이처럼 밸브 조작기(1)를 조작하여 모터(2) 및 밸브(3)를 구동하면서 지능형 밸브 모터 고장 예측 장치(10)를 이용하여 구동 전류 및 전압을 검출한다.
프로세서(13)는 검출된 전류와 전압을 이용하여 리사주 도형을 구한다.
리사주(Lissajous)는 주로 오실로스코프의 X축 입력과 Y축 입력에 각각 다른 신호를 넣을 때 화면에 나타나는 파형을 지칭한다.
두 신호의 위상차와 주파수비 등에 따라 특징적인 패턴이 나타나기 때문에 두 신호의 관계를 시각적으로 파악할 수 있다.
상기 프로세서(13)는 X축으로 상기 검출부(11)에서 검출된 전류, Y축으로 상기 검출부(11)에서 검출된 전압으로 하여 전류와 전압의 관계를 시각적으로 표현할 수 있다.
도 2는 정상적인 기어의 상태에서 측정된 전류와, 라사주 도형을 나타낸다.
오른쪽에 도시된 전류 파형과 같이 기어에 마모가 없고, 마찰계수의 변화가 없는 경우, 일정한 진폭을 가지는 값으로 검출된다.
이를 리사주 도형으로 변환한 경우, 도 2의 좌측과 같이 타원형의 도형으로 표시된다.
도시된 리사주 도형의 1회전은 전압과 전류의 1주기와 동일하며, 기울기와 꼭지점의 위치가 역률정보가 된다.
도 3은 일부가 마모된 기어를 포함하는 밸브(3)의 동작시 검출된 전류파형과 리사주 도형을 도시하였다.
오른쪽 전류파형에서 일부 위치에서 역률과 전류값이 변화되는 구간이 있는 경우에는, 좌측의 리사주 파형에서 특정한 타원이 다른 타원들과는 단반경, 기울기 등에서 차이가 나는 도형으로 나타난다.
또한, 모터 자체의 고장은 전류 불평형, 누설 전류, 전류 FFT(Fast Fourier Transformation) 고조파 부넉을 통한 축전류 분석으로 노후화 정도를 파악할 수 있다.
상기 구해진 리사주 도형의 이미지는 상기 인공지능 예측부(16)로 제공된다.
인공지능 예측부(16)는 입력받은 리사주 도형 이미지의 특징을 추출한다.
이때의 특징은 데이터가 집중된 정상 타원과, 그 정상 타원과는 다른 위치에서 다른 형태를 가지는 비정상 타원을 추출할 수 있다.
이러한 특징점들은 기학습된 특징점들에 따른 고장 정도 학습결과와 비교되고, 다시 학습에 사용되며, 인공지능 예측부(16)를 통해 예측된 고장 여부 및 정도를 나타내는 결과는 다시 프로세서(13)를 통해 표시부(15)에 표시될 수 있다.
상기 인공지능 예측부(16)는 데이터를 저장하는 수단을 포함하며, 프로세서(13)를 통해 학습이 이루어지도록 처리되거나, 프로세서(13)와는 별도의 프로세서를 포함할 수 있다.
상기 인공지능 예측부(16)는 사용자 인터페이스(14)를 통해 제공되는 환경 정보를 포함하여, 고장 진단을 수행할 수 있다.
여기서 환경 정보는 밸브(3)의 구동 환경에 대한 정보이며, 밸브(3)가 위치하는 환경의 습도, 온도 등의 일반 환경 정보뿐만 아니라 파라미터 검출에 영향을 줄 수 있는 전기장 또는 자기장을 포함하는 특수 환경 정보를 포함할 수 있다.
상기 인공지능 예측부(16)는 사용자 인터페이스(14)를 통해 입력되는 환경 정보에 최대한 근접한 학습 데이터들과 비교 처리하여, 보다 정확한 고장 예측을 수행할 수 있다.
상기 사용자 인터페이스(14)는 사용자가 직접 정보를 입력하는 입력수단일 수 있으며, 환경 정보를 검출하는 센서들이 결합되는 인터페이스일 수 있으며, 센서들에서 검출된 환경 정보를 상기 프로세서(13)에서 확인하고, 인공지능 예측부(16)에 정보를 제공하는 구성일 수 있다.
이상에서 본 발명에 따른 실시예들이 설명되었으나, 이는 예시적인 것에 불과하며, 당해 분야에서 통상적 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 범위의 실시예가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 보호 범위는 다음의 청구범위에 의해서 정해져야 할 것이다.
11:검출부 12:파라미터 선택부
13:프로세서 14:사용자 인터페이스
15:표시부 16:인공지능 예측부

Claims (6)

  1. 밸브 조작기 또는 밸브를 구동하는 모터의 전류와 전압을 검출하는 검출부;
    상기 검출부에서 검출된 전류와 전압을 이용하여 리사주 도형을 구하는 프로세서; 및
    상기 리사주 도형을 과거 도형의 학습 데이터와 함께 학습하여 고장 예측을 수행하는 인공지능 예측부를 포함하되,
    상기 프로세서는,
    x축을 전류, y축을 전압으로 설정하여 타원형의 리사주 도형을 구하고,
    상기 타원형의 리사주 도형의 1회전은 전압과 전류의 1주기와 동일하며, 기울기와 꼭지점의 위치가 역률정보인 것을 특징으로 하는 지능형 밸브 고장 예측 장치.
  2. 삭제
  3. 삭제
  4. 제1항에 있어서,
    상기 인공지능 예측부는,
    상기 밸브의 구동 환경 정보를 입력받아, 입력된 환경 정보를 함께 학습하여 밸브 고장을 예측하는 것을 특징으로 하는 지능형 밸브 고장 예측 장치.
  5. 제4항에 있어서,
    상기 환경 정보는,
    온도와 습도를 포함하는 일반 환경 정보; 및
    자기장과 전자기장을 포함하는 특수 환경 정보를 포함하는 지능형 밸브 고장 예측 장치.
  6. 제5항에 있어서,
    상기 환경 정보는,
    사용자에 의해 입력되거나 센서에서 검출되어 입력되는 것을 특징으로 하는 지능형 밸브 고장 예측 장치.
KR1020200177520A 2020-12-17 2020-12-17 지능형 밸브 고장 예측 장치 KR102401402B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200177520A KR102401402B1 (ko) 2020-12-17 2020-12-17 지능형 밸브 고장 예측 장치

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200177520A KR102401402B1 (ko) 2020-12-17 2020-12-17 지능형 밸브 고장 예측 장치

Publications (1)

Publication Number Publication Date
KR102401402B1 true KR102401402B1 (ko) 2022-05-24

Family

ID=81806919

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200177520A KR102401402B1 (ko) 2020-12-17 2020-12-17 지능형 밸브 고장 예측 장치

Country Status (1)

Country Link
KR (1) KR102401402B1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230340954A1 (en) * 2022-04-21 2023-10-26 National Oilwell Varco, L.P. Pump wear detection system
CN118244622A (zh) * 2024-05-21 2024-06-25 凯茨姆阀门集团有限公司 一种通过调节阀门开度自动调流调压的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006083928A (ja) * 2004-09-15 2006-03-30 Okano Valve Mfg Co 電動弁装置の異常および劣化診断手法ならびに装置
KR20170069195A (ko) * 2014-08-01 2017-06-20 차지포인트 테크놀로지 리미티드 사용 상태 모니터링 시스템 및 방법
KR102187486B1 (ko) * 2020-06-16 2020-12-07 에스케이씨솔믹스 주식회사 로봇의 상태 판단 방법 및 장치

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006083928A (ja) * 2004-09-15 2006-03-30 Okano Valve Mfg Co 電動弁装置の異常および劣化診断手法ならびに装置
KR20170069195A (ko) * 2014-08-01 2017-06-20 차지포인트 테크놀로지 리미티드 사용 상태 모니터링 시스템 및 방법
KR102187486B1 (ko) * 2020-06-16 2020-12-07 에스케이씨솔믹스 주식회사 로봇의 상태 판단 방법 및 장치

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230340954A1 (en) * 2022-04-21 2023-10-26 National Oilwell Varco, L.P. Pump wear detection system
US12078163B2 (en) * 2022-04-21 2024-09-03 National Oilwell Varco, L.P. Pump wear detection system
CN118244622A (zh) * 2024-05-21 2024-06-25 凯茨姆阀门集团有限公司 一种通过调节阀门开度自动调流调压的方法

Similar Documents

Publication Publication Date Title
KR102401402B1 (ko) 지능형 밸브 고장 예측 장치
RU2420778C2 (ru) Машинное определение состояния устройства управления процессом с использованием характеристических кривых
US9727433B2 (en) Control valve diagnostics
US12000503B2 (en) Valve positioner and diagnostic method
CA2202771C (en) Vibration monitoring system
KR101748559B1 (ko) 회전체 진단 장치 및 방법
CN109404603A (zh) 一种气动调节阀的故障在线监测的方法和装置
CN114576152A (zh) 水泵状态监测系统、监测方法、装置、电子设备和介质
US7769563B2 (en) Method and apparatus for diagnosis of motor-operated valve
US9720015B2 (en) Intelligent visualization in the monitoring of process and/or system variables
US20210033490A1 (en) Valve maintenance assistance device and assisting method
EP3234706B1 (en) Apparatus and methods for monitoring subsea electrical systems using adaptive models
US10955837B2 (en) Method and system for error detection and monitoring for an electronically closed-loop or open-loop controlled machine part
US20220128617A1 (en) Diagnostic device, diagnostic method, and field device
CN112051756A (zh) 一种气动执行机构故障诊断记录仪
WO2021192981A1 (ja) 電磁弁
KR20040036980A (ko) 기계 상태 감시 시스템 및 그 서버
CN111811845A (zh) 诊断装置
CN110262464A (zh) 染色机故障监测方法、染色机及存储介质
CN113866625B (zh) 一种用于电动开关阀开关量状态检测的方法
CN109211156A (zh) 监测基于向量的位置传感器的方法
KR20240097060A (ko) 회전 기기의 상태 진단 장치, 방법 및 시스템
KR102688082B1 (ko) 3상 모터 전력 데이터에 대한 펌프 설비의 이상 감지 시스템 및 이를 이용한 이상 감지 방법
JP7422896B2 (ja) 電動機の診断装置
ZA200501797B (en) Monitoring and diagnosting technical installation using purely mechanically activated signalling means.

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant