KR102396524B1 - Photocatalyst filter manufacturing by 3d printer and air conditioner including photocatalytic filter - Google Patents

Photocatalyst filter manufacturing by 3d printer and air conditioner including photocatalytic filter Download PDF

Info

Publication number
KR102396524B1
KR102396524B1 KR1020200163230A KR20200163230A KR102396524B1 KR 102396524 B1 KR102396524 B1 KR 102396524B1 KR 1020200163230 A KR1020200163230 A KR 1020200163230A KR 20200163230 A KR20200163230 A KR 20200163230A KR 102396524 B1 KR102396524 B1 KR 102396524B1
Authority
KR
South Korea
Prior art keywords
printer
photocatalytic filter
air
manufactured
photocatalyst
Prior art date
Application number
KR1020200163230A
Other languages
Korean (ko)
Inventor
전수진
김덕만
Original Assignee
(주)웨이투메이크
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)웨이투메이크 filed Critical (주)웨이투메이크
Priority to KR1020200163230A priority Critical patent/KR102396524B1/en
Application granted granted Critical
Publication of KR102396524B1 publication Critical patent/KR102396524B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • B29C64/129Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
    • B29C64/135Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask the energy source being concentrated, e.g. scanning lasers or focused light sources
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/16Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • B01D39/2068Other inorganic materials, e.g. ceramics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/001Rapid manufacturing of 3D objects by additive depositing, agglomerating or laminating of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/118Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using filamentary material being melted, e.g. fused deposition modelling [FDM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/141Processes of additive manufacturing using only solid materials
    • B29C64/153Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/28Arrangement or mounting of filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2103/00Use of resin-bonded materials as moulding material
    • B29K2103/04Inorganic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/14Filters

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Geology (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)

Abstract

The present invention provides a photocatalyst filter manufactured by a 3D printer and an air purifying device including the photocatalyst filter. The photocatalytic filter manufactured by a 3D printer comprises a photocatalyst filter manufactured by printing a printing raw material coated with a titanium dioxide photocatalyst composition using a 3D printer. The photocatalyst filter defines a plurality of outer cells having an inlet opened along at least one of the outer surfaces in the direction of air flow by an outer partition wall and provides at least one or more through-holes therein having an outlet opened in the direction of air flow and spaced apart from each other at predetermined intervals. Accordingly, productivity can be improved.

Description

3D 프린터에 의해 제조되는 광촉매 필터 및 광촉매 필터를 포함하는 공기정화장치 {PHOTOCATALYST FILTER MANUFACTURING BY 3D PRINTER AND AIR CONDITIONER INCLUDING PHOTOCATALYTIC FILTER}A photocatalytic filter manufactured by a 3D printer and an air purifier comprising a photocatalytic filter {PHOTOCATALYST FILTER MANUFACTURING BY 3D PRINTER AND AIR CONDITIONER INCLUDING PHOTOCATALYTIC FILTER}

본 발명은 3D 프린터에 의해 제조되는 광촉매 필터 및 광촉매 필터를 포함하는 공기정화장치에 관한 발명으로써, 보다 구체적으로 3D 프린터를 이용하여 제조되는 이산화티탄 광촉매 조성물이 코팅된 광촉매 필터를 이용하여 광효율을 증대시키며, 광촉매 필터에 공기의 유동경로를 원활하게 할 수 있는 복수개의 관통홀을 구비하여 공기의 유동경로가 자외선의 조사경로에 의해 차단되는 것을 방지할 수 있는 3D 프린터에 의해 제조되는 광촉매 필터 및 광촉매 필터를 포함하는 공기정화장치에 관한 것이다.The present invention relates to a photocatalyst filter manufactured by a 3D printer and an air purification device including a photocatalyst filter. More specifically, a photocatalytic filter coated with a titanium dioxide photocatalyst composition manufactured using a 3D printer is used to increase light efficiency. A photocatalyst filter and photocatalyst manufactured by a 3D printer that can prevent the flow path of air from being blocked by the irradiation path of ultraviolet rays by having a plurality of through-holes in the photocatalytic filter that can smooth the flow path of air It relates to an air purifier including a filter.

일반적으로 가정 또는 산업 현장 등에서는 각종 공기정화장치가 사용된다. 예를 들어 쓰레기 소각로나 공장의 굴뚝 등에서는 배출가스 중에 포함된 유해물질이나 먼지 등을 제거하기 위하여 공기정화장치를 이용한다. 그리고 가정에서도 청정한 환경을 유지하기 위하여 공기정화장치가 사용되며, 에어콘, 팬히터, 진공청소기 등에서도 공기를 정화하는 각종 필터가 장착된다.In general, various air purifiers are used in homes or industrial sites. For example, in a waste incinerator or a factory chimney, an air purifier is used to remove harmful substances or dust contained in exhaust gas. In order to maintain a clean environment at home, an air purifying device is used, and various filters for purifying air are installed in air conditioners, fan heaters, vacuum cleaners, and the like.

종래에는 공기를 정화하기 위하여 일반적으로 폴리프로필렌(PP)수지 섬유 또는 폴리에틸렌(PE)수지 섬유를 이용하는 부직포 형태의 필터를 사용하거나, 전기집진방식의 정전필터 등을 사용하였다.Conventionally, in order to purify air, a non-woven fabric filter using polypropylene (PP) resin fiber or polyethylene (PE) resin fiber is generally used, or an electrostatic filter of an electrostatic precipitation method is used.

그러나 이러한 형식의 필터로는 먼지를 거르는 것은 가능하지만 그 구조상 악취를 제거하거나 세균을 살균하는 것은 곤란하였다. 따라서 탈취를 위하여 활성탄으로 만들어진 별도의 탈취필터를 사용하기도 하였다. 그러나 활성탄을 이용한 탈취필터는 탈취성능 및 내구성이 좋지 않았고, 공기중에 포함된 유해한 미생물을 살균할 수는 없었다는 문제점이 있었다. 이러한 문제점을 해결하기 위하여 광에너지에 의하여 활성화되어 살균 및 탈취기능을 갖는 광촉매물질을 이용한 소위 광촉매기술이 연구 개발되고 있으며, 대표적인 광촉매가 산화티타늄(TiO2)이다.However, although it is possible to filter dust with this type of filter, it is difficult to remove odors or sterilize bacteria due to its structure. Therefore, a separate deodorizing filter made of activated carbon was used for deodorization. However, the deodorization filter using activated carbon had a problem that the deodorization performance and durability were not good, and it was not possible to sterilize harmful microorganisms contained in the air. In order to solve this problem, a so-called photocatalyst technology using a photocatalyst material that is activated by light energy and has sterilization and deodorization functions has been researched and developed, and a representative photocatalyst is titanium oxide (TiO2).

산화티타늄과 같은 광촉매는 유기물과의 흡착력이 뛰어나며, 또한 광에너지에 노출되면 여기(勵起)되어 여러형태의 라디칼(radical)을 형성시켜 주어 강한 산화력에 의하여 미생물을 살균하고, 동시에 라디칼이 악취를 유발하는 냄새물질과 반응하면서 이를 분해하기 때문이다.Photocatalysts such as titanium oxide have excellent adsorption ability with organic matter, and when exposed to light energy, they are excited to form various types of radicals to sterilize microorganisms by strong oxidizing power, and at the same time, radicals remove odors. This is because it decomposes while reacting with the odorous substances that cause it.

그리고, 3D 프린터는 특정 소프트웨어에 의해서 작성된 3차원 설계도에 기초해서 연속적인 계층의 물질을 분사해서 3차원 물체를 제조하는 장치로, 개발 초기에는 주로 시제품의 제작에 사용되었으나, 최근에는 선박, 자동차, 건축, 의료, 식품 등 산업의 전분야에서 널리 이용되고 있고, 또한 소비자가 자기만의 스타일과 디자인으로 물건을 맞춤 생산하기 위한 용도로도 이용이 확대되고 있다. 사용되는 원료의 종류에 따라 FFF(Fused Filament Fabrication), FDM(Fused Deposition Modeling) 방식, DLP(Digital Light Processing) 방식, SLS(Selective Laser Sintering) 방식 등으로 분류될 수 있다. 여기에서, FFF 및 FDM 방식에서는 고체 필라멘트를 원료로 사용하고, DLP 방식에서는 액체의 원료를 사용하며, SLS 방식에서는 파우더 형태의 원료를 사용할 수 있다.And, 3D printer is a device that manufactures a 3D object by spraying a continuous layer of material based on a 3D design created by a specific software. It is widely used in all fields of industry, such as architecture, medical care, and food, and its use is also expanding for the purpose of customizing products with their own style and design. Depending on the type of raw material used, it may be classified into a Fused Filament Fabrication (FFF), a Fused Deposition Modeling (FDM) method, a Digital Light Processing (DLP) method, and a Selective Laser Sintering (SLS) method. Here, in the FFF and FDM methods, a solid filament may be used as a raw material, in the DLP method, a liquid raw material may be used, and in the SLS method, a raw material in a powder form may be used.

대한민국 공개특허공보 제10-2020-0013284호Republic of Korea Patent Publication No. 10-2020-0013284

본 발명이 해결하고자 하는 과제는 3D 프린터에 의해 제조되는 광촉매 필터 및 광촉매 필터를 포함하는 공기정화장치를 제공하는 것이다.SUMMARY OF THE INVENTION An object of the present invention is to provide a photocatalytic filter manufactured by a 3D printer and an air purification device including the photocatalyst filter.

본 발명이 해결하고자 하는 과제들은 이상에서 언급된 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 통상의 기술자에게 명확하게 이해될 수 있을 것이다.The problems to be solved by the present invention are not limited to the problems mentioned above, and other problems not mentioned will be clearly understood by those skilled in the art from the following description.

상술한 과제를 해결하기 위한 본 발명의 일실시예에 따른 3D 프린터에 의해 제조되는 광촉매 필터는, 3D 프린터를 이용하여 이산화티탄 광촉매 조성물이 코팅된 프린팅원료를 프린팅하여 제조되는 광촉매 필터;를 포함하고, 상기 광촉매 필터는, 외측면 중 적어도 하나의 측면에 공기의 유동방향에 따라 입구가 개구된 복수개의 외측셀이 외측격벽에 의해 규정되고, 내부에 상기 공기의 유동방향에 따라 출구가 개구되어 소정간격으로 이격되어 배치되는 적어도 하나 이상의 관통홀을 구비할 수 있다.A photocatalytic filter manufactured by a 3D printer according to an embodiment of the present invention for solving the above-mentioned problems is a photocatalytic filter manufactured by printing a printing raw material coated with a titanium dioxide photocatalyst composition using a 3D printer; and , The photocatalytic filter has a plurality of outer cells having an inlet opened according to the flow direction of air on at least one of the outer surfaces by an outer partition wall, and an outlet is opened according to the flow direction of the air therein. At least one through-hole spaced apart from each other may be provided.

본 발명의 일실시예에 있어서, 상기 관통홀의 내측면은, 상기 공기의 유동방향에 따라 출구가 개구된 복수개의 내측셀이 내측격벽에 의해 규정될 수 있다.In one embodiment of the present invention, the inner surface of the through hole, a plurality of inner cells having outlets opened according to the flow direction of the air may be defined by the inner partition wall.

본 발명의 일실시예에 있어서, 상기 광촉매 필터의 상부면은, 양측 끝단에서 중심방향으로 완곡하게 하향 경사진 반원구 형상으로 형성될 수 있다.In one embodiment of the present invention, the upper surface of the photocatalytic filter may be formed in a semi-spherical shape that is inclined downwardly from both ends to the center direction.

본 발명의 일실시예에 있어서, 상기 프린팅원료는 다공성 무기물질을 포함할 수 있다.In one embodiment of the present invention, the printing raw material may include a porous inorganic material.

또한, 상술한 과제를 해결하기 위한 본 발명의 일실시예에 따른 공기정화기는 3D 프린터에 의해 제조되는 광촉매 필터를 포함할 수 있다.In addition, the air purifier according to an embodiment of the present invention for solving the above problems may include a photocatalytic filter manufactured by a 3D printer.

본 발명의 기타 구체적인 사항들은 상세한 설명 및 도면들에 포함되어 있다.Other specific details of the invention are included in the detailed description and drawings.

본 발명에 따르면, 광촉매 필터를 3D 프린터에 의해 제조됨으로써, 복잡한 형상을 쉽게 프린팅하여 작업성을 간단히 하여 생산성을 향상시킬 수 있다.According to the present invention, by manufacturing the photocatalytic filter by a 3D printer, it is possible to easily print a complex shape to simplify workability and improve productivity.

본 발명에 따르면, 3D 프린터를 이용하여 이산화티탄 광촉매 조성물이 코팅된 광촉매 필터를 제조함으로써, 광촉매를 통해 바이러스 또는 세균을 효과적으로 제거하여 공기 정화 효율성을 향상시킬 수 있다.According to the present invention, by manufacturing a photocatalyst filter coated with a titanium dioxide photocatalyst composition using a 3D printer, it is possible to effectively remove viruses or bacteria through the photocatalyst, thereby improving air purification efficiency.

본 발명에 따르면, 3D 프린터에 의해 제조되는 광촉매 필터에 공기의 유동경로를 원활하게 할 수 있는 복수개의 관통홀을 구비함으로써, 공기의 유동경로가 자외선의 조사경로에 의해 차단되는 것을 방지할 수 있다.According to the present invention, it is possible to prevent the flow path of air from being blocked by the irradiation path of ultraviolet rays by providing a plurality of through-holes capable of smoothing the flow path of air in the photocatalytic filter manufactured by the 3D printer. .

본 발명에 따르면, 3D 프린터에 의해 제조되는 광촉매 필터의 상면을 반원구형상으로 구비함으로써, 자외선의 조사경로와 공기의 유동경로를 원활하게 하면서 광효율을 증대시킬 수 있다.According to the present invention, by providing the upper surface of the photocatalytic filter manufactured by the 3D printer in a semi-spherical shape, it is possible to increase the light efficiency while smoothing the irradiation path of ultraviolet rays and the flow path of air.

본 발명에 따르면, 자외선이 외부로 조사되어 나오는 것을 방지하여 자외선으로 인해 발생하는 수 있는 폐해를 최소화할 수 있다.According to the present invention, ultraviolet rays are prevented from being irradiated to the outside, thereby minimizing harmful effects caused by ultraviolet rays.

본 발명의 효과들은 이상에서 언급된 효과로 제한되지 않으며, 언급되지 않은 또 다른 효과들은 아래의 기재로부터 통상의 기술자에게 명확하게 이해될 수 있을 것이다.Effects of the present invention are not limited to the effects mentioned above, and other effects not mentioned will be clearly understood by those skilled in the art from the following description.

도 1은 본 발명의 일실시예에 따른 3D 프린터에 의해 제조되는 광촉매 필터를 포함하는 공기정화장치를 설명하기 위한 도면이다.
도 2는 본 발명의 일실시예에 따른 3D 프린터에 의해 제조되는 광촉매 필터를 설명하기 위한 도면이다.
도 3은 본 발명의 다른 일실시예에 따른 3D 프린터에 의해 제조되는 광촉매 필터를 설명하기 위한 도면이다.
도 4는 본 발명의 일실시예에 따른 3D 프린터에 의해 제조되는 광촉매 필터를 포함하는 공기정화장치의 동작상태를 설명하는 도면이다.
도 5는 본 발명의 다른 일실시예에 따른 3D 프린터에 의해 제조되는 광촉매 필터를 포함하는 공기정화장치의 동작상태를 설명하는 도면이다.
1 is a view for explaining an air purification device including a photocatalytic filter manufactured by a 3D printer according to an embodiment of the present invention.
2 is a view for explaining a photocatalytic filter manufactured by a 3D printer according to an embodiment of the present invention.
3 is a view for explaining a photocatalytic filter manufactured by a 3D printer according to another embodiment of the present invention.
4 is a view for explaining an operating state of an air purifier including a photocatalytic filter manufactured by a 3D printer according to an embodiment of the present invention.
5 is a view for explaining an operating state of an air purifier including a photocatalytic filter manufactured by a 3D printer according to another embodiment of the present invention.

본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나, 본 발명은 이하에서 개시되는 실시예들에 제한되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술 분야의 통상의 기술자에게 본 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다.Advantages and features of the present invention and methods of achieving them will become apparent with reference to the embodiments described below in detail in conjunction with the accompanying drawings. However, the present invention is not limited to the embodiments disclosed below, but may be implemented in various different forms, and only the present embodiments allow the disclosure of the present invention to be complete, and those of ordinary skill in the art to which the present invention pertains. It is provided to fully understand the scope of the present invention to those skilled in the art, and the present invention is only defined by the scope of the claims.

본 명세서에서 사용된 용어는 실시예들을 설명하기 위한 것이며 본 발명을 제한하고자 하는 것은 아니다. 본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함한다. 명세서에서 사용되는 "포함한다(comprises)" 및/또는 "포함하는(comprising)"은 언급된 구성요소 외에 하나 이상의 다른 구성요소의 존재 또는 추가를 배제하지 않는다. 명세서 전체에 걸쳐 동일한 도면 부호는 동일한 구성 요소를 지칭하며, "및/또는"은 언급된 구성요소들의 각각 및 하나 이상의 모든 조합을 포함한다. 비록 "제1", "제2" 등이 다양한 구성요소들을 서술하기 위해서 사용되나, 이들 구성요소들은 이들 용어에 의해 제한되지 않음은 물론이다. 이들 용어들은 단지 하나의 구성요소를 다른 구성요소와 구별하기 위하여 사용하는 것이다. 따라서, 이하에서 언급되는 제1 구성요소는 본 발명의 기술적 사상 내에서 제2 구성요소일 수도 있음은 물론이다.The terminology used herein is for the purpose of describing the embodiments and is not intended to limit the present invention. In this specification, the singular also includes the plural unless otherwise specified in the phrase. As used herein, “comprises” and/or “comprising” does not exclude the presence or addition of one or more other components in addition to the stated components. Like reference numerals refer to like elements throughout, and "and/or" includes each and every combination of one or more of the recited elements. Although "first", "second", etc. are used to describe various elements, these elements are not limited by these terms, of course. These terms are only used to distinguish one component from another. Accordingly, it goes without saying that the first component mentioned below may be the second component within the spirit of the present invention.

다른 정의가 없다면, 본 명세서에서 사용되는 모든 용어(기술 및 과학적 용어를 포함)는 본 발명이 속하는 기술분야의 통상의 기술자에게 공통적으로 이해될 수 있는 의미로 사용될 수 있을 것이다. 또한, 일반적으로 사용되는 사전에 정의되어 있는 용어들은 명백하게 특별히 정의되어 있지 않는 한 이상적으로 또는 과도하게 해석되지 않는다.Unless otherwise defined, all terms (including technical and scientific terms) used herein will have the meaning commonly understood by those of ordinary skill in the art to which this invention belongs. In addition, terms defined in a commonly used dictionary are not to be interpreted ideally or excessively unless specifically defined explicitly.

이하, 첨부된 도면을 참조하여 본 발명의 실시예를 상세하게 설명한다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.

도 1은 본 발명의 일실시예에 따른 3D 프린터에 의해 제조되는 광촉매 필터를 포함하는 공기정화장치를 설명하기 위한 도면이다.1 is a view for explaining an air purification device including a photocatalytic filter manufactured by a 3D printer according to an embodiment of the present invention.

도 1에 도시된 바와 같이, 본 발명의 일실시예에 따른 3D 프린터에 의해 제조되는 광촉매 필터를 포함하는 공기정화장치(1)은 팬모듈(100), 광원부(200) 및 3D 프린터에 의해 제조되는 광촉매 필터(300)를 포함할 수 있다.As shown in FIG. 1 , the air purifier 1 including a photocatalytic filter manufactured by a 3D printer according to an embodiment of the present invention is manufactured by a fan module 100 , a light source unit 200 and a 3D printer. It may include a photocatalytic filter 300 that becomes

팬모듈(100)은 공기정화장치(1)로 공기를 유입시켜 정화된 공기를 배출하는 팬(120)과 모터(140)를 포함할 수 있다.The fan module 100 may include a fan 120 and a motor 140 that introduces air into the air purifier 1 and discharges the purified air.

여기서, 모터(140)는 별도의 배터리부를 구비할 수 있지만, 이에 한정하지 않는다.Here, the motor 140 may include a separate battery unit, but is not limited thereto.

광원부(200)는 3D 프린터에 의해 제조되는 광촉매 필터(300)로 자외선을 조사하는 복수의 광촉매용 UV LED(220)을 포함할 수 있다.The light source unit 200 may include a plurality of photocatalyst UV LEDs 220 irradiating ultraviolet light to the photocatalytic filter 300 manufactured by the 3D printer.

복수의 광촉매용 UV LED(220)는 양이온이나 음이온이 치환된 광촉매의 흡수 파장에 따라 자외선을 조사할 수 있다. 하지만, 이에 한정하지 않고, 복수의 광촉매용 UV LED(220)는 가시광선을 조사할 수 있다.The plurality of photocatalyst UV LEDs 220 may irradiate ultraviolet rays according to the absorption wavelength of the photocatalyst substituted with cations or anions. However, the present invention is not limited thereto, and the plurality of photocatalyst UV LEDs 220 may irradiate visible light.

예를 들어, 복수의 광촉매용 UV LED(220)의 자외선의 파장은 200~390nm 대역을 포함하며, 특히 그 피크파장이 260~370nm 사이에 존재하도록 하면 광촉매 반응 효율을 더욱 높일 수 있다.For example, the wavelength of the ultraviolet rays of the plurality of photocatalytic UV LEDs 220 includes a band of 200 to 390 nm, and in particular, if the peak wavelength is between 260 and 370 nm, the photocatalytic reaction efficiency can be further increased.

실시예에 따라, 광원부(200)는 복수의 광촉매용 UV LED(220)의 자외선 조사 방향과 동일한 방향으로 살균용 파장을 가지는 자외선을 조사하는 살균용 UV LED(미도시)를 더 포함할 수 있다.According to an embodiment, the light source unit 200 may further include a UV LED for sterilization (not shown) that irradiates ultraviolet rays having a wavelength for sterilization in the same direction as the ultraviolet irradiation direction of the plurality of photocatalyst UV LEDs 220 . .

이와 같은 구조의 광원부(200)는 3D 프린터에 의해 제조되는 광촉매 필터(300)의 전방에 광촉매용 UV LED(220)를 배치하여 3D 프린터에 의해 제조되는 광촉매 필터(300)의 전방에서 자외선이 비추도록 함으로써, 광촉매 필터(300)를 통과해서 공기의 압력 강하가 발생하기 전에 3D 프린터에 의해 제조되는 광촉매 필터(300)의 전면 표면에서부터 광촉매 반응이 일어나도록 함으로써 3D 프린터에 의해 제조되는 광촉매 필터(300)의 유해가스 분해효율을 더욱 향상시킬 수 있다.The light source unit 200 having such a structure places UV LEDs 220 for photocatalysis in front of the photocatalytic filter 300 manufactured by the 3D printer, so that ultraviolet rays shine from the front of the photocatalytic filter 300 manufactured by the 3D printer. The photocatalytic filter 300 manufactured by the 3D printer by allowing the photocatalytic reaction to occur from the front surface of the photocatalytic filter 300 manufactured by the 3D printer before the pressure drop of the air passing through the photocatalytic filter 300 occurs ) can further improve the decomposition efficiency of harmful gases.

광촉매 필터(300)는 광원부(200)와 맞대응 하는 면에 소정간격으로 이격되어 배치되도록 3D 프린터에 의해 제조될 수 있다.The photocatalytic filter 300 may be manufactured by a 3D printer so as to be spaced apart from each other at a predetermined interval on a surface corresponding to the light source unit 200 .

구체적으로, 광촉매 필터(300)는 3D 프린터에 의해 이산화티탄(TIO2) 광촉매 조성물이 코팅된 프린팅원료를 이용하여 프린팅하여 형성될 수 있다.Specifically, the photocatalytic filter 300 may be formed by printing using a printing raw material coated with a titanium dioxide (TIO 2 ) photocatalyst composition by a 3D printer.

예를 들어, 열가소성 소재를 용융시켜 용융물을 아래서부터 순차적으로 쌓아 올리면서 3차원 출력물을 성형하는 FDM(Fused Deposition Modeling) 방식을 이용하여 광촉매 필터(300)가 생성되는 경우, 광촉매 필터(300)는 이산화티타늄 광촉매 분말과, 메틸 셀룰로오즈, 분산제, 소포제 등의 다공성 무기물질을 이용하여 생성될 수 있다.For example, when the photocatalytic filter 300 is generated using the FDM (Fused Deposition Modeling) method of forming a three-dimensional output while melting a thermoplastic material and sequentially stacking the melt from the bottom, the photocatalytic filter 300 is It can be produced using titanium dioxide photocatalyst powder, methyl cellulose, a dispersing agent, a porous inorganic material such as an antifoaming agent.

또한, 액상의 광경화성 소재가 담긴 수조에 레이저를 투사하여 레이저가 닿는 부분을 굳혀 3차원 출력물을 제조하는 SLA(Stereolithography) 방식을 이용하여 광촉매 필터(300)를 생성하는 경우, 3D 프린터에 의해 제조되는 광촉매 필터(300)는 광경화 수지와 이산화티타늄 광촉매 분말을 이용하여 UV를 조사하는 Laser를 이용하여 부분적으로 경화하여 생성될 수 있다.In addition, when the photocatalytic filter 300 is generated using the SLA (Stereolithography) method of producing a three-dimensional output by projecting a laser onto a water tank containing a liquid photocurable material and solidifying the part that the laser touches, it is manufactured by a 3D printer The photocatalyst filter 300 to be used may be generated by partially curing the photocatalyst using a laser irradiating UV using a photocurable resin and titanium dioxide photocatalyst powder.

이와 달리, 3D 프린터에 의해 제조되는 광촉매 필터(300)는 SLS(SelectiveLaser Sintering) 방식 및 FFF(Fused Filament Fabrication) 방식을 이용하여 생성될 수 있다.Alternatively, the photocatalytic filter 300 manufactured by the 3D printer may be generated using a Selective Laser Sintering (SLS) method and a Fused Filament Fabrication (FFF) method.

본 실시예에서, 광촉매 필터(300)는 3D 프린팅 기술을 이용하여 생산되는 것으로 개시하였지만, 이에 한정하지 않는다.In the present embodiment, the photocatalytic filter 300 is disclosed as being produced using 3D printing technology, but is not limited thereto.

3D 프린터에 의해 제조되는 광촉매 필터(300)는 도 2를 참조하면, 6면을 갖는 사각형상으로 공기의 유동방향에 따라 입구가 개구된 복수개의 외측셀(322)과, 복수개의 외측셀(322)을 규정화하는 외측격벽(324)을 포함하는 적어도 하나의 외측면(320)과, 공기의 유동방향에 따라 출구가 개구되어 소정간격으로 이격되어 배치되는 적어도 하나 이상의 관통홀(342)을 포함하는 상부면(340)을 포함할 수 있다.Referring to FIG. 2 , the photocatalytic filter 300 manufactured by the 3D printer has a rectangular shape having six sides, and a plurality of outer cells 322 and a plurality of outer cells 322 whose inlets are opened according to the air flow direction. ) including at least one outer surface 320 including an outer bulkhead 324, and at least one through hole 342 with an outlet opening according to the flow direction of air and spaced apart from each other by a predetermined interval It may include an upper surface 340 that is.

외측면(320)의 외측셀(322)과 외측격벽(324)은 메쉬망 구조로 형성될 수 있지만, 이에 한정하지 않고, 허니컴 구조로 형성될 수 있다.The outer cell 322 and the outer partition wall 324 of the outer surface 320 may be formed in a mesh network structure, but is not limited thereto, and may be formed in a honeycomb structure.

외측셀(322)은 공기의 유동방향에 따라 개구되어 3D 프린터에 의해 제조되는 광촉매 필터(300)의 내부가 노출될 수 있다.The outer cell 322 may be opened according to the flow direction of the air to expose the inside of the photocatalytic filter 300 manufactured by the 3D printer.

실시예에 따라, 외측셀(322)은 관통홀(342)의 내측면을 노출할 수 있다.According to an embodiment, the outer cell 322 may expose the inner surface of the through hole 342 .

관통홀(342)은 내측면에 상기 공기의 유동방향에 따라 출구가 개구된 복수개의 내측셀(3420)과, 복수개의 내측셀(3420)를 규정화하는 내측격벽(3422)을 포함할 수 있다.The through hole 342 may include a plurality of inner cells 3420 having outlets opened according to the flow direction of the air on the inner surface thereof, and an inner partition wall 3422 defining the plurality of inner cells 3420 . .

이와 같은 상부면(340)은 평탄한 표면으로 형성될 수 있지만, 이에 한정하지 않는다.The upper surface 340 may be formed as a flat surface, but is not limited thereto.

예를 들어, 도 3에 도시된 바와 같이, 상부면(340)은 반원구형 표면으로 형성될 수 있다.For example, as shown in FIG. 3 , the upper surface 340 may be formed as a semi-spherical surface.

구체적으로, 상부면(340)의 양측 끝단(344)에서 중심부(346)로 완곡하게 하향 경사진 반원구 형상으로 형성될 수 있다. 즉, 양측 끝단(344)의 높이는 중심부(346)의 높이보다 높게 위치할 수 있다.Specifically, the upper surface 340 may be formed in a semi-spherical shape inclined downwardly from both ends 344 to the central portion 346 . That is, the height of both ends 344 may be higher than the height of the center 346 .

이와 같은 광촉매 필터(300)는 3차원 프린팅 기술을 이용하여 생산함으로써, 복잡한 형상을 쉽게 프린팅하여 작업성을 간단히 하여 생산성을 향상시킬 수 있다.By producing such a photocatalytic filter 300 using a three-dimensional printing technology, it is possible to easily print a complex shape, thereby simplifying workability and improving productivity.

실시예에 따라, 3D 프린터에 의해 제조되는 광촉매 필터(300)는 원통형 카트리지 형태로 수세를 위해 탈착이 가능할 수 있다.According to an embodiment, the photocatalytic filter 300 manufactured by the 3D printer may have a cylindrical cartridge shape and may be detachable for washing.

이와 같은 구조의 공기정화장치(1)는 산화티타늄을 이용한 광촉매 필터(300)를 구비함으로써, 바이러스 또는 세균을 효과적으로 제거하여 공기 정화 효율성을 향상시킬 수 있고, 3D 프린터에 의해 제조되는 광촉매 필터(300)에 공기의 유동경로를 원활하게 할 수 있는 복수개의 관통홀을 구비함으로써, 공기의 유동경로가 자외선의 조사경로에 의해 차단되는 것을 방지할 수 있다.The air purifier 1 having such a structure includes a photocatalytic filter 300 using titanium oxide, thereby effectively removing viruses or bacteria to improve air purification efficiency, and a photocatalytic filter 300 manufactured by a 3D printer. ), by providing a plurality of through-holes capable of smoothing the flow path of air, it is possible to prevent the flow path of air from being blocked by the irradiation path of ultraviolet rays.

또한, 공기정화장치(1)는 광촉매 필터(300)의 상부면(340)을 반원구형상으로 구비함으로써, 자외선의 조사경로와 공기의 유동경로를 원활하게 하면서 광효율을 증대시킬 수 있다.In addition, since the air purifier 1 has the upper surface 340 of the photocatalytic filter 300 in a semi-spherical shape, it is possible to increase the light efficiency while smoothing the irradiation path of ultraviolet rays and the flow path of air.

실시예에 따라, 공기정화장치(1)는 광원부(200)와 3D 프린터에 의해 제조되는 광촉매 필터(300) 사이에 자외선 반사판(미도시)을 설치하게 되면, 내면으로 조사되는 자외선이 다시 3D 프린터에 의해 제조되는 광촉매 필터(300)를 향해 조사되도록 할 수 있게 되어, 탈취 및 살균 효율을 더욱 높일 수 있다.According to an embodiment, when an ultraviolet reflecting plate (not shown) is installed between the light source unit 200 and the photocatalytic filter 300 manufactured by the 3D printer in the air purifier 1, the ultraviolet rays irradiated to the inner surface are irradiated to the 3D printer again. It is possible to be irradiated toward the photocatalytic filter 300 produced by the , it is possible to further increase the deodorization and sterilization efficiency.

이와 같은 구조를 갖는 본 실시예에 따른 3D 프린터에 의해 제조되는 광촉매 필터를 포함하는 공기정화장치의 동작은 다음과 같다. 도 4는 본 발명의 일실시예에 따른 3D 프린터에 의해 제조되는 광촉매 필터를 포함하는 공기정화장치의 동작상태를 설명하는 도면이고, 도 5는 본 발명의 다른 일실시예에 따른 3D 프린터에 의해 제조되는 광촉매 필터를 포함하는 공기정화장치의 동작상태를 설명하는 도면이다.The operation of the air purifier including the photocatalytic filter manufactured by the 3D printer according to the present embodiment having such a structure is as follows. 4 is a view for explaining an operating state of an air purifier including a photocatalytic filter manufactured by a 3D printer according to an embodiment of the present invention, and FIG. It is a view for explaining the operating state of the air purifier including the photocatalytic filter to be manufactured.

우선, 도 4에 도시된 바와 같이, 3D 프린터에 의해 제조되는 광촉매 필터를 포함하는 공기정화장치(1)의 동작은, 공기정화장치(1)의 외측면을 통해 공기가 유입되면, 3D 프린터에 의해 제조되는 광촉매 필터(300)의 외측셀(322), 내측셀(3420)을 관통하여 관통홀(342)을 통해 자외선의 조사경로에 노출되지만, 공기의 유동경로가 자외선의 조사경로에 의해 차단되는 것을 방지하여 3D 프린터에 의해 제조되는 광촉매 필터(300)를 통해 바이러스 또는 세균을 효과적으로 제거하여 팬모듈(100)의 팬(120)을 통해 정화된 공기가 배출될 수 있다.First, as shown in FIG. 4 , the operation of the air purifier 1 including the photocatalytic filter manufactured by the 3D printer is performed when air is introduced through the outer surface of the air purifier 1 to the 3D printer. The outer cell 322 and inner cell 3420 of the photocatalytic filter 300 manufactured by The purified air can be discharged through the fan 120 of the fan module 100 by effectively removing viruses or bacteria through the photocatalytic filter 300 manufactured by the 3D printer.

여기서, 조사되는 자외선에 의해 3D 프린터에 의해 제조되는 광촉매 필터(300)의 광촉매 반응 효율이나 흡착 효율을 더욱 높일 수 있다. 이때, 공기정화장치(1)의 외측면은 복수개의 관통홀이 구비되어 공기가 유입될 수 있다.Here, it is possible to further increase the photocatalytic reaction efficiency or adsorption efficiency of the photocatalytic filter 300 manufactured by the 3D printer by the irradiated ultraviolet rays. At this time, the outer surface of the air purifier 1 is provided with a plurality of through-holes, air can be introduced.

그리고, 도 5 도시된 바와 같이, 3D 프린터에 의해 제조되는 광촉매 필터를 포함하는 공기정화장치(1)의 동작은, 3D 프린터에 의해 제조되는 광촉매 필터(300)의 상면이 반원구 형상을 형성되어 복수의 광촉매용 UV LED(220)에서 조사되는 자외선의 조사경로와 3D 프린터에 의해 제조되는 광촉매 필터(300)의 상면에 효율적으로 조사됨으로써, 공기의 유동경로를 원활하게 하면서 광효율을 증대시킬 수 있다.And, as shown in FIG. 5 , in the operation of the air purifier 1 including the photocatalytic filter manufactured by the 3D printer, the upper surface of the photocatalytic filter 300 manufactured by the 3D printer is formed in a semi-spherical shape. By efficiently irradiating the irradiation path of ultraviolet rays irradiated from the plurality of photocatalyst UV LEDs 220 and the upper surface of the photocatalytic filter 300 manufactured by the 3D printer, the light efficiency can be increased while smoothing the air flow path. .

이상, 첨부된 도면을 참조로 하여 본 발명의 실시예를 설명하였지만, 본 발명이 속하는 기술분야의 통상의 기술자는 본 발명이 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로, 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며, 제한적이 아닌 것으로 이해해야만 한다.As mentioned above, although embodiments of the present invention have been described with reference to the accompanying drawings, those skilled in the art to which the present invention pertains know that the present invention may be embodied in other specific forms without changing the technical spirit or essential features thereof. you will be able to understand Therefore, it should be understood that the embodiments described above are illustrative in all respects and not restrictive.

1: 공기정화장치
100 : 팬모듈
200 : 광원부
300 : 3D 프린터에 의해 제조되는 광촉매 필터
1: Air purifier
100: fan module
200: light source unit
300: photocatalytic filter manufactured by 3D printer

Claims (5)

3D 프린터를 이용하여 이산화티탄 광촉매 조성물이 코팅된 프린팅원료를 프린팅하여 6면을 갖는 사각 형상으로 제조되는 광촉매 필터;를 포함하고,
상기 광촉매 필터는,
공기의 유동방향에 따라 입구가 개구되어 소정간격으로 이격되어 외측면 중 적어도 하나의 측면에 배치되는 복수개의 외측셀; 및
공기의 유동방향에 따라 출구가 개구되어 소정간격으로 이격되어 상부면에 배치되는 적어도 하나 이상의 관통홀;을 포함하고,
상기 관통홀은,
공기의 유동방향에 따라 출구가 개구되어 소정간격으로 이격되어 내측면에 배치되는 복수개의 내측셀을 포함하며,
상기 복수개의 외측셀은,
평탄한 판 형상의 외측격벽에 의해 각각 규정되고,
상기 복수개의 내측셀은,
완곡한 반원구 형상의 내측격벽에 의해 각각 규정되며,
상기 외측셀 및 상기 내측셀의 크기는 상기 관통홀의 크기보다 작고,
공기가 상기 외측셀의 개구를 통해 이동한 후, 상기 내측셀의 출구를 통해 이동한 후, 상기 관통홀의 출구를 통해 순차적으로 상기 광촉매 필터를 관통하는, 3D 프린터에 의해 제조되는 광촉매 필터.
A photocatalyst filter manufactured in a square shape having six sides by printing a printing raw material coated with a titanium dioxide photocatalyst composition using a 3D printer;
The photocatalytic filter is
a plurality of outer cells having an inlet opened according to the flow direction of the air and spaced apart from each other by a predetermined interval and disposed on at least one of the outer surfaces; and
At least one through-hole having an outlet opening according to the flow direction of the air and being spaced apart from each other by a predetermined distance and disposed on the upper surface;
The through hole is
The outlet is opened according to the flow direction of the air, and it includes a plurality of inner cells spaced apart from each other and disposed on the inner surface,
The plurality of outer cells,
Each is defined by a flat plate-shaped outer bulkhead,
The plurality of inner cells,
Each is defined by an inner bulkhead in the shape of a curved semicircle,
The size of the outer cell and the inner cell is smaller than the size of the through hole,
After the air moves through the opening of the outer cell, after moving through the outlet of the inner cell, the photocatalytic filter manufactured by a 3D printer sequentially passes through the photocatalytic filter through the outlet of the through hole.
삭제delete 제1항에 있어서,
상기 광촉매 필터의 상부면은,
양측 끝단에서 중심방향으로 완곡하게 하향 경사진 반원구 형상으로 형성되는, 3D 프린터에 의해 제조되는 광촉매 필터.
According to claim 1,
The upper surface of the photocatalytic filter,
A photocatalytic filter manufactured by a 3D printer, which is formed in a semi-spherical shape that curves downwardly from both ends toward the center.
제1항에 있어서,
상기 프린팅원료는 다공성 무기물질을 포함하는, 3D 프린터에 의해 제조되는 광촉매 필터.
According to claim 1,
The printing raw material includes a porous inorganic material, a photocatalytic filter manufactured by a 3D printer.
제1항, 제3항 내지 제4항 중 어느 한 항에 기재된 3D 프린터에 의해 제조되는 광촉매 필터를 포함하는 공기정화장치.[Claim 5] An air purifying device comprising a photocatalytic filter manufactured by the 3D printer according to any one of claims 1 to 4.
KR1020200163230A 2020-11-27 2020-11-27 Photocatalyst filter manufacturing by 3d printer and air conditioner including photocatalytic filter KR102396524B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200163230A KR102396524B1 (en) 2020-11-27 2020-11-27 Photocatalyst filter manufacturing by 3d printer and air conditioner including photocatalytic filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200163230A KR102396524B1 (en) 2020-11-27 2020-11-27 Photocatalyst filter manufacturing by 3d printer and air conditioner including photocatalytic filter

Publications (1)

Publication Number Publication Date
KR102396524B1 true KR102396524B1 (en) 2022-05-12

Family

ID=81590730

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200163230A KR102396524B1 (en) 2020-11-27 2020-11-27 Photocatalyst filter manufacturing by 3d printer and air conditioner including photocatalytic filter

Country Status (1)

Country Link
KR (1) KR102396524B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023242179A1 (en) * 2022-06-17 2023-12-21 Signify Holding B.V. Fdm printed objects with high-performance photocatalytic layers

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001347119A (en) * 2000-06-09 2001-12-18 Mitsui Chemicals Inc Air filter
JP4640868B2 (en) * 2001-07-18 2011-03-02 イビデン株式会社 Filter with catalyst, method for manufacturing the same, and exhaust gas purification system
KR20170014483A (en) * 2015-07-30 2017-02-08 서울바이오시스 주식회사 Photocatalytic Filters and Manufacturing Methods thereof
JP2018086263A (en) * 2016-11-24 2018-06-07 株式会社 シリコンプラス Photocatalysis carrier filter and fitting type air purifier
KR20200013284A (en) 2018-07-30 2020-02-07 주식회사 도경21 Air Purifier to use the coating of photocatalyst

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001347119A (en) * 2000-06-09 2001-12-18 Mitsui Chemicals Inc Air filter
JP4640868B2 (en) * 2001-07-18 2011-03-02 イビデン株式会社 Filter with catalyst, method for manufacturing the same, and exhaust gas purification system
KR20170014483A (en) * 2015-07-30 2017-02-08 서울바이오시스 주식회사 Photocatalytic Filters and Manufacturing Methods thereof
JP2018086263A (en) * 2016-11-24 2018-06-07 株式会社 シリコンプラス Photocatalysis carrier filter and fitting type air purifier
KR20200013284A (en) 2018-07-30 2020-02-07 주식회사 도경21 Air Purifier to use the coating of photocatalyst

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Xi Xu 외 7명, 3D-Printed Grids with Polymeric Photocatalytic System as Flexible Air Filter. Applied Catalysis B: Environmental, 2020.03., Vol.262, pp.1-9.* *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023242179A1 (en) * 2022-06-17 2023-12-21 Signify Holding B.V. Fdm printed objects with high-performance photocatalytic layers

Similar Documents

Publication Publication Date Title
KR101977573B1 (en) Urban type air cleaning apparatus
KR101386404B1 (en) Air sterilization purifier with oval tubular photocatalysts module and ion cluster generating module
KR20140003240A (en) Apparatus for cleaning fluid
KR101705837B1 (en) An Air Purification Filter To Have The Sterilizing And Cleaning
CN2774623Y (en) Novel light catalytic air purifier
KR100807152B1 (en) Device for purifying polluted air
KR20200024993A (en) Window multy filter
KR102396524B1 (en) Photocatalyst filter manufacturing by 3d printer and air conditioner including photocatalytic filter
KR20200013284A (en) Air Purifier to use the coating of photocatalyst
CN100368062C (en) Photo-catalytic air cleaner
KR102578832B1 (en) Photocatalyst filter and air conditioner including photocatalytic filter
WO2001076726A1 (en) Air cleaning unit using photocatalyst and air cleaning system having the same
KR102285448B1 (en) The ceramic foaming sponge filter in which the optical catalyst is coated with deposition and the manufacturing method thereof
KR102511801B1 (en) Air conditioner including photocatalyst filter manufacturing by 3d printer
TWI532958B (en) Photo-catalytic air filter and method for making the same
KR102554054B1 (en) UV-LED module
KR200340227Y1 (en) Air strilization apparatus using photo catalyst
KR102659262B1 (en) Air conditioner including photocatalytic filter with reflective film and method of thereof
KR20210150627A (en) Air sterilization module of multi-wall struture coated with photocatalyst
CN201815206U (en) Hydroxyl group and free radical combined air purifying device
KR20220049123A (en) Air purifier
KR20210051299A (en) Photocatalyst pipe filter
CN110925926A (en) Computer room air purification system
JP2005027709A (en) Air purification apparatus
KR102723768B1 (en) The ceramic foaming sponge filter in which the optical catalyst is coated with deposition and the manufacturing method thereof

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
N231 Notification of change of applicant
GRNT Written decision to grant