KR102393347B1 - Automated Guided Vehicle with Automatic Equal Load Suspension System - Google Patents
Automated Guided Vehicle with Automatic Equal Load Suspension System Download PDFInfo
- Publication number
- KR102393347B1 KR102393347B1 KR1020200118248A KR20200118248A KR102393347B1 KR 102393347 B1 KR102393347 B1 KR 102393347B1 KR 1020200118248 A KR1020200118248 A KR 1020200118248A KR 20200118248 A KR20200118248 A KR 20200118248A KR 102393347 B1 KR102393347 B1 KR 102393347B1
- Authority
- KR
- South Korea
- Prior art keywords
- mecanum wheel
- hinge
- wheel
- load cell
- mecanum
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G17/00—Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
- B60G17/015—Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
- B60G17/0152—Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the action on a particular type of suspension unit
- B60G17/0157—Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the action on a particular type of suspension unit non-fluid unit, e.g. electric motor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G11/00—Resilient suspensions characterised by arrangement, location or kind of springs
- B60G11/14—Resilient suspensions characterised by arrangement, location or kind of springs having helical, spiral or coil springs only
- B60G11/16—Resilient suspensions characterised by arrangement, location or kind of springs having helical, spiral or coil springs only characterised by means specially adapted for attaching the spring to axle or sprung part of the vehicle
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G17/00—Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
- B60G17/015—Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
- B60G17/019—Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the type of sensor or the arrangement thereof
- B60G17/01908—Acceleration or inclination sensors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G17/00—Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
- B60G17/02—Spring characteristics, e.g. mechanical springs and mechanical adjusting means
- B60G17/021—Spring characteristics, e.g. mechanical springs and mechanical adjusting means the mechanical spring being a coil spring
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G3/00—Resilient suspensions for a single wheel
- B60G3/02—Resilient suspensions for a single wheel with a single pivoted arm
- B60G3/12—Resilient suspensions for a single wheel with a single pivoted arm the arm being essentially parallel to the longitudinal axis of the vehicle
- B60G3/14—Resilient suspensions for a single wheel with a single pivoted arm the arm being essentially parallel to the longitudinal axis of the vehicle the arm being rigid
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G2204/00—Indexing codes related to suspensions per se or to auxiliary parts
- B60G2204/10—Mounting of suspension elements
- B60G2204/12—Mounting of springs or dampers
- B60G2204/124—Mounting of coil springs
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G2400/00—Indexing codes relating to detected, measured or calculated conditions or factors
- B60G2400/05—Attitude
- B60G2400/051—Angle
- B60G2400/0511—Roll angle
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G2400/00—Indexing codes relating to detected, measured or calculated conditions or factors
- B60G2400/05—Attitude
- B60G2400/051—Angle
- B60G2400/0512—Pitch angle
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G2400/00—Indexing codes relating to detected, measured or calculated conditions or factors
- B60G2400/05—Attitude
- B60G2400/051—Angle
- B60G2400/0513—Yaw angle
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Vehicle Body Suspensions (AREA)
Abstract
Description
본 발명은 자동균등하중 서스펜션시스템을 구비한 무인운반차에 관한 것으로, 더욱 상세하게는 무인운반차의 차체 중심부에 설치된 IMU센서에 의해 차체가 X, Y, Z축방향으로의 회전값(Roll, Pitch, Yaw)을 검출하고 그렇게 검출된 데이터에 따라 차체의 사방에 설치된 메카넘휠에 포함되는 서스펜션을 개별적으로 제어하여 차체가 수평상태를 유지하게 하고, 4개의 메카넘휠이 지면에 접지하는 접지력을 각각의 메카넘휠에 개별적으로 연계되게 설치되는 로드셀이 감지하여 4개의 메카넘휠이 지면에 균일한 지지력으로 지지될 수 있도록 함으로써, 안정된 주행이 실현될 수 있는 무인운반차를 제공하기 위한 것이다.The present invention relates to an unmanned transport vehicle equipped with an automatic uniform load suspension system, and more particularly, to an unmanned transport vehicle having a rotation value (Roll, pitch and yaw) and individually control the suspension included in the Mecanum wheels installed on all sides of the body according to the detected data to keep the body in a horizontal state, The purpose of this is to provide an unmanned transport vehicle that can realize stable driving by detecting the load cells that are individually connected to the Mecanum wheel of the vehicle and allowing the four Mecanum wheels to be supported with uniform support on the ground.
종래발명은 특허등록 제10-2140480호(발명의 명칭 : 무인운반차의 바퀴 주행장치)로 등록되어 특허공보에 의해 알려지고 있다.The prior invention has been registered as Patent Registration No. 10-2140480 (Title of the invention: wheel driving device of an unmanned transport vehicle) and is known by the patent publication.
상기 종래발명은 도 1 및 도 2에서 보는 바와 같이 무인운반차(1)의 주행 중 전,후방 제1,2보조바퀴(24,14)사이에 구동력을 전달받는 구동바퀴(21)가 주행하는 바닥의 함몰, 돌출(이하, 요철부라고 칭함) 또는 경사진 노면에 접촉하더라도 주행 정지 없이 지속 주행을 가능하게 하는 무인운반차의 바퀴 주행장치에 관한 것이다.In the prior invention, as shown in FIGS. 1 and 2 , the
상기 종래발명은 제1단부, 상기 제1단부의 반대면에 있는 제2단부, 상기 제1,제2단부사이에서 연장되는 대향측면들을 포함하고, 상기 제2단부측에 제2보조바퀴(14)를 형성하는 대차프레임(10)과; 상기 대차프레임(10)에 설치된 구동시스템에서 상기 대향측면들을 통하여 동력이 전달되도록 한 쌍의 구동바퀴(21)를 설치하고, 상기 제2보조바퀴(14)에 대향하는 위치에서 제1보조바퀴(24)를 설치하여 상기 대차프레임(10)의 대향측면들의 외측에 간격(b)을 두고 설치되는 구동프레임(20)과; 상기 대차프레임(10)과 상기 구동프레임(20)을 설치시킨 상태에서 상기 구동프레임(20)과 대차프레임(10)의 축점에 피봇 결합하는 회동축부(40); 및 상기 대차프레임(10)의 대향측면들의 외측에 간격(b)을 두고 상기 구동프레임(20)을 위치시킨 상태에서 상기 대차프레임(10)은 제1연결암(15)을 형성하고, 상기 구동프레임(20)은 제2연결암(25)을 형성하고, 이 제1,제2연결암(15,25)들은 슬립로드(31)로서 수직 연결하여 슬립로드(31)가 소정의 간격(a)으로 상,하로 안내하는 연결부(30)를 포함하는 것이다.The prior invention includes a first end, a second end opposite the first end, and opposite sides extending between the first and second ends, and a second
위와 같은 종래발명은 무인운반차(1)가 주행하는 과정에서 구동바퀴(21) 및 전후방측 제1,2보조바퀴(24,14)가 주행하는 바닥이 요철부가 형성된 노면에 접촉하는 경우에 회동축부(40)에 힌지식으로 설치된 구동프레임(20)이 힌지식으로 각운동하면서 전후방측 제1,2보조바퀴(24,14)와 구동바퀴(21) 모두가 지면에 접촉하여 주행을 정지하지 않고 정상주행이 가능하도록 한 것이다.The conventional invention as described above rotates when the floor on which the
이와 같은 종래발명은 본 발명과는 구조적으로 완전히 상이할 뿐만 아니라, 전후방측 제1,2보조바퀴(24,14) 중의 어느 하나가 요철부에 순간적으로 접촉할 때, 요철부에 순간적 부딪치는 충격에 의해 그 요철부에 부딪치는 바퀴의 접지력과 나머지바퀴들의 접지력에 차이가 있게 되고, 접지력이 큰 쪽의 바퀴가 회전하는 방향으로 무인운반차(1)의 주행방향이 흔들리면서 차체에 출렁임과 같은 요동이 발생하여 정숙한 주행이 이루어지지 않게 되는 문제가 있다.Such a conventional invention is structurally completely different from the present invention, and when any one of the front and rear side first and second
본 발명은 상기의 문제점을 해결하기 위한 것으로서, 무인운반차의 차체 중심부에 설치된 IMU센서에 의해 차체가 X, Y, Z축방향으로의 회전값(Roll, Pitch, Yaw)을 검출하고 그렇게 검출된 데이터에 따라 차체의 사방에 설치된 메카넘휠에 포함되는 서스펜션을 개별적으로 제어하여 차체가 수평상태를 유지하게 하고, 4개의 메카넘휠이 지면에 접지하는 접지력을 각각의 메카넘휠에 개별적으로 연계되게 설치되는 로드셀이 감지하여 4개의 메카넘휠이 지면에 균일한 지지력으로 지지될 수 있도록 함으로써, 안정된 주행이 실현될 수 있는 무인운반차를 제공하도록 하는 것을 기술적 과제로 한다.The present invention is to solve the above problems, and the vehicle body detects the rotation values (Roll, Pitch, Yaw) in the X, Y, and Z axis directions by an IMU sensor installed in the center of the vehicle body, and the detected According to the data, the suspension included in the Mecanum wheels installed on all sides of the body is individually controlled to keep the body in a horizontal state, and the traction force of the four Mecanum wheels to the ground is individually connected to each Mecanum wheel. It is a technical task to provide an unmanned transport vehicle that can realize stable driving by detecting the load cell and allowing the four Mecanum wheels to be supported on the ground with a uniform support force.
상기의 목적을 달성하기 위한 본 발명은, 무인운반차의 차체 중앙부에 차체가 X, Y, Z축방향으로의 회전값(Roll, Pitch, Yaw)을 검출하는 IMU센서가 설치되고, 차체의 전후방 양측에는 IMU센서에서 감지된 신호에 따라 각각의 메카넘휠을 개별적으로 높이를 조절하여 차체가 수평을 유지하게 하고, 각각의 메카넘휠에 연계되게 설치되는 각각의 로드셀에 의해 각각의 메카넘휠이 균일한 접지력으로 지면에 접지되게 하는 메카넘휠유닛이 설치되며, 상기 각각의 메카넘휠유닛에는 프레임의 상측에 설치되는 기어드모터와, 기어드모터의 동력에 의해 수평방향으로 왕복이동하는 볼스크류와, 볼스크류의 선단부에 수평 설치되는 스프링과, 스프링의 선단부에 연결 설치되는 스프링지지부의 선단부에 메카넘휠이 지면에 접지하는 접지력을 감지하는 로드셀과, 로드셀에 연결 설치되는 힌지연결부와, 메카넘휠의 일측면에 고정 설치되며 상측에 힌지연결부와 힌지식으로 연결되어 돌출 형성되는 상측힌지부와, 후방 프레임에 설치되는 하측힌지부에 힌지식으로 연결되는 후방힌지부가 후방으로 돌출되게 형성되는 힌지레버로 구성되는 서스펜션이 설치되고, 상기 메카넘휠은 로드셀에 감지된 신호에 따라 구동하는 기어드모터에 의해 힌지식으로 승하강되게 서스펜션의 단부에 설치되고, 상기 메카넘휠은 메카넘휠과 동일한 축 상에 설치되는 휠모터에 의해 개별적으로 회전되도록 설치되는 구성이 포함되는 것을 특징으로 한다.According to an aspect of the present invention, an IMU sensor for detecting rotation values (Roll, Pitch, Yaw) in the X, Y, and Z axis directions of the vehicle body in the X, Y, and Z axis directions is installed in the center of the vehicle body of the autonomous vehicle, and the front and rear of the vehicle On both sides, the height of each Mecanum wheel is individually adjusted according to the signal detected by the IMU sensor to keep the car body level, and each Mecanum wheel is uniformly installed by each load cell installed in connection with each Mecanum wheel. Mecanum wheel units are installed to be grounded to the ground by traction, and each Mecanum wheel unit includes a geared motor installed on the upper side of the frame, a ball screw reciprocating in the horizontal direction by the power of the geared motor, and the ball screw A spring installed horizontally at the tip, a load cell that senses the traction that the Mecanum wheel is grounded to the ground at the tip of the spring support part connected to the tip of the spring, a hinge connection connected to the load cell, and fixed to one side of the Mecanum wheel Suspension consisting of an upper hinge part installed and hingedly connected to the upper side to protrude, and a hinge lever in which a rear hinge part hingedly connected to a lower hinge part installed on the rear frame is formed to protrude rearward. installed, and the Mecanum wheel is installed at the end of the suspension to be raised and lowered in a hinged manner by a geared motor driven according to a signal sensed by the load cell, and the Mecanum wheel is installed on the same shaft as the Mecanum wheel. It is characterized in that it includes a configuration that is installed to be rotated individually.
삭제delete
이상에서 살펴본 바와 같은 본 발명의 자동균등하중 서스펜션시스템을 구비한 무인운반차는, 무인운반차의 차체 중심부에 설치된 IMU센서에 의해 차체가 X, Y, Z축방향으로의 회전값(Roll, Pitch, Yaw)을 검출하고 그렇게 검출된 데이터에 따라 차체의 사방에 설치된 메카넘휠에 포함되는 서스펜션을 개별적으로 제어하여 차체가 수평상태를 유지하게 하고, 4개의 메카넘휠이 지면에 접지하는 접지력을 각각의 메카넘휠에 개별적으로 연계되게 설치되는 로드셀이 감지하여 4개의 메카넘휠이 지면에 균일한 지지력으로 지지될 수 있도록 함으로써, 안정된 주행이 실현될 수 있는 무인운반차를 제공할 수 있는 효과가 있는 것이다.As described above, in the unmanned guided vehicle having the automatic equal load suspension system of the present invention, the vehicle body rotates in the X, Y, and Z axis directions (Roll, Pitch, Yaw) is detected, and according to the detected data, the suspension included in the Mecanum wheels installed on all sides of the body is individually controlled to keep the body in a horizontal state, and the traction force of the four Mecanum wheels to the ground is applied to each machine. It is possible to provide an unmanned transport vehicle that can realize stable driving by detecting the load cells that are individually connected to the Num wheel and allowing the four Mecanum wheels to be supported on the ground with a uniform support force.
도 1은 종래발명을 나타내는 측면도.
도 2는 종래발명에 포함되는 연결부를 나타내는 단면도.
도 3은 본 발명을 나타내는 평면도.
도 4는 본 발명에 포함되는 서스펜션 시스템의 자동균등하중 흐름도.
도 5는 본 발명에 포함되는 메카넘휠유닛을 나타내는 사시도.
도 6의 (가)(나)는 본 발명에 포함되는 메카넘휠유닛의 작용관계를 나타내는 측면도.1 is a side view showing the prior art.
Figure 2 is a cross-sectional view showing a connection part included in the prior invention.
3 is a plan view showing the present invention.
4 is a flow chart of automatic equalizing load of the suspension system included in the present invention.
5 is a perspective view showing a Mecanum wheel unit included in the present invention.
Figure 6 (A) (B) is a side view showing the working relationship of the Mecanum wheel unit included in the present invention.
이하, 본 발명에 따른 자동균등하중 서스펜션시스템을 구비한 무인운반차에 대하여 첨부된 도면 도 3 내지 도 6을 참고하여 설명하면 다음과 같다.Hereinafter, an unmanned transport vehicle having an automatic uniform load suspension system according to the present invention will be described with reference to the accompanying
본 발명은 도 3 및 도 4에서 보는 바와 같이 무인운반차(1)의 차체(2) 중앙부에 차체(2)가 X, Y, Z축방향으로의 회전값(Roll, Pitch, Yaw)을 검출하는 IMU센서(4)가 설치되고, 차체(2)의 전후방 양측에는 IMU센서(4)에서 감지된 신호에 따라 각각(4개)의 메카넘휠(71)을 메인콘트롤러(5)의 연산된 신호에 의해 개별적으로 제어하고, 각각의 메카넘휠(71)에 연계되게 설치되는 해당 로드셀(64)에 의해 각각의 메카넘휠(71)이 균일한 접지력을 가지게 하는 메카넘휠유닛(70)이 설치된다.3 and 4, the
상기 IMU센서(4)는 공지된 것으로 3차원 공간에서 X, Y, Z 축으로의 이동을 감지하는 가속도 센서와 X, Y, Z축의 회전값 즉, 피치(Pitch), 롤(Roll), 요(Yaw)값을 검출하는 자이로스코프 센서로 이루어져서, 물체가 3차원 공간에서 어떤 방향으로 이동하고 기울어졌는지 정확히 알아낼 수 있는 것이다.The
상기 각각의 메카넘휠유닛(70)에는 메카넘휠(71)에 작용하는 접지력을 감지하는 로드셀(64)이 설치되는 서스펜션(60)이 포함되며, 이 서스펜션(60)은 로드셀(64)에 감지된 신호를 메인콘트롤러(5)에서 측정하여 그 신호값에 따라 기어드모터(61)를 구동시켜 메카넘휠(71)을 힌지식으로 승하강시키도록 구성된다.Each of the Mecanum
도 4 내지 도 6에서 보는 바와 같이 상기 서스펜션(60)은 프레임(3)의 상측 소정위치에 기어드모터(61)가 설치되는 기어박스(65)가 설치되며, 기어박스(65)의 내부에는 기어드모터(61)의 모터축에 설치되는 구동기어(61a)와, 구동기어(61a)와 맞물리며 내주연에 암나사부(66a)를 구비한 종동기어(66)가 회전자유롭게 설치되고, 기어박스(65)의 전방에는 종동기어(66)의 암나사부(66a)와 나사식으로 체결되는 볼스크류(62)의 선단부가 기어박스(65)의 전방으로 노출되게 설치된다.As shown in FIGS. 4 to 6 , the
그리고, 볼스크류(62)의 선단부에는 스프링(63)이 수평 설치되며, 이 스프링(63)의 선단부에는 로드셀유닛(69)이 설치된다. 이때, 상기 로드셀유닛(69)은 스프링(63)의 선단부와 연결되는 스프링지지부(68)와, 힌지레버(73)의 상측힌지부(74)와 힌지식으로 연결되는 힌지연결부(67)가 구비되고, 힌지연결부(67)와 스프링지지부(68)의 사이에는 메카넘휠(71)의 접지력을 감지하는 로드셀(64)이 설치되어 있다.A
또한, 상기 힌지연결부(67) 하측의 프레임(3)에는 하측힌지부(6)가 설치되며, 상기 메카넘휠(71)의 일측면에는 상측과 후방에 상측힌지부(74)와 후방힌지부(75)를 각각 돌출되게 형성한 힌지레버(73)가 고정되게 설치되되, 힌지레버(73)의 상측힌지부(74)는 로드셀(64) 전방의 힌지연결부(67)에 힌지 설치되고, 후방힌지부(75)는 프레임(3)에 설치된 하측힌지부(6)에 힌지식으로 설치되며, 각각의 메카넘휠(71)은 각각의 휠모터(72)에 의해 회전되도록 설치되어 있다.In addition, a
상기와 같이 구성되어 있는 본 발명의 작용관계를 도 3 내지 도 6을 참고하여 설명하면 다음과 같다.The operational relationship of the present invention configured as described above will be described with reference to FIGS. 3 to 6 as follows.
도 3에 도시된 바와 같은 무인운반차(1)는 차체(2)의 전후방 양측에 설치되는 4개의 메카넘휠(71)이 지면에 접지하고 있다.In the
이와 같은 상황에서 무인운반차(1)가 설정된 위치로 자동으로 이동하고자 하는 경우에는 공지된 무인운반차와 동일하게 설정된 신호에 따라 센서와 연계하여 주행을 하는데, 본 발명에 의한 무인운반차(1)는 4개의 메카넘휠(71)이 각기 개별적으로 설치되는 휠모터(72)의 구동에 의해 주행을 하게 되며, 각각의 메카넘휠(71)은 본 발명의 출원인이 선출원한 특허출원 제20-41514호의 발명에 포함되는 메카넘휠장치와 동일하게 360도 어느 방향으로든 목적하는바 대로 주행이 가능하게 된다.In such a situation, when the
이렇게 무인운반차(1)가 목적하는 바대로 주행할 때, 차체(2)의 중앙부에 설치된 IMU센서(4)가 차체(2)가 X, Y, Z축방향으로의 회전값(Roll, Pitch, Yaw)을 검출하고 그렇게 검출된 데이터에 따라 차체의 사방에 설치된 메카넘휠(71)에 포함되는 서스펜션(60)을 개별적으로 제어함으로써, 4개의 메카넘휠(71)이 개별적으로 높이가 조절되면서 차체(2)가 수평상태를 유지하게 된다.In this way, when the
상기 서스펜션(60)에 대한 제어과정은 차체(2)가 기울여진 상태에 따라 기울여진 쪽의 기어드모터(61)를 메인콘트롤러(5)에 의해 연산된 데이터 값만큼 구동시킨다.In the control process for the
이렇게 기어드모터(61)가 구동하게 되면, 기어드모터(61)의 회전력이 기어박스(65)의 내측에 설치된 구동기어(61a)를 통하여 그와 맞물린 종동기어(66)를 회전시키게 되며, 이러한 종동기어(66)는 기어박스(65)의 내측에서 제자리에서 회전하는데, 이 종동기어(66)의 내주연에 형성된 암나사부(66a)에는 수나사형태의 볼스크류(62)가 나사식으로 체결되어서 종동기어(66)가 회전하는 방향에 따라 볼스크류(62)가 수평이동하게 된다.When the geared
위와 같이 볼스크류(62)가 "A"와 같이 외측방향으로 이동함에 따라 볼스크류(62)의 선단부에 설치된 스프링(63)이 스프링지지부(68)를 힌지레버(73) 측으로 탄력적으로 밀어주게 되어 스프링지지부(68)의 선단부에 설치된 힌지연결부(67)가 그와 힌지식으로 연결된 힌지레버(73)의 상측힌지부(74)를 전방측으로 밀어주게 된다.As above, as the
이때, 상기 힌지레버(73)는 메카넘휠(71)의 일측면에 고정 결합되고 후방힌지부(75)가 프레임(3)에 고정 설치된 하측힌지부(6)에 힌지 설치된 상태에서 메카넘휠(71)의 중심부로부터 상측으로 소정의 길이만큼 상향 돌출된 상측힌지부(74)를 힌지연결부(67)로 밀어줌에 따라 힌지레버(73)는 도 6의 (나)에 표시된 "B"와 같이 하측힌지부(6)의 힌지부를 중심으로 힌지연결부(67)가 밀어주는 만큼 회전하게 된다.At this time, the
이렇게 힌지레버(73)가 "B"와 같이 하측힌지부(6)의 힌지부를 중심으로 회전함에 따라 힌지레버(73)과 동일축상에 설치된 메카넘휠(71)도 회전식으로 하강하게 되는데, 메카넘휠(71)이 하강하는 만큼 지면(7)과 프레임(3) 저면과의 간격(h2)이 힌지레버(73)가 회전하기 전인 도 6의 (가)에 표시된 높이(h1)보다 높아진 것을 알 수 있게 된다.As the
이렇게 차체(2)가 기울여진 쪽의 메카넘휠(71)를 힌지식으로 하강시켜서 그 높이를 높여줌에 따라 차체(2)가 전체적으로 수평상태를 유지하게 하며, 위와 같이 힌지레버(73)를 밀어줄때 스프링(63)으로 탄력적으로 밀어줌에 따라 작은 충격이나 진동을 흡수하여 차체가 흔들림 없이 부드럽게 수평상태를 유지하게 한다.In this way, the
이와 같이 차체(2)에 대한 기울여짐을 보정하여 바로 잡은 상태로 주행을 하는 과정에서 지면에 떨어진 작은 이물질을 피하지 못하거나, 또는 함몰이나 돌출부와 같은 요철부를 지나는 경우가 발생하면, 그 요철부에 접하는 메카넘휠(71)의 접지력이 메카넘휠(71)로부터 힌지레버(73)를 통하여 로드셀(64)에 전달되게 된다.In the process of driving in a state in which the inclination of the
이렇게 4개의 메카넘휠(71) 중에 어느 하나, 또는 또 다른 메카넘휠(71)에 요철부의 접지력이해당 로드셀(64)에 감지되면, 4개 메카넘휠(71)의 접지력이 불균등함을 메인콘트롤러(5)로 전달되어 그렇게 메인콘트롤러(5)로 전달된 신호가 그 해당 메카넘휠(71)이 포함되는 서스펜션(60)을 동작시켜 해당 메카넘휠(71)이 힌지식으로 승하강하게 한다.In this way, when the traction force of the concave-convex portion on any one of the four Mecanum
서스펜션(60)을 힌지식으로 승하강동작시키는 것은 위에서 설명한 바와 같이 해당 기어드모터(61)를 구동시켜서 볼스크류(62)를 수평 이동시키며, 볼스크류(62)가 이동하는 방향에 따라 힌지레버(73)를 밀거나 당겨서 메카넘휠(71)이 보정이 필요한 만큼 힌지식으로 높이를 조절하여 4개의 메카넘휠(71)에 균등한 지지력이 작용하도록 하는 것이다.As described above, the lifting and lowering operation of the
위에서 설명한 바와 같이 차체(2)가 기울여지면 IMU센서(4)가 그것을 감지하여 해당 서스펜션(60)을 동작시켜 기울여짐을 보정하고, 4개의 메카넘휠(71) 중에 불균등한 지지력을 작용하는 메카넘휠(71)의 지지력을 보정하여 4개의 메카넘휠(71)이 균등한 지지력을 발휘하게 함에 따라 무인운반차(1)가 안정된 주행을 할 수 있게 되는 것이다.As described above, when the
1 : 무인운반차 2 : 차체 3 : 프레임
4 : IMU센서 5 : 메인콘트롤러 6 : 하측힌지부
7 : 지면 50 : 서스펜션 시스템 60 : 서스펜션
61 : 기어드모터 62 : 볼스크류 63 : 스프링
64 : 로드셀 65 : 기어박스 66 : 종동기어
67 : 힌지연결부 68 : 스프링지지부 69 : 로드셀유닛
70 : 메카넘휠유닛 71 : 메카넘휠 72 : 휠모터
73 : 힌지레버 74 : 상측힌지부 75 : 후방힌지부1 : Unmanned transport vehicle 2 : Body 3 : Frame
4: IMU sensor 5: main controller 6: lower hinge part
7: ground 50: suspension system 60: suspension
61: geared motor 62: ball screw 63: spring
64: load cell 65: gearbox 66: driven gear
67: hinge connection part 68: spring support part 69: load cell unit
70: Mecanum wheel unit 71: Mecanum wheel 72: wheel motor
73: hinge lever 74: upper hinge part 75: rear hinge part
Claims (3)
상기 각각의 메카넘휠유닛에는 프레임의 상측에 설치되는 기어드모터와, 기어드모터의 동력에 의해 수평방향으로 왕복이동하는 볼스크류와, 볼스크류의 선단부에 수평 설치되는 스프링과, 스프링의 선단부에 연결 설치되는 스프링지지부의 선단부에 메카넘휠이 지면에 접지하는 접지력을 감지하는 로드셀과, 로드셀에 연결 설치되는 힌지연결부와, 메카넘휠의 일측면에 고정 설치되며 상측에 힌지연결부와 힌지식으로 연결되어 돌출 형성되는 상측힌지부와, 후방 프레임에 설치되는 하측힌지부에 힌지식으로 연결되는 후방힌지부가 후방으로 돌출되게 형성되는 힌지레버로 구성되는 서스펜션이 설치되고,
상기 메카넘휠은 로드셀에 감지된 신호에 따라 구동하는 기어드모터에 의해 힌지식으로 승하강되게 서스펜션의 단부에 설치되고, 상기 메카넘휠은 메카넘휠과 동일한 축 상에 설치되는 휠모터에 의해 개별적으로 회전되도록 설치되는 구성이 포함되는 것을 특징으로 하는 자동균등하중 서스펜션시스템을 구비한 무인운반차.IMU sensors that detect the rotation values (Roll, Pitch, Yaw) of the vehicle body in the X, Y, and Z axis directions are installed in the center of the vehicle body. Mecanum wheel unit that adjusts the height of the Mecanum wheel individually to keep the car body level, and allows each Mecanum wheel to be grounded to the ground with uniform traction by each load cell installed in connection with each Mecanum wheel installed,
Each Mecanum wheel unit has a geared motor installed on the upper side of the frame, a ball screw reciprocating in the horizontal direction by the power of the geared motor, a spring installed horizontally at the tip of the ball screw, and a connection installed at the tip of the spring A load cell that detects the grounding force of the Mecanum wheel to the ground at the tip of the spring supporting part, a hinge connection that is connected to the load cell, is fixed to one side of the Mecanum wheel, and is connected with a hinge connection on the upper side to form a protrusion A suspension is installed comprising an upper hinge part that becomes a hinge and a hinge lever in which a rear hinge part hingedly connected to a lower hinge part installed on the rear frame protrudes rearward,
The Mecanum wheel is installed at the end of the suspension to be raised and lowered in a hinged manner by a geared motor driven according to a signal sensed by the load cell, and the Mecanum wheel is individually rotated by a wheel motor installed on the same shaft as the Mecanum wheel An unmanned transport vehicle with an automatic uniform load suspension system, characterized in that it includes a configuration to be installed so as to be possible.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020200118248A KR102393347B1 (en) | 2020-09-15 | 2020-09-15 | Automated Guided Vehicle with Automatic Equal Load Suspension System |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020200118248A KR102393347B1 (en) | 2020-09-15 | 2020-09-15 | Automated Guided Vehicle with Automatic Equal Load Suspension System |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20220036087A KR20220036087A (en) | 2022-03-22 |
KR102393347B1 true KR102393347B1 (en) | 2022-05-02 |
Family
ID=80988896
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020200118248A KR102393347B1 (en) | 2020-09-15 | 2020-09-15 | Automated Guided Vehicle with Automatic Equal Load Suspension System |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR102393347B1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115328133A (en) * | 2022-08-15 | 2022-11-11 | 北京鸿霁科技有限公司 | Laser ranging unmanned carrier control system with weighing function |
KR102667197B1 (en) * | 2022-08-17 | 2024-05-17 | 한국로봇융합연구원 | Apparatus and method for performing control to maintain a horizontal posture of a four-wheel drive driving robot |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005262939A (en) | 2004-03-17 | 2005-09-29 | Kayaba Ind Co Ltd | Active suspension |
JP2009184446A (en) * | 2008-02-05 | 2009-08-20 | Mazda Motor Corp | Vehicular suspension device |
JP2020011597A (en) | 2018-07-18 | 2020-01-23 | 本田技研工業株式会社 | Vehicle suspension system |
CN110758042A (en) * | 2019-10-10 | 2020-02-07 | 点狮科技(浙江)有限公司 | Self-balancing moving platform and self-balancing moving method |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107848360A (en) * | 2015-06-03 | 2018-03-27 | 动态清晰公司 | For controlling the method and system of the motion of vehicles body and occupant's experience |
KR102140480B1 (en) | 2019-10-08 | 2020-08-03 | 주식회사 맥파이온 | Wheel driving device for use of Automated Guided Vehicle |
-
2020
- 2020-09-15 KR KR1020200118248A patent/KR102393347B1/en active IP Right Grant
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005262939A (en) | 2004-03-17 | 2005-09-29 | Kayaba Ind Co Ltd | Active suspension |
JP2009184446A (en) * | 2008-02-05 | 2009-08-20 | Mazda Motor Corp | Vehicular suspension device |
JP2020011597A (en) | 2018-07-18 | 2020-01-23 | 本田技研工業株式会社 | Vehicle suspension system |
CN110758042A (en) * | 2019-10-10 | 2020-02-07 | 点狮科技(浙江)有限公司 | Self-balancing moving platform and self-balancing moving method |
Also Published As
Publication number | Publication date |
---|---|
KR20220036087A (en) | 2022-03-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102393347B1 (en) | Automated Guided Vehicle with Automatic Equal Load Suspension System | |
CA2658310C (en) | Inverted wheel type moving body and method of controlling the same | |
CN101687529B (en) | Inverted wheel type mobile body and method of controlling the same | |
KR102140480B1 (en) | Wheel driving device for use of Automated Guided Vehicle | |
JP3749232B2 (en) | Step elevation method, cart and wheelchair | |
US9738321B2 (en) | Arrangement and method for enabling rotation movement between tandem or caterpillar axle and body of vehicle | |
JP6400174B1 (en) | Traveling device | |
CN107021148A (en) | The transfer robot that comprehensive full landform is guided automatically | |
CN117963025A (en) | Four-wheel independent steering and active leveling chassis suitable for hilly and mountain lands | |
JP4079619B2 (en) | Automated guided vehicle and traveling control method thereof | |
KR101610513B1 (en) | Vehicle width variable type vehicle | |
CN210882392U (en) | Automatic guide transport vechicle | |
JP6432060B2 (en) | Two-wheeled vehicle, its control method and operation control method | |
WO2021117086A1 (en) | Conveying vehicle | |
CN111409736B (en) | Robot chassis with single-drive center | |
CN113027694B (en) | Transport mechanism, blade root transfer trolley, blade tip transfer trolley and blade transfer system | |
KR101610514B1 (en) | Vehicle width variable type vehicle and control method thereof | |
CN113492911A (en) | Chassis, mobile robot and pit-crossing and bank-crossing method thereof | |
CN111688835B (en) | Carrying robot | |
JP6515297B1 (en) | Pedestal stabilization device | |
JP5092683B2 (en) | Inverted wheel type moving body and control method thereof | |
JPH10278802A (en) | Truck driving device | |
CN114407042A (en) | Robot | |
KR102670522B1 (en) | Autonomous driving unmanned transport vehicle capable of combining by loader capacity using multiple inertial measurement unit and camera sensor fusion-based location recognition | |
CN114801633A (en) | Car body posture self-adjusting trolley and posture adjusting method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |