KR102393079B1 - Composition for preventing or treating respiratory disease of domestic animals - Google Patents

Composition for preventing or treating respiratory disease of domestic animals Download PDF

Info

Publication number
KR102393079B1
KR102393079B1 KR1020200025053A KR20200025053A KR102393079B1 KR 102393079 B1 KR102393079 B1 KR 102393079B1 KR 1020200025053 A KR1020200025053 A KR 1020200025053A KR 20200025053 A KR20200025053 A KR 20200025053A KR 102393079 B1 KR102393079 B1 KR 102393079B1
Authority
KR
South Korea
Prior art keywords
lpa
livestock
composition
hydroxymethyl
hydroxyethyl
Prior art date
Application number
KR1020200025053A
Other languages
Korean (ko)
Other versions
KR20210109886A (en
Inventor
이창훈
민용기
Original Assignee
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국화학연구원 filed Critical 한국화학연구원
Priority to KR1020200025053A priority Critical patent/KR102393079B1/en
Publication of KR20210109886A publication Critical patent/KR20210109886A/en
Application granted granted Critical
Publication of KR102393079B1 publication Critical patent/KR102393079B1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7042Compounds having saccharide radicals and heterocyclic rings
    • A61K31/7052Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides
    • A61K31/706Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom
    • A61K31/7064Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K20/00Accessory food factors for animal feeding-stuffs
    • A23K20/10Organic substances
    • A23K20/163Sugars; Polysaccharides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/70Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in livestock or poultry

Abstract

본 발명은 가축 호흡기 질환의 예방 또는 치료용 조성물에 관한 것으로, 보다 구체적으로는 기관세포, 폐동맥 혈관세포에서 LPA에 의하여 유도되는 염증성 사이토카인의 생성을 억제하고, ZO-1 단백질 손실과 혈관신생을 완화하는 LPA 길항제로서, (2R,3R,4S,5R)-2-(6-((2-hydroxyethyl)amino)-9H-purin-9-yl)-5-(hydroxymethyl)-tetrahydrofuran-3,4-diol을 포함하는 가축 호흡기 염증 질환의 예방 또는 치료 조성물을 제공한다.The present invention relates to a composition for the prevention or treatment of respiratory diseases in livestock, and more specifically, inhibits the production of inflammatory cytokines induced by LPA in organ cells and pulmonary artery vascular cells, and reduces ZO-1 protein loss and angiogenesis As a laxative LPA antagonist, (2R,3R,4S,5R)-2-(6-((2-hydroxyethyl)amino)-9H-purin-9-yl)-5-(hydroxymethyl)-tetrahydrofuran-3,4 -Provides a composition for preventing or treating inflammatory diseases of the respiratory tract of livestock containing diol.

Description

가축 호흡기 질환의 예방 또는 치료용 조성물{Composition for preventing or treating respiratory disease of domestic animals}Composition for preventing or treating respiratory disease of domestic animals

본 발명은 동물 호흡기 질환의 예방 또는 치료용 조성물에 관한 것이다.The present invention relates to a composition for preventing or treating animal respiratory diseases.

동물에 있어서 호흡기 질환 (respiratory disease)은 흔한 질병이다. 특히 젖소, 육우, 돼지, 닭 등의 가축 및 개, 고양이로 대표되는 애완동물에 있어서, 빈번히 발생하며, 이의 치료를 위하여 비용 또한 많이 소모된다 (Snowder, G.D. 등; 2006).Respiratory disease is a common disease in animals. In particular, it occurs frequently in domestic animals such as dairy cows, beef cattle, pigs, and chickens, and pets such as dogs and cats, and costs a lot for its treatment (Snowder, G.D. et al.; 2006).

가축 호흡기 질환은 미생물 감염 뿐만 아니라, 높은 사육밀도로 인한 스트레스 등과 같은 다양한 환경 요인에 의해 발생한다. 특히 밀폐된 사육공간에 있는 암모니아 가스, 이산화탄소 및 먼지 등에 의해서 가축 호흡기 질환이 쉽게 유발되며, 이러한 환경적 스트레스는 미생물 감염의 기회 또한 높이게 된다.Livestock respiratory diseases are caused not only by microbial infection, but also by various environmental factors such as stress due to high stocking density. In particular, livestock respiratory diseases are easily induced by ammonia gas, carbon dioxide, and dust in a closed breeding space, and this environmental stress also increases the chance of microbial infection.

돼지 호흡기 복합감염증(PRDC, porcine respiratory disease complex)은 육돈 및 비육돈에 발생하며, 발육부진, 사료효율 저하, 무기력, 식욕부진, 발열, 기침, 호흡장애를 특징으로 한다. 돼지 호흡기 복합감염증은 돼지 호흡기 생식기 증후군 바이러스(PRRSV), 액티노바실러스 플루로뉴모니애(Actinobacilus pleurpneumoniae) 등과 같은 바이러스, 세균 등의 혼합감염에 의해 발생하며, 사육 환경이 불량하거나 밀집 사육 상태에서 흔히 발병되어, 폐사를 비롯한 발육지연과 사료효율의 저하를 가져와 양돈업에 많은 경제적 손실을 준다.Porcine respiratory disease complex (PRDC) occurs in meat and finisher pigs and is characterized by stunted growth, reduced feed efficiency, lethargy, anorexia, fever, cough, and respiratory disorders. Swine respiratory complex infection is caused by a mixed infection of viruses and bacteria, such as porcine respiratory and reproductive syndrome virus (PRRSV) and Actinobacillus pleurpneumoniae, and is often It causes a lot of economic loss to the pig industry by delaying growth including death and lowering feed efficiency.

소 호흡기 질환(bovine respiratory disease, BRD)은 소 헤르페스 바이러스 제1형(BHV-1), 감염성 소 비기관염 바이러스(infectious bovine rhinotracheitis virus; IBR) 등에 의해 유발되며, 전 세계적으로 육우사육과 낙농분야에 커다란 영향을 미치고 있다.Bovine respiratory disease (BRD) is caused by bovine herpes virus type 1 (BHV-1) and infectious bovine rhinotracheitis virus (IBR). is having a huge impact.

BRD 호흡기 질환의 호흡기계의 증상은 염증, 종창, 출혈, 호흡기관 점막의 괴사를 특징으로 하고 고열, 식욕감퇴, 침울, 콧물, 호흡곤란, 코와 입의 염증을 동반할 수 있으며, 감염 바이러스의 종류에 따라 유산을 일으킬 수 있다 (Ellis 등, 1996).The respiratory symptoms of BRD respiratory disease are characterized by inflammation, swelling, bleeding, and necrosis of the mucous membrane of the respiratory tract, and may be accompanied by high fever, loss of appetite, depression, runny nose, dyspnea, and inflammation of the nose and mouth. Depending on the type, it can cause miscarriage (Ellis et al., 1996).

이러한 가축 호흡기 질환은 리소포스파티딘산(lysophosphatidic acid, LPA)과 같은 면역계와 관련된 내인성 인자가 중요한 역할을 한다. LPA는 많은 질병에서 염증을 일으키는 강력한 내인성 인자로, 널리 분포된 G단백질 결합수용체를 통해 강력한 마이토겐(mitogen)으로 작용하는 인지질 유도체이다. LPA는 리소포스파티딜콜린(lysophospatidylcholene)으로부터 콜린기를 제거하는 리소포스파타제 D인 오토탁신(autotaxin), 또는 포스파티딘산(phosphatidic acid)의 합성에 의하여 생성된다 (Zhao, Y. 등, 2013; Knowlden, S. 등, 2014; Noguchi, K. 등, 2009; Chen, J. 등, 2008). 중요한 점은 LPA가 LPA와 같은 내인성 인자에 의한 호흡기 질환 뿐만아니라, 먼지, 공기오염 및 미생물에 의한 특발성 폐 섬유증 치료의 표적이 되는 등, 가축의 많은 호흡기 질환에서 중요한 역할을 한다는 것이다 (Zhao, Y 등, 2013).In these livestock respiratory diseases, endogenous factors related to the immune system, such as lysophosphatidic acid (LPA), play an important role. LPA is a potent endogenous factor causing inflammation in many diseases, and is a phospholipid derivative that acts as a potent mitogen through a widely distributed G protein-coupled receptor. LPA is produced by the synthesis of lysophosphatase D, autotaxin, or phosphatidic acid, which removes choline groups from lysophospatidylcholene (Zhao, Y. et al., 2013; Knowlden, S. et al. , 2014; Noguchi, K. et al., 2009; Chen, J. et al., 2008). Importantly, LPA plays an important role in many respiratory diseases in livestock, such as respiratory diseases caused by intrinsic factors such as LPA, as well as being a target for the treatment of idiopathic pulmonary fibrosis caused by dust, air pollution and microorganisms (Zhao, Y. et al., 2013).

LPA는 막 인지질 대사의 중간 생성물로, 다양한 염증성 사이토카인의 생성과 관련 있으며(Kempf K. 등, 2006), TNF-α의 mRNA 발현을 유도하고 TNF-α의 합성 및 방출을 촉진한다 (Meilleur MA 등, 2007; Duoduo Zhang 등, 2016). 또한 LPA는 마우스의 피부에서 인터루킨-6의 생성을 증가시키는 것이 보고되었다 (Flavia V. Castelino 등, 2016).LPA is an intermediate product of membrane phospholipid metabolism and is associated with the production of various inflammatory cytokines (Kempf K. et al., 2006), induces mRNA expression of TNF-α, and promotes the synthesis and release of TNF-α (Meilleur MA). et al., 2007; Duoduo Zhang et al., 2016). It has also been reported that LPA increases the production of interleukin-6 in the skin of mice (Flavia V. Castelino et al., 2016).

한편, 병원성 혈관 신생은 호흡기 질환을 포함하는 염증질환에 중요하며(Rivera Lopez 등, 2008; Gustin, C. 등, 2008), LPA는 여러 질병에서 병원성 혈관 신생의 강력한 자극인자로 작용하고 있다 (Kano, K. 등, 2008; Lin, C.I. 등, 2008).On the other hand, pathogenic angiogenesis is important for inflammatory diseases including respiratory diseases (Rivera Lopez et al., 2008; Gustin, C. et al., 2008), and LPA acts as a strong stimulator of pathogenic angiogenesis in various diseases (Kano). , K. et al., 2008; Lin, C. I. et al., 2008).

본 발명의 발명자들은 세포기반 고효율 스크리닝방법(cell-based high-throughput screening, HTS)을 이용하여 LPA 신호전달의 길항제를 확인하는 과정에서 소의 기관세포에서 LPA에 의해 유도된 염증성 사이토카인 생산을 완화시키는 효과를 갖는 LPA 신호전달 길항제를 확인하고 본 발명을 완성하였다. 또한 본 발명에서 확인한 LPA 신호전달 길항제는 소의 기관 세포에서 세포 접합물질의 손실을 완화하는 것을 확인하였다.The inventors of the present invention relieve LPA-induced inflammatory cytokine production in bovine organ cells in the process of identifying LPA signaling antagonists using cell-based high-throughput screening (HTS). An LPA signaling antagonist having an effect was identified and the present invention was completed. In addition, it was confirmed that the LPA signaling antagonist identified in the present invention alleviated the loss of cell junction materials in bovine organ cells.

한국등록특허 제1875246호는 LPA1 길항제로 1-{4'-[3-메틸-4-((R)-1-페닐-에톡시카르보닐아미노)-이속사졸-5-일]-비페닐-4-일}-시클로프로판카르복실산 (화합물 1) 또는 그의 제약상 허용되는 염을 개시하고 있으나, 본 발명에서 확인한 LPA 신호전달의 길항제와 차이가 있다.Korea Patent No. 1875246 discloses that 1-{4'-[3-methyl-4-((R)-1-phenyl-ethoxycarbonylamino)-isoxazol-5-yl]-biphenyl- as an LPA1 antagonist Although 4-yl}-cyclopropanecarboxylic acid (Compound 1) or a pharmaceutically acceptable salt thereof is disclosed, it is different from the antagonist of LPA signaling identified in the present invention.

한국공개특허 제20190020049호는 선택적 LPA 수용체 억제제로 카르바모일옥시메틸 트리아졸 시클로헥실 산을 개시하고 있으며, 한국등록특허 제1628706호는 리소포스파티드산 수용체의 폴리시클릭 길항제를 개시하고 있으나, 이 역시 본 발명에서 확인한 LPA 신호전달의 길항제와 차이가 있으며, 동물 호흡기 질환에서 LPA 길항제로서의 본 발명과는 차이가 있다. Korean Patent Publication No. 20190020049 discloses carbamoyloxymethyl triazole cyclohexyl acid as a selective LPA receptor inhibitor, and Korean Patent No. 1628706 discloses a polycyclic antagonist of lysophosphatidic acid receptor, but this also It is different from the antagonist of LPA signaling identified in the present invention, and it is different from the present invention as an LPA antagonist in animal respiratory diseases.

한국등록특허 제1875246호, 폴리시클릭 LPA₁ 길항제 및 그의 용도, 2018.06.29. 등록.Korean Patent Registration No. 1875246, polycyclic LPA₁ antagonist and uses thereof, 2018.06.29. registration. 한국공개특허 제20190020049호, LPA 길항제로서의 카르바모일옥시메틸 트리아졸 시클로헥실 산, 2019.02.27. 공개.Korean Patent Publication No. 20190020049, carbamoyloxymethyl triazole cyclohexyl acid as an LPA antagonist, 2019.02.27. open. 한국등록특허 제1628706호, 리소포스파티드산 수용체의 폴리시클릭 길항제, 2016.06.02. 등록.Korean Patent No. 1628706, polycyclic antagonist of lysophosphatidic acid receptor, 2016.06.02. registration.

Snowder, G.D.; Van Vleck, L.D.; Cundiff, L.V.; Bennett, G.L. Bovine respiratory disease in feedlot cattle: Environmental, genetic, and economic factors. J. Anim. Sci. 2006, 84: 1999-2008Snowder, G. D.; Van Vleck, L.D.; Cundiff, L. V.; Bennett, G. L. Bovine respiratory disease in feedlot cattle: Environmental, genetic, and economic factors. J. Anim. Sci. 2006, 84: 1999-2008 Ellis et al. (1996) JAVMA 208:393-400; Ellsworth et al.(1994) In: Proceedings, 74th Conference of Research Workers in Animal Disease:34 Ellis et al. (1996) JAVMA 208:393-400; Ellsworth et al. (1994) In: Proceedings, 74th Conference of Research Workers in Animal Disease:34 Zhao, Y.; Natarajan, V. Lysophosphatidic acid (LPA) and its receptors: Role in airway inflammation and remodeling. Biochim. Biophys. Acta 2013, 1831: 86-92.Zhao, Y.; Natarajan, V. Lysophosphatidic acid (LPA) and its receptors: Role in airway inflammation and remodeling. Biochim. Biophys. Acta 2013, 1831: 86-92. Knowlden, S.; Georas, S.N. The autotaxin-LPA axis emerges as a novel regulator of lymphocyte homing and inflammation. J. Immunol. 2014, 192, 851-857.Knowlden, S.; Georas, S. N. The autotaxin-LPA axis emerges as a novel regulator of lymphocyte homing and inflammation. J. Immunol. 2014, 192, 851-857. Noguchi, K.; Herr, D.; Mutoh, T.; Chun, J. Lysophosphatidic acid (LPA) and its receptors. Curr. Opin. Pharmacol. 2009, 9: 15-23.Noguchi, K.; Herr, D.; Mutoh, T.; Chun, J. Lysophosphatidic acid (LPA) and its receptors. Curr. Opin. Pharmacol. 2009, 9: 15-23. Chen, J.; Chen Y.; Zhu W.; Han Y.; Han B.; Xu R.; Deng L.; Cai Y.; Cong X.; Yang Y.; Hu S.; Chen X. Specific LPA receptor subtype mediation of LPA-induced hypertrophy of cardiac myocytes and involvement of Akt and NFkappaB signal pathways. J. Cell. Biochem. 2008, 103: 1718-1731.Chen, J.; Chen Y.; Zhu W.; Han Y.; Han B.; Xu R.; Deng L.; Cai Y.; Cong X.; Yang Y.; Hu S.; Chen X. Specific LPA receptor subtype mediation of LPA-induced hypertrophy of cardiac myocytes and involvement of Akt and NFkappaB signal pathways. J. Cell. Biochem. 2008, 103: 1718-1731. Rivera, Lopez, C.M.; Tucker, A.L.; Lynch, K.R. Lysophosphatidic acid (LPA) and angiogenesis. Angiogenesis, 2008, 11: 301-310.Rivera, Lopez, C. M.; Tucker, A. L.; Lynch, K. R. Lysophosphatidic acid (LPA) and angiogenesis. Angiogenesis, 2008, 11: 301-310. Gustin, C.; Van Steenbrugge, M.; Raes, M. LPA modulates monocyte migration directly and via LPA-stimulated endothelial cells. Am. J. Physiol. Cell Physiol. 2008, 295, C905-914.Gustin, C.; Van Steenbrugge, M.; Raes, M. LPA modulates monocyte migration directly and via LPA-stimulated endothelial cells. Am. J. Physiol. Cell Physiol. 2008, 295, C905-914. Kano, K.; Arima, N.; Ohgami, M.; Aoki, J. LPA and its analogs-attractive tools for elucidation of LPA, biology and drug development. Curr. Med. Chem. 2008, 15: 2122-2131.Kano, K.; Arima, N.; Ohgami, M.; Aoki, J. LPA and its analogs-attractive tools for elucidation of LPA, biology and drug development. Curr. Med. Chem. 2008, 15: 2122-2131. Lin, C.I.; Chen, C.N.; Huang, M.T.; Lee, S.J.; Lin, C.H.; Chang, C.C.; Lee, H. Lysophosphatidic acid upregulates vascular endothelial growth factor-C and tube formation in human endothelial cells through LPA(1/3), COX-2, and NF-kappaB activation- and EGFR transactivation-dependent mechanisms. Cell, Signal. 2008, 20: 1804-1814.Lin, C. I.; Chen, C. N.; Huang, M. T.; Lee, S. J.; Lin, C. H.; Chang, C. C.; Lee, H. Lysophosphatidic acid upregulates vascular endothelial growth factor-C and tube formation in human endothelial cells through LPA(1/3), COX-2, and NF-kappaB activation- and EGFR transactivation-dependent mechanisms. Cell, Signal. 2008, 20: 1804-1814. Kempf K, Haltern G, Futh R, Herder C, Muller-Scholze S, Gulker H and Martin S: Increased TNF-alpha and decreased TGF-beta expression in peripheral blood leukocytes after acute myocardial infarction. Horm Metab Res. 2006, 38: 346-351. Kempf K, Haltern G, Futh R, Herder C, Muller-Scholze S, Gulker H and Martin S: Increased TNF-alpha and decreased TGF-beta expression in peripheral blood leukocytes after acute myocardial infarction. Horm Metab Res. 2006, 38: 346-351. Meilleur MA, Akpovi CD, Pelletier RM and Vitale ML: Tumor necrosis factor-alpha-induced anterior pituitary folliculostellate TtT/GF cell uncoupling is mediated by connexin 43 dephosphorylation. Endocrinology. 2007, 148: 5913-5924.Meilleur MA, Akpovi CD, Pelletier RM and Vitale ML: Tumor necrosis factor-alpha-induced anterior pituitary folliculostellate TtT/GF cell uncoupling is mediated by connexin 43 dephosphorylation. Endocrinology. 2007, 148: 5913-5924. Duoduo Zhang, Yan Zhang, Chunyan Zhao, Wenjie Zhang, Guoguang Shao, Hong Zhang: Effect of lysophosphatidic acid on the immune inflammatory response and the connexin 43 protein in myocardial infarction, Experimental and Therapeutic Medicine, 2006, 11(5): 1617-1624.Duoduo Zhang, Yan Zhang, Chunyan Zhao, Wenjie Zhang, Guoguang Shao, Hong Zhang: Effect of lysophosphatidic acid on the immune inflammatory response and the connexin 43 protein in myocardial infarction, Experimental and Therapeutic Medicine, 2006, 11(5): 1617- 1624. Flavia V. Castelino, Gretchen Bain, Veronica A. Pace, B.S., Katharine E. Black, Leaya George, Clemens K. Probst, Lance Goulet, Robert Lafyatis, Andrew M. Tager, An Autotaxin-LPA-IL-6 Amplification Loop Drives Scleroderma Fibrosis, Arthritis Rheumatol., 2016, 68(12): 2964-2974.Flavia V. Castelino, Gretchen Bain, Veronica A. Pace, B.S., Katharine E. Black, Leaya George, Clemens K. Probst, Lance Goulet, Robert Lafyatis, Andrew M. Tager, An Autotaxin-LPA-IL-6 Amplification Loop Drives Scleroderma Fibrosis, Arthritis Rheumatol., 2016, 68(12): 2964-2974. Ingvild J Brusevold1, Ingun H Tveteraas, Monica Aasrum, John Ødegard, Dagny L Sandnes, Thoralf Christoffersen, Role of LPAR3, PKC and EGFR in LPA-induced cell migration in oral squamous carcinoma cells, r 2014, 14:432Ingvild J Brusevold1, Ingun H Tveteraas, Monica Aasrum, John Ødegard, Dagny L Sandnes, Thoralf Christoffersen, Role of LPAR3, PKC and EGFR in LPA-induced cell migration in oral squamous carcinoma cells, r 2014, 14:432

본 발명의 목적은 가축 호흡기 질환의 예방 또는 치료용 조성물을 제공하는 데 있다.It is an object of the present invention to provide a composition for preventing or treating livestock respiratory diseases.

본 발명의 다른 목적은 가축 호흡기 내의 염증성 사이토카인의 증가를 완화시키는 가축 호흡기 질환의 예방 또는 치료용 조성물을 제공하는 데 있다.Another object of the present invention is to provide a composition for preventing or treating livestock respiratory diseases that alleviates the increase in inflammatory cytokines in the livestock respiratory system.

본 발명의 또다른 목적은 가축 호흡기 염증 질환 개선용 동물 사료를 제공하는 데 있다.Another object of the present invention is to provide an animal feed for improving livestock respiratory inflammatory diseases.

본 발명은 (2R,3R,4S,5R)-2-(6-((2-hydroxyethyl)amino)-9H-purin-9-yl)-5-(hydroxymethyl)-tetrahydrofuran-3,4-diol(이하 KA-1002로 기재)을 포함하는 가축 호흡기 염증 질환의 예방 또는 치료 조성물을 제공한다.The present invention provides (2R,3R,4S,5R)-2-(6-((2-hydroxyethyl)amino)-9H-purin-9-yl)-5-(hydroxymethyl)-tetrahydrofuran-3,4-diol ( Hereinafter, described as KA-1002) provides a composition for preventing or treating inflammatory diseases of the livestock respiratory tract.

상기 KA-1002는 LPA(Lysophosphatidic Acid)의 길항제로 작용하는 것일 수 있으며, 상기 KA-1002의 LPA 길항작용은 LPAR1(LPA Receptor1)을 매개로 하는 것일 수 있다.The KA-1002 may act as an antagonist of LPA (Lysophosphatidic Acid), and the LPA antagonism of KA-1002 may be mediated by LPAR1 (LPA Receptor1).

상기 KA-1002는 LPA에 의하여 유도되는 염증성 사이토카인의 생성을 억제하는 것일 수 있으며, 상기 LPA에 의하여 유도되는 염증성 사이토카인은 TNFα(tumor necrosis factor-α), IL-1β(Interleukin-1β) 및 IL-6(Interleukin 1)로 이루어진 군으로부터 선택되는 1 이상일 수 있다.The KA-1002 may be to inhibit the production of inflammatory cytokines induced by LPA, and the inflammatory cytokines induced by LPA are TNFα (tumor necrosis factor-α), IL-1β (Interleukin-1β) and It may be one or more selected from the group consisting of IL-6 (Interleukin 1).

상기 KA-1002는 LPA 길항작용은 LPA에 의하여 유도되는 혈관신생을 억제함으로써 가축 호흡기 염증 질환을 예방 또는 치료할 수 있다.The KA-1002 LPA antagonism can prevent or treat inflammatory diseases of the livestock respiratory tract by inhibiting angiogenesis induced by LPA.

또한 상기 KA-1002의 LPA 길항작용은 LPA에 의하여 유도되는 ZO-1 단백질 발현 억제를 완화시키는 것일 수 있다.In addition, the LPA antagonism of KA-1002 may be to alleviate the inhibition of ZO-1 protein expression induced by LPA.

상기 LPA에 의하여 유도되는 ZO-1 단백질 발현 억제는 세포-세포 간 타이트 정션을 감소시키는 것일 수 있다.The inhibition of ZO-1 protein expression induced by the LPA may be to reduce the cell-to-cell tight junction.

상기 가축은 소, 돼지, 닭, 개, 고양이로 이루어진 군으로부터 선택되는 1종 이상을 포함하는 것을 특징으로 하는 가축 호흡기 염증 질환의 예방 또는 치료 조성물을 제공한다.The livestock provides a composition for preventing or treating inflammatory diseases of the livestock respiratory tract, comprising at least one selected from the group consisting of cattle, pigs, chickens, dogs, and cats.

상기 조성물은 상기 KA-1002 및 약학적으로 허용 가능한 부형제를 포함하는 가축 호흡기 염증 질환의 예방 또는 치료 조성물을 제공한다.The composition provides a composition for preventing or treating inflammatory diseases of the livestock respiratory tract comprising the KA-1002 and a pharmaceutically acceptable excipient.

상기 KA-1002는 전체 약학 조성물 총 중량에 대하여 바람직하게는 0.001~50중량%, 더 바람직하게는 0.001~40중량%, 가장 바람직하게는 0.001~30중량%로 하여 첨가될 수 있다.The KA-1002 may be added in an amount of preferably 0.001 to 50% by weight, more preferably 0.001 to 40% by weight, and most preferably 0.001 to 30% by weight based on the total weight of the total pharmaceutical composition.

상기 조성물은, 각각 통상의 방법에 따라 산제, 과립제, 정제, 캡슐제, 현탁액, 에멀젼, 시럽, 액제, 에어로졸 등의 경구형 제형, 외용제, 좌제 및 멸균주사용액의 형태로 제형화하여 사용될 수 있다. 상기 조성물에 포함될 수 있는 담체, 부형제 및 희석제로는 락토즈, 덱스트로즈, 수크로스, 솔비톨, 만니톨, 자일리톨, 에리스리톨, 말티톨, 전분, 아카시아 고무, 알지네이트, 젤라틴, 칼슘포스페이트, 칼슘 실리케이트, 셀룰로즈, 메틸 셀룰로즈, 미정질 셀룰로즈, 폴리비닐 피롤리돈, 물, 메틸히드록시벤조에이트, 프로필히드록시벤조에이트, 탈크, 마그네슘 스테아레이트 및 광물유를 들 수 있다. 제제화할 경우에는 보통 사용하는 충진제, 증량제, 결합제, 습윤제, 붕해제, 계면활성제, 감미제, 산미제 등의 희석제 또는 부형제를 사용하여 조제된다. 경구투여를 위한 고형제제에는 정제, 환제, 산제, 과립제, 캡슐제 등이 포함되며, 이러한 고형제제는 본 발명의 가용화된 데커시놀에 적어도 하나 이상의 부형제, 예를 들면, 전분, 탄산칼슘, 수크로스 또는 락토즈, 젤라틴 등을 섞어 조제된다. 또한 단순한 부형제 이외에 스테아린산 마그네슘, 탈크 같은 윤활제들도 사용된다. 경구를 위한 액상 제제로는 현탁제, 내용액제, 유제, 시럽제 등이 해당되는데 흔히 사용되는 단순희석제인 물, 리퀴드 파라핀 이외에 여러 가지 부형제, 예를 들면 습윤제, 감미제, 방향제, 보존제, 산미제 등이 포함될 수 있다. 비경구 투여를 위한 제제에는 멸균된 수용액, 비수성용제, 현탁제, 유제, 동결건조제제, 좌제가 포함된다. 비수성용제, 현탁제로는 프로필렌글리콜, 폴리에틸렌글리콜, 올리브 오일과 같은 식물성 기름, 에틸올레이트와 같은 주사 가능한 에스테르 등이 사용될 수 있다. 좌제의 기제로는 위텝솔(witepsol), 마크로골, 트윈(tween)-61, 카카오지, 라우린지, 글리세로제라틴 등이 사용될 수 있다.The composition may be formulated in the form of powders, granules, tablets, capsules, suspensions, emulsions, syrups, liquids, aerosols, etc., external preparations, suppositories, and sterile injection solutions according to conventional methods, respectively. . Carriers, excipients and diluents that may be included in the composition include lactose, dextrose, sucrose, sorbitol, mannitol, xylitol, erythritol, maltitol, starch, acacia gum, alginate, gelatin, calcium phosphate, calcium silicate, cellulose, methyl cellulose, microcrystalline cellulose, polyvinyl pyrrolidone, water, methylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate and mineral oil. In the case of formulation, it is prepared using commonly used diluents or excipients such as fillers, extenders, binders, wetting agents, disintegrants, surfactants, sweeteners, and acidulants. Solid preparations for oral administration include tablets, pills, powders, granules, capsules, and the like, and such solid preparations include at least one excipient, for example, starch, calcium carbonate, and water in the solubilized deckercinol of the present invention. It is prepared by mixing cross or lactose, gelatin, etc. In addition to simple excipients, lubricants such as magnesium stearate and talc are also used. Liquid formulations for oral use include suspensions, solutions, emulsions, syrups, etc. In addition to water and liquid paraffin, which are commonly used simple diluents, various excipients such as wetting agents, sweetening agents, fragrances, preservatives, and acidulants are used. may be included. Formulations for parenteral administration include sterile aqueous solutions, non-aqueous solutions, suspensions, emulsions, freeze-dried preparations, and suppositories. Non-aqueous solvents and suspending agents include propylene glycol, polyethylene glycol, vegetable oils such as olive oil, and injectable esters such as ethyl oleate. As the base of the suppository, witepsol, macrogol, tween-61, cacao butter, laurin fat, glycerogelatin, and the like can be used.

본 발명의 조성물의 투여량은 치료받을 가축의 연령, 성별, 체중과, 치료할 특정 질환 또는 병리 상태, 질환 또는 병리 상태의 심각도, 투여 경로 및 처방자의 판단에 따라 달라질 것이다. 이러한 인자에 기초한 투여량 결정은 당업자의 수준 내에 있으며, 일반적으로 투여량은 0.01㎎/㎏/일 내지 대략 500㎎/㎏/일의 범위이다. 바람직한 투여량은 0.1㎎/㎏/일 내지 200㎎/㎏/일이며, 더 바람직한 투여량은 1㎎/㎏/일 내지 200㎎/㎏/일이다. 투여는 하루에 한번 투여할 수도 있고, 수회 나누어 투여할 수도 있다. 상기 투여량은 어떠한 면으로든 본 발명의 범위를 한정하는 것은 아니다.The dosage of the composition of the present invention will vary depending on the age, sex, and weight of the livestock to be treated, the specific disease or pathology to be treated, the severity of the disease or pathology, the route of administration, and the judgment of the prescriber. Dosage determination based on these factors is within the level of one of ordinary skill in the art, and dosages generally range from 0.01 mg/kg/day to approximately 500 mg/kg/day. A preferred dosage is 0.1 mg/kg/day to 200 mg/kg/day, and a more preferred dosage is 1 mg/kg/day to 200 mg/kg/day. Administration may be administered once a day, or may be administered in several divided doses. The above dosage does not limit the scope of the present invention in any way.

본 발명의 약학적 조성물은 소, 돼지, 닭, 개, 고양이 등의 가축에 다양한 경로로 투여될 수 있다. 투여의 모든 방식은 예상될 수 있는데, 예를 들면, 경구, 직장 또는 정맥, 근육, 피하, 자궁 내 경막 또는 뇌혈관 내 주사 및 피부 도포에 의해 투여될 수 있다. 본 발명의 KA-1002는 리핀스키의 5의 법칙 (Lipinski's rule of five)에 기초한 ADME 파라미터((흡수(absorption), 분포(distribution), 대사(metabolism), 배설(excretion))를 모두 충족하는 것을 확인함으로써, 약동학적으로 안전성이 확립되어, 독성 및 부작용이 거의 없으므로 예방 목적으로 장기간 복용시에도 안심하고 사용할 수 있는 약제이다.The pharmaceutical composition of the present invention may be administered to livestock such as cattle, pigs, chickens, dogs, and cats by various routes. Any mode of administration can be envisaged, for example, by oral, rectal or intravenous, intramuscular, subcutaneous, intrauterine or intracerebrovascular injection and dermal application. KA-1002 of the present invention satisfies all ADME parameters ((absorption, distribution, metabolism, excretion) based on Lipinski's rule of five By confirming, pharmacokinetic safety has been established, and there are almost no toxicity and side effects, so it is a drug that can be safely used even when taken for a long period of time for the purpose of prevention.

본 발명은 KA-1002 ((2R,3R,4S,5R)-2-(6-((2-hydroxyethyl)amino)-9H-purin-9-yl)-5-(hydroxymethyl)-tetrahydrofuran-3,4-diol)을 포함하는 가축 호흡기 염증 질환 개선용 동물 사료를 제공한다.The present invention provides KA-1002 ((2R,3R,4S,5R)-2-(6-((2-hydroxyethyl)amino)-9H-purin-9-yl)-5-(hydroxymethyl)-tetrahydrofuran-3, It provides an animal feed for improving livestock respiratory inflammatory diseases, including 4-diol).

상기 가축 호흡기 염증 질환 개선용 동물 사료는 특별히 제한되지 아니하며, 당해 기술 분야에서 통상적으로 사용되는 사료를 사용할 수 있다. 상기 사료의 비제한적인 예로는, 곡물류, 근과류, 식품 가공 부산물류, 조류, 섬유질류, 제약 부산물류, 유지류, 전분류, 박류 또는 곡물 부산물류 등과 같은 식물성 사료; 단백질류, 무기물류, 유지류, 광물성류, 단세포 단백질류, 동물성 플랑크톤류 또는 음식물 등과 같은 동물성 사료를 들 수 있다. 이들은 단독으로 사용되거나 2종 이상을 혼합하여 사용될 수 있다.The animal feed for improving the livestock respiratory inflammatory disease is not particularly limited, and a feed commonly used in the art may be used. Non-limiting examples of the feed include plant feeds such as grains, root fruits, food processing by-products, algae, fibers, pharmaceutical by-products, oils and fats, starches, gourds or grain by-products; and animal feeds such as proteins, inorganic materials, oils and fats, minerals, single-cell proteins, zooplankton, or food. These may be used alone or in mixture of two or more.

본 발명은 가축 호흡기 질환의 예방 또는 치료용 조성물에 관한 것으로, 구체적으로는 소의 기관세포인 EBTr(NBL-4;ATCC®CC-44TM)에서 (2R,3R,4S,5R)-2-(6-((2-hydroxyethyl)amino)-9H-purin-9-yl)-5-(hydroxymethyl)-tetrahydrofuran-3,4-diol (이하 KA-1002)이 LPA에 의한 세포파괴 및 염증을 완화하는 LPA 신호전달 길항제로 작용하는 것을 확인하였으며, 이를 통해 새로운 를 LPA 신호전달 길항제를 이용한 가축 호흡기 질병의 예방 또는 치료제에 대한 개발을 기대할 수 있다.The present invention relates to a composition for preventing or treating livestock respiratory diseases, specifically, (2R,3R,4S, 5R )-2-( 6-((2-hydroxyethyl)amino)-9H-purin-9-yl)-5-(hydroxymethyl)-tetrahydrofuran-3,4-diol (hereinafter KA-1002) has been shown to relieve LPA-induced cell destruction and inflammation. It was confirmed that it acts as an LPA signaling antagonist, and through this, it can be expected to develop a new drug for the prevention or treatment of respiratory diseases in livestock using LPA signaling antagonists.

도 1은 본 발명에 따른 LPA 길항제인 (2R,3R,4S,5R)-2-(6-((2-hydroxyethyl)amino)-9H-purin-9-yl)-5-(hydroxymethyl)-tetrahydrofuran-3,4-diol (KA-1002)의 분자구조식이다.
도 2는 본 발명에 따른 LPA 길항제인 KA-1002의 염증성 사이토카인의 발현에 미치는 효과를 나타낸 그래프이다. (A)는 소의 폐동맥 혈관 내피세포에서 LPA로 유도된 TNFα, (B)는 IL-1β, (C)는 IL-6의 발현량에 KA-1002이 미치는 효과를 나타낸 그래프이다. (D)는 소의 폐동맥 혈관 내피세포에서 상대적인 LPAR1 및 LPAR2의 전사 수준을 나타낸 그래프이다.
도 3은 본 발명에 따른 LPA 길항제인 KA-1002의 Swiss ADME 분석에 의한 생리화학적 특징을 나타낸 것이다.
도 4는 본 발명에 따른 LPA 길항제인 KA-1002의 소 혈관내피세포주(Calf pulmonary artery endothelium, CPAE cell)에서 LPA에 의하여 유도된 혈관신생에 미치는 영향을 나타낸 것이다. (A)는 CPAE 세포에서 무처리세포, LPA에 의하여 유도된 신생혈관 및 LPA에 의하여 유도된 혈관신생이 KA-1002에 의하여 억제된 것을 나타낸 사진이며, (B)는 Imaris software (Oxford Instruments)를 이용하여 tube network의 양을 계산한 값을 그래프로 나타낸 것이다.
도 5는 본 발명에 따른 LPA 길항제인 KA-1002의 소의 기관세포(EBTr cell)에서 LPA에 의하여 유도된 ZO-1 발현에 미치는 영향을 나타낸 것이다. (A)는 무처리 EBTr 세포, LPA를 처리한 것, 및 LPA + KA-1002를 처리한 EBTr 세포를 나타낸 사진이다 (ZO-1 (빨간색), F-actin (초록색) 및 핵 (파란색)). (B)는 상기 EBTr 세포당 ZO-1의 상대적 발현량을 나타낸 그래프이고, (C)는 상기 EBTr 세포당 F-actin의 상대적 발현량을 나타낸 그래프이다.
도 6은 본 발명에 따른 LPA 길항제인 KA-1002의 EBTr 세포에서 LPA 처리 후, 세포부착 여부를 나타낸 것이다. (A)는 무처리, LPA 처리 및 LPA에 5 μM, 20 μM로 각각 KA-1002가 처리된 EBTr 세포의 현미경 사진이다. (B)는 각 실험군의 부착된 EBTr 세포의 상대적인 양을 그래프로 나타낸 것이다.
도 7은 본 발명에 따른 LPA 길항제인 KA-1002의 EBTr 세포에서 LPA에 의하여 유도된 (A) TNFα 및 (B) IL-1β 의 상대적인 전사량을 측정하여 그래프로 나타낸 것이다.
1 is an LPA antagonist according to the present invention, (2R,3R,4S,5R)-2-(6-((2-hydroxyethyl)amino)-9H-purin-9-yl)-5-(hydroxymethyl)-tetrahydrofuran This is the molecular structure of -3,4-diol (KA-1002).
2 is a graph showing the effect of KA-1002, an LPA antagonist according to the present invention, on the expression of inflammatory cytokines. (A) is a graph showing the effect of KA-1002 on the expression level of LPA-induced TNFα, (B) IL-1β, and (C) IL-6 in bovine pulmonary vascular endothelial cells. (D) is a graph showing the relative transcriptional levels of LPAR1 and LPAR2 in bovine pulmonary vascular endothelial cells.
3 shows the physiological and chemical characteristics of KA-1002, an LPA antagonist according to the present invention, by Swiss ADME analysis.
4 shows the effect of KA-1002, an LPA antagonist according to the present invention, on LPA-induced angiogenesis in a calf pulmonary artery endothelium (CPAE cell) cell line. (A) is a photograph showing that untreated cells, LPA-induced angiogenesis and LPA-induced angiogenesis were inhibited by KA-1002 in CPAE cells, (B) Imaris software (Oxford Instruments) The calculated value of the tube network using the graph is shown.
5 shows the effect of KA-1002, an LPA antagonist according to the present invention, on LPA-induced ZO-1 expression in bovine organ cells (EBTr cells). (A) is a photograph showing untreated EBTr cells, those treated with LPA, and EBTr cells treated with LPA + KA-1002 (ZO-1 (red), F-actin (green) and nuclei (blue)) . (B) is a graph showing the relative expression level of ZO-1 per EBTr cell, (C) is a graph showing the relative expression level of F-actin per EBTr cell.
6 is a graph showing whether or not cells adhere to EBTr cells of KA-1002, an LPA antagonist according to the present invention, after LPA treatment. (A) is a micrograph of EBTr cells untreated, LPA-treated, and LPA treated with KA-1002 at 5 μM and 20 μM, respectively. (B) is a graph showing the relative amount of adhered EBTr cells in each experimental group.
7 is a graph showing the relative transcriptional amounts of (A) TNFα and (B) IL-1β induced by LPA in EBTr cells of KA-1002, an LPA antagonist according to the present invention.

이하 본 발명의 바람직한 실시예를 상세히 설명하기로 한다. 그러나 본 발명은 여기서 설명되는 실시예에 한정되지 않고 다른 형태로 구체화될 수도 있다. 오히려, 여기서 소개되는 내용이 철저하고 완전해지고, 당업자에게 본 발명의 사상을 충분히 전달하기 위해 제공하는 것이다. Hereinafter, preferred embodiments of the present invention will be described in detail. However, the present invention is not limited to the embodiments described herein and may be embodied in other forms. Rather, it is provided so that this disclosure will be thorough and complete, and will fully convey the spirit of the invention to those skilled in the art.

<실시예 1. 세포 기반 고효율 스크리닝방법을 통한 LPA 신호 길항제 선별 ><Example 1. Selection of LPA signal antagonists through cell-based high-efficiency screening method>

유력한 LPA 신호 길항제를 선별하기 위하여, 한국 화학 연구원의 라이브러리의 2000 종의 화합물을 세포 기반 고효율 스크리닝 방법(HTS)으로 선별하였다. LPA 길항제로 잘 알려진 Ki-16427과 구조적 유사성을 기초로 선별된 2000 종의 화합물이 소 혈관세포주인 CPAE 세포에서 LPA에 의하여 유도된 염증성 사이토카인인 TNFα 생성 억제여부를 확인하여 유력한 LPA 신호 길항제 후보 물질을 선별하였다.In order to select potent LPA signal antagonists, 2000 compounds from the library of the Korea Research Institute of Chemical Technology were selected by a cell-based high-efficiency screening method (HTS). Potential LPA signal antagonist candidates by confirming whether 2000 compounds selected based on structural similarity to Ki-16427, a well-known LPA antagonist, inhibit the LPA-induced inflammatory cytokine TNFα production in CPAE cells, a bovine vascular cell line. was selected.

ATCC (Manassas, VA, USA)로부터 소의 혈관 세포주인 CPAE (ATCC® CCL-209™) 세포를 구입하여 사용하였다. CPAE 세포는 소의 폐동맥 내피세포로, 10% 소태아혈청, 1% 페니실린, 스트렙토마이신이 보충된 RPMI (Roswell Park Memorial Institute) 배지에서 95% 공기와 5% 이산화탄소 조건에서 37℃ 로 배양되었다. TNFα 의 발현 분석을 위해서 CPAE 세포를 상기 화합물을 각 농도별 (5-20 μM) 존재 하에서 LPA (Sigma-Aldrich, St. Louis, MO, USA)가 100 μM이 되도록 처리하였다. 이후, 처리된 각 CPAE 세포의 전체 RNA를 TRIzol reagent (Invitrogen, Carlsbad, CA, USA)를 이용하여 추출한 다음, 이중 각 20 ng 씩을 실시간 역전사효소 PCR(RT-PCR)에 사용하였다. RT-PCR은 ThermoscriptTM RT-PCR cDNA SuperMix (Invitrogen, Carlsbad, CA, USA)을 이용하여 수행하였다. 이후, Brilliant II CYBR® Green qPCR Master Mix를 이용하여 PCR (Agilent Technologies Inc., Santa Clara, CA, USA)을 수행하였다.CPAE (ATCC® CCL-209™) cells, a bovine vascular cell line, were purchased from ATCC (Manassas, VA, USA) and used. CPAE cells were bovine pulmonary endothelial cells, and were cultured in RPMI (Roswell Park Memorial Institute) medium supplemented with 10% fetal bovine serum, 1% penicillin, and streptomycin at 37° C. in 95% air and 5% carbon dioxide conditions. For TNFα expression analysis, CPAE cells were treated with LPA (Sigma-Aldrich, St. Louis, MO, USA) at 100 μM in the presence of each concentration (5-20 μM) of the compound. Then, total RNA of each treated CPAE cell was extracted using TRIzol reagent (Invitrogen, Carlsbad, CA, USA), and 20 ng of each was used for real-time reverse transcriptase PCR (RT-PCR). RT-PCR was performed using Thermoscript™ RT-PCR cDNA SuperMix (Invitrogen, Carlsbad, CA, USA). Then, PCR (Agilent Technologies Inc., Santa Clara, CA, USA) was performed using Brilliant II CYBR® Green qPCR Master Mix.

실험 결과, 5 μM 농도에서 LPA에 의하여 유도된 TNFα 의 발현이 70% 이상 억제되는 물질 14종을 선별하였다. 그 중, KA-1002의 억제효과가 가장 현저하였으며, 이의 분자구조가 (2R,3R,4S,5R)-2-(6-((2-hydroxyethyl)amino)-9H-purine-9-yl)-5-(hydroxymethyl)-tetrahydrofuran-3,4-diol)인 것을 확인하였다. 도 1은 본 발명에 따른 LPA 길항제인 (2R,3R,4S,5R)-2-(6-((2-hydroxyethyl)amino)-9H-purin-9-yl)-5-(hydroxymethyl)-tetrahydrofuran-3,4-diol (KA-1002)의 분자구조식이다.As a result of the experiment, 14 types of substances in which LPA-induced TNFα expression was inhibited by 70% or more at a concentration of 5 μM were selected. Among them, the inhibitory effect of KA-1002 was the most remarkable, and its molecular structure was (2R,3R,4S,5R)-2-(6-((2-hydroxyethyl)amino)-9H-purine-9-yl) -5-(hydroxymethyl)-tetrahydrofuran-3,4-diol) was confirmed. 1 is an LPA antagonist according to the present invention, (2R,3R,4S,5R)-2-(6-((2-hydroxyethyl)amino)-9H-purin-9-yl)-5-(hydroxymethyl)-tetrahydrofuran This is the molecular structure of -3,4-diol (KA-1002).

<< 실시예Example 2. KA-1002의 폐동맥 내피세포에서 2. In pulmonary artery endothelial cells of KA-1002 LPALPA 유발 염증성 사이토카인 생성에 미치는 효과 확인> Confirmation of effect on induced inflammatory cytokine production>

KA-1002가 LPA에 의하여 염증 유도된 CPAE 세포에서 생성되는 다른 염증성 사이토카인 및 케모카인에 미치는 효과를 확인하였다.The effect of KA-1002 on other inflammatory cytokines and chemokines produced in CPAE cells induced by LPA was confirmed.

CPAE 세포는 상기 실시예 1과 동일한 방법으로 배양하였고, 역시 상기 실시예 1과 동일한 방법으로 전체 RNA를 분리한 후, cDNA를 제작하였다.CPAE cells were cultured in the same manner as in Example 1, and after total RNA was isolated in the same manner as in Example 1, cDNA was prepared.

하기 표 1과 같이 프라이머와 프로브 세트를 Bioneer 사 (Daejeon, Korea)로부터 구입하였으며, 결과는 베타-액틴 양을 이용하여 정규화하였다. 실시간 qPCR은 Agilent Technologies AriaMx real-time system (Agilent Technologies Inc.)을 이용하여 2회 반복 검체로 실시하였으며, 각 검체의 세포들에 대하여 2-△△CT 값에 기초한 상대적인 발현은 가장 높은 발현값에 대한 백분율로 표현하여 도 2에 나타내었다.As shown in Table 1 below, primers and probe sets were purchased from Bioneer (Daejeon, Korea), and the results were normalized using the beta-actin amount. Real-time qPCR was performed on two replicate samples using the Agilent Technologies AriaMx real-time system (Agilent Technologies Inc.), and the relative expression based on the 2 -ΔΔCT value for the cells of each sample was the highest expression value. It is shown in FIG. 2 expressed as a percentage.

Gene NameGene Name 5'-Primer Sequence5'-Primer Sequence 3'-Primer Sequence3'-Primer Sequence Bovine TNFαBovine TNFα TCTCTCTCACATACCCTGCCATCTCTCTCACATACCCTGCCA CCACATCCCGGATCATGCTTCCACATCCCGGATCATGCTT Bovine IL-6Bovine IL-6 CCAGCCACAAACACTGACCTCCAGCCACAAACACTGACCT CCCCAGCTACTTCATCCGAACCCCAGCTACTTCATCCGAA Bovine IL-1βBovine IL-1β AACGTCCTCCGACGAGTTTCAACGTCCTCCGACGAGTTTC CCAGCACCAGGGATTTTTGCCCAGCACCAGGGATTTTTGC Bovine LPAR1Bovine LPAR1 AACACAGGGCCCAATACTCGAACACAGGGCCCAATACTCG CAATTGCAATGGCCAGGAGGCAATTGCAATGGCCAGGAGG Bovine LPAR2Bovine LPAR2 CCACGAGTCTGTTCGCTACACCACGAGTCTGTTCGCTACA GTGGCATTTGCTGTACCCTGGTGGCATTTGCTGTACCCTG Bovine β-actinBovine β-actin TCGGTTGGATCGAGCATTCCTCGGTTGGATCGAGCATTCC GTGGCTTTTGGGAAGGCAAAGTGGCTTTTGGGAAGGCAAA

도 2는 본 발명에 따른 LPA 길항제인 KA-1002의 염증성 사이토카인의 발현에 미치는 효과를 나타낸 그래프이다. 도 2(A) 내지 도 2(C)에서 보는 바와 같이, KA-1002는 CPAE 세포에서 소의 폐동맥 혈관 내피세포에서 LPA에 의해 유도된 TNFα, IL-1β 및 IL-6의 발현을 유의하게 억제하였다. 본 발명에 따른 KA-1002가 종래 LPA 길항제로 알려진 Ki-16425보다 낮은 농도에서 TNFα의 발현 억제효과가 더 좋았으며, IL-1β 및 IL-6의 경우, 본 발명의 KA-1002가 Ki-16425보다 5 및 20 μM에서 각각 발현 억제효과가 더 뛰어난 것을 확인하였다.2 is a graph showing the effect of KA-1002, an LPA antagonist according to the present invention, on the expression of inflammatory cytokines. 2(A) to 2(C), KA-1002 significantly inhibited LPA-induced expression of TNFα, IL-1β and IL-6 in bovine pulmonary vascular endothelial cells in CPAE cells. . In the case of IL-1β and IL-6, KA-1002 according to the present invention had a better TNFα expression inhibitory effect than Ki-16425, which is known as a conventional LPA antagonist, and in the case of IL-1β and IL-6, KA-1002 of the present invention is Ki-16425 It was confirmed that the expression inhibition effect was more excellent at 5 and 20 μM, respectively.

<< 실시예Example 3. KA-1002의 3. KA-1002 LPALPA 수용체 확인> Receptor Identification>

본 발명에 따른 LPA 길항제인 KA-1002의 길항 기전을 알아보기 위하여 KA-1002 처리 시, LPA 수용체(LPAR)의 발현정도를 조사하였다. 실시예 2와 동일한 방법으로, CPAE 세포에서 KA-1002 처리 시 LPAR1 및 LPAR2의 전사 수준을 조사하여 도 2(D)에 나타내었다.In order to investigate the antagonistic mechanism of KA-1002, an LPA antagonist according to the present invention, the expression level of LPA receptor (LPAR) was investigated during KA-1002 treatment. In the same manner as in Example 2, the transcription levels of LPAR1 and LPAR2 upon KA-1002 treatment in CPAE cells were investigated and shown in FIG. 2(D).

도 2(D)에서 보는 바와 같이, KA-1002 처리 시 LPAR1의 전사 수준이 LPAR2보다 높게 나타났다. 이러한 결과는 Ki-16425의 LPA 길항제 효과와 유사한 결과로, 이는 본 발명의 KA-1002가 LPAR1를 매개로 하여 LPA 길항제로 작용하는 것으로 알려진 Ki-16425와 동일한 메커니즘으로 LPA의 길항제로 작용하는 것으로 해석될 수 있다.As shown in FIG. 2(D), the transcription level of LPAR1 was higher than that of LPAR2 upon KA-1002 treatment. These results are similar to the LPA antagonist effect of Ki-16425, which is interpreted that the KA-1002 of the present invention acts as an LPA antagonist with the same mechanism as Ki-16425, which is known to act as an LPA antagonist through LPAR1. can be

<< 실시예Example 4. KA-1002의 Swiss 4. Swiss of KA-1002 ADMEADME 분석> Analyze>

본 발명의 LPA 길항제로서 KA-1002의 약동학적 특성을 알아보기 위하여 Swiss ADME 분석을 실시하였다. Swiss Institute of Bioinformatics에서 제공하는 Swiss ADME 프로그램으로 KA-1002의 약동학적 특성, 약물유사성을 분석한 결과, 도 3에서 보는 바와 같이, KA-1002는 리핀스키의 5의 법칙 (Lipinski's rule of five)에 기초한 ADME 파라미터((흡수(absorption), 분포(distribution), 대사(metabolism), 배설(excretion))를 모두 충족하는 것을 확인하였다.Swiss ADME analysis was performed to examine the pharmacokinetic properties of KA-1002 as an LPA antagonist of the present invention. As a result of analyzing the pharmacokinetic properties and drug similarity of KA-1002 with the Swiss ADME program provided by the Swiss Institute of Bioinformatics, as shown in FIG. 3, KA-1002 conforms to Lipinski's rule of five. It was confirmed that all of the basic ADME parameters ((absorption, distribution, metabolism, excretion) were satisfied.

<< 실시예Example 5. KA-1002의 5. KA-1002 LPALPA 유도 염증성 혈관 신생의 완화 효과 확인> Confirmation of alleviating effect of induced inflammatory angiogenesis>

LPA가 염증 부위에서 염증을 증폭시키기 위하여 혈관 신생을 유발한다는 것은 잘 알려져 있다. 본 발명의 LPA 길항제로서 KA-1002가 소의 혈관 세포에서 염증을 억제하기 때문에, 본 발명자들은 KA-1002가 LPA에 의하여 매개되는 혈관 신생 증가를 억제할 것이라고 추측하고, KA-1002의 LPA 유도 염증성 혈관 신생의 완화 효과를 확인하였다.It is well known that LPA induces angiogenesis to amplify inflammation at the site of inflammation. Since KA-1002 as the LPA antagonist of the present invention inhibits inflammation in bovine vascular cells, we speculate that KA-1002 will inhibit the LPA-mediated increase in angiogenesis, and the LPA-induced inflammatory angiogenesis of KA-1002. The alleviation effect of neonatal was confirmed.

실험예 2와 동일한 방법으로 CPAE 세포를 무처리, LPA(100 μM) 및 LPA(100 μM) + KA-1002(20 μM) 으로 처리한 다음 혈관의 신생여부를 광학현미경으로 확인하고 도 4에 나타내었다.In the same manner as in Experimental Example 2, CPAE cells were treated with untreated, LPA (100 μM) and LPA (100 μM) + KA-1002 (20 μM), and then the angiogenesis of blood vessels was checked with an optical microscope and shown in FIG. it was

도 4에서 보는 바와 같이, CPAE 세포는 LPA(100 μM) 에 의하여 신생혈관이 증가한 것을 확인하였으며, KA-1002(20 μM)을 첨가한 실험군에서는 LPA에 의하여 유도된 혈관의 신생이 억제된 것을 확인하였다.As shown in FIG. 4 , it was confirmed that CPAE cells increased angiogenesis by LPA (100 μM), and it was confirmed that LPA-induced angiogenesis was inhibited in the experimental group to which KA-1002 (20 μM) was added. did

<< 실시예Example 6. KA-1002의 소 6. Cattle of KA-1002 기관세포에서in organ cells LPALPA 에 의하여 유도된 induced by ZOZO -1 에 미치는 효과 확인>Check the effect on -1>

LPA는 소의 기관세포(EBTr 세포에서 Zonula occludens-1(이하 ZO-1) 단백질의 발현을 강하게 감소시키는 것으로 알려져 있다. ZO-1 단백질은 세포-세포 접합에서 신호전달에 관여하며, 세포 간 접합의 세포질 표면에서 다단백질 복합체의 조립을 위한 구조적 기초를 제공하는 스캐폴딩 단백질이다. 건강한 세포의 경우 ZO-1 단백질의 발현이 높으며, 기관 세포에서 LPA에 의하여 이러한 세포 접합 물질이 손실되는 것으로 알려져 있다. 이에 본 발명의 LPA 길항제로서의 KA-1002가 LPA에 의하여 유도된 ZO-1 단백질의 감소를 억제하는지 확인하였다.LPA is known to strongly reduce the expression of Zonula occludens-1 (hereinafter ZO-1) protein in bovine organ cells (EBTr cells). ZO-1 protein is involved in signal transduction in cell-cell junctions, It is a scaffolding protein that provides a structural basis for the assembly of polyprotein complexes on the cytoplasmic surface.It is known that the expression of ZO-1 protein is high in healthy cells, and this cell junction material is lost by LPA in organ cells. Accordingly, it was confirmed whether KA-1002 as an LPA antagonist of the present invention inhibited the decrease of ZO-1 protein induced by LPA.

ZO-1 발현 분석을 위해, EBTr 세포를 20 μM KA-1002의 존재 또는 부재하에 100 μM LPA (Sigma-Aldrich)로 18 시간 동안 처리하였으며, 3회 반복 검체로 실험하였다. 먼저 EBTr 세포를 8-웰 μ-슬라이드(Ibidi, Planegg, Germany)에 접종하고, 20 μM KA-1002의 존재 또는 부재하에 100 μM LPA로 처리하고 37 ℃ and 5% CO2 조건으로 24시간 배양하였다. 이후 파라포름알데하이드로 20분간 고정시킨 후, 슬라이드를 0.01% Triton X-100이 포함된 PBS로 수세, 투과시킨 후, 1 % 소혈청 알부민으로 실온에서 1시간동안 블로킹시켰다. 이후, 플로로포어가 접합된 1차 항체를 4℃에서 처리하고, 다음 날 1% 소혈청 알부민으로 10분간 3회 수세한 후, PBS에 1000배 희석한 DAPI로 염색하였다. ZO-1 또는 F-actin에 대한 1차 항체(Thermo 0Fisher Scientific)는 1:200으로 희석하여 세포간 구조와 타이트 정션(tight junction)을 기초로 한 ZO-1 또는 actin 필라멘트의 시각화를 위하여 사용하였다. 형광 신호는 VIS 및 NIR 레이저가 장착된 LSM 880 공초점 레이저 스캐닝 현미경으로 이미지화 하였으며, 모든 캡처 된 이미지는 LSM 880 공초점 레이저 스캐닝 현미경의 이미지 최적화(Carl Zeiss, Oberkochen, Germany)를 위한 Airyscan 모드를 사용하여 촬영되었고, 이를 도 5에 나타내었다.For ZO-1 expression analysis, EBTr cells were treated with 100 μM LPA (Sigma-Aldrich) in the presence or absence of 20 μM KA-1002 for 18 hours, and tested with 3 replicate samples. First, EBTr cells were inoculated into 8-well μ-slides (Ibidi, Planegg, Germany), treated with 100 μM LPA in the presence or absence of 20 μM KA-1002, and cultured at 37° C. and 5% CO 2 conditions for 24 hours. . After fixing with paraformaldehyde for 20 minutes, the slides were washed with PBS containing 0.01% Triton X-100, permeabilized, and blocked with 1% bovine serum albumin at room temperature for 1 hour. Thereafter, the phlorophore-conjugated primary antibody was treated at 4° C., washed three times with 1% bovine serum albumin for 10 minutes the next day, and then stained with DAPI diluted 1000 times in PBS. A primary antibody against ZO-1 or F-actin (Thermo 0 Fisher Scientific) was diluted 1:200 and used for visualization of ZO-1 or actin filaments based on intercellular structures and tight junctions. . The fluorescence signal was imaged with an LSM 880 confocal laser scanning microscope equipped with VIS and NIR lasers, and all captured images were taken using the Airyscan mode for image optimization of the LSM 880 confocal laser scanning microscope (Carl Zeiss, Oberkochen, Germany). was photographed, and this is shown in FIG. 5 .

도 5는 본 발명에 따른 LPA 길항제인 KA-1002의 소의 기관세포(EBTr cell)에서 LPA에 의하여 유도된 ZO-1 발현에 미치는 영향을 나타낸 것이다. (A)는 무처리 EBTr 세포, LPA를 처리한 것, 및 LPA + KA-1002를 처리한 EBTr 세포를 나타낸 사진이다 (ZO-1 (빨간색), F-actin (초록색) 및 핵 (파란색)). (B)는 상기 EBTr 세포당 ZO-1의 상대적 발현량을 나타낸 그래프이고, (C)는 상기 EBTr 세포당 F-actin의 상대적 발현량을 나타낸 그래프이다.5 shows the effect of KA-1002, an LPA antagonist according to the present invention, on ZO-1 expression induced by LPA in bovine organ cells (EBTr cells). (A) is a photograph showing untreated EBTr cells, those treated with LPA, and EBTr cells treated with LPA + KA-1002 (ZO-1 (red), F-actin (green) and nuclei (blue)) . (B) is a graph showing the relative expression level of ZO-1 per EBTr cell, (C) is a graph showing the relative expression level of F-actin per EBTr cell.

도 5(A)에서 보는 바와 같이, EBTr 세포에서 LPA에 의하여 ZO-1 단백질이 손실되었으며, 상기 ZO-1 단백질이 손실은 KA-1002에 의하여 완화된 것을 확인하였다. F-actin 발현은 LPA 또는 KA-1002에 의하여 유의하게 변화하지 않았다. 각 세포의 이미지의 같은 부분에서 ZO-1 및 F-actin의 상대적 발현양을 측정하여 본 결과, 무처리된 EBTr 세포에서 ZO-1 단백질은 세포질 전체 및 세포 가장자리에 위치해 있으며, 특히 세포의 경계지역에 ZO-1 발현이 높은 것을 확인하였다. 그러나, LPA를 처리한 EBTr 세포의 경우, ZO-1 단백질은 세포 가장자리 지역 대부분에서 손실되었다. 또한 LPA를 처리한 EBTr 세포에 KA-1002를 더 처리한 경우, 세포 가장자리에 ZO-1 단백질의 배치가 회복된 것을 알 수 있었다.As shown in FIG. 5(A), ZO-1 protein was lost by LPA in EBTr cells, and it was confirmed that the loss of ZO-1 protein was alleviated by KA-1002. F-actin expression was not significantly changed by LPA or KA-1002. As a result of measuring the relative expression levels of ZO-1 and F-actin in the same part of each cell image, in untreated EBTr cells, ZO-1 protein is located in the entire cytoplasm and at the cell edge, especially in the cell boundary region. It was confirmed that ZO-1 expression was high. However, in the case of LPA-treated EBTr cells, the ZO-1 protein was lost in most of the cell marginal region. In addition, when KA-1002 was further treated in LPA-treated EBTr cells, it was found that the arrangement of the ZO-1 protein at the cell edge was restored.

세포 가장자리 지역에 위치된 ZO-1 단백질은 세포간 타이트 정션 및 세포 부착능에 중요한 역할을 하기 때문에, LPA 처리는 세포와 세포간 타이트 정션의 손실을 유발하는 것을 알 수 있었다.Since the ZO-1 protein located in the cell edge region plays an important role in the cell-to-cell tight junction and cell adhesion, it was found that LPA treatment induced the loss of the cell-to-cell tight junction.

<< 실시예Example 7. KA-1002의 소 7. Cattle of KA-1002 기관세포에서in organ cells LPA에LPA 의하여 유도된 부착능력 손실에 미치는 효과 확인> Confirmation of effect on loss of adhesion induced by

상기 실시예 6의 결과로부터 KA-1002가 LPA에 의하여 유도된 세포와 매트리스의 부착력 손실에도 효과를 미치는지 확인하였다. 상기 실시예 6과 동일한 방법으로 EBTr 세포를 처리한 후, EBTr 세포가 배양 플레이트에 부착하는 정도를 관찰하여 도면 6에 나타내었다.From the results of Example 6, it was confirmed whether KA-1002 had an effect on the loss of adhesion between the cells and the mattress induced by LPA. After EBTr cells were treated in the same manner as in Example 6, the degree of adhesion of EBTr cells to the culture plate was observed and shown in FIG. 6 .

도 6은 본 발명에 따른 LPA 길항제인 KA-1002의 EBTr 세포에서 LPA 처리 후, 세포부착 여부를 나타낸 것이다. (A)는 무처리, LPA 처리 및 LPA에 5 μM, 20 μM로 각각 KA-1002가 처리된 EBTr 세포의 현미경 사진이다. (B)는 각 실험군의 부착된 EBTr 세포의 상대적인 양을 그래프로 나타낸 것이다. (C)는 무처리, LPA 처리 및 LPA에 20 μM로 KA-1002가 처리된 EBTr 세포의 FACS 분석 결과를 나타낸 것이다.6 is a graph showing whether or not cells adhere to EBTr cells of KA-1002, an LPA antagonist according to the present invention, after LPA treatment. (A) is a micrograph of EBTr cells untreated, LPA-treated, and LPA treated with KA-1002 at 5 μM and 20 μM, respectively. (B) is a graph showing the relative amount of adhered EBTr cells in each experimental group. (C) shows the results of FACS analysis of untreated, LPA-treated and EBTr cells treated with KA-1002 at 20 μM in LPA.

도 6(A) 및 6(B)에서 보는 바와 같이 LPA가 처리된 EBTr 세포는 LPA가 처리되지 않은 세포에 비하여 배양 플레이트에 대한 부착력이 현저히 낮았으며, LPA 처리된 세포는 부착세포에 대한 미부착세포의 비율이 크게 나타났다. 그러나 KA-1002를 처리한 경우, LPA 처리된 EBTr 세포의 배양 플레이트에 대한 부착력이 KA-1002 농도 의존적으로 회복되는 것을 확인하였다.As shown in FIGS. 6(A) and 6(B), LPA-treated EBTr cells had significantly lower adhesion to the culture plate than LPA-treated cells, and LPA-treated cells were non-adherent to adherent cells. of the ratio was large. However, when KA-1002 was treated, it was confirmed that the adhesion of LPA-treated EBTr cells to the culture plate was restored in a KA-1002 concentration-dependent manner.

이러한 결과는 LPA가 세포의 구조적 파괴 또는 조직 손상을 일으킬 수 있는 세포-세포간 타이트 정션 및 세포-매트릭스 부착을 감소시키는 것으로 해석할 수 있으며, 본 발명의 KA-1002가 이를 완화시킬 수 있음을 시사한다.These results can be interpreted as reducing the cell-to-cell tight junction and cell-matrix adhesion, which can cause structural destruction of cells or tissue damage by LPA, suggesting that the KA-1002 of the present invention can alleviate this. do.

<< 실시예Example 8. KA-1002의 소 8. Cattle of KA-1002 기관세포에서in organ cells LPA에LPA 의하여 유도된 염증성 사이토카인 생성에 미치는 효과 확인> Confirmation of effect on inflammatory cytokine production induced by

소의 기관세포에서 LPA 매개 염증성 사이토카인 생성을 특성화하기 위하여, 무처리, LPA 처리 및 LPA와 KA-1002를 각각 처리한 EBTr 세포의 TNFα 및 IL-1β를 상기 실시예 2와 동일한 방법으로 측정하여 도 7에 나타내었다.In order to characterize LPA-mediated inflammatory cytokine production in bovine organ cells, TNFα and IL-1β of EBTr cells treated with untreated, LPA-treated and LPA and KA-1002, respectively, were measured in the same manner as in Example 2. 7 is shown.

도 7은 본 발명에 따른 LPA 길항제인 KA-1002의 EBTr 세포에서 LPA에 의하여 유도된 (A) TNFα 및 (B) IL-1β 의 상대적인 전사량을 측정하여 그래프로 나타낸 것이다. 도 7에서 보는 바와 같이, TNFα와 IL-1β는 LPA 처리에 의해 유의하게 증가하였으나, KA-1002에 의하여 LPA 처리로 유도된 TNFα와 IL-1β의 증가가 억제되었다. 상기 실시예 2의 CPAE 세포 실험에서 유사한 결과를 고려하면, LPA는 소의 기관지 및 내피 세포에서 염증을 유발하며, KA-1002는 LPA의 길항제로 사용될 수 있다는 것을 확인하였다.7 is a graph showing the relative transcriptional amounts of (A) TNFα and (B) IL-1β induced by LPA in EBTr cells of KA-1002, an LPA antagonist according to the present invention. As shown in FIG. 7 , TNFα and IL-1β were significantly increased by LPA treatment, but increases in TNFα and IL-1β induced by LPA treatment were inhibited by KA-1002. Considering the similar results in the CPAE cell experiment of Example 2, it was confirmed that LPA induces inflammation in bovine bronchial and endothelial cells, and that KA-1002 can be used as an antagonist of LPA.

Claims (10)

(2R,3R,4S,5R)-2-(6-((2-hydroxyethyl)amino)-9H-purin-9-yl)-5-(hydroxymethyl)-tetrahydrofuran-3,4-diol 을 포함하는 가축 호흡기 염증 질환의 예방 또는 치료 조성물에 있어서,
상기 (2R,3R,4S,5R)-2-(6-((2-hydroxyethyl)amino)-9H-purin-9-yl)-5-(hydroxymethyl)-tetrahydrofuran-3,4-diol은 LPA(Lysophosphatidic Acid) 수용체의 길항제로 작용하며,
상기 가축 호흡기 염증 질환은 소의 폐렴 또는 기관지염인 것을 특징으로 하는 가축 호흡기 염증 질환의 예방 또는 치료 조성물.
Livestock containing (2R,3R,4S,5R)-2-(6-((2-hydroxyethyl)amino)-9H-purin-9-yl)-5-(hydroxymethyl)-tetrahydrofuran-3,4-diol In the composition for the prevention or treatment of respiratory inflammatory diseases,
The (2R,3R,4S,5R)-2-(6-((2-hydroxyethyl)amino)-9H-purin-9-yl)-5-(hydroxymethyl)-tetrahydrofuran-3,4-diol is LPA ( Lysophosphatidic acid) receptor antagonist
The livestock respiratory inflammatory disease is a preventive or therapeutic composition for an inflammatory disease of the livestock respiratory tract, characterized in that cattle pneumonia or bronchitis.
삭제delete 제1항에 있어서,
상기 (2R,3R,4S,5R)-2-(6-((2-hydroxyethyl)amino)-9H-purin-9-yl)-5-(hydroxymethyl)-tetrahydrofuran-3,4-diol의 LPA 길항작용은 LPAR1(LPA Receptor1)을 매개로 하는 것을 특징으로 하는 가축 호흡기 염증 질환의 예방 또는 치료 조성물.
According to claim 1,
LPA antagonism of the (2R,3R,4S,5R)-2-(6-((2-hydroxyethyl)amino)-9H-purin-9-yl)-5-(hydroxymethyl)-tetrahydrofuran-3,4-diol A composition for preventing or treating inflammatory diseases of the livestock respiratory tract, characterized in that the action is mediated by LPAR1 (LPA Receptor1).
제1항에 있어서,
상기 (2R,3R,4S,5R)-2-(6-((2-hydroxyethyl)amino)-9H-purin-9-yl)-5-(hydroxymethyl)-tetrahydrofuran-3,4-diol은 LPA에 의하여 유도되는 염증성 사이토카인의 생성을 억제하는 것을 특징으로 하는 가축 호흡기 염증 질환의 예방 또는 치료 조성물.
According to claim 1,
The (2R,3R,4S,5R)-2-(6-((2-hydroxyethyl)amino)-9H-purin-9-yl)-5-(hydroxymethyl)-tetrahydrofuran-3,4-diol is A composition for preventing or treating inflammatory diseases of the livestock respiratory tract, characterized in that it inhibits the production of inflammatory cytokines induced by
제4항에 있어서,
상기 LPA에 의하여 유도되는 염증성 사이토카인은 TNFα(tumor necrosis factor-α), IL-1β(Interleukin-1β) 및 IL-6(Interleukin 1)로 이루어진 군으로부터 선택되는 1 이상인 것을 특징으로 하는 가축 호흡기 염증 질환의 예방 또는 치료 조성물.
5. The method of claim 4,
The inflammatory cytokine induced by the LPA is TNFα (tumor necrosis factor-α), IL-1β (Interleukin-1β) and IL-6 (Interleukin 1) Livestock respiratory inflammation, characterized in that at least one selected from the group consisting of A composition for preventing or treating a disease.
제1항에 있어서,
상기 (2R,3R,4S,5R)-2-(6-((2-hydroxyethyl)amino)-9H-purin-9-yl)-5-(hydroxymethyl)-tetrahydrofuran-3,4-diol은 LPA에 의하여 유도되는 혈관신생을 억제하는 것을 특징으로 하는 가축 호흡기 염증 질환의 예방 또는 치료 조성물.
According to claim 1,
The (2R,3R,4S,5R)-2-(6-((2-hydroxyethyl)amino)-9H-purin-9-yl)-5-(hydroxymethyl)-tetrahydrofuran-3,4-diol is A composition for preventing or treating inflammatory diseases of livestock respiratory tract, characterized in that it inhibits angiogenesis induced by
제1항에 있어서,
상기 (2R,3R,4S,5R)-2-(6-((2-hydroxyethyl)amino)-9H-purin-9-yl)-5-(hydroxymethyl)-tetrahydrofuran-3,4-diol은 LPA에 의하여 유도되는 ZO-1 단백질 발현 억제를 완화하는 것을 특징으로 하는 가축 호흡기 염증 질환의 예방 또는 치료 조성물.
According to claim 1,
The (2R,3R,4S,5R)-2-(6-((2-hydroxyethyl)amino)-9H-purin-9-yl)-5-(hydroxymethyl)-tetrahydrofuran-3,4-diol is A preventive or therapeutic composition for inflammatory diseases of the livestock respiratory tract, characterized in that alleviating the inhibition of ZO-1 protein expression induced by
제7항에 있어서,
상기 LPA에 의하여 유도되는 ZO-1 단백질 발현 억제는 세포-세포 간 타이트 정션을 감소시키는 것을 특징으로 하는 가축 호흡기 염증 질환의 예방 또는 치료 조성물.
8. The method of claim 7,
Inhibition of ZO-1 protein expression induced by the LPA is a composition for preventing or treating inflammatory diseases of livestock respiratory tract, characterized in that it reduces tight junctions between cells.
삭제delete (2R,3R,4S,5R)-2-(6-((2-hydroxyethyl)amino)-9H-purin-9-yl)-5-(hydroxymethyl)-tetrahydrofuran-3,4-diol을 포함하는 가축 호흡기 염증 질환 개선용 동물 사료에 있어서,
상기 (2R,3R,4S,5R)-2-(6-((2-hydroxyethyl)amino)-9H-purin-9-yl)-5-(hydroxymethyl)-tetrahydrofuran-3,4-diol은 LPA(Lysophosphatidic Acid) 수용체의 길항제로 작용하며,
상기 가축 호흡기 염증 질환은 소의 폐렴 또는 기관지염인 것을 특징으로 하는 가축 호흡기 염증 질환 개선용 동물 사료.
Livestock containing (2R,3R,4S,5R)-2-(6-((2-hydroxyethyl)amino)-9H-purin-9-yl)-5-(hydroxymethyl)-tetrahydrofuran-3,4-diol In the animal feed for improving respiratory inflammatory diseases,
The (2R,3R,4S,5R)-2-(6-((2-hydroxyethyl)amino)-9H-purin-9-yl)-5-(hydroxymethyl)-tetrahydrofuran-3,4-diol is LPA ( Lysophosphatidic acid) receptor antagonist
The inflammatory disease of the livestock respiratory tract is an animal feed for improving inflammatory diseases of the livestock respiratory tract, characterized in that it is pneumonia or bronchitis in cattle.
KR1020200025053A 2020-02-28 2020-02-28 Composition for preventing or treating respiratory disease of domestic animals KR102393079B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200025053A KR102393079B1 (en) 2020-02-28 2020-02-28 Composition for preventing or treating respiratory disease of domestic animals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200025053A KR102393079B1 (en) 2020-02-28 2020-02-28 Composition for preventing or treating respiratory disease of domestic animals

Publications (2)

Publication Number Publication Date
KR20210109886A KR20210109886A (en) 2021-09-07
KR102393079B1 true KR102393079B1 (en) 2022-04-29

Family

ID=77797421

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200025053A KR102393079B1 (en) 2020-02-28 2020-02-28 Composition for preventing or treating respiratory disease of domestic animals

Country Status (1)

Country Link
KR (1) KR102393079B1 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2470833B (en) 2009-06-03 2011-06-01 Amira Pharmaceuticals Inc Polycyclic antagonists of lysophosphatidic acid receptors
CN107721940A (en) 2010-12-07 2018-02-23 阿米拉制药公司 Polycyclic LPA1Antagonist and its use
AR108838A1 (en) 2016-06-21 2018-10-03 Bristol Myers Squibb Co CARBAMOYLOXIMETHYL ACID TRIAZOL CYCLOHEXILO AS LPA ANTAGONISTS

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
(주지관용기술) Hana Zelova, et al., TNF-α signalling and inflammation: interactions between old acquaintances, Inflamm. Res., 2013, 62, 641-651*
Rong Zheng, et al., Frontiers in Physiology, 2018, 9, 1229. (2018.09.04.)*

Also Published As

Publication number Publication date
KR20210109886A (en) 2021-09-07

Similar Documents

Publication Publication Date Title
Akhmetshina et al. The cannabinoid receptor CB2 exerts antifibrotic effects in experimental dermal fibrosis
DeBruyne et al. Gene transfer of virally encoded chemokine antagonists vMIP-II and MC148 prolongs cardiac allograft survival and inhibits donor-specific immunity
KR101512171B1 (en) A composition comprising stem cell for preventing or treating of immune or inflammatory disease
US20200289582A1 (en) Conditioning protocols and use of same for tissue regeneration
Guo et al. Insulin-like growth factor 1 treatment of MSCs attenuates inflammation and cardiac dysfunction following MI
Chang et al. Conditioned mesenchymal stem cells attenuate progression of chronic kidney disease through inhibition of epithelial‐to‐mesenchymal transition and immune modulation
JP6243996B2 (en) Methods of treatment using BCAT1 inhibitors
Singla et al. TGF-β2 treatment enhances cytoprotective factors released from embryonic stem cells and inhibits apoptosis in infarcted myocardium
Yusuf et al. Expression of chemokine receptor CXCR4 during chick embryo development
Li et al. Stem cell factor is responsible for the rapid response in mature mast cell density in the acutely stressed heart
Sakamoto et al. Pituitary adenylate cyclase-activating polypeptide protects glomerular podocytes from inflammatory injuries
KR20150088204A (en) Pharmaceutical composition for preventing or treating of nonalcoholic fatty liver disease comprising G protein coupled receptor 119 ligand as an active ingredient
Moore et al. Single-cell RNA sequencing reveals unique monocyte-derived interstitial macrophage subsets during lipopolysaccharide-induced acute lung inflammation
KR102393079B1 (en) Composition for preventing or treating respiratory disease of domestic animals
CN102482334A (en) Sparc angiogenic domain and methods of use
KR102597757B1 (en) Compound derived from natural product and antiviral agent containing the same as an active ingredient
WO2017146332A1 (en) Novel use of chromone derivative as pharmaceutical composition for preventing and treating fibrosis by using epithelial-mesenchymal transition inhibitory activity thereof
JP6982716B2 (en) Heterocyclic compounds and their use
KR102456307B1 (en) Composition for preventing or treating of multiple organ failure related to infection comprising 3&#39;-Sialyllactose, 6&#39;-Sialyllactose or Derivatives Thereof
US10335380B2 (en) Compounds suitable for the treatment of myeloproliferative neoplasms as well as methods for the diagnosis/prognosis of myeloproliferative neoplasms
KR102608364B1 (en) Pharmaceutical composition for the prevention or treatment of allergic diseases containing SIRT7 inhibitor
US20230218572A1 (en) Compositions and methods for improved mesenchymal stem cell therapy
KR101948247B1 (en) A composition for suppressing OCT4 and use thereof
TWI410419B (en) Pyrimidinyl indole compounds
Isringhausen et al. CD8 T cells induce destruction of bone marrow stromal niches and hematopoietic stem cell dysfunction in chronic viral infections

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E601 Decision to refuse application
AMND Amendment
E902 Notification of reason for refusal
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant