KR102392553B1 - An apparatus of simulation for fuel consumption using lithium battery based on medical scooter and electro-wheelchair - Google Patents

An apparatus of simulation for fuel consumption using lithium battery based on medical scooter and electro-wheelchair Download PDF

Info

Publication number
KR102392553B1
KR102392553B1 KR1020200157038A KR20200157038A KR102392553B1 KR 102392553 B1 KR102392553 B1 KR 102392553B1 KR 1020200157038 A KR1020200157038 A KR 1020200157038A KR 20200157038 A KR20200157038 A KR 20200157038A KR 102392553 B1 KR102392553 B1 KR 102392553B1
Authority
KR
South Korea
Prior art keywords
driving
loss
battery
power
gear
Prior art date
Application number
KR1020200157038A
Other languages
Korean (ko)
Inventor
양기일
Original Assignee
(주)엠피에스코리아
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)엠피에스코리아 filed Critical (주)엠피에스코리아
Priority to KR1020200157038A priority Critical patent/KR102392553B1/en
Application granted granted Critical
Publication of KR102392553B1 publication Critical patent/KR102392553B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/66Data transfer between charging stations and vehicles
    • B60L53/665Methods related to measuring, billing or payment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/16Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to battery ageing, e.g. to the number of charging cycles or the state of health [SoH]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/60Navigation input
    • B60L2240/64Road conditions
    • B60L2240/642Slope of road
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/60Navigation input
    • B60L2240/64Road conditions
    • B60L2240/647Surface situation of road, e.g. type of paving
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/60Navigation input
    • B60L2240/66Ambient conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/16Driver interactions by display
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/40Control modes
    • B60L2260/50Control modes by future state prediction
    • B60L2260/52Control modes by future state prediction drive range estimation, e.g. of estimation of available travel distance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Evolutionary Computation (AREA)
  • Computer Hardware Design (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Secondary Cells (AREA)

Abstract

The present invention relates to a driving fuel efficiency simulation apparatus applied to a medical scooter and electric wheelchair based on a lithium battery, more specifically, comprising: a control module which calculates a power performance, loss rate, and battery power state of a device according to a driving velocity, a velocity during a driving cycle, an angle of inclination, a friction coefficient of a road environment, and surrounding environment values, and controls detailed actions to display a battery state of charge (SOC), drivable distance, battery state of health (SOH), or a drivable distance to a next charging station; an input module which receives the driving velocity or averaged driving velocity, transmits road information to calculate necessary torque and RPM according to the friction coefficient, or detects driving environment for modeling of the mounted lithium ion battery according to temperature; a driving module which receives signals detected and inputted by the input module, calculates the driving performance, calculates loss of a gear, bearing, and power, and measures open circuit voltage (OCV), heating value, and frequency of use of the battery; and an output module which calculates the battery state of capacity (SOC), drivable distance, SOH, and remaining distance to the charging station based on the open circuit voltage (OCV), heating value, and frequency of use of the battery measured from the driving module, and displays the same to the corresponding driving device. The driving efficiency simulation apparatus of the present invention secures stable operation of an auxiliary device, improves efficiency of the auxiliary device, and extends a battery life.

Description

리튬전지 기반의 의료용 스쿠터 및 전동 휠체어에 적용되는 주행연비 시뮬레이션 장치{An apparatus of simulation for fuel consumption using lithium battery based on medical scooter and electro-wheelchair} An apparatus of simulation for fuel consumption using lithium battery based on medical scooter and electro-wheelchair}

본 발명은 리튬전지 기반의 의료용 스쿠터 및 전동 휠체어에 적용되는 주행연비 시뮬레이션 장치에 관한 것으로, 보다 상세하게는 리튬이온 전지가 장착된 의료용 스쿠터, 전동휠체어 등의 이동 보조기기장치에 리튬이온 배터리팩 설계시 주행속도, 주행 사이클의 평균속도, 경사각, 노면 마찰계수의 따른 토크 및 RPM, 주행온도 등의 주행환경을 고려하여 해당 보조기기장치의 배터리 잔량(SOC), 주행가능거리, 배터리 수명, 충전소까지의 가능거리 등을 주행그래프 형태로 표시하거나 도출할 수 있는 리튬전지 기반의 의료용 스쿠터 및 전동 휠체어에 적용되는 주행연비 시뮬레이션 장치에 관한 것이다.The present invention relates to a driving fuel efficiency simulation device applied to a lithium battery-based medical scooter and an electric wheelchair, and more particularly, a lithium-ion battery pack design for a mobility aid device such as a medical scooter and an electric wheelchair equipped with a lithium-ion battery In consideration of driving environment such as city driving speed, average speed of driving cycle, inclination angle, torque and RPM according to road friction coefficient, and driving temperature, the remaining battery capacity (SOC) of the relevant auxiliary device, driving range, battery life, and charging station It relates to a driving fuel economy simulation device applied to a lithium battery-based medical scooter and an electric wheelchair that can display or derive the possible distance, etc. in the form of a driving graph.

또한, 본 발명은 리튬이온 전지가 장착된 보조기기장치의 주행사이클 및 속도, 경사각, 노면 마찰계수, 온도 등의 주행환경, 풍향/풍속의 입력신호에 따라 토크, RPM 계산을 통한 동력성능, 베어링, 기어, 타이어 등을 고려하여 보조기기의 손실 산출을 통해 OCV(개방전압), 발열량, 사용빈도의 보조기기 내 배터리 측정하여 해당 배터리 잔량(SOC), 주행가능거리, 배터리 수명(SOH), 충전소까지 잔여거리를 시뮬레이션하여 안정적인 보조기기장치의 운영을 확보하는 리튬전지 기반의 의료용 스쿠터 및 전동 휠체어에 적용되는 주행연비 시뮬레이션 장치에 관한 것이다.In addition, the present invention provides a driving cycle and speed, inclination angle, road friction coefficient, temperature, etc., of an auxiliary device equipped with a lithium ion battery, driving environment, wind direction/wind speed input signal, torque and RPM calculation according to power performance, bearing OCV (open voltage), calorific value, and frequency of use by measuring the battery in the auxiliary device by calculating the loss of auxiliary devices in consideration of , gear, tires, etc. It relates to a driving fuel economy simulation device applied to lithium battery-based medical scooters and electric wheelchairs that secures stable operation of assistive devices by simulating the remaining distance to

일반적으로, 각종 물품, 중량물을 운반하기 위한 수단으로 운반차가 많이 사용되고 있다. 전기 운반차는 기존 운반차에 배터리, 모터, 컨트롤러, 기계 장치 및 제어 장치 등을 장착하여 전기의 힘으로 구동하게 되는데, 현재 많은 곳에서 배터리를 이용한 기기가 사용되어지고 있다. 스마트폰, 노트북 등 휴대용 전자기기부터 배터리를 이용한 충전 가능한 전기차 등 배터리를 이용한 물품들이 사용되어지고 있는 상황에서 배터리의 성능이 전체 기기의 성능을 가늠할 수 있는 척도가 되고 있다. In general, a transport vehicle is widely used as a means for transporting various articles and heavy goods. Electric vehicles are driven by electric power by mounting batteries, motors, controllers, mechanical devices, and control devices on existing vehicles. Currently, battery-powered devices are being used in many places. In a situation where items using batteries, such as portable electronic devices such as smartphones and laptops, and electric vehicles that can be recharged using batteries, are being used, the performance of the battery is becoming a measure of the performance of the entire device.

한편, 리튬이온 전지는 전동휠체어, 전기 자전거, 전동 스쿠터 등의 다양한 요소에 사용되고 있는데, 해당 기구의 사용에 따라 일괄적으로 사용후 충전하여 재 사용하는데, 외부 요건에 따라 해당 리튬전지의 상태 정보를 확인할 수 없고, 온도, 바람, 대기 환경에 따라 전원이 미치는 영향과 노면, 외부 환경에 따라 전원사용량이 가변적으로 동작하지만, 이를 인지하지 못함으로서 재사용에 제약이 발생할 수 있는 문제점이 있다.On the other hand, lithium-ion batteries are used in various elements such as electric wheelchairs, electric bicycles, and electric scooters, and depending on the use of the device, they are charged and reused after being used collectively. It cannot be checked, and the power consumption varies depending on the temperature, wind, and atmospheric environment, and the power consumption varies depending on the road surface and the external environment.

따라서, 리튬이온 전지를 구비한 구동장치가 갖는 모터, 기어, 타이어, 휠 등의 내부구성품과 온도, 습도, 바람의 세기, 풍향 등의 외부환경에 따라 구동장치의 상태를 정보를 확인하고 효율적인 구동 및 안정적인 관리를 통해 배터리 수명 연장에 대한 기술적인 고찰이 필요하다.Therefore, information on the state of the driving device is checked according to the internal components such as motor, gear, tire, wheel, etc., and the external environment such as temperature, humidity, wind strength, wind direction, etc. and technical considerations for extending battery life through stable management.

이에 본 발명은 전동구동장치의 배터리 팩 내에 시뮬레이션 알고리즘을 통해 메모리의 효율적인 관리, 안정적인 운행을 제공하고자 본 발명을 제안한다.Accordingly, the present invention proposes the present invention to provide efficient management and stable operation of memory through a simulation algorithm in a battery pack of an electric drive device.

1. 연료전지 차량용 연비 측정 장치(Fuel consumption rate measuring system for fuel cell vehicle)(특허등록번호 제10-1230897호)1. Fuel consumption rate measuring system for fuel cell vehicle (Patent Registration No. 10-1230897) 2. 이차 전지 특성 시뮬레이션 방법 및 이를 지원하는 전자 장치(VIRTUAL SIMULATION METHOD AND ELECTRONIC DEVICE FOR CHARACTERISTIC)(특허등록번호 제10-1956266호)2. Secondary battery characteristic simulation method and electronic device supporting the same (VIRTUAL SIMULATION METHOD AND ELECTRONIC DEVICE FOR CHARACTERISTIC) (Patent Registration No. 10-1956266)

본 발명은 상기 문제점을 해결하기 위해 안출된 것으로서, 그 목적은 리튬이온 전지가 장착된 보조기기장치의 주행사이클 및 속도, 경사각, 노면 마찰계수, 온도 등의 주행환경, 풍향/풍속의 입력신호에 따라 토크, RPM 계산을 통한 동력성능, 베어링, 기어, 타이어 등을 고려하여 보조기기의 손실 산출을 통해 OCV(개방전압), 발열량, 사용빈도의 보조기기 내 배터리 측정하여 해당 배터리 잔량(SOC), 주행가능거리, 배터리 수명(SOH), 충전소까지 잔여거리를 시뮬레이션하여 안정적인 보조기기장치의 운영을 확보하는 리튬전지 기반의 의료용 스쿠터 및 전동 휠체어에 적용되는 주행연비 시뮬레이션 장치를 제공하기 위한 것이다.The present invention has been devised to solve the above problems, and its purpose is to provide input signals of the driving cycle and speed, inclination angle, road friction coefficient, temperature, etc., and the wind direction/wind speed of an auxiliary device equipped with a lithium ion battery. In consideration of power performance through torque and RPM calculations, bearings, gears, tires, etc., OCV (open voltage), calorific value, and frequency of use of the battery in the auxiliary device are measured by calculating the loss of the auxiliary device to determine the remaining battery capacity (SOC), This is to provide a fuel economy simulation device applied to lithium battery-based medical scooters and electric wheelchairs to ensure stable operation of assistive devices by simulating the drivable distance, battery life (SOH), and the remaining distance to the charging station.

또한, 본 발명은 리튬이온 전지가 장착된 의료용 스쿠터, 전동휠체어 등의 이동 보조기기장치에 리튬이온 배터리팩 설계시 주행속도, 주행 사이클의 평균속도, 경사각, 노면 마찰계수의 따른 토크 및 RPM, 주행온도 등의 주행환경을 고려하여 해당 보조기기장치의 배터리 잔량(SOC), 주행가능거리, 배터리 수명, 충전소까지의 가능거리 등을 주행그래프 형태로 표시하거나 도출할 수 있는 리튬전지 기반의 의료용 스쿠터 및 전동 휠체어에 적용되는 주행연비 시뮬레이션 장치를 제공하기 위한 것이다.In addition, the present invention relates to the driving speed, the average speed of the driving cycle, the inclination angle, the torque and RPM according to the road friction coefficient, and the driving when designing a lithium ion battery pack for a mobility aid device such as a medical scooter or an electric wheelchair equipped with a lithium ion battery. A lithium battery-based medical scooter capable of displaying or deducing the remaining battery capacity (SOC), drivable distance, battery life, and possible distance to a charging station in the form of a driving graph in consideration of the driving environment such as temperature, and This is to provide a driving fuel economy simulation device applied to an electric wheelchair.

상기 목적을 달성하기 위한 본 발명의 실시예에 따른 리튬전지 기반의 의료용 스쿠터 및 전동 휠체어에 적용되는 주행연비 시뮬레이션 장치는 의료용 스쿠터 또는 전동 휠체어에서 감지 또는 전송되거나 입력되는 주행속도, 주행 사이클 동안의 속도, 경사각, 노면환경의 마찰계수, 외부 환경에 따른 온도, 풍속, 풍향의 주변환경 값에 따라 기기의 동력성능, 손실률, 배터리 구동 여부를 산출하여 구동기기의 배터리 잔량(SOC), 주행가능거리, 배터리 수명(SOH) 또는 다음 충전소까지 주행가능 거리가 표시되도록 세부동작을 제어하는 제어모듈; 의료용 스쿠터 또는 전동휠체어 기구의 주행속도 또는 주행 사이클로 일정시간 동안의 평균속도가 입력이 되거나, 주행 기구의 구동에 따른 경사각, 주행시 노면환경으로 마찰계수에 감지하여 해당 마찰계수에 따른 필요 토크 및 RPM이 산출되도록 노면 정보를 전송하거나, 주행기구가 주행하는 온도에 따라 내장된 리튬이온 배터리의 모델링을 위한 주행환경을 감지하는 입력모듈; 상기 입력모듈을 통해 감지, 입력된 신호를 수신하여 구동기구의 모터상태, 기어비, 타이어/휠 값을 고려하여 토크, RPM 산출을 통해 동력성능을 산출하고, 구동기구의 베어링상태, 기어상태, 타이어 상태, 전원상태를 고려하여 산출된 동력에 따른 기어, 베어링, 전원의 손실을 산출하고, 산출된 손실을 기준으로 리튬이온 셀 정보, 배터리 팩 정보를 기준으로 배터리의 개방전압(OCV), 발열량 및 사용빈도를 측정하는 구동모듈; 및 상기 구동모듈을 통해 측정된 개방전압(OCV), 발열량 및 사용빈도를 기초로 배터리의 잔량(SOC), 주행가능거리, SOH(배터리 수명), 충전소까지의 잔여 거리를 산출하여 해당 구동기구에 표시되도록 하는 출력모듈;을 포함하여 구성되는 리튬전지 기반의 의료용 스쿠터 및 전동 휠체어에 적용되는 주행연비 시뮬레이션 장치에 있어서, 출력모듈은 상기 구동모듈의 저장부에 저장된 베어링, 기어, 타이어 정보, 전력 및 전장품 효율, 기어/베어링 손실에 따른 기계 손실값을 기초로 손실 산출부에서 산출한 기어손실, 베어링손실, LED, 전조등의 전력손실, 와이어 컨트롤러 등의 전장품 손실값이 전송부를 통해 전송되면 해당 전송된 정보를 기초로 배터리의 잔량(SOC), 주행가능거리, SOH(배터리 수명), 충전소까지의 거리를 산출하여 표시하는 것을 특징으로 한다.In order to achieve the above object, the driving fuel efficiency simulation device applied to the lithium battery-based medical scooter and the electric wheelchair according to the embodiment of the present invention for achieving the above object is the driving speed detected, transmitted or input from the medical scooter or the electric wheelchair, and the speed during the driving cycle , slope angle, friction coefficient of road surface environment, external environment temperature, wind speed, and wind direction, calculate the power performance, loss rate, and battery operation of the device to calculate the remaining battery capacity (SOC), drivable distance, a control module for controlling detailed operations to display battery life (SOH) or the drivable distance to the next charging station; The driving speed of a medical scooter or electric wheelchair device, or the average speed for a certain period of time in the driving cycle, is input, or the required torque and RPM according to the friction coefficient are determined by detecting the inclination angle according to the driving of the driving device and the friction coefficient according to the road surface environment during driving. an input module for transmitting road surface information to be calculated or sensing a driving environment for modeling a built-in lithium-ion battery according to a temperature at which a driving mechanism is driven; Receives the signal detected and input through the input module, calculates the power performance through torque and RPM calculation in consideration of the motor state, gear ratio, and tire/wheel value of the driving mechanism, and the bearing state, gear state, and tire of the driving mechanism It calculates the loss of gear, bearing, and power according to the calculated power in consideration of the state and power state, and based on the calculated loss, lithium-ion cell information, battery pack information, a driving module for measuring the frequency of use; And, based on the open-circuit voltage (OCV) measured through the drive module, the amount of heat generated and the frequency of use, the remaining amount of the battery (SOC), the drivable distance, the SOH (battery life), and the remaining distance to the charging station are calculated and sent to the corresponding drive mechanism. In the driving fuel efficiency simulation device applied to a lithium battery-based medical scooter and an electric wheelchair configured to include an output module to display, the output module includes bearings, gears, tire information, electric power and When the loss values of gear loss, bearing loss, LED, headlamp power loss, wire controller, etc. calculated by the loss calculation unit based on the mechanical loss value due to the electrical component efficiency and gear/bearing loss are transmitted through the transmission unit, the transmitted Based on the information, the remaining battery capacity (SOC), drivable distance, SOH (battery life), and distance to charging stations are calculated and displayed.

삭제delete

또한, 본 발명의 실시예에 따른 리튬전지 기반의 의료용 스쿠터 및 전동 휠체어에 적용되는 주행연비 시뮬레이션 장치의 구동모듈은 입력모듈에서 전송되는 의료용 스쿠터 또는 전동휠체어 기구의 주행속도 또는 주행 사이클로 일정시간 동안의 평균속도, 주행 기구의 구동에 따른 경사각, 주행시 노면환경으로 마찰계수에 감지하여 해당 마찰계수, 주행기구의 주행 온도에 따라 감지된 정보, 주행에 따른 풍속, 풍향, 기후의 감지값을 수신하여 동력성능, 손실 산출 및 배터리 측정이 제공하는 수신부, 상기 수신부를 통해 수신된 의료용 스쿠터 또는 전동휠체어 기구의 주행사이클/속도, 경사각, 노면 마찰계수, 주행환경 온도, 풍향/풍속의 외부환경 입력값과 모터, 기어비, 타이어/휠의 파라미터 값을 기반으로 토크 및 RPM 값을 계산하여 동력 성능부로 전송하는 연산부, 상기 연산부를 통해 전송된 토크 및 RPM 값을 기초로 해당 의료용 스쿠터 또는 전동휠체어 기구의 성능을 산출하는 동력 성능부, 배터리 성능 측정을 위해 동력성능부에서 전송된 산출값과 구동기구 별 베어링, 기어, 타이어, 기타 전원값을 기반으로 소모되는 전류, 전압값이 산출하여 배터리 측정부로 해당 정보가 전송되도록 필요 파라미터 값이 저장되는 저장부, 상기 저장부에 저장된 값을 기초로 기어손실 계산, 베어링 손실 계산, LED, 전조등의 전력손실 계산, 와이어 컨트롤러 등의 전장품 손실을 계산하여 각 손실값을 산출하는 손실 산출부, 및 상기 손실산출부를 통해 산출된 출력값을 기초로 셀 스팩, 팩 스팩을 기초로 시뮬레이터를 구동하여 개방전압(OCV), 발열량 및 사용빈도에 따른 배터리의 잔량(SOC), 주행가능거리, SOH(배터리 수명), 충전소까지의 잔여 거리를 산출하는 배터리 측정부를 더 포함하여 구성되는 것을 특징으로 한다.In addition, the driving module of the driving fuel efficiency simulation device applied to the lithium battery-based medical scooter and the electric wheelchair according to the embodiment of the present invention is the driving speed or driving cycle of the medical scooter or electric wheelchair device transmitted from the input module for a certain period of time. The average speed, the inclination angle according to the driving of the driving mechanism, the friction coefficient by the road surface environment during driving, and the corresponding friction coefficient, information detected according to the driving temperature of the driving device, and the wind speed, wind direction, and climate sensing values according to driving are received. Receiver provided by performance, loss calculation and battery measurement, the driving cycle/speed, inclination angle, road friction coefficient, driving environment temperature, and wind direction/speed of the medical scooter or electric wheelchair device received through the receiver and the motor , gear ratio, a calculation unit that calculates and transmits torque and RPM values to the power performance unit based on the parameter values of the tire/wheel, and calculates the performance of the corresponding medical scooter or electric wheelchair based on the torque and RPM values transmitted through the calculation unit The power performance unit calculates the current and voltage values consumed based on the calculated values transmitted from the power performance unit and the values of bearings, gears, tires, and other power sources for each driving mechanism and transmits the information to the battery measurement unit for battery performance measurement. The storage unit in which the necessary parameter values are stored, the gear loss calculation, the bearing loss calculation, the power loss calculation of LEDs, headlamps, and the wire controller based on the values stored in the storage unit to calculate each loss value Based on the loss calculator and the output value calculated through the loss calculator, the simulator is driven based on the cell specification and the fax specification to determine the open-circuit voltage (OCV), the amount of heat generated and the remaining battery capacity (SOC) according to the frequency of use, and the drivable distance. , SOH (battery life), characterized in that it is configured to further include a battery measuring unit for calculating the remaining distance to the charging station.

본 발명에 따른 리튬전지 기반의 의료용 스쿠터 및 전동 휠체어에 적용되는 주행연비 시뮬레이션 장치는 리튬이온 전지가 장착된 보조기기장치의 주행사이클 및 속도, 경사각, 노면 마찰계수, 온도 등의 주행환경, 풍향/풍속의 입력신호에 따라 토크, RPM 계산을 통한 동력성능, 베어링, 기어, 타이어 등을 고려하여 보조기기의 손실 산출을 통해 OCV(개방전압), 발열량, 사용빈도의 보조기기 내 배터리 측정하여 해당 배터리 잔량(SOC), 주행가능거리, 배터리 수명(SOH), 충전소까지 잔여거리를 시뮬레이션하여 안정적인 보조기기장치의 운영을 확보하고, 보조기기의 효율 개선 및 배터리 수명을 연장시킬 수 있는 효과를 제공한다.The driving fuel efficiency simulation device applied to the lithium battery-based medical scooter and electric wheelchair according to the present invention is the driving environment, wind direction/ According to the input signal of wind speed, the power performance through torque and RPM calculations, bearings, gears, tires, etc., are taken into account, and the battery in the auxiliary device measures the OCV (open voltage), heat output, and frequency of use by calculating the loss of the auxiliary device. By simulating the remaining amount (SOC), drivable distance, battery life (SOH), and remaining distance to the charging station, it ensures stable operation of auxiliary equipment and provides the effect of improving the efficiency of auxiliary equipment and extending the battery life.

또한, 본 발명에 따른 리튬전지 기반의 의료용 스쿠터 및 전동 휠체어에 적용되는 주행연비 시뮬레이션 장치는 리튬이온 전지가 장착된 의료용 스쿠터, 전동휠체어 등의 이동 보조기기장치에 리튬이온 배터리팩 설계시 주행속도, 주행 사이클의 평균속도, 경사각, 노면 마찰계수의 따른 토크 및 RPM, 주행온도 등의 주행환경을 고려하여 보조기기장치의 배터리 잔량(SOC), 주행가능거리, 배터리 수명, 충전소까지의 가능거리 등을 주행그래프 형태로 표시하여 사용자의 주의를 환기하고 의료용스쿠터 및 전동휠체어의 사용의 편의성을 도모할 수 있다.In addition, the driving fuel efficiency simulation device applied to a lithium battery-based medical scooter and electric wheelchair according to the present invention is a lithium-ion battery-equipped medical scooter, an electric wheelchair, etc. In consideration of the driving environment such as the average speed of the driving cycle, the inclination angle, the torque and RPM according to the friction coefficient of the road surface, and the driving temperature, the remaining battery capacity (SOC) of the auxiliary device, the drivable distance, the battery life, the possible distance to the charging station, etc. It can be displayed in the form of a driving graph to draw the user's attention and promote the convenience of using a medical scooter and an electric wheelchair.

도 1은 본 발명의 실시예에 따른 리튬전지 기반의 의료용 스쿠터 및 전동 휠체어에 적용되는 주행연비 시뮬레이션 장치의 구성도
도 2는 도 1에 따른 리튬전지 기반의 의료용 스쿠터 및 전동 휠체어에 적용되는 주행연비 시뮬레이션 장치의 모식도
도 3은 도 1의 구동모듈의 내부 구성을 도시한 블록도
도 4는 본 발명의 구동모듈의 동력 성능부의 동작상태를 도시한 개념도
도 5는 본 발명의 구동모듈의 손실 산출부의 동작상태를 도시한 개념도
도 6은 본 발명의 구동모듈의 배터리 측정부의 동작상태를 도시한 개념도
도 7은 본 발명의 시뮬레이션 동작에 따라 출력모듈에 도출되는 주행그래프의 상태를 도시한 예시도
1 is a configuration diagram of a driving fuel economy simulation device applied to a lithium battery-based medical scooter and an electric wheelchair according to an embodiment of the present invention;
FIG. 2 is a schematic diagram of a driving fuel efficiency simulation device applied to a lithium battery-based medical scooter and an electric wheelchair according to FIG. 1; FIG.
3 is a block diagram illustrating an internal configuration of the driving module of FIG. 1;
4 is a conceptual diagram showing the operating state of the power performance unit of the driving module of the present invention;
5 is a conceptual diagram showing the operating state of the loss calculating unit of the driving module of the present invention;
6 is a conceptual diagram illustrating an operating state of the battery measuring unit of the driving module of the present invention;
7 is an exemplary view showing the state of the driving graph derived from the output module according to the simulation operation of the present invention;

이하, 본 발명의 바람직한 실시예의 상세한 설명은 첨부된 도면들을 참조하여 설명할 것이다. 하기에서 본 발명을 설명함에 있어서, 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 것이다.Hereinafter, a detailed description of a preferred embodiment of the present invention will be described with reference to the accompanying drawings. In the following description of the present invention, if it is determined that a detailed description of a related well-known function or configuration may unnecessarily obscure the gist of the present invention, the detailed description thereof will be omitted.

첨부되 도 1은 본 발명의 리튬전지 기반의 의료용 스쿠터 및 전동 휠체어에 적용되는 주행연비 시뮬레이션 장치의 내부 단면도이고, 도 2는 도 2는 도 1에 따른 리튬전지 기반의 의료용 스쿠터 및 전동 휠체어 주행연비 시뮬레이션 장치의 모식도를 도시한 것으로서, 본 발명에 따른 리튬전지 기반의 의료용 스쿠터 및 전동 휠체어 주행연비 시뮬레이션 장치는 크게 제어모듈(100), 입력모듈(200), 구동모듈(300) 및 출력모듈(400)로 구성된다.1 is an internal cross-sectional view of a driving fuel efficiency simulation device applied to a lithium battery-based medical scooter and an electric wheelchair of the present invention, and FIG. 2 is a lithium battery-based medical scooter and electric wheelchair driving fuel efficiency according to FIG. As a schematic diagram of a simulation device, the fuel efficiency simulation device for a medical scooter and an electric wheelchair according to the present invention is largely a control module 100 , an input module 200 , a drive module 300 , and an output module 400 . ) is composed of

이하, 첨부된 도 1 내지 도 2를 참조하여 본 발명에 따른 리튬전지 기반의 의료용 스쿠터 및 전동 휠체어에 적용되는 주행연비 시뮬레이션 장치의 세부동작을 살펴보면, 먼저, 제어모듈(100)은 의료용 스쿠터 또는 전동 휠체어에서 감지 또는 전송되거나 입력되는 주행속도, 주행 사이클 동안의 속도, 경사각, 노면환경의 마찰계수, 외부 환경에 따른 온도, 풍속, 풍향의 주변환경 값에 따라 기기의 동력성능, 손실률, 배터리 구동 여부를 산출하여 기기의 배터리 잔량(SOC), 주행가능거리, 배터리 수명(SOH) 또는 다음 충전소까지 주행가능 거리가 표시되도록 시뮬레이션 장치의 세부동작을 제어한다.Hereinafter, the detailed operation of the driving fuel efficiency simulation apparatus applied to the lithium battery-based medical scooter and the electric wheelchair according to the present invention will be described with reference to the accompanying FIGS. 1 and 2 . First, the control module 100 is a medical scooter or electric Depending on the driving speed detected, transmitted or input from the wheelchair, the speed during the driving cycle, the inclination angle, the friction coefficient of the road surface environment, the temperature according to the external environment, the wind speed, and the surrounding environment value of the wind direction, the power performance of the device, the loss rate, and whether the battery is operated The detailed operation of the simulation device is controlled so that the remaining battery capacity (SOC), drivable distance, battery life (SOH), or drivable distance to the next charging station is displayed by calculating .

상기 입력모듈(200)은 시뮬레이션 장치의 구동에 필요한 환경 입력값으로 주행사이클/속도, 경사각, 노면, 주행환경 및 외부환경 등의 5개의 요소로 구분되고, 사용자에 의해 입력되거나 기기 구동에 따른 상태정보를 감지하여 감지신호가 전송되도록 한다.The input module 200 is an environmental input value necessary for driving the simulation device, and is divided into five elements such as driving cycle/speed, inclination angle, road surface, driving environment and external environment, and is input by the user or a state according to device driving The information is sensed and a detection signal is transmitted.

보다 구체적으로, 상기 입력모듈(200)은 의료용 스쿠터 또는 전동휠체어 기구의 주행속도 또는 주행 사이클로 일정시간 동안의 평균속도가 입력이 되거나, 주행 기구의 구동에 따른 경사각, 주행시 노면환경으로 마찰계수에 감지하여 해당 마찰계수에 따른 필요 토크 및 RPM이 산출되도록 노면 정보를 전송하거나, 주행기구가 주행하는 온도에 따라 내장된 리튬이온 배터리의 모델링을 위한 주행환경이 감지하거나, 주행에 따른 풍속, 풍향, 기후의 값을 감지하여 이를 동력 성능 계산을 위해 사용된다.More specifically, the input module 200 is the driving speed of the medical scooter or the electric wheelchair device or the average speed for a certain period of time in the driving cycle, or the inclination angle according to the driving of the driving device, and the friction coefficient by the road surface environment during driving. to transmit road surface information to calculate the required torque and RPM according to the friction coefficient, or to detect the driving environment for modeling the built-in lithium-ion battery according to the temperature at which the driving mechanism is driven, or to detect the wind speed, wind direction, and climate according to driving. The value of is detected and used for power performance calculation.

상기 구동모듈(300)은 상기 입력모듈(200)을 통해 감지, 입력된 신호를 수신하여 구동기구의 모터상태, 기어비, 타이어/휠 값을 고려하여 토크, RPM 산출을 통해 동력성능을 산출하고, 구동기구의 베어링상태, 기어상태, 타이어 상태, 전원상태를 고려하여 산출된 동력에 따른 기어, 베어링, 전원의 손실을 산출하고, 산출된 손실을 기준으로 리튬이온 셀 정보, 배터리 팩 정보를 기준으로 배터리의 개방전압(OCV: Open Circuit Voltage), 발열량 및 사용빈도를 측정한다.The driving module 300 calculates power performance by calculating torque and RPM in consideration of the motor state, gear ratio, and tire/wheel value of the driving mechanism by receiving a signal detected and inputted through the input module 200, Calculate the loss of gear, bearing, and power according to the calculated power considering the bearing condition of the drive mechanism, gear condition, tire condition, and power condition, and based on the calculated loss based on lithium ion cell information and battery pack information Measure the open circuit voltage (OCV), calorific value and frequency of use of the battery.

상기 출력모듈(400)은 상기 구동모듈(300)을 통해 측정된 개방전압(OCV), 발열량 및 사용빈도를 기초로 배터리의 잔량(SOC), 주행가능거리, SOH(배터리 수명), 충전소까지의 잔여 거리를 산출하여 해당 구동기구에 표시되도록 한다.The output module 400 is based on the open voltage (OCV), the amount of heat and the frequency of use measured through the driving module 300, the remaining amount of the battery (SOC), the drivable distance, the SOH (battery life), up to the charging station. Calculate the remaining distance and display it on the corresponding drive mechanism.

보다 구체적으로 상기 출력모듈(400)은 상기 구동모듈(300)의 저장부(350)에 저장된 베어링, 기어, 타이어 정보, 전력 및 전장품 효율, 기어/베어링 손실에 따른 기계 손실값을 기초로 손실 산출부(360)에서 산출한 기어손실, 베어링손실, LED, 전조등의 전력손실, 와이어 컨트롤러 등의 전장품 손실값이 전송부(380)을 통해 전송되면 해당 전송된 정보를 기초로 배터리의 잔량(SOC), 주행가능거리, SOH(배터리 수명), 충전소까지의 거리를 산출하여 표시되도록 한다.More specifically, the output module 400 calculates the loss based on the bearing, gear, and tire information stored in the storage unit 350 of the driving module 300 , the power and electronic component efficiency, and the mechanical loss value according to the gear/bearing loss. When the gear loss, bearing loss, power loss of LED, headlamp, wire controller, etc., calculated by the unit 360, are transmitted through the transmission unit 380, the remaining amount of the battery (SOC) based on the transmitted information , drivable distance, SOH (battery life), and distance to charging station are calculated and displayed.

도 3은 본 발명의 실시예에 따른 리튬전지 기반의 의료용 스쿠터 및 전동 휠체어 주행연비 시뮬레이션 장치의 구동모듈(300)의 세부구성을 도시한 블록도를 나타내는데, 상기 구동모듈(300)은 마이컴(310), 수신부(320), 연산부(330), 동력 성능부(340), 저장부(350), 손실 산출부(360), 배터리 측정부(370) 및 전송부(380)를 포함하여 구성된다.3 is a block diagram showing a detailed configuration of a driving module 300 of a driving fuel efficiency simulation device for a medical scooter and an electric wheelchair based on a lithium battery according to an embodiment of the present invention, wherein the driving module 300 includes a microcomputer 310 ), a receiving unit 320 , a calculating unit 330 , a power performance unit 340 , a storage unit 350 , a loss calculating unit 360 , a battery measuring unit 370 , and a transmitting unit 380 .

이하, 첨부된 도 1 내지 도 6을 참조하여 본 발명에 따라 구동모듈(300)을 기반으로 리튬전지 기반의 의료용 스쿠터 및 전동 휠체어 주행연비 시뮬레이션 장치의 세부적인 구성 및 동작을 살펴보면, 먼저 상기 마이컴(310)은 상기 입력모듈(200)을 통해 입력된 신호를 기초로 의료용 스쿠터 또는 전동 휠체어의 모터상태, 기어비, 타이어/휠 값을 고려하여 토크, RPM 산출을 통해 동력성능, 구동기구의 베어링상태, 기어상태, 타이어 상태, 전원상태를 고려하여 산출된 동력에 따른 기어, 베어링, 전원의 손실, 산출된 손실을 기준으로 리튬이온 셀 정보, 배터리 팩 정보를 기준으로 배터리의 개방전압(OCV: Open Circuit Voltage), 발열량 및 사용빈도를 측정하기 위하여 구동모듈(300)의 제반적인 동작을 제어한다.Hereinafter, looking at the detailed configuration and operation of the driving fuel efficiency simulation device for a lithium battery-based medical scooter and electric wheelchair based on the driving module 300 according to the present invention with reference to the accompanying FIGS. 1 to 6, first, the microcomputer ( 310) is based on the signal input through the input module 200, power performance, the bearing state of the driving mechanism, Loss of gear, bearing, and power according to the calculated power considering the gear condition, tire condition, and power condition, lithium ion cell information based on the calculated loss, and battery open circuit voltage (OCV: Open Circuit) based on battery pack information Voltage), the overall operation of the driving module 300 is controlled in order to measure the amount of heat generated and the frequency of use.

상기 수신부(320)는 상기 마이컴(310)의 제어신호에 반응하여 상기 입력모듈(200)에서 전송되는 의료용 스쿠터 또는 전동휠체어 기구의 주행속도 또는 주행 사이클로 일정시간 동안의 평균속도, 주행 기구의 구동에 따른 경사각, 주행시 노면환경으로 마찰계수에 감지하여 해당 마찰계수, 주행기구의 주행 온도에 따라 감지된 정보, 주행에 따른 풍속, 풍향, 기후의 감지값을 수신하여 동력성능, 손실 산출 및 배터리 측정이 제공되도록 한다.The receiving unit 320 responds to the control signal of the microcomputer 310 to the driving speed of the medical scooter or the electric wheelchair device transmitted from the input module 200, or the average speed for a certain period of time in the driving cycle, and to the driving of the driving device. Power performance, loss calculation and battery measurement are performed by receiving the corresponding friction coefficient, information detected according to the driving temperature of the driving device, and the wind speed, wind direction, and climate according to driving by sensing the friction coefficient according to the inclination angle and the road surface environment during driving. to be provided

상기 연산부(330)는 상기 마이컴(310)의 제어신호에 반응하여 상기 수신부(320)를 통해 전송된 의료용 스쿠터 또는 전동휠체어 기구의 입력값에 따라모터, 기어비, 타이어/휠의 파라미터 값을 기초로 토크, RPM 값을 계산하여 해당 구동기구의 동력상태를 연산한다.The calculation unit 330 responds to the control signal of the microcomputer 310 according to the input value of the medical scooter or electric wheelchair device transmitted through the receiving unit 320. Based on the parameter values of the motor, gear ratio, and tire/wheel Calculate the torque and RPM values to calculate the power state of the corresponding drive mechanism.

보다 구체적으로 상기 연산부(330)는 상기 수신부(320)를 통해 수신된 주행사이클/속도, 경사각, 노면 마찰계수, 주행환경 온도, 풍향/풍속의 외부환경 입력값과 모터, 기어비, 타이어/휠의 파라미터 값을 기반으로 토크 및 RPM 값을 계산하여 동력 성능부(340)로 전송한다.More specifically, the calculation unit 330 receives the driving cycle/speed, inclination angle, road friction coefficient, driving environment temperature, wind direction/wind speed, and external environmental input values received through the receiving unit 320, motor, gear ratio, and tire/wheel Torque and RPM values are calculated based on the parameter values and transmitted to the power performance unit 340 .

상기 동력 성능부(340)는 상기 마이컴(310)의 제어신호에 따라 상기 연산부(330)를 통해 전송된 토크 및 RPM 값을 기초로 해당 의료용 스쿠터 또는 전동휠체어 기구의 성능을 산출한다.The power performance unit 340 calculates the performance of the corresponding medical scooter or electric wheelchair based on the torque and RPM values transmitted through the calculation unit 330 according to the control signal of the microcomputer 310 .

보다 세부적으로 상기 동력 성능부(340)는 모터에 따라 모터의 스팩으로 모터성능 곡선도출에 필요한 파라미터 값과 구동기구에 장착된 모터의 고유값으로 구동기기에 따라 해당 파라미터 값을 변경하고, 구동기구의 파워트레인의 기어비 스팩으로 모터성능 곡선 도출에 필요한 파라미터 값과 구동기구에 장착된 기어의 고유값으로 구동기구에 따라 구동기구 값이 변경하고, 구동기구에 장착된 타이어/휠 마찰계수 및 마찰크기로 모터 성능곡선 도출에 필요한 파라미터 값과 구동기구의 고유값으로 구동기구 값을 변경하여 동력성능 routine(subroutine: 토크계산, 모터성능곡선, RPM 계산) 을 통해 토크, rpm, 파워 등을 계산하여 T-N 커브를 도출하고 도출된 T-N 커브를 전력계산 routine에 입력하여 전류, 전압, 토크, RPM을 산출하고, 해당 산출 값을 손실 산출부(360)로 전송하도록 동작한다.In more detail, the power performance unit 340 changes the corresponding parameter value according to the driving device to a parameter value required for deriving a motor performance curve according to the motor specification and a unique value of the motor mounted on the driving mechanism, and the driving mechanism With the gear ratio specification of the powertrain of By changing the drive mechanism value to the parameter values required for deriving the motor performance curve and the inherent value of the drive mechanism with It operates to derive the curve and input the derived T-N curve to the power calculation routine to calculate current, voltage, torque, and RPM, and transmit the calculated values to the loss calculator 360 .

상기 저장부(350)는 배터리 성능 측정을 위해 동력 성능부(340)에서 전송된 산출값과 구동기구 별 베어링, 기어, 타이어, 기타 전원값을 기반으로 소모되는 전류, 전압값이 산출하여 배터리 측정부(370)로 해당 정보가 전송되도록 필요 파라미터 값이 저장된다.The storage unit 350 calculates the current and voltage values consumed based on the calculated values transmitted from the power performance unit 340 and the values of bearings, gears, tires, and other power sources for each driving mechanism to measure the battery performance to measure the battery performance. The necessary parameter values are stored so that the corresponding information is transmitted to the unit 370 .

보다 구체적으로 상기 저장부(350)는 베어링, 기어, 타이어, 기타 전원값이 저장되는데, Rotating parts 에 들어간 베어링 스팩을 기반으로 loss due to bearing을 계산하여 기계손실 routine 에 대입하여 손실에 반영되도록 베어링 규격이 저장되고, 기어의 종류 및 스팩을 기반으로 loss due to gear을 계산하여 기계손실 routine 에 대입하여 손실에 반영되도록 기어 규격이 저장되고, 타이어 스팩을 기반하여 loss due to wheel/tire을 계산하여 기계손실 routine 에 대입하여 손실에 반영되도록 타이어 규격이 저장되고, 컨트롤러와 같은 기타 전장품의 효율과 와이어로 인한 손실을 반영하고, 전조등 혹은 LED 와 같은 전장품 작동시 소모되는 손실을 반영되도록 컨트롤러 및 전원 규격이 저장된다.More specifically, the storage unit 350 stores bearings, gears, tires, and other power values. Based on the bearing specifications included in the rotating parts, the loss due to bearing is calculated and applied to the machine loss routine to reflect the loss. The specification is stored, the loss due to gear is calculated based on the type and specification of the gear, and the gear specification is saved so that it is reflected in the loss by substituting it in the machine loss routine, and the loss due to wheel/tire is calculated based on the tire specification By substituting it into the machine loss routine, the tire size is stored to reflect the loss, and the efficiency of other electronic components such as the controller and the loss due to the wire are reflected, and the controller and power standard to reflect the loss consumed during the operation of the electric equipment such as the headlight or LED. this is saved

한편, 상기 저장부(350)에 저장된 베어링, 기어, 타이어, 전원 규격을 통해 상기 손실 산출부(360)에서 기어손실 subroutine, 베어링 손실 subroutine의 기계 손실 routine과 기타전력 손실 subroutine, 전장품 손실 subroutine의 전기적 손실 routine을 취합하여 소모되는 전류 및 전압값을 산출한 후 배터리 측정부(370)로 전송되도록 한다.On the other hand, through the bearing, gear, tire, and power standards stored in the storage unit 350, the mechanical loss routine of the gear loss subroutine, the bearing loss subroutine, and other power loss subroutines, and the electrical equipment loss subroutine in the loss calculation unit 360 are electrically A loss routine is collected to calculate consumed current and voltage values, and then transmitted to the battery measuring unit 370 .

상기 손실 산출부(360)는 상기 마이컴(310)의 제어신호에 따라 상기 저장부(350)에 저장된 값을 기초로 기어손실 계산, 베어링 손실 계산, LED, 전조등의 전력손실 계산, 와이어 컨트롤러 등의 전장품 손실을 계산하여 각 손실값을 산출한다.The loss calculation unit 360 is based on the value stored in the storage unit 350 according to the control signal of the microcomputer 310, gear loss calculation, bearing loss calculation, power loss calculation of LED, headlamp, wire controller, etc. Calculate each loss by calculating the loss of electrical equipment.

즉, 상기 손실 산출부(360)는 상기 저장부(350)에 저장된 베어링, 기어, 타이어, 전원 규격을 기초로 기어손실 subroutine, 베어링 손실 subroutine의 기계 손실 routine과 LED, 전조등의 subroutine, 와이어, 컨트롤러의 전장품 손실 subroutine의 전기적 손실 routine을 취합하여 소모되는 전류 및 전압값을 기초로 손실을 계산하여 각 손실값을 산출하고, 해당 산출된 손실값을 배터리 측정부(370)로 전송되도록 한다.That is, the loss calculation unit 360 includes the mechanical loss routine of the gear loss subroutine and the bearing loss subroutine and the subroutine of the LED, headlamp, wire, and controller based on the bearing, gear, tire, and power specifications stored in the storage unit 350 . Collects the electrical loss routine of the electrical loss subroutine of , calculates the loss based on the current and voltage consumed, calculates each loss value, and transmits the calculated loss value to the battery measuring unit 370 .

상기 배터리 측정부(370)는 상기 마이컴(310)의 제어신호에 반응하여 상기 손실산출부(360)를 통해 산출된 출력값을 기초로 셀 스팩, 팩 스팩을 기초로 시뮬레이터를 구동하여 개방전압(OCV), 발열량 및 사용빈도에 따른 배터리의 잔량(SOC), 주행가능거리, SOH(배터리 수명), 충전소까지의 잔여 거리를 산출한다.The battery measuring unit 370 operates a simulator based on a cell specification and a pack specification based on the output value calculated through the loss calculation unit 360 in response to the control signal of the microcomputer 310 to operate the open circuit voltage (OCV). ), calorific value and frequency of use, the remaining battery capacity (SOC), drivable distance, SOH (battery life), and remaining distance to the charging station are calculated.

상기 전송부(380)는 상기 배터리 측정부(370)를 통해 산출된 배터리의 잔량(SOC), 주행가능거리, SOH(배터리 수명), 충전소까지의 잔여 거리를 상기 마이컴(310)의 제어신호에 따라 출력모듈(400)로 전송하여 표시되도록 한다.The transmission unit 380 transmits the remaining amount (SOC), drivable distance, SOH (battery life), and remaining distance to the charging station calculated through the battery measuring unit 370 to the control signal of the microcomputer 310 . Accordingly, it is transmitted to the output module 400 to be displayed.

이상과 같이, 본 명세서와 도면에는 본 발명의 바람직한 실시예에 대하여 개시하였으며, 비록 특정 용어들이 사용되었으나, 이는 단지 본 발명의 기술 내용을 쉽게 설명하고 발명의 이해를 돕기 위한 일반적인 의미에서 사용된 것이지, 본 발명의 범위를 한정하고자 하는 것은 아니다. 여기에 개시된 실시예 외에도 본 발명의 기술적 사상에 바탕을 둔 다른 변형 예들이 실시 가능하다는 것은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 자명한 것이다.As described above, preferred embodiments of the present invention have been disclosed in the present specification and drawings, and although specific terms are used, these are only used in a general sense to easily explain the technical content of the present invention and help the understanding of the present invention. , it is not intended to limit the scope of the present invention. It will be apparent to those of ordinary skill in the art to which the present invention pertains that other modifications based on the technical spirit of the present invention can be implemented in addition to the embodiments disclosed herein.

100 : 제어모듈
200 : 입력모듈
300 : 구동모듈
310 : 마이컴 320 : 수신부
330 : 연산부 340 : 동력성능부
350 : 저장부 360 : 손실산출부
370 : 배터리측정부 380 : 전송부
400 : 출력모듈
100: control module
200: input module
300: drive module
310: microcomputer 320: receiver
330: calculation unit 340: power performance unit
350: storage unit 360: loss calculation unit
370: battery measurement unit 380: transmission unit
400: output module

Claims (4)

의료용 스쿠터 또는 전동 휠체어에서 감지 또는 전송되거나 입력되는 주행속도, 주행 사이클 동안의 속도, 경사각, 노면환경의 마찰계수, 외부 환경에 따른 온도, 풍속, 풍향의 주변환경 값에 따라 기기의 동력성능, 손실률, 배터리 구동 여부를 산출하여 구동기구의 배터리 잔량(SOC), 주행가능거리, 배터리 수명(SOH) 또는 다음 충전소까지 주행가능 거리가 표시되도록 세부동작을 제어하는 제어모듈(100); 의료용 스쿠터 또는 전동휠체어 기구의 주행속도 또는 주행 사이클로 일정시간 동안의 평균속도가 입력이 되거나, 주행 기구의 구동에 따른 경사각, 주행시 노면환경으로 마찰계수에 감지하여 해당 마찰계수에 따른 필요 토크 및 RPM이 산출되도록 노면 정보를 전송하거나, 주행기구가 주행하는 온도에 따라 내장된 리튬이온 배터리의 모델링을 위한 주행환경을 감지하는 입력모듈(200); 상기 입력모듈(200)을 통해 감지, 입력된 신호를 수신하여 구동기구의 모터상태, 기어비, 타이어/휠 값을 고려하여 토크, RPM 산출을 통해 동력성능을 산출하고, 구동기구의 베어링상태, 기어상태, 타이어 상태, 전원상태를 고려하여 산출된 동력에 따른 기어, 베어링, 전원의 손실을 산출하고, 산출된 손실을 기준으로 리튬이온 셀 정보, 배터리 팩 정보를 기준으로 배터리의 개방전압(OCV: Open Circuit Voltage), 발열량 및 사용빈도를 측정하는 구동모듈(300); 및 상기 구동모듈(300)을 통해 측정된 개방전압(OCV), 발열량 및 사용빈도를 기초로 배터리의 잔량(SOC), 주행가능거리, SOH(배터리 수명), 충전소까지의 잔여 거리를 산출하여 해당 구동기구에 표시되도록 하는 출력모듈(400);을 포함하여 구성되는 리튬전지 기반의 의료용 스쿠터 및 전동 휠체어에 적용되는 주행연비 시뮬레이션 장치에 있어서,
상기 출력모듈(400)은 상기 구동모듈(300)의 저장부(350)에 저장된 베어링, 기어, 타이어 정보, 전력 및 전장품 효율, 기어/베어링 손실에 따른 기계 손실값을 기초로 손실 산출부(360)에서 산출한 기어손실, 베어링손실, LED, 전조등의 전력손실, 와이어 컨트롤러 등의 전장품 손실값이 전송부(380)을 통해 전송되면 해당 전송된 정보를 기초로 배터리의 잔량(SOC), 주행가능거리, SOH(배터리 수명), 충전소까지의 거리를 산출하여 표시하는 것을 특징으로 하는 리튬전지 기반의 의료용 스쿠터 및 전동 휠체어에 적용되는 주행연비 시뮬레이션 장치
The power performance and loss rate of the device according to the driving speed detected, transmitted or input from the medical scooter or electric wheelchair, the speed during the driving cycle, the inclination angle, the friction coefficient of the road surface environment, the temperature according to the external environment, the wind speed, and the surrounding environment value , a control module 100 for controlling detailed operations so that the remaining battery capacity (SOC), drivable distance, battery life (SOH) or drivable distance to the next charging station are displayed by calculating whether or not the battery is driven; The driving speed of the medical scooter or electric wheelchair device, or the average speed for a certain period of time in the driving cycle, is input, or the required torque and RPM according to the friction coefficient are detected by the inclination angle according to the driving of the driving device and the friction coefficient by the road surface environment during driving. an input module 200 for transmitting road surface information to be calculated or for sensing a driving environment for modeling a built-in lithium-ion battery according to a temperature at which the driving mechanism is driven; Receives the signal detected and inputted through the input module 200 to calculate the power performance by calculating torque and RPM in consideration of the motor state, gear ratio, and tire/wheel value of the driving mechanism, bearing state of the driving mechanism, gear The loss of gear, bearing, and power is calculated based on the calculated power considering the condition, tire condition, and power condition, and the battery’s open-circuit voltage (OCV: Open Circuit Voltage), a driving module 300 for measuring the amount of heat and frequency of use; And based on the open-circuit voltage (OCV), calorific value, and frequency of use measured through the driving module 300, the remaining amount of the battery (SOC), the drivable distance, the SOH (battery life), and the remaining distance to the charging station are calculated and the corresponding In the driving fuel economy simulation device applied to a lithium battery-based medical scooter and electric wheelchair comprising; an output module 400 to be displayed on the driving mechanism,
The output module 400 is a loss calculator 360 based on the bearing, gear, and tire information stored in the storage unit 350 of the driving module 300 , power and electrical equipment efficiency, and the mechanical loss value according to the gear/bearing loss. ) calculated in gear loss, bearing loss, power loss of LED, headlight, and loss of electrical equipment such as wire controller are transmitted through the transmission unit 380, the remaining battery capacity (SOC) and driving possible based on the transmitted information Driving fuel efficiency simulation device applied to lithium battery-based medical scooters and electric wheelchairs, which calculates and displays distance, SOH (battery life), and distance to a charging station
삭제delete 제 1 항에 있어서,
상기 구동모듈(300)은
상기 입력모듈(200)을 통해 입력된 신호를 기초로 의료용 스쿠터 또는 전동 휠체어의 모터상태, 기어비, 타이어/휠 값을 고려하여 토크, RPM 산출을 통해 동력성능, 구동기구의 베어링상태, 기어상태, 타이어 상태, 전원상태를 고려하여 산출된 동력에 따른 기어, 베어링, 전원의 손실, 산출된 손실을 기준으로 리튬이온 셀 정보, 배터리 팩 정보를 기준으로 배터리의 개방전압(OCV), 발열량 및 사용빈도를 측정하기 위하여 구동모듈(300)의 제반적인 동작을 제어하는 마이컴(310),
상기 마이컴(310)의 제어신호에 반응하여 상기 입력모듈(200)에서 전송되는 의료용 스쿠터 또는 전동휠체어 기구의 주행속도 또는 주행 사이클로 일정시간 동안의 평균속도, 주행 기구의 구동에 따른 경사각, 주행시 노면환경으로 마찰계수에 감지하여 해당 마찰계수, 주행기구의 주행 온도에 따라 감지된 정보, 주행에 따른 풍속, 풍향, 기후의 감지값을 수신하여 동력성능, 손실 산출 및 배터리 측정이 제공하는 수신부(320),
상기 수신부(320)를 통해 수신된 의료용 스쿠터 또는 전동휠체어 기구의 주행사이클/속도, 경사각, 노면 마찰계수, 주행환경 온도, 풍향/풍속의 외부환경 입력값과 모터, 기어비, 타이어/휠의 파라미터 값을 기반으로 토크 및 RPM 값을 계산하여 동력 성능부(340)로 전송하는 연산부(330),
상기 마이컴(310)의 제어신호에 따라 상기 연산부(330)를 통해 전송된 토크 및 RPM 값을 기초로 해당 의료용 스쿠터 또는 전동휠체어 기구의 성능을 산출하는 동력 성능부(340),
배터리 성능 측정을 위해 동력성능부(340)에서 전송된 산출값과 구동기구 별 베어링, 기어, 타이어, 기타 전원값을 기반으로 소모되는 전류, 전압값이 산출하여 배터리 측정부(370)로 해당 정보가 전송되도록 필요 파라미터 값이 저장되는 저장부(350),
상기 마이컴(310)의 제어신호에 따라 상기 저장부(350)에 저장된 값을 기초로 기어손실 계산, 베어링 손실 계산, LED, 전조등의 전력손실 계산, 와이어 컨트롤러 등의 전장품 손실을 계산하여 각 손실값을 산출하는 손실 산출부(360), 및
상기 마이컴(310)의 제어신호에 반응하여 상기 손실산출부(360)를 통해 산출된 출력값을 기초로 셀 스팩, 팩 스팩을 기초로 시뮬레이터를 구동하여 개방전압(OCV), 발열량 및 사용빈도에 따른 배터리의 잔량(SOC), 주행가능거리, SOH(배터리 수명), 충전소까지의 잔여 거리를 산출하는 배터리 측정부(370)를 더 포함하여 구성되는 것을 특징으로 하는 리튬전지 기반의 의료용 스쿠터 및 전동 휠체어에 적용되는 주행연비 시뮬레이션 장치
The method of claim 1,
The driving module 300 is
Based on the signal input through the input module 200, the power performance, the bearing state of the driving mechanism, the gear state, Loss of gear, bearings, and power according to the power calculated considering the tire condition and power condition, lithium-ion cell information based on the calculated loss, and battery open-circuit voltage (OCV), calorific value and frequency of use based on the battery pack information A microcomputer 310 that controls the overall operation of the driving module 300 to measure
The driving speed of the medical scooter or the electric wheelchair device transmitted from the input module 200 in response to the control signal of the microcomputer 310, or the average speed for a certain period of time in the driving cycle, the inclination angle according to the driving of the driving device, the road surface environment when driving Receiver 320 that provides power performance, loss calculation and battery measurement by receiving the friction coefficient, information detected according to the driving temperature of the driving mechanism, wind speed, wind direction, and climate according to driving by sensing the friction coefficient with ,
The driving cycle/speed, inclination angle, road friction coefficient, driving environment temperature, wind direction/wind speed of the medical scooter or electric wheelchair device received through the receiver 320 and external environmental input values of the motor, gear ratio, and tire/wheel parameter values Calculating unit 330 that calculates torque and RPM values based on and transmits them to the power performance unit 340;
A power performance unit 340 for calculating the performance of the corresponding medical scooter or electric wheelchair device based on the torque and RPM values transmitted through the calculation unit 330 according to the control signal of the microcomputer 310;
For battery performance measurement, the current and voltage values consumed based on the calculated values transmitted from the power performance unit 340 and the values of bearings, gears, tires, and other power sources for each driving mechanism are calculated and the corresponding information is sent to the battery measurement unit 370 . A storage unit 350 in which the necessary parameter values are stored to be transmitted;
Based on the value stored in the storage unit 350 according to the control signal of the microcomputer 310, the gear loss calculation, the bearing loss calculation, the power loss calculation of the LED, the headlamp, and the electrical equipment loss such as the wire controller are calculated and each loss value A loss calculator 360 for calculating , and
Based on the output value calculated through the loss calculator 360 in response to the control signal of the microcomputer 310, the simulator is driven based on the cell specification and the fax specification according to the open circuit voltage (OCV), the amount of heat generated and the frequency of use. Lithium battery-based medical scooter and electric wheelchair, characterized in that it further comprises a battery measuring unit 370 for calculating the remaining amount of the battery (SOC), the drivable distance, the SOH (battery life), and the remaining distance to the charging station Driving fuel economy simulation device applied to
제 3 항에 있어서,
동력 성능부(340)는 모터에 따라 모터의 스팩으로 모터성능 곡선도출에 필요한 파라미터 값과 구동기구에 장착된 모터의 고유값으로 구동기기에 따라 해당 파라미터 값을 변경하고, 구동기구의 파워트레인의 기어비 스팩으로 모터성능 곡선 도출에 필요한 파라미터 값과 구동기구에 장착된 기어의 고유값으로 구동기구에 따라 구동기구 값이 변경하고, 구동기구에 장착된 타이어/휠 마찰계수 및 마찰크기로 모터 성능곡선 도출에 필요한 파라미터 값과 구동기구의 고유값으로 구동기구 값을 변경하여 동력성능 routine(subroutine: 토크계산, 모터성능곡선, RPM 계산) 을 통해 토크, rpm, 파워 등을 계산하여 T-N 커브를 도출하고 도출된 T-N 커브를 전력계산 routine에 입력하여 전류, 전압, 토크, RPM을 산출하고, 해당 산출 값을 손실 산출부(360)로 전송하도록 동작하고,
상기 저장부(350)는 베어링, 기어, 타이어, 기타 전원값이 저장되는데, Rotating parts 에 들어간 베어링 스팩을 기반으로 loss due to bearing을 계산하여 기계손실 routine에 대입하여 손실에 반영되도록 베어링 규격이 저장되고, 기어의 종류 및 스팩을 기반으로 loss due to gear을 계산하여 기계손실 routine 에 대입하여 손실에 반영되도록 기어 규격이 저장되고, 타이어 스팩을 기반하여 loss due to wheel/tire을 계산하여 기계손실 routine 에 대입하여 손실에 반영되도록 타이어 규격이 저장되고, 컨트롤러와 같은 기타 전장품의 효율과 와이어로 인한 손실을 반영하고, 전조등 혹은 LED의 전장품 작동시 소모되는 손실을 반영되도록 컨트롤러 및 전원 규격이 저장되고,
상기 손실 산출부(360)는 상기 저장부(350)에 저장된 베어링, 기어, 타이어, 전원 규격을 기초로 기어손실 subroutine, 베어링 손실 subroutine의 기계 손실 routine과 LED, 전조등의 subroutine, 와이어, 컨트롤러의 전장품 손실 subroutine의 전기적 손실 routine을 취합하여 소모되는 전류 및 전압값을 기초로 손실을 계산하여 각 손실값을 산출하고, 해당 산출된 손실값을 배터리 측정부(370)로 전송되도록 구성되는 것을 특징으로 하는 리튬전지 기반의 의료용 스쿠터 및 전동 휠체어에 적용되는 주행연비 시뮬레이션 장치
4. The method of claim 3,
The power performance unit 340 changes the corresponding parameter value according to the driving device to a parameter value necessary for deriving a motor performance curve and a unique value of the motor mounted on the driving mechanism with the specification of the motor according to the motor, and the powertrain of the driving mechanism. The value of the drive mechanism is changed according to the drive mechanism with the parameter values required for deriving the motor performance curve with the gear ratio specification and the eigenvalue of the gear mounted on the drive mechanism. The TN curve is derived by calculating torque, rpm, power, etc. through the power performance routine (subroutine: torque calculation, motor performance curve, RPM calculation) by changing the drive mechanism value with the parameter values required for derivation and the unique value of the drive mechanism. Inputs the derived TN curve to the power calculation routine to calculate current, voltage, torque, and RPM, and operates to transmit the calculated values to the loss calculation unit 360,
The storage unit 350 stores bearings, gears, tires, and other power values. Based on the bearing specifications included in the rotating parts, the loss due to bearing is calculated and the bearing specifications are stored so that the loss due to bearing is substituted into the machine loss routine and reflected in the loss. The loss due to gear is calculated based on the type and specification of the gear, and the gear specification is saved to be reflected in the loss by applying it to the machine loss routine. The tire specifications are stored to reflect the losses by substituting it in , and the controller and power specifications are stored to reflect the efficiency of other electrical components such as the controller and losses due to wires, and to reflect the losses consumed when operating the electrical components such as headlights or LEDs;
The loss calculation unit 360 includes a mechanical loss routine of a gear loss subroutine and a bearing loss subroutine based on the bearings, gears, tires, and power specifications stored in the storage unit 350, a subroutine of LEDs, headlights, wires, and electronic components of the controller. Collecting the electrical loss routine of the loss subroutine, calculating the loss based on the consumed current and voltage value, calculating each loss value, and transmitting the calculated loss value to the battery measuring unit 370 Driving fuel economy simulation device applied to lithium battery-based medical scooters and electric wheelchairs
KR1020200157038A 2020-11-20 2020-11-20 An apparatus of simulation for fuel consumption using lithium battery based on medical scooter and electro-wheelchair KR102392553B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200157038A KR102392553B1 (en) 2020-11-20 2020-11-20 An apparatus of simulation for fuel consumption using lithium battery based on medical scooter and electro-wheelchair

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200157038A KR102392553B1 (en) 2020-11-20 2020-11-20 An apparatus of simulation for fuel consumption using lithium battery based on medical scooter and electro-wheelchair

Publications (1)

Publication Number Publication Date
KR102392553B1 true KR102392553B1 (en) 2022-05-02

Family

ID=81593181

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200157038A KR102392553B1 (en) 2020-11-20 2020-11-20 An apparatus of simulation for fuel consumption using lithium battery based on medical scooter and electro-wheelchair

Country Status (1)

Country Link
KR (1) KR102392553B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102651985B1 (en) 2022-09-19 2024-03-26 배재대학교 산학협력단 Virtual reality-based mobility aid apparatus experience system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130101910A (en) * 2012-03-06 2013-09-16 엘지전자 주식회사 Control apparatus for electrical vehicle and method thereof
KR20140060751A (en) * 2012-11-12 2014-05-21 현대자동차주식회사 Apparatus for guiding drive-able distance of electric vehicle and method thereof
KR20140095780A (en) * 2013-01-25 2014-08-04 엘지전자 주식회사 Apparatus and method for estimating a drivable distance of an electronic vehecle
KR20150035404A (en) * 2013-09-25 2015-04-06 (주)엠피에스코리아 An apparatus limiting cornering speed for medical scooter
KR20190049997A (en) * 2017-11-02 2019-05-10 현대자동차주식회사 Battery Management apparatus, Vehicle and method for controlling the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130101910A (en) * 2012-03-06 2013-09-16 엘지전자 주식회사 Control apparatus for electrical vehicle and method thereof
KR20140060751A (en) * 2012-11-12 2014-05-21 현대자동차주식회사 Apparatus for guiding drive-able distance of electric vehicle and method thereof
KR20140095780A (en) * 2013-01-25 2014-08-04 엘지전자 주식회사 Apparatus and method for estimating a drivable distance of an electronic vehecle
KR20150035404A (en) * 2013-09-25 2015-04-06 (주)엠피에스코리아 An apparatus limiting cornering speed for medical scooter
KR20190049997A (en) * 2017-11-02 2019-05-10 현대자동차주식회사 Battery Management apparatus, Vehicle and method for controlling the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
1. 연료전지 차량용 연비 측정 장치(Fuel consumption rate measuring system for fuel cell vehicle)(특허등록번호 제10-1230897호)
2. 이차 전지 특성 시뮬레이션 방법 및 이를 지원하는 전자 장치(VIRTUAL SIMULATION METHOD AND ELECTRONIC DEVICE FOR CHARACTERISTIC)(특허등록번호 제10-1956266호)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102651985B1 (en) 2022-09-19 2024-03-26 배재대학교 산학협력단 Virtual reality-based mobility aid apparatus experience system

Similar Documents

Publication Publication Date Title
US8694185B2 (en) Discharge control apparatus for electric vehicle
CN110549876B (en) Energy output control method and device and hydrogen fuel hybrid electric vehicle
KR101202336B1 (en) Electric transfer means and controlling method of the same
US9910099B2 (en) Battery monitoring device, power storage system, and control system
US8423233B2 (en) Degradation determining apparatus for power storage device and degradation determining method for power storage device
US7880439B2 (en) Battery-capacity management device
CN201781037U (en) Battery management system of electric automobile
US20130132011A1 (en) Device and method for diagnosing rechargeable battery, and vehicle
US20130166123A1 (en) Vehicle system for estimating travel range
EP3640071B1 (en) Display device and vehicle including the same
KR20060087837A (en) Battery management system for electric car
KR102392553B1 (en) An apparatus of simulation for fuel consumption using lithium battery based on medical scooter and electro-wheelchair
JP2014115088A (en) Detection device of remaining capacity of battery, electrically driven vehicle and power supply device
US20220308117A1 (en) Battery system and method of estimating polarization voltage of secondary battery
US11180051B2 (en) Display apparatus and vehicle including the same
WO2013089510A1 (en) Electric vehicle and method for controlling same
JP3288927B2 (en) In-vehicle battery display
CN201231687Y (en) Instrument board of electric vehicle
KR101234234B1 (en) Vehicle using motor and controlling method of the same
JP6784449B2 (en) Electric high-speed rice transplanter
CN115166551A (en) SOC prediction method of lithium iron phosphate battery BMS
JP2003254839A (en) Apparatus and method for detecting condition of temperature sensor
CN204103581U (en) The electric power-feeding structure of blood-collecting car and blood sampling mobile unit
US20220085627A1 (en) Battery identification system and battery identification method
KR101856316B1 (en) Vehicle system and information displaying method thereof

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant