KR102390162B1 - 데이터 인코딩 장치 및 데이터 인코딩 방법 - Google Patents
데이터 인코딩 장치 및 데이터 인코딩 방법 Download PDFInfo
- Publication number
- KR102390162B1 KR102390162B1 KR1020150144856A KR20150144856A KR102390162B1 KR 102390162 B1 KR102390162 B1 KR 102390162B1 KR 1020150144856 A KR1020150144856 A KR 1020150144856A KR 20150144856 A KR20150144856 A KR 20150144856A KR 102390162 B1 KR102390162 B1 KR 102390162B1
- Authority
- KR
- South Korea
- Prior art keywords
- rounding offset
- quantization
- data
- image data
- coefficient
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/102—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
- H04N19/124—Quantisation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/102—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
- H04N19/103—Selection of coding mode or of prediction mode
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/102—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
- H04N19/12—Selection from among a plurality of transforms or standards, e.g. selection between discrete cosine transform [DCT] and sub-band transform or selection between H.263 and H.264
- H04N19/122—Selection of transform size, e.g. 8x8 or 2x4x8 DCT; Selection of sub-band transforms of varying structure or type
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/102—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
- H04N19/13—Adaptive entropy coding, e.g. adaptive variable length coding [AVLC] or context adaptive binary arithmetic coding [CABAC]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/169—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
- H04N19/17—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
- H04N19/176—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/169—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
- H04N19/182—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being a pixel
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/189—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the adaptation method, adaptation tool or adaptation type used for the adaptive coding
- H04N19/19—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the adaptation method, adaptation tool or adaptation type used for the adaptive coding using optimisation based on Lagrange multipliers
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/46—Embedding additional information in the video signal during the compression process
- H04N19/463—Embedding additional information in the video signal during the compression process by compressing encoding parameters before transmission
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/50—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
- H04N19/503—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
- H04N19/51—Motion estimation or motion compensation
- H04N19/567—Motion estimation based on rate distortion criteria
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/50—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
- H04N19/503—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
- H04N19/51—Motion estimation or motion compensation
- H04N19/577—Motion compensation with bidirectional frame interpolation, i.e. using B-pictures
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/60—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding
- H04N19/61—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding in combination with predictive coding
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- Discrete Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Compression Or Coding Systems Of Tv Signals (AREA)
Abstract
데이터 인코딩 장치 및 데이터 인코딩 방법이 제공된다. 상기 데이터 인코딩 장치는, 매크로 블록 단위로 제1 영상 데이터를 입력받는 입력부, 및 상기 제1 영상 데이터를 이용하여 제1 라운딩 오프셋(rounding offset) 값을 결정하고, 상기 제1 영상 데이터에 상기 제1 라운딩 오프셋 값을 적용하여 제2 영상 데이터를 생성하고, 상기 제2 영상 데이터를 이용하여 상기 제1 라운딩 오프셋 값과 다른 제2 라운딩 오프셋 값을 결정하고, 상기 제1 영상 데이터에 상기 제2 라운딩 오프셋 값을 적용하여 양자화된 계수(quantized coefficient)를 생성하는 양자화부(quantization unit)를 포함한다.
Description
본 발명은 데이터 인코딩 장치 및 데이터 인코딩 방법에 관한 것이다.
고해상도 또는 고화질 비디오 컨텐츠를 재생, 저장할 수 있는 하드웨어의 개발 및 보급에 따라, 고해상도 또는 고화질 비디오 컨텐츠를 효과적으로 코딩하거나 복호화하는 비디오 코덱의 필요성이 증대하고 있다. 기존의 비디오 코덱에 따르면, 비디오는 소정 크기의 매크로 블록에 기반하여 제한된 코딩 방식에 따라 코딩되고 있다.
비디오 코덱은, 비디오의 영상들이 시간적 또는 공간적으로 서로 상관성이 높다는 특징을 이용하여 예측 기법을 이용하여 데이터량을 저감한다. 예측 기법에 따르면, 주변 영상을 이용하여 현재영상을 예측하기 위하여, 영상 간의 시간적 거리 또는 공간적 거리, 예측오차 등을 이용하여 영상 정보가 기록된다.
본 발명이 해결하고자 하는 과제는, 영상 데이터를 인코딩시 변환 계수를 양자화함에 있어서, 예측 기법, 데이터 레벨 값, 레벨 값이 0이 아닌 계수들의 사이에 존재하는 레벨 값이 0인 계수의 개수 등을 고려하여 라운딩 오프셋 값을 조정하여 비트스트림의 용량을 줄일 수 있는 데이터 인코딩 장치를 제공하는 것이다.
본 발명이 해결하고자 하는 다른 과제는, 영상 데이터를 인코딩시 변환 계수를 양자화함에 있어서, 다양한 요소를 고려하여 라운딩 오프셋 값을 조정하여 비트스트림의 용량을 줄일 수 있는 데이터 인코딩 방법을 제공하는 것이다.
본 발명이 해결하고자 하는 과제들은 이상에서 언급한 과제들로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
상기 과제를 해결하기 위한 본 발명의 몇몇 실시예에 따른 데이터 인코딩 장치는, 매크로 블록 단위로 제1 영상 데이터를 입력받는 입력부, 및 상기 제1 영상 데이터를 이용하여 제1 라운딩 오프셋(rounding offset) 값을 결정하고, 상기 제1 영상 데이터에 상기 제1 라운딩 오프셋 값을 적용하여 제2 영상 데이터를 생성하고, 상기 제2 영상 데이터를 이용하여 상기 제1 라운딩 오프셋 값과 다른 제2 라운딩 오프셋 값을 결정하고, 상기 제1 영상 데이터에 상기 제2 라운딩 오프셋 값을 적용하여 양자화된 계수(quantized coefficient)를 생성하는 양자화부(quantization unit)를 포함한다.
본 발명의 몇몇 실시예에서, 상기 제1 라운딩 오프셋 값은 예측 모드(prediction mode) 또는 레벨 값에 따라 결정될 수 있다.
본 발명의 몇몇 실시예에서, 상기 제2 라운딩 오프셋 값은 제1 데이터와 제2 데이터 사이의 레벨 값이 0인 데이터의 개수를 이용하여 결정될 수 있다.
본 발명의 몇몇 실시예에서, 상기 제1 데이터는 1차원적으로 배열된 상기 제2 영상 데이터에서 레벨 값이 0이 아닌 최후의 데이터일 수 있다.
본 발명의 몇몇 실시예에서, 상기 제2 데이터는 1차원적으로 배열된 상기 제2 영상 데이터에서 상기 제1 데이터에 가장 인접하고, 레벨 값이 0이 아닌 데이터일 수 있다.
본 발명의 몇몇 실시예에서, 상기 제1 또는 제2 라운딩 오프셋 값은 미리 저장된 룩업 테이블(lookup table)을 이용하여 결정될 수 있다.
본 발명의 몇몇 실시예에서, 상기 제1 또는 제2 라운딩 오프셋 값을 미리 정해진 수학식에 따라 연산하는 라운딩 오프셋 연산부를 더 포함할 수 있다.
본 발명의 몇몇 실시예에서, 상기 라운딩 오프셋 연산부는 상기 양자화부 내에 배치될 수 있다.
본 발명의 몇몇 실시예에서, 상기 제1 영상 데이터는 주파수 영역으로 변환된 데이터일 수 있다.
본 발명의 몇몇 실시예에서, 상기 매크로 블록 단위는 4 x 4 픽셀 또는 16 x 16 픽셀을 포함할 수 있다.
상기 과제를 해결하기 위한 본 발명의 몇몇 실시예에 따른 데이터 인코딩 장치는, 제1 내지 제n 영상 데이터(n은 2이상 자연수)를 입력받아 제1 내지 제n 양자화 계수를 결정하는 양자화 계수 결정부(quantized coefficient determining unit), 상기 제1 내지 제n 양자화 계수를 제공받아 제1 내지 제n 라운딩 오프셋 값을 결정하고, 상기 제1 내지 제n 라운딩 오프셋 값을 상기 양자화 계수 결정부로 제공하는 라운딩 오프셋 결정부(rounding offset determining unit), 및 상기 양자화 계수 결정부로부터, 상기 제1 내지 제n 양자화 계수에 상기 제1 내지 제n 라운딩 오프셋 값을 적용한 변환된 제1 내지 제n 양자화 계수를 제공받고, 상기 변환된 제1 내지 제n 양자화 계수를 미리 정한 룰에 따라 1차원적으로 배열하는 양자화 계수 배열부(quantized coefficient ordering unit)를 포함한다.
본 발명의 몇몇 실시예에서, 상기 라운딩 오프셋 결정부는, 1차원적으로 배열된 상기 변환된 제1 내지 제n 양자화 계수를 이용하여 라운딩 오프셋 값을 다시 결정할 수 있다.
본 발명의 몇몇 실시예에서, 상기 라운딩 오프셋 결정부는, 상기 변환된 제1 내지 제n 양자화 계수 중 레벨 값이 0이 아닌 최후의 제k 양자화 계수와, 상기 제k 양자화 계수에 가장 인접한 레벨 값이 0이 아닌 제(k-1) 양자화 계수를 이용할 수 있다.
본 발명의 몇몇 실시예에서, 상기 라운딩 오프셋 결정부는, 상기 제(k-1) 양자화 계수와 상기 제k 양자화 계수 사이의 레벨 값이 0인 양자화 계수의 개수를 이용할 수 있다.
본 발명의 몇몇 실시예에서, 상기 라운딩 오프셋 결정부는, 메모리에 미리 저장된 룩업 테이블(lookup table)을 이용할 수 있다.
본 발명의 몇몇 실시예에서, 상기 라운딩 오프셋 결정부는, 미리 정해진 수학식에 따라 라운딩 오프셋 값을 연산할 수 있다.
상기 과제를 해결하기 위한 본 발명의 몇몇 실시예에 따른 데이터 인코딩 장치는, 잔여 블록(residual block)을 제공받아 공간 영역의 영상 데이터를 주파수 영역의 영상 데이터로 변환하여 변환 계수(transformed coefficient)를 생성하는 변환부, 상기 변환 계수를 제공받아 양자화하고, 양자화된 계수(quantized coefficient)를 생성하는 양자화부, 및 상기 양자화된 계수를 제공받아 엔트로피 코딩(entropy coding)을 수행하고, 출력 비트스트림을 생성하는 엔트로피 코딩부를 포함하고, 상기 양자화된 계수는 제1 양자화 계수와 상기 제1 양자화 계수와 다른 제2 양자화 계수를 포함하고, 상기 제1 양자화 계수는 상기 변환 계수에 제1 라운딩 오프셋 값을 적용하여 생성되고, 상기 제2 양자화 계수는 상기 변환 계수에 제2 라운딩 오프셋 값을 적용하여 생성된다.
본 발명의 몇몇 실시예에서, 상기 양자화부는 미리 저장된 룩업 테이블을 이용하여 상기 양자화된 계수를 생성할 수 있다.
본 발명의 몇몇 실시예에서, 상기 양자화부는 미리 정해진 수학식에 따라 상기 제1 또는 제2 라운딩 오프셋 값을 연산하고, 상기 제1 또는 제2 라운딩 오프셋 값을 기초로 하여 상기 양자화된 계수를 생성할 수 있다.
본 발명의 몇몇 실시예에서, 상기 제1 라운딩 오프셋 값은 예측 모드(prediction mode) 또는 상기 제1 양자화 계수의 레벨 값에 따라 결정될 수 있다.
본 발명의 몇몇 실시예에서, 상기 제2 라운딩 오프셋 값은 제(k-1) 양자화 계수와 제k 양자화 계수 사이의 레벨 값이 0인 양자화 계수의 개수를 이용하여 결정될 수 있다.
본 발명의 몇몇 실시예에서, 상기 제k 양자화 계수는 레벨 값이 0이 아닌 최후의 양자화 계수이고, 상기 제(k-1) 양자화 계수는 상기 제k 양자화 계수에 가장 인접한 레벨 값이 0이 아닌 양자화 계수일 수 있다.
상기 과제를 해결하기 위한 본 발명의 몇몇 실시예에 따른 데이터 인코딩 방법은, 매크로 블록 단위로 제1 영상 데이터를 입력받고, 상기 제1 영상 데이터를 이용하여 제1 라운딩 오프셋 값을 결정하고, 상기 제1 영상 데이터에 상기 제1 라운딩 오프셋 값을 적용하여 제2 영상 데이터를 생성하고, 상기 제2 영상 데이터를 이용하여 제2 라운딩 오프셋 값을 결정하고, 상기 제1 영상 데이터에 상기 제2 라운딩 오프셋 값을 적용하여 양자화된 계수를 생성하는 것을 포함한다.
본 발명의 몇몇 실시예에서, 상기 제1 라운딩 오프셋 값을 결정하는 것은, 예측 모드(prediction mode) 또는 상기 제1 영상 데이터의 레벨 값에 따라 결정될 수 있다.
본 발명의 몇몇 실시예에서, 상기 제2 영상 데이터를 생성하는 것과 상기 제2 라운딩 오프셋 값을 결정하는 것 사이에, 상기 제2 영상 데이터에 포함된 복수 개의 데이터를 1차원적으로 배열하는 것을 더 포함할 수 있다.
본 발명의 몇몇 실시예에서, 상기 제2 라운딩 오프셋 값을 결정하는 것은, 제1 데이터와 제2 데이터 사이의 레벨 값이 0인 데이터의 개수를 이용할 수 있다.
본 발명의 몇몇 실시예에서, 상기 제1 데이터는 상기 제2 영상 데이터에서 레벨 값이 0이 아닌 최후의 데이터일 수 있다.
본 발명의 몇몇 실시예에서, 상기 제2 데이터는 상기 제2 영상 데이터에서 상기 제1 데이터에 가장 인접하고, 레벨 값이 0이 아닌 데이터일 수 있다.
본 발명의 몇몇 실시예에서, 상기 제1 또는 제2 라운딩 오프셋 값을 결정하는 것은, 미리 저장된 룩업 테이블을 이용하거나, 미리 정해진 수학식에 따라 연산할 수 있다.
본 발명의 몇몇 실시예에서, 상기 제1 영상 데이터는 주파수 영역으로 변환된 데이터일 수 있다.
본 발명의 몇몇 실시예에서, 상기 매크로 블록 단위는 4 x 4 픽셀 또는 16 x 16 픽셀을 포함할 수 있다.
본 발명의 기타 구체적인 사항들은 상세한 설명 및 도면들에 포함되어 있다.
도 1은 본 발명의 몇몇 실시예에 따른 데이터 인코딩 장치의 블록도이다.
도 2는 도 1의 양자화부의 세부 모듈을 도시한 블록도이다.
도 3 내지 도 5는 본 발명의 몇몇 실시예에 따른 데이터 인코딩 장치의 동작을 설명하기 위한 도면들이다.
도 6은 룩업 테이블의 예시적인 도면이다.
도 7은 본 발명의 몇몇 실시예에 따른 데이터 인코딩 장치의 일부를 개략적으로 도시한 블록도이다.
도 8은 본 발명의 몇몇 실시예에 따른 데이터 인코딩 장치의 양자화부의 세부 모듈을 도시한 블록도이다.
도 9는 본 발명의 몇몇 실시예에 따른 데이터 인코딩 방법을 순차적으로 나타낸 흐름도이다.
도 10은 본 발명의 몇몇 실시예에 따른 데이터 인코딩 방법을 순차적으로 나타낸 흐름도이다.
도 11은 본 발명의 몇몇 실시예에 따른 데이터 인코딩 장치를 포함하는 컴퓨팅 시스템을 나타내는 블록도이다.
도 12는 도 11의 컴퓨팅 시스템에서 사용되는 인터페이스의 예시를 나타내는 블록도이다.
도 2는 도 1의 양자화부의 세부 모듈을 도시한 블록도이다.
도 3 내지 도 5는 본 발명의 몇몇 실시예에 따른 데이터 인코딩 장치의 동작을 설명하기 위한 도면들이다.
도 6은 룩업 테이블의 예시적인 도면이다.
도 7은 본 발명의 몇몇 실시예에 따른 데이터 인코딩 장치의 일부를 개략적으로 도시한 블록도이다.
도 8은 본 발명의 몇몇 실시예에 따른 데이터 인코딩 장치의 양자화부의 세부 모듈을 도시한 블록도이다.
도 9는 본 발명의 몇몇 실시예에 따른 데이터 인코딩 방법을 순차적으로 나타낸 흐름도이다.
도 10은 본 발명의 몇몇 실시예에 따른 데이터 인코딩 방법을 순차적으로 나타낸 흐름도이다.
도 11은 본 발명의 몇몇 실시예에 따른 데이터 인코딩 장치를 포함하는 컴퓨팅 시스템을 나타내는 블록도이다.
도 12는 도 11의 컴퓨팅 시스템에서 사용되는 인터페이스의 예시를 나타내는 블록도이다.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다.
하나의 구성 요소가 다른 구성 요소와 "연결된(connected to)" 또는 "커플링된(coupled to)" 이라고 지칭되는 것은, 다른 구성 요소와 직접 연결 또는 커플링된 경우 또는 중간에 다른 구성 요소를 개재한 경우를 모두 포함한다. 반면, 하나의 구성 요소가 다른 구성 요소와 "직접 연결된(directly connected to)" 또는 "직접 커플링된(directly coupled to)"으로 지칭되는 것은 중간에 다른 구성 요소를 개재하지 않은 것을 나타낸다. "및/또는"은 언급된 아이템들의 각각 및 하나 이상의 모든 조합을 포함한다.
본 명세서에서 사용된 용어는 실시예들을 설명하기 위한 것이며 본 발명을 제한하고자 하는 것은 아니다. 본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함한다. 명세서에서 사용되는 "포함한다(comprises)" 및/또는 "포함하는(comprising)"은 언급된 구성 요소, 단계, 동작 및/또는 소자는 하나 이상의 다른 구성 요소, 단계, 동작 및/또는 소자의 존재 또는 추가를 배제하지 않는다.
비록 제1, 제2 등이 다양한 구성 요소들을 서술하기 위해서 사용되나, 이들 구성 요소들은 이들 용어에 의해 제한되지 않음은 물론이다. 이들 용어들은 단지 하나의 구성 요소를 다른 구성 요소와 구별하기 위하여 사용하는 것이다. 따라서, 이하에서 언급되는 제1 구성 요소는 본 발명의 기술적 사상 내에서 제2 구성 요소 일 수도 있음은 물론이다.
다른 정의가 없다면, 본 명세서에서 사용되는 모든 용어(기술 및 과학적 용어를 포함)는 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 공통적으로 이해될 수 있는 의미로 사용될 수 있을 것이다. 또 일반적으로 사용되는 사전에 정의되어 있는 용어들은 명백하게 특별히 정의되어 있지 않는 한 이상적으로 또는 과도하게 해석되지 않는다.
본 발명의 몇몇 실시예들과 관련하여 설명되는 방법 또는 알고리즘의 단계는 프로세서에 의해 실행되는 하드웨어, 소프트웨어 모듈, 또는 그 2 개의 결합으로 직접 구현될 수 있다. 소프트웨어 모듈은 RAM 메모리, 플래시 메모리, ROM 메모리, EPROM 메모리, EEPROM 메모리, 레지스터, 하드 디스크, 착탈형 디스크, CD-ROM, 또는 당업계에 알려진 임의의 다른 형태의 기록 매체에 상주할 수도 있다. 예시적인 기록 매체는 프로세서에 커플링되며, 그 프로세서는 기록 매체로부터 정보를 판독할 수 있고 저장 매체에 정보를 기입할 수 있다. 다른 방법으로, 기록 매체는 프로세서와 일체형일 수도 있다. 프로세서 및 기록 매체는 주문형 집적회로(ASIC) 내에 상주할 수도 있다. ASIC는 사용자 단말기 내에 상주할 수도 있다.
이하에서, 도 1 내지 도 6을 참조하여 본 발명의 몇몇 실시예에 따른 데이터 인코딩 장치에 대해 설명하기로 한다.
본 발명의 몇몇 실시예에 따른 데이터 인코딩 장치는 예를 들어, H.264 코덱을 기초로 동작할 수 있다. 다만, 본 발명이 이에 제한되는 것은 아니다. H.264 코덱은 다른 비디오 코덱(예를 들어, MPEG-2, MPEG-4, H.261, H.263)과 달리 가변 블록 사이즈 움직임 추정(Variable Blcok Size Motion Estimation), 1/4 픽셀 움직임 벡터 해상도(1/4 pixel Motion Vector Resolution), 다중 참조 영상 움직임 추정(Multiple Reference Picture Motion Estimation) 등이 적용되어 다른 코덱에 비하여 향상된 압축 성능을 갖는다.
구체적으로, 본 발명의 몇몇 실시예에 따른 데이터 인코딩 장치는 인트라 예측(intra prediction) 및 인터 예측(inter prediction)을 수행하여 매크로 블록 단위로 코딩(coding) 모드를 결정할 수 있다. MPEG, H.261, H.262, H.263, H.264 등의 표준에 따른 비디오 인코더는 비디오 데이터를 영상(picture) 단위로 코딩한다. 여기서 영상은 순차 스캔 방식(progressive scan form)에서의 프레임(frame)에 상응할 수도 있고, 비월 스캔 방식(interlaced scan form)에서의 필드(field)에 상응할 수도 있다. 코딩된 영상은 다시 디코딩된 후 복원 영상 버퍼(DPB: decoded picture buffer)와 같은 메모리에 저장되고 다음에 입력되는 영상을 코딩할 때 움직임 추정의 참조 영상으로 사용될 수 있다.
하나의 영상은 기본적으로 4 x 4 픽셀 또는 16 x 16 픽셀 크기의 겹쳐지지 않는 매크로 블록 단위로 분할되어 코딩될 수 있다. 비디오 인코더에 순차적으로 입력되는 매크로 블록들의 각각에 대하여 현재의 영상의 타입에 따라서 인트라 예측 및/또는 인터 예측을 수행하여 최적의 코딩 모드를 결정할 수 있다.
현재의 영상이 인트라 영상(intra picture)인 경우에는 현재의 영상에 포함된 매크로 블록들의 각각에 대하여 인트라 예측만이 수행된다. 현재의 영상이 인터 영상(inter picture)인 경우에는 현재의 영상에 포함된 매크로 블록들의 각각에 대하여 인트라 예측 및 인터 예측이 수행된다. 이하에서는 인트라 영상은 I 영상으로 표현될 수 있고, 인터 영상은 P 영상(predictive picture) 및 B 영상(bi-directional predictive picture)을 포함하는 의미로 사용될 수 있다.
도 1은 본 발명의 몇몇 실시예에 따른 데이터 인코딩 장치의 블록도이다. 도 2는 도 1의 양자화부의 세부 모듈을 도시한 블록도이다. 도 3 내지 도 5는 본 발명의 몇몇 실시예에 따른 데이터 인코딩 장치의 동작을 설명하기 위한 도면들이다. 도 6은 룩업 테이블의 예시적인 도면이다.
도 1을 참조하면, 본 발명의 몇몇 실시예에 따른 데이터 인코딩 장치(100)는, 매크로 블록 단위로 제공되는 입력 비디오 데이터(VD)를 수신한다. 인트라 예측(intra prediction) 및 인터 예측(inter prediction)을 수행하여 매크로 블록 단위로 코딩 모드를 결정하고, 상기 코딩 모드에 따라 비디오 데이터(VD)를 매크로블록 단위로 코딩한다.
데이터 인코딩 장치(100)는 예측부(prediction unit)(200), 모드 결정부(mode decision unit; MD)(300), 감산부(subtractor)(101), 변환부(transform unit; T)(102), 양자화부(quantization unit; Q)(103), 엔트로피 코딩부(entropy coding unit; EC)(104), 버퍼(encoded picture buffer; EPB)(105), 역양자화부(inverse quantization unit)(106), 역변환부(inverse transform unit)(107), 가산부(adder)(108), 디블록킹 필터(deblocking filter; DF)(109), 및 메모리(memory; MEM)(110)를 포함한다.
예측부(200)는 매크로 블록 단위로 입력되는 비디오 데이터(VD)에 대하여 인트라 예측을 수행하는 인트라 예측부(210) 및 인터 예측을 수행하는 인터 예측부(250)를 포함한다. 예측부(200)는 영상 타입 할당 신호(PTA)에 의해 정해지는 I 영상, P 영상, B 영상 등의 영상 타입에 따라서 인트라 예측 및/또는 인터 예측을 수행한다. 영상 타입 할당 신호(PTA)가 현재 코딩되는 영상이 I 영상임을 나타내는 경우, 인터 예측부(250)는 디스에이블되고 인트라 예측부(210)만이 인에이블되어 인트라 예측을 수행한다. 영상 타입 할당 신호(PTA)가 현재 코딩되는 영상이 P 영상 또는 B 영상임을 나타내는 경우, 인트라 예측부(210) 및 인터 예측부(250)가 모두 인에이블되어 인트라 예측 및 인터 예측을 각각 수행한다.
인트라 예측부(210)는 다른 영상을 참조하지 않고 현재의 영상 내에서 코딩 모드를 결정하기 위한 인트라 예측을 수행한다. 인터 예측부(250)는 P 영상의 경우에는 이전의 영상을 참조하고 B 영상의 경우에는 이전의 영상 및 이후의 영상을 참조하여 코딩 모드를 결정하기 위한 인터 예측을 수행한다.
H.264 표준에 따르면, 매크로 블록의 가용 코딩 모드는 인터 모드와 인트라 모드로 구별된다. 인터 모드는 SKIP, 16 x 16, 8 x 16, 16 x 8, 8 x 8의 5가지 움직임 보상 모드를 포함하고, 8 x 8 움직임 보상 모드는 각각의 8 x 8 서브 블록(sub-block)에 대하여 8 x 4, 4 x 8, 4 x 4의 3가지 서브 모드(Sub-mode)를 포함한다. 인트라 모드는 4개의 16 x 16 인트라 예측 모드 및 9개의 4 x 4 인트라 예측 모드를 포함한다.
하나의 매크로 블록을 상기 가용 코딩 모드 중 하나로 코딩하기 위해 예측부(200)는 다음과 같은 율-왜곡 최적화(rate-distortion optimization)를 수행할 수 있다.
인트라 예측부(210)는 전술한 인트라 모드들 중에서 다음의 [수학식 1]에 표시된 인트라 율-왜곡 코스트(Jmode)를 최소로 하는 인트라 모드를 결정한다.
[수학식 1]
Jmode = DISTmd + Kmd * Rmd
여기에서, Kmd는 모드 결정을 위한 라그랑지안(Lagrangian) 계수를 나타내고, Rmd는 후보 인트라 모드로 코딩하는데 요구되는 비트수를 나타낸다. DISTmd는 복원된 매크로 블록과 입력 매크로 블록의 화소 간의 차이에 대한 왜곡을 나타낸다. 왜곡 함수로는 SAD(Sum of Absolute Difference), SATD(Sum of Absolute Transformed Difference) 또는 SSD(Sum of Squared Difference) 등이 사용될 수 있다. 이와 같이 인트라 예측부(210)는 각각의 인트라 모드에 대하여 Jmode 들을 계산하고 그 중에서 최소가 되는 Jmode를 최소 인트라 율-왜곡 코스트(MCST1)로 결정한다.
인터 예측부(250)는 전술한 SKIP을 제외한 인터 모드의 각각에 대해 최적의 움직임 벡터를 구한다. 최적 움직임 벡터는 후보 움직임 벡터들 중 다음의 [수학식 2]에 표시된 인터 율-왜곡 코스트(Jmotion)를 최소로 하는 움직임 벡터를 나타낸다.
[수학식 2]
Jmotion = DISTmt + Kmt * Rmt
여기서 Kmt는 움직임 추정을 위한 라그랑지안(Lagrangian) 계수를 나타내고, Rmt는 후보 모드, 후보 참조 영상 및 후보 움직임 벡터를 이용하여 데이터를 코딩하는데 필요한 비트수를 나타낸다. DISTmt는 후보 움직임 벡터로 생성되는 움직임 보상된 매크로 블록과 입력 매크로 블록의 화소 간의 차이에 대한 왜곡을 나타낸다. 왜곡 함수로는 SAD(Sum of Absolute Difference), SATD(Sum of Absolute Transformed Difference) 또는 SSD(Sum of Squared Difference) 등이 사용될 수 있다.
후보 움직임 벡터의 종류는 일반적으로 탐색 윈도우(search window)의 크기에 따라 정해진다. 데이터 인코딩 장치(100)가 복수의 참조 영상들을 사용하는 경우에는 각 참조 영상별로 최적 움직임 추정을 위한 위 연산을 각기 반복 수행한다. 이와 같이 인터 예측부(250)는 각각의 참조 영상, 각각의 후보 움직임 벡터 및 각각의 인터 모드에 대하여 Jmotion들을 계산하고 그 중에서 최소가 되는 Jmotion을 최소 인터 율-왜곡 코스트(MCST2)로 결정한다.
모드 결정부(300)는 최소 인트라 율-왜곡 코스트(MCST1)와 최소 인터 율-왜곡 코스트(MCST2)를 비교하여 그 중에서 작은 값에 상응하는 코딩 모드를 결정한다. 모드 결정부(300)는 결정된 코딩 모드, 이에 상응하는 참조 블록, 움직임 벡터 등의 정보를 제공할 수 있다.
감산부(101)는 모드 결정부(300)로부터 제공되는 참조 블록(reference block)을 입력 매크로 블록(input macroblock)에서 차분함으로써 잔여 블록(residual block)을 생성한다.
변환부(102)는 감산부(101)에 의하여 생성된 잔여 블록(residual block)에 대하여 공간적 변환(spatial transform)을 수행한다. 이러한 공간적 변환 방법으로는 이산 여현 변환(DCT: Discrete Cosine Transform), 웨이브렛 변환(wavelet transform) 등이 사용될 수 있다. 공간적 변환 결과 변환 계수가 구해지는데, 공간적 변환 방법으로 DCT를 사용하는 경우 DCT 계수가, 웨이브렛 변환을 사용하는 경우 웨이브렛 계수가 구해진다.
양자화부(103)는 변환부(102)에서 구한 변환 계수를 양자화한다. 양자화(quantization)란 임의의 값으로 표현되는 상기 변환 계수를 일정 구간으로 나누어 불연속적인 값(discrete value)으로 나타내는 작업을 의미한다. 이러한 양자화 방법으로는 스칼라 양자화, 벡터 양자화 등의 방법이 있다. 스칼라 양자화 방법은 다음의 [수학식 3]과 같이 변환 계수를 양자화 스텝 크기로 나눈 후 라운딩 오프셋 값을 적용 후 정수 자리로 버림하는 과정으로 수행된다.
[수학식 3]
QC = TC/Qstep + rounding offset
한편, 공간적 변환 방법으로 웨이브렛 변환을 이용하는 경우에는 양자화 방법으로서 주로 엠베디드 양자화(embedded quantization) 방법을 이용한다. 이러한 엠베디드 양자화 방법은 상기 변환 계수를 문턱 값을 변경시켜 가면서 그 문턱 값을 넘는 성분을 우선적으로 부호화하는 방식으로서, 공간적 연관성(spatial redundancy)을 이용하여 효율적인 양자화를 수행한다. 이러한 엠베디드 양자화 방법으로는 EZW(Embedded Zerotrees Wavelet Algorithm), SPIHT(Set Partitioning in Hierarchical Trees), EZBC(Embedded ZeroBlock Coding) 등이 있다. 이와 같은 엔트로피 코딩 이전 단계까지의 부호화 과정을 손실 부호화 과정이라고 한다.
본 발명의 몇몇 실시예에 따른 데이터 인코딩 장치(100)는 양자화부(103)에 특징이 있다. 양자화부(103)는 변환 계수(TC)를 이용하여 제1 라운딩 오프셋 값(RO1)을 결정하고, 변환 계수(TC)에 제1 라운딩 오프셋 값(RO1)을 적용하여 제1 양자화 계수(QC1)를 생성하고, 제1 양자화 계수(QC1)를 이용하여 다시 제2 라운딩 오프셋 값(RO2)을 결정하고, 변환 계수(TC)에 제2 라운딩 오프셋 값(RO2)을 적용하여 제2 양자화 계수(QC2)를 생성한다. 양자화부(103)의 동작과 관련하여 더 상세한 설명은 후술하기로 한다.
엔트로피 코딩부(104)는 양자화부(104)에서 양자화된 제2 양자화 계수(QC2)와 인트라 예측 모드, 참조 프레임 번호, 움직임 벡터 등의 정보를 무손실 부호화하고 출력 비트스트림(BS)을 생성한다. 이러한 무손실 부호화 방법으로는, CABAC(Context-adaptive binary arithmetic coding)과 같은 산술 부호화(arithmetic coding), CAVLC(Context-adaptive variable-length coding)과 같은 가변 길이 부호화(variable length coding) 등이 사용될 수 있다. 출력 비트스트림(BS)은 버퍼(105)에 버퍼링된 후 외부로 출력될 수 있다.
역양자화부(106), 역변환부(107), 및 가산부(108)는 손실 부호화된 데이터를 역으로 복호화하여 재구성 영상(reconstructed picture)을 복원하기 위하여 사용된다. 역양자화부(106)는 양자화부(103)에서 양자화된 제2 양자화 계수(QC2)를 역양자화한다. 이러한 역양자화 과정은 양자화 과정의 역에 해당되는 과정이다. 역변환부(107)는 상기 역양자화 결과를 역 공간적 변화하여 이를 가산부(108)에 제공한다.
가산부(108)는 역변환부(107)로부터 제공된 신호와 모드 결정부(300)에서 제공된 참조 블록을 합산하여 입력 매크로 블록을 복원한다. 가산부(108)에 의하여 복원된 매크로 블록은 디블록킹 필터(109)에 제공되며, 복원된 영상 중 인접 블록의 이미지는 인트라 예측부(210)에 제공된다. 디블록킹 필터(109)는 매크로 블록의 각각의 경계선에 대하여 디블록 필터링을 수행한다. 디블록 필터링된 데이터는 메모리(110)에 저장되어 참조 영상으로서 이용된다.
도 2를 참조하면, 양자화부(103)는 양자화 계수 결정부(103a), 라운딩 오프셋 결정부(103b), 양자화 계수 배열부(103c)를 포함할 수 있다.
양자화 계수 결정부(103a)는 변환 계수(TC)를 입력받아, 제1 양자화 계수(QC1)를 결정할 수 있다. 변환 계수(TC)는 매크로 블록 단위의 제1 내지 제n 영상 데이터(n은 2이상 자연수)를 포함할 수 있다. 여기에서, 매크로 블록 단위는 4 x 4 픽셀 또는 16 x 16 픽셀을 포함할 수 있다. 제1 양자화 계수(QC1)는 [수학식 3]을 이용하여 결정될 수 있다.
라운딩 오프셋 결정부(103b)는 변환 계수(TC)를 입력받아, 제1 라운딩 오프셋 값(RO1)을 결정할 수 있다. 라운딩 오프셋 결정부(103b)에서 결정된 제1 라운딩 오프셋 값(RO1)은 양자화 계수 결정부(103a)로 제공되어, 양자화 계수 결정부(103a)에서 제1 양자화 계수(QC1)를 결정하는데 이용될 수 있다.
라운딩 오프셋 결정부(103b)에서 라운딩 오프셋 값을 결정하는 것은 다음의 [수학식 4] ~ [수학식 7]을 이용할 수 있다.
[수학식 4]
[수학식 5]
[수학식 6]
[수학식 7]
여기에서, k 값에 따라 라운딩 오프셋 값이 결정될 수 있다. 이 때, k 값은 미리 저장된 룩업 테이블(lookup table)을 이용하여 결정될 수 있다. 도 6을 참조하면, 인트라 예측 모드, 인터 예측 모드, 데이터 레벨 값이 0인 경우, 데이터 레벨 값이 0이 아닌 경우를 조합하여 k1 내지 k4가 결정될 수 있다. k1 내지 k4 값이 결정되면, 상기 [수학식 7]에 적용되어 제1 라운딩 오프셋 값(RO1)이 결정될 수 있다.
양자화 계수 결정부(103a)는 변환 계수(TC)에 제1 라운딩 오프셋 값(RO1)을 적용하여 제1 양자화 계수(QC1)를 결정할 수 있다. 그리고, 양자화 계수 결정부(103a)는 변환 계수(TC)에 제2 라운딩 오프셋 값(RO2)를 적용하여 제2 양자화 계수(QC2)를 결정할 수 있다. 제2 양자화 계수(QC2)를 결정하는 방법은 도 3 내지 도 5를 참조하여 설명한다. 여기에서는 4 x 4 픽셀 크기를 갖는 매크로 블록을 이용하여 설명하나, 다른 크기를 갖는 매크로 블록에 대해서도 적용될 수 있음은 당업자에게 자명하다.
도 3을 참조하면, 변환 계수(TC)를 포함하는 제1 영상 데이터(VD1)에 대해 도시되어 있다. 그리고, 도 4를 참조하면, 제1 양자화 계수(QC1)를 포함하는 제2 영상 데이터(VD2)에 대해 도시되어 있다.
예를 들어, 변환 계수(TC)가 a1~a4, b1~b4, c1~c4, d1~d4를 포함하고, 제1 양자화 계수(QC1)가 a11~a41, b11~b41, c11~c41, d11~d41을 포함할 수 있다.
양자화 계수 배열부(103c)는 양자화 계수 결정부(103a)로부터 제1 양자화 계수(QC1)를 제공받아 미리 정한 룰에 따라 1차원적으로 배열할 수 있다. 데이터 인코딩 장치(100)에서는 예를 들어, 지그재그 스캔 방식을 이용하여 제1 양자화 계수(QC1)를 1차원적으로 배열할 수 있다. 도 4에 도시된 순서에 따라, 도 5에서와 같이 제1 양자화 계수(QC1)를 1차원적으로 배열할 수 있다. 이 때, b41의 레벨 값이 0이 아닌 최후의 양자화 계수이고, b31이 레벨 값이 0이 아니고, b41에 가장 인접한 양자화 계수라고 가정한다. b31과 b41 사이의 양자화 계수는 모두 레벨 값이 0이라고 가정한다.
이 때, b41에 대해 다음과 같이 [수학식 8]과 [수학식 7]을 적용하여 제2 라운딩 오프셋 값(RO2)을 다시 결정할 수 있다.
[수학식 8]
k = 3 + d/2
여기에서, d는 b31과 b41 사이의 거리를 의미하며, 도시된 예에서는 d=4이다. 제2 라운딩 오프셋 값(RO2)을 결정하는 것은 라운딩 오프셋 결정부(103b)에서 1차원적으로 배열된 제1 양자화 계수(QC1)를 제공받아 수행될 수 있다.
양자화 계수 결정부(103a)는 라운딩 오프셋 결정부(103b)로부터 제2 라운딩 오프셋 값(RO2)을 제공받고, 이를 변환 계수(TC)에 적용하여 제2 양자화 계수(QC2)를 생성하고 출력할 수 있다.
이러한 과정을 반복한다면, 주파수 영역으로 변환된 데이터들의 고주파 영역에서의 레벨 값이 0으로 변환될 수 있고, 출력 비트스트림(BS)을 생성할 때, 비트수가 감소된 출력 비트스트림(BS)이 생성될 수 있다. 즉, 영상 압축 후 데이터 용량이 감소되어 디코딩 장치로 전송되는 데이터 양을 줄일 수 있다.
도 7은 본 발명의 몇몇 실시예에 따른 데이터 인코딩 장치의 일부를 개략적으로 도시한 블록도이다.
도 7을 참조하면, 데이터 인코딩 장치(130)는 변환부(120), 입력부(121), 양자화부(122)를 포함한다.
변환부(120)는 매크로 블록 데이터(MBD)를 제공받아, 공간 영역의 영상 데이터를 주파수 영역의 영상 데이터로 변환할 수 있다. 이 때, 매크로 블록 데이터(MBD)는 원본 영상에서 예측 영상을 차분한 잔여 블록(residual block)일 수 있다.
변환부(120)는 잔여 블록(residual block)에 대하여 공간적 변환(spatial transform)을 수행하여 제1 변환 계수(TC1)를 생성할 수 있다. 이러한 공간적 변환 방법으로는 이산 여현 변환(DCT: Discrete Cosine Transform), 웨이브렛 변환(wavelet transform) 등이 사용될 수 있다.
입력부(121)는 매크로 블록 단위의 제1 변환 계수(TC1)를 입력받아, 양자화부(122)로 전송하는 역할을 한다. 입력부(121)는 양자화부(122)에 대해 별도로 형성된 물리적 회로를 포함할 수 있다.
양자화부(122)는 입력부(121)로부터 제1 변환 계수(TC1)를 입력받아, 제1 변환 계수(TC1)를 양자화하여 제1 양자화 계수(QC1)를 생성하여 출력할 수 있다. 제1 양자화 계수(QC1)는 다른 회로(예를 들어, 다른 양자화부 또는 라운딩 오프셋 값 결정부)로 제공되어 위에서 설명한 라운딩 오프셋 값을 결정하는 과정과 양자화 계수를 결정하는 과정을 수행하는데 이용될 수 있다.
도 8은 본 발명의 몇몇 실시예에 따른 데이터 인코딩 장치의 양자화부의 세부 모듈을 도시한 블록도이다.
도 8을 참조하면, 양자화부(160)는 양자화 계수 결정부(161), 라운딩 오프셋 결정부(162), 양자화 계수 배열부(163), 내부 메모리(164)를 포함한다.
양자화 계수 결정부(161), 라운딩 오프셋 결정부(162), 양자화 계수 배열부(163)는 각각 위에서 설명한 양자화 계수 결정부(103a), 라운딩 오프셋 결정부(103b), 양자화 계수 배열부(103c)와 실질적으로 동일하게 동작할 수 있다.
내부 메모리(164)는 룩업 테이블(lookup table)을 저장할 수 있으며, 룩업 테이블에는 라운딩 오프셋 값이 미리 결정되어 저장될 수 있다. 즉, 위에서 설명한 k값에 따라 대응되는 라운딩 오프셋 값이 미리 저장되어 있을 수 있다. k값으로 결정될 수 있는 경우의 수가 제한적이라면, 미리 저장된 룩업 테이블을 이용하여 라운딩 오프셋 값을 연산한다면 데이터 인코딩 속도를 향상시킬 수 있다.
도 9는 본 발명의 몇몇 실시예에 따른 데이터 인코딩 방법을 순차적으로 나타낸 흐름도이다.
도 9를 참조하면, 본 발명의 몇몇 실시예에 따른 데이터 인코딩 방법은, 우선, 매크로 블록 단위로 제1 영상 데이터(VD1)를 입력받는다(S100). 여기에서, 제1 영상 데이터(VD1)는 주파수 영역으로 변환된 데이터일 수 있다. 즉, 변환부(102)를 통해 주파수 변환된 변환 계수(TC)일 수 있다. 매크로 블록 단위는 4 x 4 픽셀 또는 16 x 16 픽셀일 수 있다.
이어서, 제1 영상 데이터(VD1)를 이용하여 제1 라운딩 오프셋 값(RO1)을 결정한다(S110). 제1 라운딩 오프셋 값(RO1)을 결정하는 것은, 예측 모드(prediction mode) 또는 제1 영상 데이터(VD1)의 레벨 값에 따라 결정될 수 있다. 예를 들어, 인트라 예측 모드, 인터 예측 모드, 데이터 레벨 값이 0인 경우, 데이터 레벨 값이 0이 아닌 경우를 조합하여 제1 라운딩 오프셋 값(RO1)을 결정할 수 있다. 제1 라운딩 오프셋 값(RO1)을 결정할 때, 미리 저장된 룩업 테이블을 이용하거나 미리 정해진 수학식에 따라 연산하여 결정할 수 있다.
이어서, 제1 영상 데이터(VD1)에 제1 라운딩 오프셋 값(RO1)을 적용하여 제2 영상 데이터(VD2)를 생성한다(S120). 제1 영상 데이터(VD1)에 제1 라운딩 오프셋 값(RO1)을 적용하는 것은 [수학식 3]을 이용할 수 있다.
이어서, 제2 영상 데이터(VD2)를 이용하여 제2 라운딩 오프셋 값(RO2)을 결정한다(S130). 제2 라운딩 오프셋 값(RO2)을 결정하는 것은, 위에서 설명한 [수학식 8] 및 [수학식 7]을 이용할 수 있다. 제2 라운딩 오프셋 값(RO2)을 결정할 때, 미리 저장된 룩업 테이블을 이용하거나 미리 정해진 수학식에 따라 연산하여 결정할 수 있다.
이어서, 제1 영상 데이터(VD1)에 제2 라운딩 오프셋 값(RO2)을 적용하여 양자화된 계수(QC)를 생성한다(S140).
도 10은 본 발명의 몇몇 실시예에 따른 데이터 인코딩 방법을 순차적으로 나타낸 흐름도이다.
도 10을 참조하면, 본 발명의 몇몇 실시예에 따른 데이터 인코딩 방법은, 매크로 블록 단위로 제1 영상 데이터(VD1)를 입력받고(S100), 제1 영상 데이터(VD1)를 이용하여 제1 라운딩 오프셋 값(RO1)을 결정하고(S110), 제1 영상 데이터(VD1)에 제1 라운딩 오프셋 값(RO1)을 적용하여 제2 영상 데이터(VD2)를 생성한다(S120).
그리고, 제2 영상 데이터(VD2)에 포함된 복수 개의 데이터를 1차원적으로 배열한다(S125). 복수 개의 데이터를 1차원적으로 배열하는 것은, 위에서 설명한 지그재그 방식을 이용할 수 있다.
1차원적으로 배열된 제2 영상 데이터(VD2)를 이용하여 제2 라운딩 오프셋 값(RO2)을 결정한다(S130). 그리고, 제1 영상 데이터(VD1)에 제2 라운딩 오프셋 값(RO2)을 적용하여 양자화된 계수(QC)를 생성한다(S140).
도 11은 본 발명의 몇몇 실시예에 따른 데이터 인코딩 장치를 포함하는 컴퓨팅 시스템을 나타내는 블록도이다.
도 11을 참조하면, 컴퓨팅 시스템(1000)은 프로세서(1010), 메모리 장치(1020), 저장 장치(1030), 입출력 장치(1040), 파워 서플라이(1050) 및 촬영 장치(900)를 포함할 수 있다. 한편, 컴퓨팅 시스템(1000)은 비디오 카드, 사운드 카드, 메모리 카드, USB 장치 등과 통신하거나, 또는 다른 전자 기기들과 통신할 수 있는 포트(port)들을 더 포함할 수 있다.
프로세서(1010)는 특정 계산들 또는 태스크(task)들을 수행할 수 있다. 프로세서(1010)는 비디오 코덱(1011)을 포함할 수 있다. 비디오 코텍(1011)은 도 1 내지 8을 참조하여 설명한 데이터 인코딩 장치를 포함할 수 있다. 또한 비디오 코텍(1011)은 상기 데이터 인코딩 장치에 의해 인코딩된 압축 데이터를 복호화하기 위한 데이터 디코딩 장치를 더 포함할 수 있다. 데이터 인코딩 장치와 데이터 디코딩 장치는 하나로 통합되어 구현될 수 있다.
본 발명의 몇몇 실시예에 따라, 프로세서(1010)는 마이크로프로세서(micro-processor), 중앙 처리 장치(Central Processing Unit; CPU)일 수 있다. 프로세서(1010)는 어드레스 버스(address bus), 제어 버스(control bus) 및 데이터 버스(data bus)를 통하여 메모리 장치(1020), 저장 장치(1030), 촬영 장치(900) 및 입출력 장치(1040)와 통신을 수행할 수 있다.
본 발명의 몇몇 실시예에 따라, 프로세서(1010)는 주변 구성요소 상호연결(Peripheral Component Interconnect; PCI) 버스와 같은 확장 버스에도 연결될 수 있다. 메모리 장치(1020)는 컴퓨팅 시스템(1000)의 동작에 필요한 데이터를 저장할 수 있다. 예를 들어, 메모리 장치(1020)는 디램(DRAM), 모바일 디램, 에스램(SRAM), 피램(PRAM), 에프램(FRAM), 알램(RRAM) 및/또는 엠램(MRAM)으로 구현될 수 있다.
저장 장치(1030)는 솔리드 스테이트 드라이브(solid state drive), 하드 디스크 드라이브(hard disk drive), 씨디롬(CD-ROM) 등을 포함할 수 있다. 입출력 장치(1040)는 키보드, 키패드, 마우스 등과 같은 입력 수단 및 프린터, 디스플레이 등과 같은 출력 수단을 포함할 수 있다.
파워 서플라이(1050)는 컴퓨팅 시스템(1000)의 동작에 필요한 동작 전압을 공급할 수 있다.
촬영 장치(900)는 상기 버스들 또는 다른 통신 링크를 통해서 프로세서(1010)와 연결되어 통신을 수행할 수 있다. 촬영 장치(900)는 프로세서(1010)와 함께 하나의 칩에 집적될 수도 있고, 서로 다른 칩에 각각 집적될 수도 있다.
컴퓨팅 시스템(1000)은 다양한 형태들의 패키지로 구현될 수 있다. 예를 들어, 컴퓨팅 시스템(1000)의 적어도 일부의 구성들은 PoP(Package on Package), Ball grid arrays(BGAs), Chip scale packages(CSPs), Plastic Leaded Chip Carrier(PLCC), Plastic Dual In-Line Package(PDIP), Die in Waffle Pack, Die in Wafer Form, Chip On Board(COB), Ceramic Dual In-Line Package(CERDIP), Plastic Metric Quad Flat Pack(MQFP), Thin Quad Flatpack(TQFP), Small Outline(SOIC), Shrink Small Outline Package(SSOP), Thin Small Outline(TSOP), Thin Quad Flatpack(TQFP), System In Package(SIP), Multi Chip Package(MCP), Wafer-level Fabricated Package(WFP), Wafer-Level Processed Stack Package(WSP) 등과 같은 패키지들을 이용하여 실장될 수 있다.
한편, 컴퓨팅 시스템(1000)은 본 발명의 몇몇 실시예에 따른 데이터 인코딩 방법 수행하는 모든 컴퓨팅 시스템으로 해석되어야 할 것이다. 예를 들어, 컴퓨팅 시스템(1000)은 디지털 카메라, 이동 전화기, 피디에이(Personal Digital Assistants; PDA), 피엠피(Portable Multimedia Player; PMP), 스마트폰 등을 포함할 수 있다.
도 12는 도 11의 컴퓨팅 시스템에서 사용되는 인터페이스의 예시를 나타내는 블록도이다.
도 12를 참조하면, 컴퓨팅 시스템(1100)은 MIPI 인터페이스를 사용 또는 지원할 수 있는 데이터 처리 장치로 구현될 수 있고, 어플리케이션 프로세서(1110), 이미지 센서(1140) 및 디스플레이(1150) 등을 포함할 수 있다.
어플리케이션 프로세서(1110)의 CSI 호스트(1112)는 카메라 시리얼 인터페이스(Camera Serial Interface; CSI)를 통하여 이미지 센서(1140)의 CSI 장치(1141)와 시리얼 통신을 수행할 수 있다.
본 발명의 몇몇 실시예에서, CSI 호스트(1112)는 디시리얼라이저(DES)를 포함할 수 있고, CSI 장치(1141)는 시리얼라이저(SER)를 포함할 수 있다. 어플리케이션 프로세서(1110)의 DSI 호스트(1111)는 디스플레이 시리얼 인터페이스(Display Serial Interface; DSI)를 통하여 디스플레이(1150)의 DSI 장치(1151)와 시리얼 통신을 수행할 수 있다.
본 발명의 몇몇 실시예에서, DSI 호스트(1111)는 시리얼라이저(SER)를 포함할 수 있고, DSI 장치(1151)는 디시리얼라이저(DES)를 포함할 수 있다. 그리고, 컴퓨팅 시스템(1100)은 어플리케이션 프로세서(1110)와 통신을 수행할 수 있는 알에프(Radio Frequency; RF) 칩(1160)을 더 포함할 수 있다. 컴퓨팅 시스템(1100)의 PHY(1113)와 RF 칩(1160)의 PHY(1161)는 MIPI(Mobile Industry Processor Interface) DigRF에 따라 데이터 송수신을 수행할 수 있다. 또한, 어플리케이션 프로세서(1110)는 PHY(1161)의 MIPI DigRF에 따른 데이터 송수신을 제어하는 DigRF MASTER(1114)를 더 포함할 수 있다.
한편, 컴퓨팅 시스템(1100)은 지피에스(Global Positioning System; GPS)(1120), 스토리지(1170), 마이크(1180), 디램(Dynamic Random Access Memory; DRAM)(1185) 및 스피커(1190)를 포함할 수 있다. 또한, 컴퓨팅 시스템(1100)은 초광대역(Ultra WideBand; UWB)(1210), 무선 랜(Wireless Local Area Network; WLAN)(1220) 및 와이맥스(Worldwide Interoperability for Microwave Access; WIMAX)(1230) 등을 이용하여 통신을 수행할 수 있다. 다만, 컴퓨팅 시스템(1100)의 구조 및 인터페이스는 하나의 예시로서 이에 한정되는 것이 아니다.
본 발명이 속한 기술분야의 당업자는 본 발명의 몇몇 실시예에 따른 데이터 인코딩 장치가 시스템, 방법, 컴퓨터로 판독 가능한 매체에 저장된 컴퓨터로 판독 가능한 프로그램 코드를 포함하는 제품 등의 형태로 구현될 수 있음을 이해할 것이다. 상기 컴퓨터로 판독 가능한 프로그램 코드는 다양한 컴퓨터 또는 다른 데이터 처리 장치의 프로세서로 제공될 수 있다. 상기 컴퓨터로 판독 가능한 매체는 컴퓨터로 판독 가능한 신호 매체 또는 컴퓨터로 판독 가능한 기록 매체일 수 있다. 상기 컴퓨터로 판독 가능한 기록 매체는 명령어 실행 시스템, 장비 또는 장치 내에 또는 이들과 접속되어 프로그램을 저장하거나 포함할 수 있는 임의의 유형적인 매체일 수 있다.
이상 첨부된 도면을 참조하여 본 발명의 실시예를 설명하였지만, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명이 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.
100: 데이터 인코딩 장치 101: 감산부
102: 변환부 103: 양자화부
104: 엔트로피 코딩부 105: 버퍼
106: 역양자화부 107: 역변환부
108: 가산부 109: 디블록킹 필터
110: 메모리 200: 예측부
300: 모드 결정부
102: 변환부 103: 양자화부
104: 엔트로피 코딩부 105: 버퍼
106: 역양자화부 107: 역변환부
108: 가산부 109: 디블록킹 필터
110: 메모리 200: 예측부
300: 모드 결정부
Claims (20)
- 매크로 블록 단위로 제1 영상 데이터를 입력받는 입력부; 및
상기 제1 영상 데이터를 이용하여 제1 라운딩 오프셋(rounding offset) 값을 결정하고, 상기 제1 영상 데이터에 상기 제1 라운딩 오프셋 값을 적용하여 제2 영상 데이터를 생성하고, 상기 제2 영상 데이터를 이용하여 상기 제1 라운딩 오프셋 값과 다른 제2 라운딩 오프셋 값을 결정하고, 상기 제1 영상 데이터에 상기 제2 라운딩 오프셋 값을 적용하여 양자화된 계수(quantized coefficient)를 생성하는 양자화부(quantization unit)를 포함하되,
상기 제1 라운딩 오프셋 값은 예측 모드(prediction mode)가 제1 예측 모드인지 아니면 제2 예측 모드인지 또는 레벨 값이 제1 레벨 값인지 아니면 제2 레벨 값인지에 따라 결정되고,
상기 제2 라운딩 오프셋 값은 상기 제2 영상 데이터에 포함된 복수 개의 데이터 중 그 레벨 값이 0이 아닌 제1 데이터와 그 레벨 값이 0이 아닌 제2 데이터 사이의 레벨 값이 0인 데이터의 개수를 이용하여 결정되는 데이터 인코딩 장치. - 삭제
- 삭제
- 제 1항에 있어서,
상기 제1 데이터는 1차원적으로 배열된 상기 제2 영상 데이터에서 레벨 값이 0이 아닌 최후의 데이터인 데이터 인코딩 장치. - 제 4항에 있어서,
상기 제2 데이터는 1차원적으로 배열된 상기 제2 영상 데이터에서 상기 제1 데이터에 가장 인접하고, 레벨 값이 0이 아닌 데이터인 데이터 인코딩 장치. - 제 1항에 있어서,
상기 제1 또는 제2 라운딩 오프셋 값은 미리 저장된 룩업 테이블(lookup table)을 이용하여 결정되는 데이터 인코딩 장치. - 제 1항에 있어서,
상기 제1 또는 제2 라운딩 오프셋 값을 미리 정해진 수학식에 따라 연산하는 라운딩 오프셋 연산부를 더 포함하는 데이터 인코딩 장치. - 제 7항에 있어서,
상기 라운딩 오프셋 연산부는 상기 양자화부 내에 배치된 데이터 인코딩 장치. - 제1 내지 제n 영상 데이터(n은 2이상 자연수)를 입력받아 제1 내지 제n 양자화 계수를 결정하는 양자화 계수 결정부(quantized coefficient determining unit);
상기 제1 내지 제n 양자화 계수를 제공받아 제1 내지 제n 라운딩 오프셋 값을 결정하고, 상기 제1 내지 제n 라운딩 오프셋 값을 상기 양자화 계수 결정부로 제공하는 라운딩 오프셋 결정부(rounding offset determining unit); 및
상기 양자화 계수 결정부로부터, 상기 제1 내지 제n 양자화 계수에 상기 제1 내지 제n 라운딩 오프셋 값을 적용한 변환된 제1 내지 제n 양자화 계수를 제공받고, 상기 변환된 제1 내지 제n 양자화 계수를 미리 정한 룰에 따라 1차원적으로 배열하는 양자화 계수 배열부(quantized coefficient ordering unit)를 포함하되,
상기 라운딩 오프셋 결정부는, 1차원적으로 배열된 상기 변환된 제1 내지 제n 양자화 계수를 이용하여 라운딩 오프셋 값을 다시 결정하고,
상기 라운딩 오프셋 결정부는, 상기 변환된 제1 내지 제n 양자화 계수 중 레벨 값이 0이 아닌 최후의 제k 양자화 계수와, 상기 제k 양자화 계수에 가장 인접한 레벨 값이 0이 아닌 제(k-1) 양자화 계수를 이용하는 데이터 인코딩 장치. - 삭제
- 삭제
- 제 9항에 있어서,
상기 라운딩 오프셋 결정부는, 상기 제(k-1) 양자화 계수와 상기 제k 양자화 계수 사이의 레벨 값이 0인 양자화 계수의 개수를 이용하는 데이터 인코딩 장치. - 잔여 블록(residual block)을 제공받아 공간 영역의 영상 데이터를 주파수 영역의 영상 데이터로 변환하여 변환 계수(transformed coefficient)를 생성하는 변환부;
상기 변환 계수를 제공받아 양자화하고, 양자화된 계수(quantized coefficient)를 생성하는 양자화부; 및
상기 양자화된 계수를 제공받아 엔트로피 코딩(entropy coding)을 수행하고, 출력 비트스트림을 생성하는 엔트로피 코딩부를 포함하고,
상기 양자화된 계수는 제1 양자화 계수와 상기 제1 양자화 계수와 다른 제2 양자화 계수를 포함하고,
상기 제1 양자화 계수는 상기 변환 계수에 제1 라운딩 오프셋 값을 적용하여 생성되고, 상기 제2 양자화 계수는 상기 변환 계수에 제2 라운딩 오프셋 값을 적용하여 생성되는 데이터 인코딩 장치. - 제 13항에 있어서,
상기 양자화부는 미리 저장된 룩업 테이블을 이용하여 상기 양자화된 계수를 생성하는 데이터 인코딩 장치. - 제 13항에 있어서,
상기 양자화부는 미리 정해진 수학식에 따라 상기 제1 또는 제2 라운딩 오프셋 값을 연산하고, 상기 제1 또는 제2 라운딩 오프셋 값을 기초로 하여 상기 양자화된 계수를 생성하는 데이터 인코딩 장치. - 제 15항에 있어서,
상기 제1 라운딩 오프셋 값은 예측 모드(prediction mode) 또는 상기 제1 양자화 계수의 레벨 값에 따라 결정되는 데이터 인코딩 장치. - 제 16항에 있어서,
상기 제2 라운딩 오프셋 값은 제(k-1) 양자화 계수와 제k 양자화 계수 사이의 레벨 값이 0인 양자화 계수의 개수를 이용하여 결정되는 데이터 인코딩 장치. - 제 17항에 있어서,
상기 제k 양자화 계수는 레벨 값이 0이 아닌 최후의 양자화 계수이고, 상기 제(k-1) 양자화 계수는 상기 제k 양자화 계수에 가장 인접한 레벨 값이 0이 아닌 양자화 계수인 데이터 인코딩 장치. - 매크로 블록 단위로 제1 영상 데이터를 입력받고,
상기 제1 영상 데이터를 이용하여 제1 라운딩 오프셋 값을 결정하되, 예측 모드(prediction mode)가 제1 예측 모드인지 아니면 제2 예측 모드인지 또는 레벨 값이 제1 레벨 값인지 아니면 제2 레벨 값인지에 따라 제1 라운딩 오프셋 값을 결정하고,
상기 제1 영상 데이터에 상기 제1 라운딩 오프셋 값을 적용하여 제2 영상 데이터를 생성하고,
상기 제2 영상 데이터를 이용하여 제2 라운딩 오프셋 값을 결정하되, 상기 제2 영상 데이터에 포함된 복수 개의 데이터 중 그 레벨 값이 0이 아닌 제1 데이터와 그 레벨 값이 0이 아닌 제2 데이터 사이의 레벨 값이 0인 데이터의 개수를 이용하여 제2 라운딩 오프셋 값을 결정하고,
상기 제1 영상 데이터에 상기 제2 라운딩 오프셋 값을 적용하여 양자화된 계수를 생성하는 것을 포함하는 데이터 인코딩 방법. - 제 19항에 있어서,
상기 제2 영상 데이터를 생성하는 것과 상기 제2 라운딩 오프셋 값을 결정하는 것 사이에, 상기 제2 영상 데이터에 포함된 복수 개의 데이터를 1차원적으로 배열하는 것을 더 포함하는 데이터 인코딩 방법.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020150144856A KR102390162B1 (ko) | 2015-10-16 | 2015-10-16 | 데이터 인코딩 장치 및 데이터 인코딩 방법 |
US15/267,543 US10432935B2 (en) | 2015-10-16 | 2016-09-16 | Data encoding apparatus and data encoding method |
TW105132680A TWI736557B (zh) | 2015-10-16 | 2016-10-11 | 資料編碼設備以及資料編碼方法 |
CN201610895700.0A CN106604036B (zh) | 2015-10-16 | 2016-10-14 | 数据编码设备和数据编码方法 |
US16/545,809 US11070807B2 (en) | 2015-10-16 | 2019-08-20 | Data encoding apparatus and data encoding method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020150144856A KR102390162B1 (ko) | 2015-10-16 | 2015-10-16 | 데이터 인코딩 장치 및 데이터 인코딩 방법 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20170045013A KR20170045013A (ko) | 2017-04-26 |
KR102390162B1 true KR102390162B1 (ko) | 2022-04-22 |
Family
ID=58524493
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020150144856A KR102390162B1 (ko) | 2015-10-16 | 2015-10-16 | 데이터 인코딩 장치 및 데이터 인코딩 방법 |
Country Status (4)
Country | Link |
---|---|
US (2) | US10432935B2 (ko) |
KR (1) | KR102390162B1 (ko) |
CN (1) | CN106604036B (ko) |
TW (1) | TWI736557B (ko) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9967476B2 (en) | 2014-10-17 | 2018-05-08 | Ross Video Limited | Parallel video effects, mix trees, and related methods |
US20160112723A1 (en) * | 2014-10-17 | 2016-04-21 | Ross Video Limited | Transfer of video and related data over serial data interface (sdi) links |
KR102390162B1 (ko) * | 2015-10-16 | 2022-04-22 | 삼성전자주식회사 | 데이터 인코딩 장치 및 데이터 인코딩 방법 |
WO2020007848A1 (en) * | 2018-07-02 | 2020-01-09 | Telefonaktiebolaget Lm Ericsson (Publ) | Bilateral high frequency boost |
CN110516194B (zh) * | 2018-08-15 | 2021-03-09 | 北京航空航天大学 | 基于异构众核处理器的格点量子色动力学并行加速方法 |
US11544606B2 (en) | 2018-09-14 | 2023-01-03 | Disney Enterprises, Inc. | Machine learning based video compression |
WO2020107288A1 (zh) * | 2018-11-28 | 2020-06-04 | Oppo广东移动通信有限公司 | 视频编码优化方法、装置及计算机存储介质 |
CN117793346A (zh) * | 2019-01-31 | 2024-03-29 | 北京字节跳动网络技术有限公司 | 视频编解码中的细化量化步骤 |
WO2020248099A1 (en) * | 2019-06-10 | 2020-12-17 | Realnetworks, Inc. | Perceptual adaptive quantization and rounding offset with piece-wise mapping function |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120189057A1 (en) | 2011-01-07 | 2012-07-26 | Nokia Corporation | Motion Prediction in Video Coding |
US20160057418A1 (en) | 2013-05-30 | 2016-02-25 | Intel Corporation | Quantization offset and cost factor modification for video encoding |
Family Cites Families (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070147497A1 (en) | 2005-07-21 | 2007-06-28 | Nokia Corporation | System and method for progressive quantization for scalable image and video coding |
JP2007081474A (ja) | 2005-09-09 | 2007-03-29 | Toshiba Corp | 画像符号化装置及び方法 |
US7889790B2 (en) | 2005-12-20 | 2011-02-15 | Sharp Laboratories Of America, Inc. | Method and apparatus for dynamically adjusting quantization offset values |
US8059721B2 (en) | 2006-04-07 | 2011-11-15 | Microsoft Corporation | Estimating sample-domain distortion in the transform domain with rounding compensation |
CN100566427C (zh) * | 2007-07-31 | 2009-12-02 | 北京大学 | 用于视频编码的帧内预测编码最佳模式的选取方法及装置 |
EP2206348B1 (en) | 2007-10-05 | 2016-08-17 | Thomson Licensing | Method and apparatus for rate control accuracy in video encoding and decoding |
JP5770476B2 (ja) | 2008-01-17 | 2015-08-26 | トムソン ライセンシングThomson Licensing | ビデオ符号化に於いてレート制御を正確にする方法及び装置 |
CN101340571B (zh) * | 2008-08-15 | 2012-04-18 | 北京中星微电子有限公司 | 一种码率控制方法及控制装置 |
EP2430836B1 (en) * | 2009-05-16 | 2016-08-17 | Thomson Licensing | Methods and apparatus for improved quantization rounding offset adjustment for video encoding |
US8848788B2 (en) * | 2009-05-16 | 2014-09-30 | Thomson Licensing | Method and apparatus for joint quantization parameter adjustment |
WO2012027892A1 (en) * | 2010-09-02 | 2012-03-08 | Intersil Americas Inc. | Rho-domain metrics |
EP2678944B1 (en) * | 2011-02-25 | 2019-11-06 | BlackBerry Limited | Methods and devices for data compression using offset-based adaptive reconstruction levels |
US20120307890A1 (en) * | 2011-06-02 | 2012-12-06 | Microsoft Corporation | Techniques for adaptive rounding offset in video encoding |
US10085024B2 (en) | 2012-04-13 | 2018-09-25 | Qualcomm Incorporated | Lookup table for rate distortion optimized quantization |
US9307264B2 (en) * | 2012-06-22 | 2016-04-05 | Sharp Kabushiki Kaisha | Arithmetic decoding device, arithmetic coding device, image decoding apparatus, and image coding apparatus |
US9635356B2 (en) * | 2012-08-07 | 2017-04-25 | Qualcomm Incorporated | Multi-hypothesis motion compensation for scalable video coding and 3D video coding |
GB2516424A (en) * | 2013-07-15 | 2015-01-28 | Nokia Corp | A method, an apparatus and a computer program product for video coding and decoding |
TW201519637A (zh) | 2013-11-12 | 2015-05-16 | Univ Nat Taiwan | 位元率-誤差最佳化量化方法 |
US9628822B2 (en) * | 2014-01-30 | 2017-04-18 | Qualcomm Incorporated | Low complexity sample adaptive offset encoding |
US9948933B2 (en) * | 2014-03-14 | 2018-04-17 | Qualcomm Incorporated | Block adaptive color-space conversion coding |
JPWO2015141116A1 (ja) * | 2014-03-19 | 2017-04-06 | 日本電気株式会社 | 映像符号化装置、映像符号化方法および映像符号化プログラム |
WO2015192353A1 (en) * | 2014-06-19 | 2015-12-23 | Microsoft Technology Licensing, Llc | Unified intra block copy and inter prediction modes |
CN105960802B (zh) * | 2014-10-08 | 2018-02-06 | 微软技术许可有限责任公司 | 切换色彩空间时对编码和解码的调整 |
US9712828B2 (en) * | 2015-05-27 | 2017-07-18 | Indian Statistical Institute | Foreground motion detection in compressed video data |
KR102390162B1 (ko) * | 2015-10-16 | 2022-04-22 | 삼성전자주식회사 | 데이터 인코딩 장치 및 데이터 인코딩 방법 |
-
2015
- 2015-10-16 KR KR1020150144856A patent/KR102390162B1/ko active IP Right Grant
-
2016
- 2016-09-16 US US15/267,543 patent/US10432935B2/en active Active
- 2016-10-11 TW TW105132680A patent/TWI736557B/zh active
- 2016-10-14 CN CN201610895700.0A patent/CN106604036B/zh active Active
-
2019
- 2019-08-20 US US16/545,809 patent/US11070807B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120189057A1 (en) | 2011-01-07 | 2012-07-26 | Nokia Corporation | Motion Prediction in Video Coding |
US20160057418A1 (en) | 2013-05-30 | 2016-02-25 | Intel Corporation | Quantization offset and cost factor modification for video encoding |
Also Published As
Publication number | Publication date |
---|---|
US10432935B2 (en) | 2019-10-01 |
US20190373263A1 (en) | 2019-12-05 |
TW201724856A (zh) | 2017-07-01 |
US20170111639A1 (en) | 2017-04-20 |
US11070807B2 (en) | 2021-07-20 |
CN106604036A (zh) | 2017-04-26 |
TWI736557B (zh) | 2021-08-21 |
CN106604036B (zh) | 2021-01-12 |
KR20170045013A (ko) | 2017-04-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102390162B1 (ko) | 데이터 인코딩 장치 및 데이터 인코딩 방법 | |
CN110024392B (zh) | 用于视频译码的低复杂度符号预测 | |
US11876979B2 (en) | Image encoding device, image decoding device, image encoding method, image decoding method, and image prediction device | |
CN109309838B (zh) | 用于视频编码的系统和方法 | |
AU2015213340B2 (en) | Video decoder, video encoder, video decoding method, and video encoding method | |
JP2016506187A (ja) | 次世代ビデオのパーティションデータのコンテンツ適応的エントロピーコーディング | |
CN111213382B (zh) | 用于视频编码和解码中的自适应变换的方法和装置 | |
KR20140110221A (ko) | 비디오 인코더, 장면 전환 검출 방법 및 비디오 인코더의 제어 방법 | |
US11323700B2 (en) | Encoding video using two-stage intra search | |
US20160050431A1 (en) | Method and system for organizing pixel information in memory | |
WO2017074539A1 (en) | Parallel arithmetic coding techniques | |
TW201633786A (zh) | 多媒體編解碼器、包括其之應用處理器、及操作該應用處理器之方法 | |
JP2017073598A (ja) | 動画像符号化装置、動画像符号化方法及び動画像符号化用コンピュータプログラム | |
KR20190043825A (ko) | 멀티 코덱 인코더 및 이를 포함하는 멀티 코덱 인코딩 시스템 | |
US20160165235A1 (en) | Method of encoding image data, encoder using the method, and application processor including the encoder | |
CN116998151A (zh) | 一种编码方法、解码方法、编码器、解码器以及存储介质 | |
KR20170126817A (ko) | 고속 영상 부호화 방법 및 장치 | |
KR20060034269A (ko) | 낮은 메모리 대역폭을 갖는 동영상 압축 장치와 그 방법 | |
KR20150021821A (ko) | 영상 데이터 메모리 관리 방법 및 영상 데이터 메모리 장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |