KR102389102B1 - Preparation method of arsenic adsorbent using iron-containing mine drainage - Google Patents

Preparation method of arsenic adsorbent using iron-containing mine drainage Download PDF

Info

Publication number
KR102389102B1
KR102389102B1 KR1020200065805A KR20200065805A KR102389102B1 KR 102389102 B1 KR102389102 B1 KR 102389102B1 KR 1020200065805 A KR1020200065805 A KR 1020200065805A KR 20200065805 A KR20200065805 A KR 20200065805A KR 102389102 B1 KR102389102 B1 KR 102389102B1
Authority
KR
South Korea
Prior art keywords
iron
mine drainage
inorganic binder
arsenic
precipitate
Prior art date
Application number
KR1020200065805A
Other languages
Korean (ko)
Other versions
KR20210148669A (en
Inventor
지원현
이진수
조상현
권오훈
이준학
김신동
신재철
김가휘
김소연
Original Assignee
한국광해광업공단
(주)이앤켐솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국광해광업공단, (주)이앤켐솔루션 filed Critical 한국광해광업공단
Priority to KR1020200065805A priority Critical patent/KR102389102B1/en
Publication of KR20210148669A publication Critical patent/KR20210148669A/en
Application granted granted Critical
Publication of KR102389102B1 publication Critical patent/KR102389102B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0225Compounds of Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt
    • B01J20/0229Compounds of Fe
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3007Moulding, shaping or extruding
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/103Arsenic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/10Nature of the water, waste water, sewage or sludge to be treated from quarries or from mining activities

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

본 발명은 철을 다량 함유하는 광산배수에 포졸란 반응을 형성하는 액상 소석회와 액상 무기바인더를 혼합하여 강도가 우수하면서 신속하게 비소를 제거할 수 있는 비소흡착제의 제조방법에 관한 것이다.
본 발명은 철함유량이 100~500ppm인 광산배수를 저류시켜 철함유 광산배수에 포함된 고형의 이물질을 침전시켜 제거하는 철함유 광산배수 저류공정(S10)과; 고형 이물질이 제거된 철함유 광산배수에 침전조로 공급하고 액상 소석회(Ca(OH)2)을 투입·교반하여 광산배수에 존재하는 철화합물을 수산화철로 침전시키는 철화합물 침지공정(S20)과; 수산화철이 생성된 반응조에 포졸란(Pozzolan) 반응을 유도하는 알루미늄계 액상 무기바인더를 투입하고 교반하여 수산화철-무기바인더 침전물를 생성하는 포졸란 반응용 무기바인더 첨가공정(S30)과; 수산화철-무기바인더 침전물을 중력식으로 자연탈수시켜 수분을 제거하는 탈수공정(S40)과; 탈수공정을 통해서 탈수된 침전물을 소정 형상의 성형틀에 넣고 펠렛형상의 비소흡착제로 압출 성형하고 건조시키는 흡착제 성형 및 건조공정(S50)를 포함하는 것을 특징으로 한다.
The present invention relates to a method for producing an arsenic adsorbent capable of rapidly removing arsenic while having excellent strength by mixing liquid slaked lime, which forms a pozzolan reaction, and a liquid inorganic binder in acid drainage containing a large amount of iron.
The present invention relates to an iron-containing mine drainage storage process (S10) for storing the mine drainage having an iron content of 100 to 500 ppm to precipitate and remove solid foreign substances contained in the iron-containing mine drainage; An iron compound immersion process (S20) of supplying iron-containing mine drainage from which solid foreign substances have been removed to a sedimentation tank and adding and stirring liquid slaked lime (Ca(OH) 2 ) to precipitate iron compounds present in the mine drainage as iron hydroxide; An inorganic binder addition process for pozzolan reaction in which an aluminum-based liquid inorganic binder inducing a pozzolan reaction is added to the reaction tank in which iron hydroxide is generated and stirred to generate iron hydroxide-inorganic binder precipitate (S30); A dehydration process (S40) of naturally dehydrating the iron hydroxide-inorganic binder deposits by gravity to remove moisture; It characterized in that it comprises an adsorbent molding and drying step (S50) of putting the precipitate dehydrated through the dehydration process into a mold of a predetermined shape, extruding it with an arsenic adsorbent in the form of pellets, and drying it.

Description

철함유 광산배수를 이용한 비소흡착제 제조방법{Preparation method of arsenic adsorbent using iron-containing mine drainage}Preparation method of arsenic adsorbent using iron-containing mine drainage

본 발명은 철을 다량 함유하는 광산배수에 포졸란 반응을 형성하는 액상 소석회와 액상 무기바인더를 혼합하여 강도가 우수하면서 신속하게 비소를 제거할 수 있는 비소흡착제의 제조방법에 관한 것이다.The present invention relates to a method for producing an arsenic adsorbent capable of rapidly removing arsenic with excellent strength by mixing liquid slaked lime that forms a pozzolan reaction with a mineral acid drainage containing a large amount of iron and a liquid inorganic binder.

전국적으로 2,000여 개의 휴폐광산이 산재하고 있으며, 광산 개발로 발생한 광미와 폐석들이 옹벽 설치 등 상당수 오염방지시설이 없는 상태로 방치되어 있는 실정이다. 국내 광업의 부진과 더불어 기존의 휴폐광 주변 지역의 환경문제도 지속적으로 대두되고 있다. 국내의 경우, 1998년을 기준으로 전국에는 906개 금속광산이 산재되어 있으며, 이 중 전체의 98.7%에 해당되는 894개소는 휴광 또는 폐광되었다. About 2,000 abandoned mines are scattered across the country, and a significant number of tailings and waste-rock generated from mine development are left without facilities to prevent pollution, such as installation of retaining walls. Along with the sluggishness of the domestic mining industry, environmental problems in the area around existing abandoned mines are continuously emerging. In Korea, as of 1998, there were 906 metal mines scattered across the country, of which 894, or 98.7% of the total, were closed or closed.

휴폐광산에서 발생하는 침출수는 광상 자체의 제반 특성(광종과 광체의 발달상태, 광석 및 맥석 광물의 조성과 산출 상태, 지구화학 환경 등) 및 인근의 지질학적-지화학적-수문학적 환경에 따라 서로 다른 수질 특성을 보이며, 방치할 경우 반영구적인 오염원으로서 지속적인 환경 파괴의 요인이 될 수 있다. 이에 따라 휴ㅇ폐광산에 의한 수질오염에 관한 실태 조사와 더불어 오염 저감을 위한 적정 기술 개발과 대책을 마련하고, 이미 오염된 수계(지표수와 지하수)의 수질 개선 등이 시급한 상황이다.Leachate from abandoned mines differs from each other according to the characteristics of the deposit itself (the development of mineral species and ore bodies, the composition and production of ore and gangue minerals, geochemical environment, etc.) and the geological, geochemical, and hydrological environment of the vicinity. It shows different water quality characteristics, and if left unattended, it can become a factor of continuous environmental destruction as a semi-permanent source of pollution. Accordingly, it is urgent to develop appropriate technologies and prepare countermeasures for pollution reduction, along with a survey on the actual condition of water pollution caused by abandoned mines, and to improve the water quality of already polluted water systems (surface water and groundwater).

또한, 폐금속 광산, 특히 금은광산의 오염물질인 비소는 주기율표 15족의 질소족 원소의 하나이며, 지구표면 구성물질 중 20번째로 많이 분포된 원소로, 광물ㅇ암석ㅇ퇴적물ㅇ토양에 널리 분포하며, 다른 대부분의 양이온성 금속들과는 달리 토양 용액에서 산소를 포함하는 다원자 음이온으로 존재한다. 또한 pH 및 산화환원조건에 따라 상이한 화학종으로 변하거나 그에 따라 다른 형태의 거동을 보이는 준금속 원소이며 독성도 강한 원소이다(Ronald and William, 1982; Cullen and Reimer, 1989)In addition, arsenic, a pollutant in abandoned metal mines, especially gold and silver mines, is one of the nitrogen group elements of group 15 of the periodic table, and is the 20th most distributed element among the constituents of the earth's surface, widely distributed in minerals, rocks, sediments, and soils. And unlike most other cationic metals, it exists as a polyatomic anion containing oxygen in soil solution. In addition, it is a metalloid element that changes into a different chemical species depending on pH and redox conditions, or exhibits different behaviors according to it, and is a highly toxic element (Ronald and William, 1982; Cullen and Reimer, 1989).

비소는 pH와 전자의 활동도(Eh)에 따라 ??3, 0, +3, +5의 네 가지 산화상태를 띠고 있으나 자연수계에서 주로 나타나는 것은 As(Ⅲ)와 As(Ⅴ)로 각각 H2AsO3 -, HAsO3 2-와 H2AsO4 -, HAsO4 2-와 같은 음이온 형태로 존재한다. 이외에 유기비소인 MMAA(monometylarsonic acid)와 DMAA(dimethylarsinic acid)도 자연계에서 발견된다(Xu et al., 1991). 일반적으로 무기비소가 유기비소보다 독성이 더 강하며 As(Ⅲ)가 As(Ⅴ)보다 이동성이 더 높고 독성이 더 강한 것으로 알려져 있다 (Ahmad et al., 1997; Buchet and Lauwerys, 1994). 독성이 높은 순서대로 나열해 보면 As(Ⅲ) > As(Ⅴ) ≫ MMAA > DMAA 순으로 나열할 수 있다 (Thirumavukkarasu et al., 2002). 비소로 오염된 지하수를 음용수로 사용할 경우 간, 콩팥, 폐, 피부암 등의 발병 가능성이 높다고 보고되었다(Wang et al., 2002). Arsenic has four oxidation states of ??3, 0, +3, and +5 depending on pH and electron activity (Eh). 2 AsO 3 - , HAsO 3 2- and H 2 AsO 4 - , HAsO 4 2- exists as an anion. In addition, organic arsenic MMAA (monometylarsonic acid) and DMAA (dimethylarsinic acid) are also found in nature (Xu et al., 1991). In general, inorganic arsenic is more toxic than organic arsenic, and As(III) is known to be more mobile and more toxic than As(V) (Ahmad et al., 1997; Buchet and Lauwerys, 1994). If you list them in the order of toxicity, As(III) > As(V) >> MMAA > DMAA (Thirumavukkarasu et al., 2002). It has been reported that when arsenic-contaminated groundwater is used as drinking water, the possibility of liver, kidney, lung, and skin cancer is high (Wang et al., 2002).

또한 미국에서도 비소의 발암성에 대한 인식이 이슈로 떠오르면서 미국 환경청(US EPA) 에서는 2001년 음용수 비소 허용기준치를 50 μg L-1에서 10 μg L-1로 강화하였다 (US EPA, 2001). 또한 미국 Department of Health and Human Services(DHHS)내의 Agency for Toxic Substances and Disease Registry (ATSDR)에서는 매 2년마다 유해물질 순위를 발표하는데 비소는 1670.4점으로 (2013년 기준) 1997년 발표이래로 꾸준히 가장 독성이 강한 물질 1위로 등재되어 있다. 비소의 오염은 인도, 방글라데시 등의 아시아 지역 그리고 미국 등의 북남미 지역, 독일 등의 유럽지역까지 전 세계적으로 분포해 있다(Smedley and Kinniburgh, 2002; Driehaus, 2002). 오염되지 않은 일반적인 지하수에서 비소는 <0.5-10 μg L-1 범위로 나타나지만 10~5,000 μg L-1의 수준으로 비소가 자연적으로 부화된 지역이 나타나기도 하 며 광산활동 등에 의해 영향을 받은 지역에서는 10,000 μg L-1까지 농도가 검출되기도 한다(Smedley and Kinniburgh, 2002). Also, as awareness of carcinogenicity of arsenic has emerged as an issue in the United States, the US Environmental Protection Agency (US EPA) has strengthened the arsenic limit in drinking water from 50 μg L -1 to 10 μg L -1 in 2001 (US EPA, 2001). In addition, the Agency for Toxic Substances and Disease Registry (ATSDR) within the U.S. Department of Health and Human Services (DHHS) publishes a ranking of hazardous substances every two years. This strong substance is listed as number one. Arsenic contamination is distributed all over the world to Asian regions such as India and Bangladesh, North and South America such as the United States, and European regions such as Germany (Smedley and Kinniburgh, 2002; Driehaus, 2002). In uncontaminated general groundwater, arsenic appears in the range of <0.5-10 μg L -1 , but there are areas where arsenic is naturally enriched at a level of 10 to 5,000 μg L -1 , and in areas affected by mining activities, etc. Concentrations up to 10,000 μg L −1 have been detected (Smedley and Kinniburgh, 2002).

미국(Welch et al., 2000), 멕시코(Del Razo et al., 1990), 칠레(Smith et al., 1998), 아르헨 티나(Bundschuh et al., 2004), 헝가리(Varsanyi et al., 1991), 중국(Wang, 1984), 내몽고(Smedley et al., 2003), 베트남(Berg et al., 2001), 네팔, 캄보디아(JICA & MRD, 2002) 등지에서 지하수의 자연적 비소오염이 보고되고 특히 인도 서벵갈지역과 방글라데시(Ahmed et al., 2004)의 오염양상이 가장 심각한 것으로 나타나고 있다. 또한 이전에는 보고된 바 없던 스위스(Pfeifer et al., 2004), 파키스탄(Nickson et al., 2005) 등지에서도 자연적인 비소오염 사례가 최근에 보고되며 인위적인 산업활동과 광산활동에 의한 영향 (Juillot et al., 1999; Charlet et al., 2001; Cappuyns et al., 2002)까지 고려하면 거의 세계 전지역에서 비소오염 양상이 이미 나타나거나 계속 발견되고 있는 실정이다. 우리나라에서는 지하수 오염 중 비소는 6.3%를 차지하여 특정유해물질 중 TCE(Trichloroethylene)에 이어 두 번째로 높은 오염률을 갖고 있다USA (Welch et al., 2000), Mexico (Del Razo et al., 1990), Chile (Smith et al., 1998), Argentina (Bundschuh et al., 2004), Hungary (Varsanyi et al., 1991) ), China (Wang, 1984), Inner Mongolia (Smedley et al., 2003), Vietnam (Berg et al., 2001), Nepal, Cambodia (JICA & MRD, 2002), etc. The pollution patterns in West Bengal, India and Bangladesh (Ahmed et al., 2004) are the most severe. In addition, cases of natural arsenic contamination have recently been reported in Switzerland (Pfeifer et al., 2004) and Pakistan (Nickson et al., 2005), which had not been previously reported, and the effects of anthropogenic industrial and mining activities (Juillot et al. al., 1999; Charlet et al., 2001; Cappuyns et al., 2002), arsenic pollution has already appeared or continues to be discovered in almost all regions of the world. In Korea, arsenic accounts for 6.3% of groundwater pollution, and has the second highest pollution rate after TCE (Trichloroethylene) among specific harmful substances.

한편, 광산배수는 가행탄광 또는 폐광지에서 지속적으로 수질 및 토양 환경오염을 일으키는 철을 함유하는 경우에 대기 중에 노출된 황철석(FeS2), 백철석 (FeS) 등의 황화광물이 산소 및 물과 반응하여 산화되면서 형성되며, pH가 낮아 산성을 띠고 있으며, 황산염을 비롯한 철, 알루미늄, 망간 등 금속함량이 높은 것이 특징이다.On the other hand, when mine drainage contains iron, which continuously pollutes water and soil, in a temporary coal mine or abandoned mine, sulfide minerals such as pyrite (FeS 2 ) and white iron (FeS) exposed to the atmosphere react with oxygen and water. It is formed through oxidation, has a low pH, is acidic, and has a high content of metals such as sulfate, iron, aluminum, and manganese.

이러한 광산배수에 함유된 철은 크게 적극적 처리법(active treatment)과 소극적 처리법(passive treatment)으로 처리하여 슬러지로 침전시킨 후에 방류하고, 슬러지는 폐기물로 처리되어 폐기물 처리비용이 추가로 소요될 수밖에 없었다.Iron contained in such mine drainage is largely treated with active treatment and passive treatment, settling into sludge, and then discharged, and the sludge is treated as waste, resulting in additional waste treatment costs.

이에 따라 본 발명자는 철을 함유하는 광산배수를 이용하여 산업적으로 이용할 수 있는 비소흡착제를 제조하여 광산배수를 정화시키면서 슬러지 배출량을 절감시킬 수 있는 기술을 개발하게 되었다.Accordingly, the present inventors have developed a technology capable of reducing sludge emission while purifying the mine drainage by manufacturing an industrially usable arsenic adsorbent using the iron-containing mine drainage.

본 발명이 해결하고자 하는 과제는 철을 다량 함유하는 광산배수에 포졸란 반응을 형성하는 액상 소석회(Ca(OH)2)과 액상 무기바인더를 혼합하여 강도가 우수하면서 신속하게 비소를 제거할 수 있는 비소흡착제의 제조방법을 제공하는 데 있다.The problem to be solved by the present invention is that arsenic can be quickly removed with excellent strength by mixing liquid slaked lime (Ca(OH) 2 ) that forms a pozzolan reaction in photo acid drainage containing a large amount of iron and a liquid inorganic binder. An object of the present invention is to provide a method for preparing an adsorbent.

본 발명에 따른 철함유 광산배수를 이용한 비소흡착제 제조방법은, 철함유량이 100~500ppm인 광산배수를 저류시켜 철함유 광산배수에 포함된 고형의 이물질을 침전시켜 제거하는 철함유 광산배수 저류공정(S10)과; 고형 이물질이 제거된 철함유 광산배수에 침전조로 공급하고 액상 소석회(Ca(OH)2)을 투입·교반하여 광산배수에 존재하는 철화합물을 수산화철로 침전시키는 철화합물 침지공정(S20)과; 수산화철이 생성된 반응조에 포졸란(Pozzolan) 반응을 유도하는 알루미늄계 액상 무기바인더를 투입하고 교반하여 수산화철-무기바인더 침전물를 생성하는 포졸란 반응용 무기바인더 첨가공정(S30)과; 수산화철-무기바인더 침전물을 중력식으로 자연탈수시켜 수분을 제거하는 탈수공정(S40)과; 탈수공정을 통해서 탈수된 침전물을 소정 형상의 성형틀에 넣고 펠렛형상의 비소흡착제로 압출 성형하고 건조시키는 흡착제 성형 및 건조공정(S50)를 포함하는 것을 특징으로 한다.The method for manufacturing an arsenic adsorbent using iron-containing mine drainage according to the present invention is an iron-containing mine drainage storage process ( S10) and; An iron compound immersion process (S20) of supplying iron-containing mine drainage from which solid foreign matter has been removed to a settling tank, and adding and stirring liquid slaked lime (Ca(OH) 2 ) to precipitate iron compounds present in the mine drainage as iron hydroxide; An inorganic binder addition process for pozzolan reaction in which an aluminum-based liquid inorganic binder inducing a pozzolan reaction is added to the reaction tank in which iron hydroxide is produced and stirred to generate iron hydroxide-inorganic binder precipitate (S30); A dehydration process (S40) of naturally dehydrating the iron hydroxide-inorganic binder deposits by gravity to remove moisture; It characterized in that it comprises an adsorbent molding and drying step (S50) of putting the precipitate dehydrated through the dehydration process into a mold of a predetermined shape, extruding it with an arsenic adsorbent in the form of pellets, and drying it.

바람직하게, 광산배수의 철함유량은 100ppm 이상인 것을 특징으로 한다.Preferably, the iron content of the mine drainage is characterized in that 100ppm or more.

바람직하게, 광산배수의 철함유량은 100~500ppm 인 것을 특징으로 한다.Preferably, the iron content of the mine drainage is characterized in that 100 ~ 500ppm.

바람직하게, 액상 소석회(Ca(OH)2)은 침전조의 pH가 8~10으로 유지되도록 투입하는 것을 특징으로 한다.Preferably, liquid slaked lime (Ca(OH) 2 ) is added so that the pH of the precipitation tank is maintained at 8-10.

바람직하게, 액상 무기바인더는 실리콘계 무기바인더, 알루미늄계 무기바인더인 것을 특징으로 한다.Preferably, the liquid inorganic binder is a silicon-based inorganic binder or an aluminum-based inorganic binder.

바람직하게, 탈수공정 후의 침전물의 함수율을 80~90%인 것을 특징으로 한다.Preferably, it is characterized in that the moisture content of the precipitate after the dehydration process is 80 to 90%.

본 발명은 포졸란 반응을 통해서 철을 다량 함유하는 광산배수로부터 강도가 우수하면서 빠른 시간내에 비소를 흡착할 수 있는 비소흡착제를 제조할 수 있는 효과가 있다.The present invention has the effect of producing an arsenic adsorbent capable of adsorbing arsenic in a short time while having excellent strength from photoacid drainage containing a large amount of iron through the pozzolan reaction.

또한, 폐수처리되는 광산배수과 가격면에서 경제적인 Ca(OH)2를 사용하여 저렴하게 비소흡착제를 제조할 수 있는 장점이 있다.In addition, there is an advantage in that the arsenic adsorbent can be manufactured inexpensively by using Ca(OH) 2 which is economical in terms of cost and mine drainage for wastewater treatment.

도 1은 본 발명에 따른 철함유 광산배수를 이용한 비소흡착제 제조방법의 공정도.
도 2는 본 발명에 따른 실시예의 비소흡착제와 비교예의 비소흡착제에 대한 등전위점 그래프.
도 3은 본 발명에 따른 실시예의 비소흡착제와 비교예의 비소흡착제에 대한 비소 흡착속도 그래프.
도 4는 본 발명에 따른 실시예의 비소흡착제와 비교예의 비소흡착제에 대한 흡착제 주입량별 제거율 그래프.
1 is a process diagram of a method for manufacturing an arsenic adsorbent using iron-containing mineral acid drainage according to the present invention.
2 is an isoelectric point graph for the arsenic adsorbent of Example and the arsenic adsorbent of Comparative Example according to the present invention.
3 is a graph of the arsenic adsorption rate for the arsenic adsorbent of Example and the arsenic adsorbent of Comparative Example according to the present invention.
4 is a graph of the removal rate for each adsorbent injection amount for the arsenic adsorbent of Examples and the arsenic adsorbent of Comparative Examples according to the present invention.

이하 본 발명을 구체적으로 설명하면 다음과 같다.Hereinafter, the present invention will be described in detail.

본 발명에 따른 철함유 광산배수를 이용한 비소흡착제 제조방법은 철함유 광산배수 저류공정(S10)과, 철화합물 침지공정(S20), 포졸란 반응용 무기바인더 첨가공정(S30), 탈수공정(S40), 흡착제 성형 및 건조공정(S50)을 포함한다.The method for producing an arsenic adsorbent using iron-containing mineral acid drainage according to the present invention includes the iron-containing mineral acid drainage storage process (S10), the iron compound immersion process (S20), the pozzolan reaction inorganic binder addition process (S30), and the dehydration process (S40) , adsorbent molding and drying process (S50).

철함유 광산배수 저류공정(S10)은 100ppm 이상, 특히 바람직하게 100~500ppm의 철을 함유하는 광산배수를 저류조에 일정시간 동안 저류시켜 철함유 광산배수에 포함된 고형의 이물질을 침전시켜 제거한다. In the iron-containing mine drainage storage step (S10), iron-containing mine drainage containing 100 ppm or more, particularly preferably 100 to 500 ppm, is stored in a storage tank for a certain period of time, and solid foreign substances contained in the iron-containing mine drainage are precipitated and removed.

철화합물 침지공정(S20)은 고형 이물질이 제거된 철함유 광산배수에 침전조로 공급하고 액상 소석회(Ca(OH)2)을 투입·교반하여 광산배수에 존재하는 철화합물을 FeO(OH), Fe2O3, Fe(OH)3 등의 수산화철로 침전시키게 된다. 이때, 액상 소석회(Ca(OH)2)은 침전조의 pH가 8~10으로 유지되도록 투입하는 것이 바람직하다. pH가 8 미만인 경우 광산배수에 미반응된 철이 존재할 수 있고, pH가 10를 초과하는 경우 반응조에서 배출되는 배출수를 중화시키기 위한 약품이 다량 필요한 문제가 있다.In the iron compound immersion process (S20), the iron compound present in the mineral acid drainage is supplied to the precipitation tank to the iron-containing mine drainage from which solid foreign substances have been removed, and liquid slaked lime (Ca(OH) 2 ) is added and stirred to remove the iron compounds present in the mineral acid drainage. 2 O 3 , is precipitated with iron hydroxide such as Fe(OH) 3 . At this time, the liquid slaked lime (Ca(OH) 2 ) is preferably added so that the pH of the precipitation tank is maintained at 8-10. If the pH is less than 8, unreacted iron may be present in the mine drainage, and if the pH exceeds 10, there is a problem that a large amount of chemicals are required to neutralize the discharged water discharged from the reaction tank.

포졸란 반응용 무기바인더 첨가공정(S30)은 수산화철이 생성된 반응조에 포졸란(Pozzolan) 반응을 유도하는 액상 무기바인더를 투입하고 교반한다. 이때, 액상 무기바인더는 포졸란 반응이 용이한 알루미늄계 무기바인더인 것이 바람직하다. 이러한 무기바인더는 반응조에 침전된 철화합물, 칼슘, 철 등과 함께 포졸란 반응을 유도하게 된다. In the step of adding the inorganic binder for the pozzolan reaction (S30), a liquid inorganic binder that induces a pozzolan reaction is added to the reaction tank in which iron hydroxide is generated and stirred. In this case, the liquid inorganic binder is preferably an aluminum-based inorganic binder that can easily react with pozzolan. These inorganic binders induce a pozzolan reaction together with iron compounds, calcium, iron, etc., precipitated in the reaction tank.

탈수공정(S40)은 반응조의 수산화철-무기바인더 침전물을 중력식으로 자연탈수시켜 수분을 제거한다. 이때, 침전물의 함수율을 80~90%인 것이 바람직하다. 이러한 침전물에 함유된 수분은 침전물이 성형동안에 증발하여 다공성을 형성하게 된다.The dehydration step (S40) removes moisture by naturally dehydrating the iron hydroxide-inorganic binder precipitate in the reaction tank by gravity. At this time, it is preferable that the moisture content of the precipitate is 80 to 90%. Moisture contained in these precipitates evaporates during molding to form porosity.

흡착제 성형 및 건조공정(S50)은 탈수공정을 통해서 탈수된 침전물을 소정 형상의 성형틀에 넣고 펠렛형상의 흡착제로 압출 성형하고 건조시킨다. 이러한 성형 및 건조공정을 통해서 포졸란 반응이 유도되어 흡착제의 강도가 증가하게 되며, 성형시 함유된 수분의 증발시에 다공성을 갖게 되어 비소의 흡착성능을 향상시키게 된다.In the adsorbent molding and drying process (S50), the precipitate dehydrated through the dehydration process is put into a mold of a predetermined shape, extruded with an adsorbent in the form of pellets, and dried. Through these molding and drying processes, a pozzolan reaction is induced to increase the strength of the adsorbent, and when the moisture contained in the molding is evaporated, it has porosity, thereby improving the arsenic adsorption performance.

이와 같은 공정을 거쳐 철함유 광산배수로부터 제조된 흡착제는 높은 비소 흡착능을 갖는 흡착제로 사용할 수 있다.The adsorbent prepared from iron-containing mine drainage through this process can be used as an adsorbent having high arsenic adsorption capacity.

<실시예><Example>

고형 이물질의 침전이 완료된 약 150ppm의 철을 함유하는 광산배수 약 20 L를 반응조에 공급하고, 액상 소석회(Ca(OH)2)을 pH 8~9(약 9g 사용)가 유지되도록 참가하여 철함유 침전물을 생성시켰다. 그 후, 추가로 액상 무기바인더인 알루미나 10g를 혼합 교반하고 자연 탈수시켜 함수율이 80%인 철화합물-무기바인더 침전물을 생성하였다. 그리고 탈수된 철화합물과 무기바인더를 무기질 바인더-수산화철의 혼합물을 펠렛으로 압출성형하고 건조하여 비소흡착제(ARS)를 제작하였다. About 20 L of mine drainage containing about 150 ppm of iron, where the sedimentation of solid foreign substances has been completed, is supplied to the reactor, and liquid slaked lime (Ca(OH) 2 ) is added to maintain pH 8~9 (used about 9g) to contain iron. A precipitate was formed. Thereafter, 10 g of alumina, which is a liquid inorganic binder, was mixed and stirred and naturally dehydrated to produce an iron compound-inorganic binder precipitate having a moisture content of 80%. Then, the dehydrated iron compound and the inorganic binder were extruded into pellets with a mixture of inorganic binder-iron hydroxide and dried to prepare an arsenic adsorbent (ARS).

<실험예1><Experimental Example 1>

<등전위점 측정><Equipotential point measurement>

실시예로 제조된 흡착제(ARS)를 사용하고, 비교예로 외국으로부터 수입된 수산화물계 비소흡착제(GFH(Granular Ferric Hydroxide); 이하 'Ref'라 한다)를 사용하였으며 각각의 등전위점(pHpzc)을 측정하여 도 1의 그래프로 나타내어다. The adsorbent (ARS) prepared in Examples was used, and as a comparative example, a hydroxide-based arsenic adsorbent (Granular Ferric Hydroxide (GFH); hereinafter referred to as 'Ref') was used, and each isoelectric point (pH pzc ) is measured and shown in the graph of FIG. 1 .

도 1과 같이 실시예의 흡착제(ARS)와 비교예의 비소 흡착제(Ref)는 각각 8.7과 6.2의 등전위점(pHpzc)을 갖는 것으로 확인되었다. 이와 같이 중성영역에서 실시예의 비소흡착제(ARS)는 표면이 (+)로 하전되어 있기 때문에 H2AsO4 -와 HAsO4 2- 과 같은 비소(V) 화합물에 대한 비소 흡착 성능이 우수함을 확인할 수 있다. 비교예의 비소흡착제(Ref)는 표면이 (-)로 하전되어 있다.As shown in FIG. 1 , it was confirmed that the adsorbent (ARS) of the example and the arsenic adsorbent (Ref) of the comparative example had isoelectric points (pH pzc ) of 8.7 and 6.2, respectively. As such, since the surface of the arsenic adsorbent (ARS) of Example in the neutral region is positively charged, it can be confirmed that the arsenic adsorption performance for arsenic (V) compounds such as H 2 AsO 4 - and HAsO 4 2- is excellent. there is. The surface of the arsenic adsorbent (Ref) of Comparative Example is negatively charged.

<비소 흡착속도><Arsenic adsorption rate>

1,000ppm 비소(V)표준용액을 이용하여 실시예로 제조된 흡착제(ARS)와 비교예의 비소 흡착제(Ref)에 대한 흡착속도실험을 실시하여 도 2의 그래프로 나타내었다. 비소(V)의 초기 농도는 30mg/L를 사용하였고, 흡착제 주입량은 1g/L이고, 초기 pH는 6.0이었다. The adsorption rate test was performed on the adsorbent (ARS) prepared in Examples and the arsenic adsorbent (Ref) of Comparative Example using 1,000 ppm arsenic (V) standard solution, and is shown in the graph of FIG. 2 . The initial concentration of arsenic (V) was 30 mg/L, the adsorbent injection amount was 1 g/L, and the initial pH was 6.0.

도 2에 확인한 결과 흡착속도는 실시예의 비소흡착제(ARS)가 비교예의 비소흡착제(Ref)보다 빠른 것을 확인할 수 있고, 초기 비소농도 50% 제거에 필요한 시간은 실시예의 비소흡착제(ARS)는 2.5 시간, 비교예의 비소흡착제(Ref)는 6.7 시간인 것을 확인되어 실시예의 비소흡착제(ARS)가 신속하게 비소를 제거하는 것을 알 수 있었다. As a result of confirming in FIG. 2, it can be seen that the adsorption rate of the arsenic adsorbent (ARS) of the Example is faster than the arsenic adsorbent (Ref) of the comparative example, and the time required to remove 50% of the initial arsenic concentration is 2.5 hours for the arsenic adsorbent (ARS) of the example , it was confirmed that the arsenic adsorbent (Ref) of the comparative example was 6.7 hours, and it was found that the arsenic adsorbent (ARS) of the example rapidly removed arsenic.

<용출 시험><Dissolution test>

또한, 흡착제의 사용을 위한 조건 중에서 매우 중요한 인자 중의 한 가지인 용출에 대한 결과를 확인하였다. In addition, the results of dissolution, which is one of the very important factors among the conditions for using the adsorbent, were confirmed.

실험결과 두 흡착제의 주성분인 철 성분의 용출시험에서 실시예의 비소흡착제(ARS)는 검출한계 미만이었고, 비교예의 비소흡착제(Ref)는 최대 0.09mg/L이었다. As a result of the experiment, in the dissolution test of the iron component, the main component of the two adsorbents, the arsenic adsorbent (ARS) of the Example was below the detection limit, and the arsenic adsorbent (Ref) of the Comparative Example was at most 0.09 mg/L.

이러한 결과는 흡착제로 사용하는 경우 흡착제에 의한 용출에 의해서 2차 오염물질을 생성하는 원인이 되기 때문에 흡착제로 활용하는데 문제점이 없음을 확인하는 결과이다.These results confirm that there is no problem in using the adsorbent as an adsorbent because it causes secondary pollutants to be generated by elution by the adsorbent when used as an adsorbent.

<비소흡착제 주입량별 제거율 확인><Check the removal rate by arsenic adsorbent injection amount>

1,000ppm 비소(V)표준용액을 이용하여 흡착실험을 실시하였다. 비소(V)의 초기 농도는 10mg/L를 사용하였고, 초기 pH는 6이었다. 비소흡착제 주입량을 0.1g/L ~ 10.0g/L까지 변화시키면서 비소 제거율을 확인하여 도 3의 그래프로 나타내었다. An adsorption experiment was performed using a 1,000 ppm arsenic (V) standard solution. The initial concentration of arsenic (V) was 10 mg/L, and the initial pH was 6. The arsenic removal rate was confirmed while varying the arsenic adsorbent injection amount from 0.1 g/L to 10.0 g/L, and is shown in the graph of FIG. 3 .

도 3에서 보는 바와 같이 실시예의 비소흡착제(ARS)와 비교예의 비소흡착제(Ref) 모두 1g/L 이상의 주입량에서 비소 제거율 100%를 보였다. 이러한 등온흡착은 Langmuir isotherm과 패턴이 매우 유사하고, Langmuir isotherm을 이용한 curve fitting(커브피팅)을 적용하였을 경우 흡착량은 ARS=25.35mg/g, Ref = 20.54 mg/g으로 예상되었다. As shown in FIG. 3 , both the arsenic adsorbent (ARS) of the Example and the arsenic adsorbent (Ref) of the comparative example showed 100% arsenic removal rate at an injection amount of 1 g/L or more. This isothermal adsorption pattern is very similar to that of Langmuir isotherm, and when curve fitting (curve fitting) using Langmuir isotherm was applied, the adsorption amount was expected to be ARS=25.35mg/g and Ref=20.54mg/g.

이상과 같이, 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.As described above, although the present invention has been described with reference to limited embodiments and drawings, the present invention is not limited thereto, and the technical idea of the present invention and the following by those of ordinary skill in the art to which the present invention pertains Of course, various modifications and variations are possible within the scope of equivalents of the claims to be described.

Claims (6)

철함유량이 100~500ppm인 광산배수를 저류시켜 철함유 광산배수에 포함된 고형의 이물질을 침전시켜 제거하는 철함유 광산배수 저류공정(S10)과;
고형 이물질이 제거된 철함유 광산배수에 침전조로 공급하고 액상 소석회(Ca(OH)2)을 투입·교반하여 광산배수에 존재하는 철화합물을 수산화철로 침전시키는 철화합물 침지공정(S20)과;
수산화철이 생성된 반응조에 포졸란(Pozzolan) 반응을 유도하는 알루미늄계 액상 무기바인더를 투입하고 교반하여 수산화철-무기바인더 침전물를 생성하는 포졸란 반응용 무기바인더 첨가공정(S30)과;
수산화철-무기바인더 침전물을 중력식으로 자연탈수시켜 수분을 제거하는 탈수공정(S40)과;
탈수공정을 통해서 탈수된 침전물을 소정 형상의 성형틀에 넣고 펠렛형상의 비소흡착제로 압출 성형하고 건조시키는 흡착제 성형 및 건조공정(S50)를 포함하는 것을 특징으로 하는 철함유 광산배수를 이용한 비소흡착제 제조방법.
an iron-containing mine drainage storage process (S10) of storing the mine drainage having an iron content of 100 to 500 ppm to precipitate and remove solid foreign substances contained in the iron-containing mine drainage;
An iron compound immersion process (S20) of supplying iron-containing mine drainage from which solid foreign substances have been removed to a sedimentation tank and adding and stirring liquid slaked lime (Ca(OH) 2 ) to precipitate iron compounds present in the mine drainage as iron hydroxide;
An inorganic binder addition process for pozzolan reaction in which an aluminum-based liquid inorganic binder inducing a pozzolan reaction is added to the reaction tank in which iron hydroxide is produced and stirred to generate iron hydroxide-inorganic binder precipitate (S30);
A dehydration process (S40) of naturally dehydrating the iron hydroxide-inorganic binder deposits by gravity to remove moisture;
Arsenic adsorbent manufacturing using iron-containing mineral acid drainage, characterized in that it includes an adsorbent molding and drying step (S50) in which the precipitate dehydrated through the dehydration process is put into a mold of a predetermined shape, extruded with a pellet-shaped arsenic adsorbent, and dried Way.
삭제delete 삭제delete 청구항 1에 있어서, 액상 소석회(Ca(OH)2)은 침전조의 pH가 8~10으로 유지되도록 투입하는 것을 특징으로 하는 철함유 광산배수를 이용한 비소흡착제 제조방법.
The method according to claim 1, wherein the liquid slaked lime (Ca(OH) 2 ) is added so that the pH of the precipitation tank is maintained at 8-10.
삭제delete 청구항 1에 있어서, 탈수공정 후의 침전물의 함수율을 80~90%인 것을 특징으로 하는 철함유 광산배수를 이용한 비소흡착제 제조방법.The method according to claim 1, wherein the water content of the precipitate after the dehydration process is 80 to 90%.
KR1020200065805A 2020-06-01 2020-06-01 Preparation method of arsenic adsorbent using iron-containing mine drainage KR102389102B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200065805A KR102389102B1 (en) 2020-06-01 2020-06-01 Preparation method of arsenic adsorbent using iron-containing mine drainage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200065805A KR102389102B1 (en) 2020-06-01 2020-06-01 Preparation method of arsenic adsorbent using iron-containing mine drainage

Publications (2)

Publication Number Publication Date
KR20210148669A KR20210148669A (en) 2021-12-08
KR102389102B1 true KR102389102B1 (en) 2022-04-21

Family

ID=78867895

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200065805A KR102389102B1 (en) 2020-06-01 2020-06-01 Preparation method of arsenic adsorbent using iron-containing mine drainage

Country Status (1)

Country Link
KR (1) KR102389102B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102653354B1 (en) * 2021-12-22 2024-03-29 한국광해광업공단 Manufacturing method of bead-type arsenic adsorbent using iron hydroxide-based waste

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190023459A (en) * 2017-08-29 2019-03-08 주식회사 이앤켐솔루션 Preparation of adsorbent for removal of sulfur compounds using acid mine drainage
KR20190048515A (en) * 2017-10-31 2019-05-09 한국과학기술연구원 Adsorbent for removal of arsenic containing mine drainage sludge, method for preparing the same, and arsenic removal method using the same

Also Published As

Publication number Publication date
KR20210148669A (en) 2021-12-08

Similar Documents

Publication Publication Date Title
Sherene Mobility and transport of heavy metals in polluted soil environment
Sibrell et al. Removal of phosphorus from agricultural wastewaters using adsorption media prepared from acid mine drainage sludge
Jain et al. Adsorption of lead and zinc on bed sediments of the river Kali
US9725341B2 (en) Methods for removing contaminants from aqueous systems
Wium‐Andersen et al. Sorption Media for Stormwater Treatment—A Laboratory Evaluation of Five Low‐Cost Media for Their Ability to Remove Metals and Phosphorus from Artificial Stormwater
US6984328B2 (en) Method for removing metals from aqueous solutions using mixed lithic materials
Vu et al. Review of arsenic removal technologies for contaminated groundwaters.
Jeen et al. Evaluation of mixtures of peat, zero-valent iron and alkalinity amendments for treatment of acid rock drainage
Zoumis et al. Demobilization of heavy metals from mine waters
Simón et al. Biochar from different carbonaceous waste materials: Ecotoxicity and effectiveness in the sorption of metal (loid) s
Iakovleva et al. Novel sorbents from low-cost materials for water treatment
KR102389102B1 (en) Preparation method of arsenic adsorbent using iron-containing mine drainage
Chang et al. Removal of As (III) and As (V) by natural and synthetic metal oxides
Corami et al. Removal of lead, copper, zinc and cadmium from water using phosphate rock
Castaldi et al. Water treatment residuals as a resource for the recovery of soil and water polluted with Sb (V): sorption and desorption trials at different pH values
Sasaki et al. Removal of arsenate in acid mine drainage by a permeable reactive barrier bearing granulated blast furnace slag: Column study
EL SAYED Factors Controlling the Distribution and Behaviour of Organic Carbon and Trace Elements in a Heavily Sewage Polluted Coastal Envoironment
Simón et al. Effect of grain size and heavy metals on As immobilization by marble particles
Lwin et al. Coexistence of Cr and Ni in anthropogenic soils and their chemistry: implication to proper management and remediation
Buriánek et al. Phosphates adsorption from water by recycled concrete
Naidu et al. Management and remediation of arsenic from contaminated water
Iakovleva Novel sorbents from low-cost materials for water treatment
Zhang Selenite removal using GAC based iron-coated adsorbents
Taneez Stabilization of contaminated marine sediment by addition of bauxite residues: evaluation of potential mobility of trace elements
Cairns et al. Potentially toxic elements (As, Cd, Cr, Hg, and Pb), their provenance and removal from potable and wastewaters

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant