KR102387191B1 - 로터리 압축기 - Google Patents

로터리 압축기 Download PDF

Info

Publication number
KR102387191B1
KR102387191B1 KR1020200110328A KR20200110328A KR102387191B1 KR 102387191 B1 KR102387191 B1 KR 102387191B1 KR 1020200110328 A KR1020200110328 A KR 1020200110328A KR 20200110328 A KR20200110328 A KR 20200110328A KR 102387191 B1 KR102387191 B1 KR 102387191B1
Authority
KR
South Korea
Prior art keywords
bearing
side discharge
discharge passage
shaft
passage
Prior art date
Application number
KR1020200110328A
Other languages
English (en)
Other versions
KR20220029845A (ko
Inventor
이광규
이장우
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to KR1020200110328A priority Critical patent/KR102387191B1/ko
Publication of KR20220029845A publication Critical patent/KR20220029845A/ko
Application granted granted Critical
Publication of KR102387191B1 publication Critical patent/KR102387191B1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/06Silencing
    • F04C29/065Noise dampening volumes, e.g. muffler chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/10Stators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/20Rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/30Casings or housings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/40Electric motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/50Bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/60Shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2210/00Working fluid
    • F05B2210/10Kind or type
    • F05B2210/12Kind or type gaseous, i.e. compressible
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/10Stators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/50Bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/60Shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/96Preventing, counteracting or reducing vibration or noise

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

본 발명에 따른 로터리 압축기는, 베어링 플레이트에는 일단이 밀봉된 토출머플러의 소음공간에 연통되는 베어링측 토출통로가 형성되고, 회전축에는 베어링측 토출통로에 연통되어 토출머플러의 소음공간으로 토출되는 냉매가 케이싱의 내부공간으로 배출되도록 안내하는 샤프트측 토출통로가 형성됨으로써, 전체 진동소음을 감쇄시키는 동시에, 회전축의 토출통로가 길고 좁게 형성됨에 따라 저주파 대역의 소음을 효과적으로 감쇄시킬 수 있다.

Description

로터리 압축기{ROTARY COMPRESSOR}
본 발명은 로터리 압축기에 관한 것으로, 특히 저소음 로터리 압축기에 관한 것이다.
일반적으로 로터리 압축기는 실린더의 압축공간에서 롤러가 선회운동을 하거나 또는 회전운동을 하며, 실린더 또는 롤러에 미끄러지게 구비되는 베인이 롤러 또는 실린더에 접촉되어 압축공간을 흡입실과 압축실(또는 토출실)로 구분하게 된다. 압축공간은 롤러의 선회운동 또는 회전운동으로 인해 체적(용적)이 좁아지면서 냉매를 압축하게 되고, 압축된 냉매는 케이싱의 내부공간을 향해 토출된다.
이러한 로터리 압축기는 토출밸브가 구비되어 토출구를 개폐하게 된다. 압축공간의 냉매는 토출될 때 토출구를 개폐하면서 토출소음 및 압력맥동을 발생시키게 된다. 따라서, 로터리 압축기는 토출머플러가 구비되어 압축공간에서 냉매가 토출될 때 발생되는 토출소음과 압력맥동을 감쇄시키고 있다.
토출머플러는 토출구를 수용하도록 설치된다. 토출구가 한 개인 경우에는 토출머플러도 한 개만 설치되고, 토출구가 복수 개인 경우에는 토출머플러도 복수 개가 설치되는 것이 일반적이다.
예를 들어, 단식 로터리 압축기에서 토출구가 상부베어링에만 형성되는 경우에는 상부베어링에만 토출머플러가 설치되는 반면, 토출구가 상부베어링과 하부베어링에 각각 형성되는 경우에는 상부베어링과 하부베어링에 각각 상부토출머플러와 하부토출머플러가 설치된다. 복식 로터리 압축기는 각각의 압축공간에서 냉매를 토출하도록 복수 개의 토출구가 구비되므로, 복식 로터리 압축기의 경우에도 상부토출머플러와 하부토출머플러가 설치될 수 있다.
상기와 같이, 상부토출머플러만 구비되는 경우는 물론 상부 및 하부토출머플러가 각각 구비되는 경우에도 냉매의 토출메커니즘은 유사하다. 예를 들어, 선행기술(일본공개특허 특개2016-102640호)과 같이 상부토출머플러가 구비되는 경우에는 토출머플러의 상면에 토출통공이 형성되거나 또는 토출머플러의 내주면과 이를 마주보는 메인 베어링 플레이트의 보스부 사이에 토출틈새가 형성된다.
그러면 토출머플러의 내부공간으로 토출되는 냉매는 토출머플러의 토출통공이나 토출틈새를 통해 케이싱의 내부공간으로 배출되고, 이 냉매는 고정자와 회전자 사이의 공극 또는 회전자에 구비된 관통구멍을 통해 케이싱의 상부공간으로 이동한 후, 케이싱의 상부공간에 연통되는 토출관을 통해 압축기의 외부로 배출된다.
그러나, 상기와 같은 종래의 로터리 압축기는, 냉매가 압축실에서 토출머플러의 소음공간(noise reducing chamber)으로 토출되면서 발생되는 진동 소음이 그 토출머플러의 소음공간에서 감쇄되는 것이나, 이는 토출머플러에 구비되는 소음공간의 체적이 한계가 있어 상기한 진동 소음을 충분하게 감쇄시키지 못하는 문제가 있다. 특히, 저주파 대역의 진동 소음은 토출머플러를 거치더라도 여전히 상존하게 되어 압축기의 진동 소음을 가중시킬 수 있다.
또한, 종래의 로터리 압축기는, 토출머플러의 소음공간으로 토출되는 냉매는 그 토출머플러를 통과한 후 케이싱의 내부공간으로 배출되고, 이 냉매는 고정자와 회전자 사이의 공극 또는 회전자의 관통구멍을 통과하여 케이싱의 상부공간으로 이동하게 되는 것이나, 회전하는 회전자 또는 그 회전자의 주변을 따라 넓은 회전반경으로 이동하면서 냉매는 케이싱의 상부공간에서 강한 와류를 형성하여 토출맥동을 가중시킬 수 있다. 이러한 냉매의 토출맥동으로 인해 토출관에서는 2차 진동소음이 발생될 수 있다.
일본공개특허 특개2016-102640호(공개일: 2016.6.2.)
본 발명의 목적은, 압축실에서 토출되는 냉매의 토출소음을 효과적으로 감쇄시킬 수 있는 로터리 압축기를 제공하려는데 있다.
본 발명의 다른 목적은, 토출소음 중에서 저주파 대역의 소음을 효과적으로 감쇄시킬 수 있는 로터리 압축기를 제공하려는데 있다.
본 발명의 또다른 목적은, 토출되는 냉매의 회전반경을 줄여 토출맥동을 낮추고 이를 통해 전체 대역에서의 소음을 감쇄시킬 수 있는 로터리 압축기를 제공하려는데 있다.
본 발명의 목적을 달성하기 위하여, 회전축의 내부에 토출통로를 형성하여 토출유로의 길이를 늘리고 직경을 작게 함으로써 저주파 대역의 소음을 효과적으로 감쇄시킬 수 있는 로터리 압축기가 제공될 수 있다.
이를 통해, 압축실에서 토출되는 냉매의 토출경로에 대한 회전반경을 줄여 냉매의 와류현상을 완화시킴으로써 토출맥동으로 인한 2차 진동소음을 낮출 수 있다.
또한, 본 발명의 목적을 달성하기 위하여, 토출구를 수용하는 토출머플러의 내부공간을 밀봉하고, 회전축을 지지하는 베어링의 보스부와 이를 마주보는 회전축에 서로 연통되는 토출통로를 형성하며, 보스부와 회전축의 각 토출통로 사이에 환형으로 된 연통홈을 형성함으로써, 토출머플러의 내부공간으로 토출되는 냉매가 회전축의 토출통로로 원활하게 이동하여 토출될 수 있는 로터리 압축기가 제공될 수있다.
나아가, 회전축의 상단에는 팽창머플러를 설치함으로써, 회전축의 토출통로를 통과하는 냉매의 회전력을 감쇄시켜 냉매의 토출맥동으로 인한 2차 진동소음을 더욱 낮출 수 있다.
또한, 본 발명의 목적을 달성하기 위하여, 케이싱; 상기 케이싱의 내부공간에 구비되는 구동모터; 상기 케이싱의 내부공간에 구비되어 압축실을 형성하는 적어도 한 개 이상의 실린더; 상기 적어도 한 개 이상의 실린더에 결합되며 토출구가 형성되는 플레이트부, 상기 플레이트부에서 축방향으로 연장되는 보스부를 구비하는 복수 개의 베어링 플레이트; 일단은 상기 구동모터의 회전자에 결합되고, 타단은 상기 복수 개의 베어링 플레이트를 관통하여 결합되는 회전축; 및 상기 복수 개의 베어링 플레이트 중에서 적어도 어느 한쪽 베어링 플레이트에 구비되며, 상기 케이싱의 내부공간에 대해 분리되도록 소음공간이 구비되는 적어도 한 개 이상의 토출머플러;를 포함하며, 상기 베어링 플레이트에는 일단이 상기 토출머플러의 소음공간에 연통되는 베어링측 토출통로가 형성되고, 상기 회전축에는 상기 베어링측 토출통로에 연통되어 상기 토출머플러의 소음공간으로 토출되는 냉매가 상기 케이싱의 내부공간으로 배출되도록 안내하는 샤프트측 토출통로가 형성되는 로터리 압축기가 제공될 수 있다.
여기서, 상기 보스부의 내주면과 이를 마주보는 상기 회전축의 외주면 중에서 적어도 어느 한쪽에는 연통홈이 형성되고, 상기 베어링측 토출통로와 상기 샤프트측 토출통로는 상기 연통홈에 의해 서로 연통될 수 있다.
그리고, 상기 연통홈의 단면적은 상기 베어링측 토출통로의 단면적 또는 상기 샤프트측 토출통로의 단면적보다 크거나 같게 형성될 수 있다.
그리고, 상기 베어링측 토출통로의 출구는 상기 보스부의 원주방향을 따라 기설정된 간격을 두고 복수 개가 형성되고, 상기 베어링측 토출통로의 출구를 마주보는 상기 샤프트측 토출통로의 입구는 상기 회전축의 원주방향을 따라 기설정된 간격을 두고 복수 개가 형성되며, 상기 연통홈은 상기 복수 개의 베어링측 토출통로의 출구 또는 상기 복수 개의 샤프트측 토출통로의 입구가 수용되도록 환형으로 형성될 수 있다.
그리고, 상기 복수 개의 베어링측 토출통로의 출구와 상기 복수 개의 샤프트측 토출통로의 입구는 반경방향으로 동일선 상에 위치하도록 형성될 수 있다.
여기서, 상기 회전축의 단부에는 팽창머플러가 더 구비되고, 상기 팽창머플러는 상기 회전축의 길이방향에 대해 교차되도록 구비될 수 있다.
그리고, 상기 팽창머플러는 상기 샤프트측 토출통로의 단면적보다 큰 적어도 한 개 이상의 플레이트를 포함하고, 상기 팽창머플러의 중심은 상기 샤프트측 토출통로의 축방향 중심과 동일 선상에 위치하도록 배치될 수 있다.
그리고, 상기 팽창머플러는, 상기 회전축의 단부에 결합되는 제1 플레이트와, 상기 제1 플레이트에 대해 축방향으로 기설정된 간격만큼 이격되는 제2 플레이트와, 상기 제1 플레이트와 상기 제2 플레이트의 사이에 구비되는 스페이서로 이루어지고, 상기 스페이서는 복수 개로 이루어져 원주방향을 따라 기설정된 간격을 두고 배치될 수 있다.
여기서, 상기 베어링측 토출통로는 상기 보스부의 외주면과 내주면 사이를 관통하여 형성될 수 있다.
그리고, 상기 베어링측 토출통로는 반경방향으로 형성되거나 또는 축방향에 대해 경사지게 형성될 수 있다.
여기서, 상기 샤프트측 토출통로는, 상기 회전축의 길이방향으로 형성되는 길이방향 통로와, 상기 회전축의 외주면에서 상기 길이방향 통로의 내주면 사이를 관통하는 연결방향 통로를 포함할 수 있다.
그리고, 상기 연결방향 통로는 반경방향으로 형성되거나 또는 축방향에 대해 경사지게 형성될 수 있다.
그리고, 상기 길이방향 통로의 단면적은 상기 연결방향 통로의 단면적보다 크게 형성될 수 있다.
여기서, 상기 회전축의 양단 중에서 상기 베어링 플레이트에 지지되는 단부에는 급유구멍이 형성되고, 상기 급유구멍은 상기 샤프트측 토출통로와 분리되는 위치까지 형성될 수 있다.
여기서, 상기 베어링측 토출통로의 단면적은 상기 샤프트측 토출통로의 단면적에 비해 넓거나 같게 형성될 수 있다.
그리고, 상기 토출구의 단면적은 상기 베어링측 토출통로의 단면적보다 넓거나 같게 형성될 수 있다.
본 발명에 따른 로터리 압축기는, 토출머플러를 밀봉하는 대신 그 토출머플러에 포함되는 베어링의 보스부과 이를 마주보는 회전축 사이 및 그 회전축에 축방향으로 연장되도록 토출통로를 형성함으로써, 토출머플러의 소음공간으로 토출되는 냉매를 회전축의 토출통로로 안내하여 토출소음이 상쇄되도록 할 수 있다. 이를 통해, 압축기의 전체 진동소음을 감쇄시키는 동시에, 회전축의 토출통로가 길고 좁게 형성됨에 따라 저주파 대역의 소음을 효과적으로 감쇄시킬 수 있다.
또한, 본 발명에 따른 로터리 압축기는, 토출머플러의 소음공간으로 토출되는 냉매를 회전축에 구비되는 토출통로로 안내하여 케이싱의 상부공간으로 안내함으로써, 토출관으로 배출되는 냉매의 토출맥동이 감소되어 2차 진동 소음을 줄일 수 있다.
또한, 본 발명에 의한 로터리 압축기는, 회전축의 상단에 팽창머플러가 설치되어 회전축을 통해 배출되는 냉매의 회전력을 감퇴시킬 수 있다. 이를 통해 케이싱의 상부공간에서 발생되는 토출맥동을 감소시켜 2차 진동 소음을 더욱 줄일 수 있다.
도 1은 본 실시예에 의한 로터리 압축기를 보인 종단면도,
도 2는 도 1에 따른 로터리 압축기에서 전동부와 압축부를 파단하여 보인 사시도,
도 3은 도 2의 "A"부를 확대하여 보인 사시도,
도 4는 도 2에서 냉매의 토출통로를 설명하기 위해 파단하여 보인 사시도,
도 5는 도 4의 평면도,
도 6은 회전축의 회전각도에 따른 냉매의 이동상태를 설명하기 위해 보인 개략도,
도 7은 냉매의 토출통로에 대한 다른 실시예를 보인 단면도,
도 8은 본 실시예에 따른 소음 개선 효과를 종래와 비교하여 보인 그래프.
이하, 본 발명에 의한 로터리 압축기를 첨부도면에 도시된 일실시예에 의거하여 상세하게 설명한다.
도 1은 본 실시예에 의한 로터리 압축기를 보인 종단면도이다.
도 1을 참고하면, 본 발명에 따른 로터리 압축기는, 케이싱(110)의 내부공간(110a)에 전동부(120)가 설치되고, 전동부(120)의 하측에는 냉매를 흡입하여 압축한 후 케이싱(110)의 내부공간(110a)으로 토출하는 압축부(130)가 설치된다. 전동부(120)와 압축부(130)는 회전축(125)에 의해 기구적으로 연결된다.
케이싱(110)은 설치형태에 따라 종방향으로 설치될 수도 있고, 횡방향으로 설치될 수도 있다. 설치방향은 회전축(125)을 기준으로 정의된다. 예를 들어, 종방향은 회전축(125)이 지면에 대해 수직인 방향이고, 횡방향은 회전축(125)이 지면에 대해 평행하거나 경사지게 설치된 방향이다. 이하에서는, 케이싱이 종방향으로 구비된 경우를 예로 들어 설명한다.
케이싱(110)의 내부공간은 밀봉되고, 하반부에는 어큐뮬레이터(미도시)의 출구측에 연결되는 흡입관(112)이 결합된다. 케이싱(110)의 상부에는 응축기에 연결되는 토출관(113)이 결합된다. 토출관(113)은 후술할 회전축(125)의 중심과 일직선상에 결합될 수 있다.
흡입관(112)은 케이싱(110)을 관통하여 실린더(133)의 흡입구(1331)에 직접 연결되고, 토출관(113)은 케이싱(110)을 관통하여 내부공간(110a)에 연통된다. 이에 따라 압축기는 케이싱(110)의 내부공간(110a)이 토출압을 이루는 고압식 압축기를 형성하게 된다.
전동부(120)는 케이싱(110)의 내부에 고정자(121)가 압입되어 고정되고, 고정자(121)의 내부에는 회전자(122)가 회전 가능하게 삽입된다. 회전자(122)의 중심에는 회전축(125)이 압입되어 결합된다.
회전축(125)은 회전자(122)에 결합되는 축부(1251)와, 축부(1251)에서 연장되어 후술할 메인베어링(131)에 지지되는 메인베어링부(1252)와, 메인베어링부(1252)에서 연장되어 후술할 실린더(133)의 압축실(V)에 수용되는 편심부(1253)와, 편심부(1253)에서 연장되어 후술할 서브베어링(132)에 지지되는 서브베어링부(1254)로 이루어질 수 있다.
축부(1251)와 메인베어링부(1252)의 내부에는 후술할 샤프트측 토출통로(1255)가 형성되고, 편심부(1253)와 서브베어링부(1254)의 내부에는 급유통로(1257)가 형성된다. 샤프트측 토출통로(1255)와 급유통로(1257)는 서로 분리되어 형성된다. 이에 따라 샤프트측 토출통로(1255)를 통해 토출되는 냉매와 급유통로(1257)를 통해 공급되는 오일은 회전축(125)의 내부에서 서로 혼합되지 않고 분리된다. 샤프트측 토출통로에 대해서는 나중에 베어링측 토출통로와 함께 다시 설명한다.
압축부(130)는 회전축(125)을 지지하는 메인 베어링 플레이트(이하, 메인베어링)(131)이 케이싱(110)의 내주면에 고정 결합되고, 메인베어링(131)의 하측에는 그 메인베어링(131)과 함께 회전축(125)을 지지하는 서브 베어링 플레이트(이하, 서브베어링)(120)이 구비된다. 종방향의 경우 메인베어링(131)은 상부베어링, 서브베어링(132)은 하부베어링이라고 할 수 있다.
메인베어링(131)과 서브베어링(132)의 사이에는 그 메인베어링(131) 및 서브베어링(132)과 함께 압축실(V)을 형성하는 실린더(133)가 구비된다. 실린더(133)는 서브베어링(132)과 함께 메인베어링(131)에 볼트로 체결되어 고정된다.
실린더(133)의 압축실(V)에는 회전축(125)의 편심부(1253)에 결합되어 선회운동을 하면서 냉매를 압축하는 롤링피스톤(134)이 구비되고, 실린더(133)의 내벽에는 롤링피스톤(134)에 접하여 그 롤링피스톤(134)과 함께 압축실(V)을 흡입실과 압축실로 구획하는 베인(135)이 미끄러지게 삽입된다.
메인베어링(131)은 실린더(133)의 상면을 복개하여 함께 압축실(V)을 형성하는 메인플레이트부(1311)와, 메인플레이트부(1311)에서 축방향으로 연장되어 회전축(125)을 지지하는 메인보스부(1312)로 이루어진다.
메인플레이트부(1311)는 원판 모양으로 형성되어 외주면이 케이싱(110)의 내주면에 압입되거나 용접되어 결합된다. 메인플레이트부(1311)에는 압축실(V)에서 압축된 냉매를 토출하는 토출구(1313)가 형성되고, 토출구(1313)의 단부에는 그 토출구(1313)를 개폐하는 토출밸브(1315)가 설치된다.
메인플레이트부(1311)의 상면에는 토출밸브(1315)를 수용하는 토출머플러(136)가 설치된다. 토출머플러(136)의 내부에는 케이싱(110)의 내부공간(110a)으로부터 분리되는 소음공간(136a)이 형성된다.
예를 들어, 토출머플러(136)는 그 중앙에 메인보스부(1312)가 관통하는 관통구멍(136b)이 형성되되, 토출머플러(136)의 관통구멍(136b)의 내주면이 메인보스부(1312)의 외주면에 밀착되게 된다. 그러면 토출머플러(136)의 소음공간(136a)은 케이싱(110)의 내부공간(110a)으로부터 분리되어 밀봉될 수 있다.
메인보스부(1312)에는 회전축(125)이 관통되어 지지되는 메인축수구멍(1312a)이 형성되고, 메인보스부(1312)의 중간에는 베어링측 토출통로(1316)가 형성된다. 베어링측 토출통로(1316)는 메인보스부(1312)의 외주면에서 내부면으로 관통될 수 있다. 베어링측 토출통로에 대해서는 나중에 샤프트측 토출통로와 함께 다시 설명한다.
서브베어링(132)은 실린더(133)와 함께 압축실(V)을 형성하는 서브플레이트부(1321)와, 서브플레이트부(1321)에서 축방향으로 연장되어 회전축(125)을 지지하는 서브보스부(1322)로 이루어진다.
서브플레이트부(1321)는 원판 모양으로 형성되어 실린더(133)와 함께 메인플레이트부(1311)에 볼트 체결되고, 서브보스부(1322)에는 회전축(125)이 관통되어 지지되는 서브축수구멍(1322a)이 형성된다.
실린더(133)는 환형으로 형성되어 그 내부에 메인베어링(131)과 서브베어링(132)에 의해 압축실(V)이 형성되고, 실린더(133)의 일측에는 외주면에서 내주면으로 관통되는 흡입구(1331)가 형성되며, 흡입구(1331)의 일측에는 베인(135)이 미끄러지게 삽입되는 베인슬롯(1332)이 형성되며, 베인슬롯(1332)의 일측 모서리에는 토출안내홈(1333)이 형성된다. 토출안내홈(1333)은 토출구(1313)에 연통되는 위치에 형성된다.
롤링피스톤(134)은 환형으로 형성되어 회전축(125)의 편심부(1253)에 회전 가능하게 결합되고, 베인(135)은 실린더(133)의 베인슬롯(1332)에 미끄러지게 삽입되어 롤링피스톤(134)의 외주면에 접촉된다. 이에 따라, 실린더(133)의 압축실(V)은 베인(135)에 의해 흡입구(1331)에 연통되는 흡입공간(미부호)과 토출구(1313)에 연통되는 토출공간(미부호)으로 분리된다.
도면중 미설명 부호인 1211은 권선코일이다.
상기와 같은 본 발명에 의한 로터리 압축기는 다음과 같이 동작된다.
즉, 고정자(121)에 전원이 인가되면, 회전자(122)와 회전축(125)이 고정자(121)의 내부에서 회전을 하면서 롤링피스톤(134)이 선회운동을 하고, 이 롤링피스톤(134)의 선회운동에 따라 압축실(V)을 이루는 흡입공간의 체적이 증가하여 냉매를 실린더(133)의 압축실(V)로 흡입하게 된다.
압축실(V)은 롤링피스톤(134)과 베인(135)에 의해 흡입공간과 토출공간으로 분리되고, 흡입공간은 롤링피스톤(134)의 선회운동에 의해 토출공간으로 전환된다. 이때, 흡입공간의 냉매는 점점 압축되어 토출공간에서 메인베어링(131)에 구비된 토출구(1313)를 통해 토출머플러(136)의 소음공간(136a)으로 토출된다.
이 냉매는 메인베어링(131)의 메인보스부(1312)에 구비된 베어링측 토출통로(1316)와 회전축(125)의 메인베어링부(1252)에 구비된 샤프트측 토출통로(1255)를 통해 케이싱(110)의 내부공간(110a)으로 배출된다.
이때, 냉매는 압축실(V)의 토출공간에서 1차로 소음이 감쇄되고, 회전축(125)의 샤프트측 토출통로(1255)를 거치면서 2차로 소음이 감쇄된다. 다시 말해, 토출머플러(136)는 1차 소음기 역할을 하고, 회전축(125)의 샤프트측 토출통로(1255)는 2차 소음기 역할을 하게 된다.
이에 따라 압축실(V)에서 압축된 냉매가 케이싱(110)의 내부공간(110a)을 향해 토출되면서 발생되는 소음은, 2차에 걸쳐 감쇄됨에 따라 소음 감쇄 효과가 크게 증가하게 되고 결과적으로 압축기 및 그 압축기를 구비한 실외기의 진동소음이 더욱 낮아질 수 있다.
도 2는 도 1에 따른 로터리 압축기에서 전동부와 압축부를 파단하여 보인 사시도이고, 도 3은 도 2의 "A"부를 확대하여 보인 사시도이며, 도 4는 도 2에서 냉매의 토출통로를 설명하기 위해 파단하여 보인 사시도이고, 도 5는 도 4의 평면도이다.
도 2 내지 도 4를 참조하면, 본 실시예에 따른 베어링측 토출통로(1316)는 앞서 설명한 바와 같이 메인보스부(1312)의 외주면과 내주면 사이를 관통하여 형성될 수 있다.
예를 들어, 베어링측 토출통로(1316)의 입구는 메인보스부(1312)의 외주면에 형성되되, 토출머플러(136)의 소음공간(136a)에 수용되는 높이에 형성될 수 있다. 베어링측 토출통로(1316)의 출구는 메인보스부(1312)의 내주면에 형성되되, 베어링측 토출통로(1316)의 입구와 동일한 높이에 형성될 수 있다.
다시 말해, 베어링측 토출통로(1316)는 반경방향으로 형성될 수 있다. 이에 따라 베어링측 토출통로(1316)의 길이를 최소화하여 베어링측 토출통로(1316)를 통과하는 냉매의 감압손실을 최소화할 수 있다.
베어링측 토출통로(1316)는 원주방향을 따라 복수 개가 형성될 수 있다. 이 경우 복수 개의 베어링측 토출통로(1316)는 원주방향을 따라 등간격을 두고 형성될 수 있다. 이에 따라 토출머플러(136)의 소음공간(136a)에 채워진 냉매가 베어링측 토출통로(1316)를 통해 균일하게 분배되어 샤프트측 토출통로(1255)로 이동할 수 있다.
도 5를 참조하면, 베어링측 토출통로(1316)의 전체 단면적(A2)은 토출구(1313)의 단면적(A1)보다 작거나 같게 형성될 수 있다. 이에 따라 토출구(1313)를 통해 토출되는 냉매의 제1 압력보다 베어링측 토출통로(1316)를 통과하는 냉매의 제2 압력이 미세하게 낮아 냉매가 더욱 신속하게 베어링측 토출통로(1316)를 향해 이동할 수 있다.
또한, 샤프트측 토출통로(1255)는 회전축(125)의 길이방향을 따라 형성되는 길이방향 통로(1255a)와, 회전축의 외주면에서 길이방향 통로(1255a)의 내주면 사이를 관통하는 연결방향 통로(1255b)를 포함할 수 있다.
다시 도 1을 참조하면, 길이방향 통로(1255a)는 회전축(125)의 상단에서 길이방향을 따라 기설정된 깊이만큼 함몰지게 형성될 수 있다. 길이방향 통로(1255a)는 축방향으로 형성될 수도 있고, 축방향에 대해 경사지게 형성될 수 있다.
길이방향 통로(1255a)가 축방향으로 형성되면 그 길이방향 통로(1255a)를 통과하는 냉매의 유동을 선형화하여 토출관(113)에서의 맥동소음 등을 줄일 수 있다. 반면, 길이방향 통로(1255a)가 축방향에 대해 경사지게 형성되는 경우에는 냉매의 유동이 나선형화되면서 유동속도를 높일 수 있다.
도 5를 참조하면, 길이방향 통로(1255a)의 단면적(A3)은 후술할 베어링측 토출통로(1316)의 전체 단면적(A2)보다 작거나 같게 형성될 수 있다. 예를 들어, 길이방향 통로(1255a)의 단면적(A3)은 후술할 베어링측 토출통로(1316)의 전체 단면적(A2)보다 작게 형성될 수 있다. 그러면 베어링측 토출통로(1316)를 통과하는 냉매의 제2 압력보다 길이방향 통로(1255a)를 통과하는 냉매의 제3 압력이 미세하게 낮아지게 되고, 그러면 토출머플러(136)의 소음공간(136a)으로 토출된 냉매가 더욱 신속하게 케이싱(110)의 내부공간(110a)으로 이동할 수 있다. 또한, 연결방향 통로(1255b)를 통해 토출되는 냉매의 제3 압력보다 길이방향 통로(1255a)를 통과하는 냉매의 제4 압력이 미세하게 낮아 냉매가 더욱 신속하게 길이방향 통로(1255a)로 이동할 수 있다.
연결방향 통로(1255b)는 길이방향 통로(1255a)의 하단에서 회전축(125)의 외주면을 향해 관통 형성될 수 있다. 예를 들어, 연결방향 통로(1255b)의 입구는 회전축(125)의 외주면에 형성되되, 베어링측 토출통로(1316)의 출구와 마주보도록 그 베어링측 토출통로(1316)와 반경방향으로 대응되는 위치에 형성될 수 있다.
이에 따라, 복수 개의 베어링측 토출통로(1316)의 출구와 복수 개의 연결방향 통로(1255b)의 입구는 반경방향으로 동일선 상에 위치하게 된다. 그러면 복수 개의 베어링측 토출통로(1316)의 출구와 복수 개의 연결방향 통로(1255b)의 입구는 동시에 연통되어 복수 개의 베어링측 토출통로(1316)를 통과하는 냉매가 연결방향 통로(1255b)의 입구를 향해 더욱 신속하게 이동할 수 있다.
연결방향 통로(1255b)는 베어링측 토출통로(1316)와 마찬가지로 반경방향으로 형성될 수 있다. 이 경우 연결방향 통로(1255b)의 길이를 최소화하여 연결방향 통로(1255b)를 통과하는 냉매의 감압손실을 최소화할 수 있다.
연결방향 통로(1255b)는 원주방향을 따라 복수 개가 형성될 수 있다. 이 경우 복수 개의 베어링측 토출통로(1316)는 원주방향을 따라 등간격을 두고 형성될 수 있다. 이에 따라 토출머플러(136)의 소음공간(136a)에 채워진 냉매가 베어링측 토출통로(1316)를 통해 균일하게 분배되어 샤프트측 토출통로(1255)로 이동할 수 있다.
다만, 연결방향 통로(1255b)는 전체 단면적은 베어링측 토출통로(1316)의 단면적 또는 길이방향 통로(1255a)의 단면적보다 작게 형성될 수 있다. 예를 들어, 각 연결방향 통로(1255b)의 단면적이 각 베어링측 토출통로(1316)의 단면적과 동일한 경우 도 4와 같이 연결방향 통로(1255b)의 전체 개수는 베어링측 토출통로(1316)의 전체 개수보다 작게 형성될 수 있다.
이에 따라 연결방향 통로(1255b)는 베어링측 토출통로(1316)와 함께 헬름홀쯔 공명기의 목부(neck portion)를 형성하게 되고, 길이방향 통로(1255a)는 헬름홀쯔 공명기의 체적부(volumme portion)를 형성하게 된다. 이를 통해, 샤프트측 토출통로(1255)에서의 소음 감쇄 효과가 향상될 수 있다.
도면으로 도시하지는 않았으나, 길이방향 통로(1255b)의 출구에서의 단면적은 그 길이방향 통로(1255b)의 중간부에서의 단면적보다 작게 형성될 수도 있다. 예를 들어, 후술할 팽창머플러(126)의 제1 플레이트(1261)에 구비되는 축구멍(1261a)의 내경을 길이방향 통로(1255b)의 내경보다 작게 형성될 수 있다. 이 경우, 길이방향 통로(1255b)가 반 밀봉 상태가 되어 소음 감쇄 효과가 더욱 향상될 수 있다. 다만, 이 경우에도 제1 플레이트(1261)에 구비되는 축구멍(1261a)의 내경은 유동저항이 증가되지 않는 범위내에서 형성되는 것이 바람직하다.
한편, 도 2 및 도 3을 참조하면, 메인보스부(312)의 내주면과 이를 마주보는 회전축(125)의 외주면 중에서 적어도 어느 한쪽에는 연통홈(1256)이 형성될 수 있다. 연통홈(1256)은 베어링측 토출통로(1316)의 출구를 수용하거나 또는 샤프트측 토출통로(1255)의 입구, 즉 연결방향 통로(1255b)의 입구를 수용하도록 환형으로 형성될 수 있다.
예를 들어, 연통홈(1256)은 회전축(125)의 외주면에 단차지게 형성될 수 있다. 이에 따라 복수 개의 베어링측 토출통로(1316)의 출구는 연통홈(1256)에 의해 복수 개의 샤프트측 토출통로(1255)의 입구, 즉 연결방향 통로(1255b)의 입구에 연통될 수 있다.
연통홈(1256)의 단면적은 베어링측 토출통로(1316)의 단면적 또는 샤프트측 토출통로(1255)의 단면적보다 크거나 같게 형성될 수 있다. 이에 따라 베어링측 토출통로(1316)를 통과한 냉매가 샤프트측 토출통로(1255)로 신속하게 이동할 수 있다.
도 6은 회전축의 회전각도에 따른 냉매의 이동상태를 설명하기 위해 보인 개략도이다.
예를 들어, 도 6의 (a)와 같이, 베어링측 토출통로(1316)의 출구와 샤프트측 토출통로(1255)의 입구가 반경방향으로 일직선 상에 위치하게 되는 경우에는, 샤프트측 토출통로(1255)의 입구측에 연통홈(1256)이 형성되지 않더라도 냉매가 베어링측 토출통로(1316)를 통과한 후 샤프트측 토출통로(1255)로 신속하게 유입될 수 있다.
반면 도 6의 (b)와 같이 회전축(125)이 더 회전을 하여 베어링측 토출통로(1316)의 출구와 샤프트측 토출통로(1255)의 입구가 반경방향으로 일직선 상에 위치하지 못하게 되는 경우에는, 토출머플러(136)의 소음공간(136a)으로 토출된 냉매가 베어링측 토출통로(1316)를 통과한 후 샤프트측 토출통로(1255)로 신속하게 유입지 못할 수 있다. 하지만, 샤프트측 토출통로(1255)의 입구측에 환형으로 된 연통홈(1256)이 형성됨에 따라, 냉매가 베어링측 토출통로(1316)를 통과한 후 환형으로 된 연통홈(1256)을 따라 이동하여 샤프트측 토출통로(1255)로 신속하게 유입될 수 있다.
한편, 회전축(125)의 상단에는 팽창머플러(126)가 구비될 수 있다.
다시 도 1 및 도 2를 참조하면, 본 실시예에 따른 팽창머플러(126)는 회전축(125)의 샤프트측 토출통로(1255)를 통해 배출되는 냉매의 유동방향과 교차되는 방향으로 배치될 수 있다.
예를 들어, 팽창머플러(126)는 샤프트측 토출통로(1255)의 단면적보다 큰 플레이트(1261)(1262)를 포함하고, 팽창머플러(126)의 중심은 샤프트측 토출통로(1255)의 축방향 중심(CL)과 동일 선상에 위치하도록 배치될 수 있다.
구체적으로, 팽창머플러(126)는 제1 플레이트(1261) 및 제2 플레이트(1262)와, 제1 플레이트(1261)와 제2 플레이트(1262)의 사이에 구비되어 제1 플레이트(1261)와 제2 플레이트(1262)를 축방향으로 기설정된 간격만큼 이격시키는 복수 개의 스페이서(1263)로 이루어질 수 있다.
제1 플레이트(1261)는 중심에 축구멍이 구비되는 환형으로 형성된다. 제1 플레이트(1261)의 축구멍은 회전축의 상단 외주면에 삽입되어 결합된다. 이에 따라, 제1 플레이트(1261)의 축구멍은 회전축의 샤프트측 토출통로(1255)의 내경보다 크게 형성된다.
제1 플레이트(1261)의 가장자리에는 복수 개의 스페이서(1263) 관통구멍이 형성되고, 복수 개의 스페이서 관통구멍(미부호)에는 각각의 스페이서(1263)가 삽입되어 결합된다. 복수 개의 스페이서(1263)는 제1 플레이트(1261)의 스페이서 관통구멍(미부호)을 통과하여 회전자에 결합될 수 있다. 이에 따라, 제1 플레이트(1261)의 저면은 회전자의 상면으로부터 기설정된 간격만큼 이격될 수 있다. 그러면 회전축의 샤프트측 토출통로(1255)를 통해 배출되는 냉매가 고정자(121)에 구비되는 권선코일(1211)에 충돌하는 것을 피해 원활하게 배출될 수 있다.
제2 플레이트(1262)는 원판 형상으로 형성되고, 제2 플레이트(1262)의 외경은 제1 플레이트(1261)의 외경과 거의 동일하게 형성될 수 있다. 이에 따라, 제2 플레이트(1262)는 제1 플레이트(1261)와 마찬가지로 적어도 회전축(125)의 외경보다 크게 형성될 수 있다.
또한, 제2 플레이트(1262)의 중심은 제1 플레이트(1261)의 축구멍(1261a)과 같이 샤프트측 토출통로(1255)의 축방향 중심(CL)과 동일 선상에 위치하도록 배치될 수 있다. 이에 따라, 제2 플레이트(1262)의 중심부는 회전축(125)의 샤프트측 토출통로(1255)를 축방향으로 마주보는 부위가 된다. 그러면 회전축(125)의 샤프트측 토출통로(1255)를 통해 축방향으로 배출되는 냉매가 막힌 제2 플레이트(1262)의 중심부에 의해 차단되어 냉매의 유동방향이 반경방향으로 꺾이게 된다. 그러면 회전축(125)의 샤프트측 토출통로(1255)를 통해 배출되는 냉매의 강한 회전력이 감퇴되어 2차 진동소음을 억제할 수 있게 된다.
또한, 제1 플레이트(1261)와 제2 플레이트(1262)는 회전축(125) 또는 회전자(122)에 결합됨에 따라 가능한 한 얇고 가벼운 판재로 형성되는 것이 바람직하다. 이에 따라, 회전축 또는 회전자를 포함한 회전체의 무게가 팽창머플러(126)에 의해 과도하게 증가되는 것을 억제할 수 있다.
본 실시예에 따른 복수 개의 스페이서(1263)는, 복수 개의 플레이트(1261)(1262) 사이에서 원주방향을 따라 배치될 수 있다. 복수 개의 스페이서(1263)는 서로 이웃하는 스페이서(1263) 사이의 간격이 이루는 단면적(도 1에 도시)(A4)은 샤프트측 토출통로(1255)의 단면적(A3)보다 넓게 형성될 수 있다. 이에 따라, 제2 플레이트(1262)에 충돌한 냉매는 횡방향으로 꺾여 스페이서(1263) 사이의 통로를 통해 케이싱(110)의 내부공간(110a)으로 원활하게 배출될 수 있다.
한편, 베어링측 토출통로와 샤프트측 토출통로에 대한 다른 실시예가 있는 경우는 다음과 같다.
즉, 전술한 실시예에서는 베어링측 토출통로와 샤프트측 토출통로(정확하게는 연결방향 통로)가 반경방향으로 형성되는 것이나, 경우에 따라서는 베어링측 토출통로와 샤프트측 토출통로의 연결방향 통로가 경사지게 형성될 수도 있다.
전술한 실시예와 같이, 베어링측 토출통로가 반경방향으로 형성되는 경우에는 그 베어링측 토출통로를 통과한 냉매가 샤프트측 토출통로로 진입하기 전에 와류가 발생될 수 있다.
마찬가지로, 연결방향 통로가 반경방향으로 형성되는 경우에는 그 연결방향 통로와 길이방향 통로가 대략 직교하게 되고, 그러면 연결방향 통로를 통과한 냉매가 길이방향 통로에서 와류가 발생될 수 있다.
이에, 본 실시예에서는 베어링측 토출통로 또는/및 연결방향 통로가 경사지게 형성될 수 있다. 도 7은 냉매의 토출통로에 대한 다른 실시예를 보인 단면도이다.
도 7을 참조하면, 베어링측 토출통로(1316)는 축방향에 대해 경사지게 형성되되, 예를 들어 베어링측 토출통로(1316)의 출구는 그 베어링측 토출통로(1316)의 입구보다 높게 형성될 수 있다.
이에 따라 베어링측 토출통로(1316)를 통과한 냉매가 샤프트측 토출통로(1255)로 진입할 때, 정확하게는 후술할 연통홈(1256)에서 와류가 발생되는 것을 효과적으로 억제할 수 있다.
또한, 연결방향 통로(1255b)는 축방향에 대해 경사지게 형성되되, 예를 들어 연결방향 통로(1255b)의 출구는 그 연결방향 통로(1255b)의 입구보다 높게 형성될 수 있다.
이에 따라 연결방향 통로(1255b)를 통과한 냉매가 길이방향 통로(1255a)에서 와류가 발생되는 것을 억제하여 냉매가 원활하게 토출되도록 할 수 있다.
여기서, 연결방향 통로(1255b)는 베어링측 토출통로(1316)와 일직선이 되도록 경사지게 형성되는 것이 냉매의 원활한 유동 측면에서 바람직할 수 있다.
한편, 베어링측 토출통로(1316)의 출구가 베어링측 토출통로(1316)의 입구보다 높은 위치에 형성되고, 연결방향 통로(1255b)의 출구가 연결방향 통로(1255b)의 입구보다 높은 위치에 형성될 수 있다. 이에 따라, 샤프트측 토출통로(1255), 즉 길이방향 통로(1255a)의 하단이 급유통로(1257)의 상단과 간섭되는 것을 피할 수 있다.
도 8은 본 실시예에 따른 소음 개선 효과를 종래와 비교하여 보인 그래프이다.
도 8을 참조하면, 본 실시예에 따른 회전축(125)을 통한 소음 저감 장치가 구비된 로터리 압축기의 경우가 종래와 같이 토출머플러(136)를 이용한 로터리 압축기에 비해 전 대역에서의 소음저감 효과가 현저하게 개선되는 것을 알 수 있다.
예를 들어, 청감소음 주 영역인 50~200Hz 대역(S1)에서는 소음이 대략 10dB정도 낮아졌고, 실외기 방사소음 주 영역인 200~1600Hz 대역(S2)에서는 방사소음이 대략 10~30dB 정도가 낮아졌으며, 실외기 고주파 영역인 1600~2000Hz 대역(S3)에서는 실외기 소음이 40dB 정도가 낮아졌음을 볼 수 있다.
이는, 회전축(125)의 내부에 구비되는 상대적으로 길고 좁은 샤프트측 토출통로(1255)를 이용하여 소음을 감쇄함에 따라 저주파 대역의 소음이 감쇄된 것임을 알 수 있다.
또한, 냉매가 회전축(125)의 샤프트측 토출통로(1255)를 통해 배출됨에 따라 케이싱(110)의 내부에서 발생될 수 있는 와류를 저지하게 되고, 이로 인해 토출맥동에 의한 2차 진동소음이 감퇴될 수 있다. 뿐만 아니라, 샤프트측 토출통로(1255)를 통해 배출되는 냉매의 회전력이 회전축(125)의 상단에 구비되는 팽창머플러(126)에 의해 감쇄됨에 따라, 토출맥동에 의한 2차 진동소음이 더욱 감퇴된 것임을 알 수 있다.
한편, 전술한 실시예에서는 실린더가 한 개인 단식 로터리 압축기를 예로 들어 설명하였으나, 경우에 따라서는 실린더가 축방향을 따라 배치되는 복식 로터리 압축기에도 동일하게 적용될 수 있다. 이에 대하여는 전술한 실시예와 동일하므로 이에 대한 구체적인 설명은 전술한 실시예에 대한 설명으로 대신한다.
110: 케이싱 110a: 내부공간
112: 흡입관 113: 토출관
120: 전동부 121: 고정자
1211: 권선코일 122: 회전자
125: 회전축 1251: 축부
1252: 메인베어링부 1253: 편심부
1254: 서브베어링부 1255: 샤프트측 토출통로
1255a: 길이방향 통로 1255b: 연결방향 통로
1256: 연통홈 1257: 급유통로
126: 팽창머플러 1261: 제1 플레이트
1262: 제2 플레이트 1263: 스페이서
130: 압축부 131: 메인 베어링 플레이트
1311: 메인플레이트부 1312: 메인보스부
1312a: 메인축수구멍 1313: 토출구
1315: 토출밸브 1316: 베어링측 토출통로
132: 서브 베어링 플레이트 1321: 서브플레이트부
1322: 서브보스부 1322a: 서브축수구멍
133 : 실린더 1331: 흡입구
1332 : 베인슬롯 1333: 토출안내홈
134: 롤링피스톤 135: 베인
136: 토출머플러 136a: 소음공간
136b: 관통구멍 A1: 토출구의 단면적
A2: 베어링측 토출통로의 단면적 A3: 샤프트측 토출통로의 단면적
A4: 스페이서 간 단면적 CL: 축중심
V: 압축실

Claims (16)

  1. 케이싱;
    상기 케이싱의 내부공간에 구비되는 구동모터;
    상기 케이싱의 내부공간에 구비되어 압축실을 형성하는 적어도 한 개 이상의 실린더;
    상기 적어도 한 개 이상의 실린더에 결합되며 토출구가 형성되는 플레이트부, 상기 플레이트부에서 축방향으로 연장되는 보스부를 구비하는 복수 개의 베어링 플레이트;
    일단은 상기 구동모터의 회전자에 결합되고, 타단은 상기 복수 개의 베어링 플레이트를 관통하여 결합되는 회전축; 및
    상기 복수 개의 베어링 플레이트 중에서 적어도 어느 한쪽 베어링 플레이트에 구비되며, 상기 케이싱의 내부공간에 대해 분리되도록 소음공간이 구비되는 적어도 한 개 이상의 토출머플러;를 포함하며,
    상기 베어링 플레이트에는 일단이 상기 토출머플러의 소음공간에 연통되는 베어링측 토출통로가 형성되고,
    상기 회전축에는 상기 베어링측 토출통로에 연통되어 상기 토출머플러의 소음공간으로 토출되는 냉매가 상기 케이싱의 내부공간으로 배출되도록 안내하는 샤프트측 토출통로가 형성되며,
    상기 회전축의 단부에는 팽창머플러가 더 구비되고, 상기 팽창머플러는 상기 회전축의 길이방향에 대해 교차되도록 구비되며,
    상기 팽창머플러는 상기 샤프트측 토출통로의 단면적보다 큰 적어도 한 개 이상의 플레이트를 포함하고, 상기 팽창머플러의 중심은 상기 샤프트측 토출통로의 축방향 중심과 동일 선상에 위치하도록 배치되며,
    상기 팽창머플러는,
    상기 회전축의 단부에 결합되는 제1 플레이트와,
    상기 제1 플레이트에 대해 축방향으로 기설정된 간격만큼 이격되는 제2 플레이트와,
    상기 제1 플레이트와 상기 제2 플레이트의 사이에 구비되는 스페이서로 이루어지고,
    상기 스페이서는 복수 개로 이루어져 원주방향을 따라 기설정된 간격을 두고 배치되는 로터리 압축기.
  2. 제1항에 있어서,
    상기 보스부의 내주면과 이를 마주보는 상기 회전축의 외주면 중에서 적어도 어느 한쪽에는 연통홈이 형성되고,
    상기 베어링측 토출통로와 상기 샤프트측 토출통로는 상기 연통홈에 의해 서로 연통되는 로터리 압축기.
  3. 제2항에 있어서,
    상기 연통홈의 단면적은 상기 베어링측 토출통로의 단면적 또는 상기 샤프트측 토출통로의 단면적보다 크거나 같게 형성되는 로터리 압축기.
  4. 제2항에 있어서,
    상기 베어링측 토출통로의 출구는 상기 보스부의 원주방향을 따라 기설정된 간격을 두고 복수 개가 형성되고, 상기 베어링측 토출통로의 출구를 마주보는 상기 샤프트측 토출통로의 입구는 상기 회전축의 원주방향을 따라 기설정된 간격을 두고 복수 개가 형성되며,
    상기 연통홈은 상기 복수 개의 베어링측 토출통로의 출구 또는 상기 복수 개의 샤프트측 토출통로의 입구가 수용되도록 환형으로 형성되는 로터리 압축기.
  5. 제4항에 있어서,
    상기 복수 개의 베어링측 토출통로의 출구와 상기 복수 개의 샤프트측 토출통로의 입구는 반경방향으로 동일선 상에 위치하도록 형성되는 로터리 압축기.
  6. 삭제
  7. 삭제
  8. 삭제
  9. 제1항에 있어서,
    상기 베어링측 토출통로는 상기 보스부의 외주면과 내주면 사이를 관통하여 형성되는 로터리 압축기.
  10. 제9항에 있어서,
    상기 베어링측 토출통로는 반경방향으로 형성되거나 또는 축방향에 대해 경사지게 형성되는 로터리 압축기.
  11. 제1항에 있어서,
    상기 샤프트측 토출통로는,
    상기 회전축의 길이방향으로 형성되는 길이방향 통로와, 상기 회전축의 외주면에서 상기 길이방향 통로의 내주면 사이를 관통하는 연결방향 통로를 포함하는 로터리 압축기.
  12. 제11항에 있어서,
    상기 연결방향 통로는 반경방향으로 형성되거나 또는 축방향에 대해 경사지게 형성되는 로터리 압축기.
  13. 제11항에 있어서,
    상기 길이방향 통로의 단면적은 상기 연결방향 통로의 단면적보다 크게 형성되는 로터리 압축기.
  14. 제1항에 있어서,
    상기 회전축의 양단 중에서 상기 베어링 플레이트에 지지되는 단부에는 급유구멍이 형성되고,
    상기 급유구멍은 상기 샤프트측 토출통로와 분리되는 위치까지 형성되는 로터리 압축기.
  15. 제1항 내지 제5항, 제9항 내지 제14항 중 어느 한 항에 있어서,
    상기 베어링측 토출통로의 단면적은 상기 샤프트측 토출통로의 단면적에 비해 넓거나 같게 형성되는 로터리 압축기.
  16. 제15항에 있어서,
    상기 토출구의 단면적은 상기 베어링측 토출통로의 단면적보다 넓거나 같게 형성되는 로터리 압축기.
KR1020200110328A 2020-08-31 2020-08-31 로터리 압축기 KR102387191B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200110328A KR102387191B1 (ko) 2020-08-31 2020-08-31 로터리 압축기

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200110328A KR102387191B1 (ko) 2020-08-31 2020-08-31 로터리 압축기

Publications (2)

Publication Number Publication Date
KR20220029845A KR20220029845A (ko) 2022-03-10
KR102387191B1 true KR102387191B1 (ko) 2022-04-18

Family

ID=80816495

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200110328A KR102387191B1 (ko) 2020-08-31 2020-08-31 로터리 압축기

Country Status (1)

Country Link
KR (1) KR102387191B1 (ko)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101563005B1 (ko) * 2009-08-10 2015-10-26 엘지전자 주식회사 압축기

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5927184U (ja) * 1982-08-11 1984-02-20 松下冷機株式会社 ロ−タリ−コンプレツサ
JP2016102640A (ja) 2014-11-28 2016-06-02 ダイキン工業株式会社 ロータリ型圧縮機、および、それを用いた空気調和機

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101563005B1 (ko) * 2009-08-10 2015-10-26 엘지전자 주식회사 압축기

Also Published As

Publication number Publication date
KR20220029845A (ko) 2022-03-10

Similar Documents

Publication Publication Date Title
US5674061A (en) Scroll compression having a discharge muffler chamber
EP1444442B1 (en) Muffler for hermetic rotary compressor
AU2002224180A1 (en) Muffler for hermetic rotary compressor
KR20060024739A (ko) 다기통 압축기
KR102387191B1 (ko) 로터리 압축기
KR102238358B1 (ko) 로터리 압축기
KR100336134B1 (ko) 저소음 회전식 압축기
KR20060024935A (ko) 다기통 압축기
CN210239995U (zh) 涡旋盘组件、涡旋压缩机及制冷系统
KR200381016Y1 (ko) 로터리 압축기의 흡입손실 저감 구조
KR200392423Y1 (ko) 복식 로터리 압축기의 실링구조
KR102608742B1 (ko) 로터리 압축기
CN217421535U (zh) 消音器、单向阀和涡旋压缩机
KR100814019B1 (ko) 다기통 회전압축기
KR102413928B1 (ko) 토출 밸브 조립체 및 이를 포함하는 로터리 압축기
KR100575804B1 (ko) 로터리 압축기의 가스토출 안내구조
KR20180104871A (ko) 로터리 압축기
KR100575833B1 (ko) 로터리 압축기의 소음 저감 장치
KR102413930B1 (ko) 토출 밸브 조립체 및 이를 포함하는 로터리 압축기
KR102324772B1 (ko) 압축기
CN113803259B (zh) 吸声装置、压缩机以及制冷设备
KR100343727B1 (ko) 스크롤 압축기의 구동축 지지구조
KR100360864B1 (ko) 밀폐형 회전식 압축기의 유토출 저감구조
JPH0968180A (ja) 気体圧縮機
KR100304556B1 (ko) 밀폐형회전식압축기의소음저감구조

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant