KR102373987B1 - 알츠하이머 병 및 정상 노화에서 템플릿 기반 해마 서브필드 위축 분석 방법 - Google Patents
알츠하이머 병 및 정상 노화에서 템플릿 기반 해마 서브필드 위축 분석 방법 Download PDFInfo
- Publication number
- KR102373987B1 KR102373987B1 KR1020190171290A KR20190171290A KR102373987B1 KR 102373987 B1 KR102373987 B1 KR 102373987B1 KR 1020190171290 A KR1020190171290 A KR 1020190171290A KR 20190171290 A KR20190171290 A KR 20190171290A KR 102373987 B1 KR102373987 B1 KR 102373987B1
- Authority
- KR
- South Korea
- Prior art keywords
- hippocampal
- atrophy
- subfield
- hippocampus
- model
- Prior art date
Links
- 208000024827 Alzheimer disease Diseases 0.000 title claims abstract description 84
- 210000001320 hippocampus Anatomy 0.000 title claims abstract description 66
- 206010003694 Atrophy Diseases 0.000 title claims abstract description 57
- 230000037444 atrophy Effects 0.000 title claims abstract description 57
- 238000004458 analytical method Methods 0.000 title claims abstract description 34
- 230000032683 aging Effects 0.000 title claims abstract description 23
- 230000000971 hippocampal effect Effects 0.000 claims abstract description 109
- 238000000034 method Methods 0.000 claims abstract description 26
- 238000013507 mapping Methods 0.000 claims abstract description 16
- 230000011218 segmentation Effects 0.000 claims abstract description 13
- 238000004364 calculation method Methods 0.000 claims abstract description 10
- 238000013425 morphometry Methods 0.000 claims abstract description 6
- 238000009877 rendering Methods 0.000 claims abstract description 5
- 238000004422 calculation algorithm Methods 0.000 claims description 17
- 238000003384 imaging method Methods 0.000 claims description 14
- 238000002595 magnetic resonance imaging Methods 0.000 claims description 11
- 238000012545 processing Methods 0.000 claims description 7
- 238000013480 data collection Methods 0.000 claims description 3
- 239000003086 colorant Substances 0.000 claims 1
- 230000000694 effects Effects 0.000 abstract description 5
- 238000007781 pre-processing Methods 0.000 abstract description 3
- 208000010877 cognitive disease Diseases 0.000 description 46
- 208000027061 mild cognitive impairment Diseases 0.000 description 44
- 238000005259 measurement Methods 0.000 description 12
- 230000009466 transformation Effects 0.000 description 10
- 238000010586 diagram Methods 0.000 description 9
- 230000002146 bilateral effect Effects 0.000 description 7
- 239000011159 matrix material Substances 0.000 description 7
- 230000008569 process Effects 0.000 description 6
- 210000004556 brain Anatomy 0.000 description 5
- 230000000877 morphologic effect Effects 0.000 description 5
- 206010012289 Dementia Diseases 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 4
- 230000006999 cognitive decline Effects 0.000 description 3
- 201000010099 disease Diseases 0.000 description 3
- 230000004660 morphological change Effects 0.000 description 3
- 238000002610 neuroimaging Methods 0.000 description 3
- 238000012935 Averaging Methods 0.000 description 2
- 208000014644 Brain disease Diseases 0.000 description 2
- 206010051290 Central nervous system lesion Diseases 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 210000004763 bicuspid Anatomy 0.000 description 2
- 239000000090 biomarker Substances 0.000 description 2
- 230000001149 cognitive effect Effects 0.000 description 2
- 238000003745 diagnosis Methods 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 230000001434 glomerular Effects 0.000 description 2
- 238000011835 investigation Methods 0.000 description 2
- 230000015654 memory Effects 0.000 description 2
- 230000004770 neurodegeneration Effects 0.000 description 2
- 208000015122 neurodegenerative disease Diseases 0.000 description 2
- 230000000926 neurological effect Effects 0.000 description 2
- 208000024891 symptom Diseases 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 208000000044 Amnesia Diseases 0.000 description 1
- 208000032862 Clinical Deterioration Diseases 0.000 description 1
- 208000031124 Dementia Alzheimer type Diseases 0.000 description 1
- 208000026139 Memory disease Diseases 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000003066 decision tree Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011038 discontinuous diafiltration by volume reduction Methods 0.000 description 1
- 208000035475 disorder Diseases 0.000 description 1
- 238000013399 early diagnosis Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000008717 functional decline Effects 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 230000006984 memory degeneration Effects 0.000 description 1
- 208000023060 memory loss Diseases 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000007121 neuropathological change Effects 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 208000037821 progressive disease Diseases 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 210000005241 right ventricle Anatomy 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000004448 titration Methods 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H30/00—ICT specially adapted for the handling or processing of medical images
- G16H30/40—ICT specially adapted for the handling or processing of medical images for processing medical images, e.g. editing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T15/00—3D [Three Dimensional] image rendering
- G06T15/08—Volume rendering
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T17/00—Three dimensional [3D] modelling, e.g. data description of 3D objects
- G06T17/20—Finite element generation, e.g. wire-frame surface description, tesselation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/11—Region-based segmentation
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/20—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/30—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for calculating health indices; for individual health risk assessment
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H70/00—ICT specially adapted for the handling or processing of medical references
- G16H70/60—ICT specially adapted for the handling or processing of medical references relating to pathologies
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10028—Range image; Depth image; 3D point clouds
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10072—Tomographic images
- G06T2207/10088—Magnetic resonance imaging [MRI]
Landscapes
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Public Health (AREA)
- Medical Informatics (AREA)
- Epidemiology (AREA)
- Primary Health Care (AREA)
- Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Biomedical Technology (AREA)
- Computer Graphics (AREA)
- Data Mining & Analysis (AREA)
- Databases & Information Systems (AREA)
- Pathology (AREA)
- Radiology & Medical Imaging (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Software Systems (AREA)
- Geometry (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Magnetic Resonance Imaging Apparatus (AREA)
Abstract
Description
도 2는 본 발명에 따른 해마의 대표적인 시상면 조각에 대한 샘플 수동 흔적을 보여주는 예시도이다.
도 3은 대상 해마의 ICP 알고리즘에 따른 ICBM 152 템플릿 등록 전과 후의 이미지 예시도이다.
도 4는 본 발명에 따른 해마의 내측 축 포인트가 있는 오리지널 3D 객체를 보여주는 예시도이다.
도 5는 본 발명에 따른 해마의 MR 영상 기반 모델에 매핑된 하위영역(subfield)을 나타내는 예시도이다.
도 6은 본 발명에 따른 세 가지 다른 시점에서 HC, MCI 및 AD 그룹의 평균 해마 용량을 보여주는 그래프이다.
도 7은 본 발명에 따른 상이한 스캔 간격에서 건강한 대조군(HC) 그룹의 평균 방사상 거리 맵을 보여주는 그림이다.
도 8은 본 발명에 따른 상이한 스캔 간격에서 온화한인지 장애(MCI) 그룹의 평균 방사형 거리 맵을 보여주는 그림이다.
도 9는 본 발명에 따른 상이한 스캔 간격에서 알츠하이머 병(AD) 그룹의 평균 방사형 거리 맵을 보여주는 그림이다.
도 10은 본 발명의 해마 서브 필드 위축 분석의 전체 과정과 이에 따른 이미지 모델을 도시하는 예시도이다.
HC(n=30) | MCI (n=30) | AD (n=30) | |
Age (Years) | 74.6 ± 4.2 (65-85) | 76.4 ± 5.3 (65-85) | 75.8 ± 4.6 (65-85) |
Gender, M/F | 15/15 | 15/15 | 15/15 |
MMSE | 28.4 ± 1.2 | 26.2 ± 1.6 | 22.3 ± 1.8 |
CDR global | 0.55±0.38 | 1.08±0.63 | 2.13±0.82 |
Baseline Imaging Data | ||||||
Volume(mm 3 ) | Hippocampus Left | Hippocampus Right | ||||
HC | MCI | AD | HC | MCI | AD | |
Hippocampus | 3238.28 ±424.65 |
2858.64 ±434.33 |
2583.61 ±443.78 |
3343.11 ±368.21 |
2987.81 ±426.65 |
2620.25 ±315.33 |
Subiculum | 932.56 ±98.91 |
824.07 ±87.94 |
659.63 ±64.84 |
971.47 ±77.08 |
868.17 ±105.39 |
686.36 ±64.75 |
CA1 | 1056.63 ±85.14 |
906.75 ±131.74 |
774.84 ±76.75 |
1127.14 ±67.62 |
882.13 ±111.51 |
742.47 ±73.39 |
CA2-CA4 and Other | 1249.13 ±113.61 |
1127.80 ±114.83 |
1149.13 ±138.85 |
1244.47 ±91.61 |
1237.53 ±132.52 |
1191.42 ±75.70 |
After 6 Months Imaging Data | ||||||
Hippocampus | 3164.43 ±415.86 |
2713.81 ±467.52 |
2472.51 ±344.63 |
3255.35 ±372.82 |
2839.51 ±369.52 |
2512.96 ±328.16 |
Subiculum | 893.33 ±96.33 |
784.34 ±90.08 |
628.76 ±126.18 |
936.73 ±77.03 |
829.46 ±105.69 |
652.75 ±63.17 |
CA1 | 1038.18 ±84.09 |
845.58 ±121.48 |
748.82 ±76.42 |
1097.14 ±67.95 |
818.12 ±109.93 |
710.79 ±75.99 |
CA2-CA4 and Other | 1232.90 ±112.65 |
1083.89 ±114.92 |
1104.96 ±93.18 |
1221.43 ±90.76 |
1191.93 ±132.18 | 1149.42 ±75.86 |
After 12 Months Imaging Data | ||||||
Hippocampus | 3101.66 ±460.65 |
2568.56 ±462.84 |
2379.80 ±344.63 |
3169.89 ±362.16 |
2674.93 ±274.65 |
2401.14 ±322.39 |
Subiculum | 866.14 ±91.15 |
734.92 ±90.43 |
582.64 ±64.88 |
904.47 ±77.16 |
778.76 ±110.74 |
616.94 ±62.32 |
CA1 | 1016.58 ±83.74 |
796.75 ±122.28 |
724.74 ±76.39 | 1062.89 ±67.10 |
758.24 ±109.39 |
684.24 ±76.73 |
CA2-CA4 and Other | 1218.94 ±112.69 |
1036.89 ±114.63 |
1072.42 ±93.33 |
1202.53 ±88.14 |
1137.93 ±109.07 |
1099.96 ±75.96 |
0-6 Months Average Volume Loss (%) | ||||||
Baseline Volume (mm 3 ) | Healthy Control | Mild Cognitive Impairment | Alzheimer’s Disease | |||
Left | Right | Left | Right | Left | Right | |
Hippocampus
Total |
-2.28 | -2.62 | -5.07 | -4.96 | -4.30 | -4.09 |
Subiculum | -4.21 | -3.57 | -4.82 | -4.46 | -4.69 | -4.90 |
CA1 | -1.74 | -2.66 | -6.75 | -7.26 | -3.36 | -4.27 |
CA2-CA4 and Other | -1.29 | -1.85 | -3.89 | -3.68 | -3.85 | -3.53 |
0-12 Months Average Volume Loss (%) | ||||||
Hippocampus
Total |
-4.22 | -5.18 | -10.15 | -10.47 | -7.89 | -8.36 |
Subiculum | -7.12 | -6.90 | -10.82 | -10.30 | -11.67 | -10.11 |
CA1 | -3.79 | -5.70 | -12.12 | -14.04 | -6.47 | -7.84 |
CA2-CA4 and Other | -2.42 | -3.37 | -8.06 | -8.05 | -6.68 | -7.68 |
Claims (4)
- 의료 영상 처리 시스템에 의해 수행되는 알츠하이머 병 및 정상 노화에서 해마 서브필드 위축 분석 방법에 있어서,
알츠하이머 병(AD) 환자 및 정상 노화 대상자의 기본 자기 공명 영상(MRI) 및 일정 기간동안 추적 수집된 이미징 데이터를 획득하는 MR 이미징 데이터 수집 단계,
수집된 임상 이미징 데이터를 특정 컴퓨팅 장치나 데이터베이스 서버의 저장 공간에서 템플릿과 함께 등록하고 관심영역 해마 분할 및 볼륨 렌더링을 수행하는 이미지 등록 및 해마 분할 단계,
3D 해마 모델에 대한 3D 포인트 클라우드 데이터를 생성하고 등록(Registration)하는 포인트 클라우드 등록 단계,
등록된 3D 해마 포인트 클라우드 모델에서 내측 축 포인트가 있는 3D 모델 이미지를 생성하는 내측 축을 계산(Medial Axis Calculation)하는 클라우드 모델의 내측 축 계산 단계,
분할 된 해마 데이터를 기반으로 해마 표면의 서브필드(subfield) 위축 변화를 시각화하기 위해 3 차원 공간에서의 표면 지점 내측 축으로부터 거리에 따라 색을 맵핑하는 방사상 거리 기반 컬러 맵핑 단계,
해마 모양의 분석을 수행하는 해마 표면 기반 형상 분석 단계, 및
해마의 하위 필드에 복셀 기반의 형태 계측(morphometry)을 수행하는 해마 서브필드 위축 분석 단계를 포함하고,
상기 포인트 클라우드 등록 단계는 ICP(Iterative Closest Point) 알고리즘 및 포인트 매칭(Robust point matching, RPM) 알고리즘을 사용하여 3D 표면 점을 추출하는 것을 특징으로 하는 알츠하이머 병 및 정상 노화에서 템플릿 기반 해마 서브필드 위축 분석 방법. - 삭제
- 청구항 1에 있어서,
상기 클라우드 모델의 내측 축 계산 단계는, 이미지 개체의 골격 만 남을 때까지 객체의 표면을 반복적으로 침식하는 과정을 수행하는 이진 희석(Binary thinning) 알고리즘을 사용하여 내측 축 포인트가 있는 3D 모델 이미지를 생성하는 것을 특징으로 하는 알츠하이머 병 및 정상 노화에서 템플릿 기반 해마 서브필드 위축 분석 방법. - 청구항 1에 있어서,
상기 방사상 거리 기반 컬러 맵핑 단계는, 방사형 거리 기반 맵을 사용하여 내측 축에서 표면 점까지의 거리를 계산하고 거리를 기반으로 색상 레이블을 매핑하는 것을 특징으로 하는 알츠하이머 병 및 정상 노화에서 템플릿 기반 해마 서브필드 위축 분석 방법.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020190171290A KR102373987B1 (ko) | 2019-12-19 | 2019-12-19 | 알츠하이머 병 및 정상 노화에서 템플릿 기반 해마 서브필드 위축 분석 방법 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020190171290A KR102373987B1 (ko) | 2019-12-19 | 2019-12-19 | 알츠하이머 병 및 정상 노화에서 템플릿 기반 해마 서브필드 위축 분석 방법 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20210079133A KR20210079133A (ko) | 2021-06-29 |
KR102373987B1 true KR102373987B1 (ko) | 2022-03-14 |
Family
ID=76626808
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020190171290A KR102373987B1 (ko) | 2019-12-19 | 2019-12-19 | 알츠하이머 병 및 정상 노화에서 템플릿 기반 해마 서브필드 위축 분석 방법 |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR102373987B1 (ko) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20230054990A (ko) * | 2021-10-18 | 2023-04-25 | 전남대학교산학협력단 | 폐경 후 여성의 알츠하이머 치매의 조기 진단 방법 |
CN116486283B (zh) * | 2023-01-09 | 2024-06-28 | 深圳优立全息科技有限公司 | 一种基于体素划分的实时点云目标检测方法及装置 |
-
2019
- 2019-12-19 KR KR1020190171290A patent/KR102373987B1/ko active IP Right Grant
Non-Patent Citations (5)
Title |
---|
Liana G. Apostolova 외, Subregional hippocampal atrophy predicts Alzheimer’s dementia in the cognitively normal, Neurobiology of Aging, 2010.07.31., Vol.31, pp.1077-1088.* |
Martin Sinko 외, 3D Registration of the Point Cloud Data Using ICP Algorithm in Medical Image Analysis, 2018 ELEKTRO, 2018.05.23., pp.1-6. |
Patrik Kamencay 외, Improved Feature Point Algorithm for 3D Point Cloud Registration, 42nd International Conference on Telecommunications and Signal Processing, 2019.07.03., pp.517-520. |
Sasakthi S. Abeysinghe 외, Segmentation-free Skeletonization of Grayscale Volumes for Shape Understanding, IEEE International Conference on Shape Modeling and Applications 2008, 2008.06.06., pp.63-71.* |
Xiaoshui Huang 외, A Systematic Approach for Cross-source Point Cloud Registration by Preserving Macro and Micro Structures, arXiv, 2016.08.22., pp.1-14. |
Also Published As
Publication number | Publication date |
---|---|
KR20210079133A (ko) | 2021-06-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Chang et al. | Performance measure characterization for evaluating neuroimage segmentation algorithms | |
Fiez et al. | Lesion segmentation and manual warping to a reference brain: Intra‐and interobserver reliability | |
JP5081390B2 (ja) | 腫瘍量を監視する方法及びシステム | |
Zook et al. | Statistical analysis of fractal-based brain tumor detection algorithms | |
US20120020573A1 (en) | Image analysis systems using non-linear data processing techniques and methods using same | |
US9361686B2 (en) | Method and apparatus for the assessment of medical images | |
JP2004174254A (ja) | 疾患関連組織変化を測定する方法及びシステム | |
El-Baz et al. | Appearance analysis for diagnosing malignant lung nodules | |
JP2005526583A (ja) | 車輪状投影分析を用いた肺結節検出 | |
CN111932492B (zh) | 一种医学图像处理方法、装置及计算机可读存储介质 | |
KR20170078723A (ko) | 볼륨 이미지 레코드로부터의 국부적 품질 측정들의 결정 | |
Kim et al. | Hippocampal shape modeling based on a progressive template surface deformation and its verification | |
CN110706218B (zh) | 基于动态增强磁共振成像的乳腺肿瘤定位分析方法 | |
KR102373987B1 (ko) | 알츠하이머 병 및 정상 노화에서 템플릿 기반 해마 서브필드 위축 분석 방법 | |
EP2274727A1 (en) | A pet data processing system, an arrangement, a method and a computer program product for determining a distribution of a tracer uptake | |
Madusanka et al. | One-year follow-up study of hippocampal subfield atrophy in Alzheimer's disease and normal aging | |
Widodo et al. | Lung diseases detection caused by smoking using support vector machine | |
WO2012012576A1 (en) | Image analysis systems using non-linear data processing techniques and methods using same | |
US20220198652A1 (en) | Image analysis device, image analysis method, and image analysis program | |
Öziç et al. | A new model to determine asymmetry coefficients on MR images using PSNR and SSIM | |
Araújo et al. | Segmentation and three‐dimensional reconstruction of lesions using the automated breast volume scanner (ABVS) | |
Raniga et al. | Automated 11C-PiB standardized uptake value ratio | |
US12159403B2 (en) | Combination of features from biopsies and scans to predict prognosis in SCLC | |
Mosaliganti et al. | An imaging workflow for characterizing phenotypical change in large histological mouse model datasets | |
CN114418984A (zh) | 一种基于超声的人体组织对称性检测分析方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20191219 |
|
PA0201 | Request for examination | ||
PG1501 | Laying open of application | ||
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20210723 Patent event code: PE09021S01D |
|
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20220208 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20220308 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20220310 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration |