KR102373472B1 - 각 영역에서 최적화된 자율 주행을 수행할 수 있도록 위치 기반 알고리즘 선택을 통해 심리스 파라미터 변경을 수행하는 방법 및 장치 - Google Patents
각 영역에서 최적화된 자율 주행을 수행할 수 있도록 위치 기반 알고리즘 선택을 통해 심리스 파라미터 변경을 수행하는 방법 및 장치 Download PDFInfo
- Publication number
- KR102373472B1 KR102373472B1 KR1020200004517A KR20200004517A KR102373472B1 KR 102373472 B1 KR102373472 B1 KR 102373472B1 KR 1020200004517 A KR1020200004517 A KR 1020200004517A KR 20200004517 A KR20200004517 A KR 20200004517A KR 102373472 B1 KR102373472 B1 KR 102373472B1
- Authority
- KR
- South Korea
- Prior art keywords
- cnn
- autonomous driving
- target vehicle
- learning
- information
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 148
- 238000004422 calculation algorithm Methods 0.000 title claims abstract description 31
- 238000012549 training Methods 0.000 claims abstract description 62
- 238000013527 convolutional neural network Methods 0.000 claims description 350
- 230000008569 process Effects 0.000 claims description 75
- 238000012360 testing method Methods 0.000 claims description 60
- 210000002569 neuron Anatomy 0.000 claims description 10
- 230000002787 reinforcement Effects 0.000 claims description 10
- 238000001514 detection method Methods 0.000 claims description 7
- 230000011218 segmentation Effects 0.000 claims description 7
- 238000010998 test method Methods 0.000 claims description 5
- 238000012544 monitoring process Methods 0.000 claims description 4
- 102100034112 Alkyldihydroxyacetonephosphate synthase, peroxisomal Human genes 0.000 claims 5
- 101000799143 Homo sapiens Alkyldihydroxyacetonephosphate synthase, peroxisomal Proteins 0.000 claims 5
- 238000000848 angular dependent Auger electron spectroscopy Methods 0.000 claims 5
- 230000008859 change Effects 0.000 abstract description 15
- 238000010586 diagram Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 241001465754 Metazoa Species 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 238000010801 machine learning Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000007792 addition Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 238000013135 deep learning Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/285—Selection of pattern recognition techniques, e.g. of classifiers in a multi-classifier system
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/50—Context or environment of the image
- G06V20/56—Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W30/00—Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
- B60W30/08—Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W40/00—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
- B60W40/02—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W50/00—Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
- B60W50/08—Interaction between the driver and the control system
- B60W50/085—Changing the parameters of the control units, e.g. changing limit values, working points by control input
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W60/00—Drive control systems specially adapted for autonomous road vehicles
- B60W60/001—Planning or execution of driving tasks
- B60W60/0015—Planning or execution of driving tasks specially adapted for safety
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W60/00—Drive control systems specially adapted for autonomous road vehicles
- B60W60/005—Handover processes
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/0088—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots characterized by the autonomous decision making process, e.g. artificial intelligence, predefined behaviours
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0212—Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
- G05D1/0219—Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory ensuring the processing of the whole working surface
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0212—Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
- G05D1/0221—Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory involving a learning process
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0276—Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle
- G05D1/0278—Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle using satellite positioning signals, e.g. GPS
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/214—Generating training patterns; Bootstrap methods, e.g. bagging or boosting
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/22—Matching criteria, e.g. proximity measures
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G06N3/0454—
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/084—Backpropagation, e.g. using gradient descent
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/764—Arrangements for image or video recognition or understanding using pattern recognition or machine learning using classification, e.g. of video objects
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/82—Arrangements for image or video recognition or understanding using pattern recognition or machine learning using neural networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/87—Arrangements for image or video recognition or understanding using pattern recognition or machine learning using selection of the recognition techniques, e.g. of a classifier in a multiple classifier system
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Evolutionary Computation (AREA)
- Artificial Intelligence (AREA)
- Data Mining & Analysis (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Software Systems (AREA)
- Computing Systems (AREA)
- Automation & Control Theory (AREA)
- General Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Multimedia (AREA)
- Mathematical Physics (AREA)
- Medical Informatics (AREA)
- Databases & Information Systems (AREA)
- Biophysics (AREA)
- Biomedical Technology (AREA)
- Computational Linguistics (AREA)
- Molecular Biology (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Aviation & Aerospace Engineering (AREA)
- Evolutionary Biology (AREA)
- Bioinformatics & Computational Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Human Computer Interaction (AREA)
- Image Analysis (AREA)
- Traffic Control Systems (AREA)
- Business, Economics & Management (AREA)
- Game Theory and Decision Science (AREA)
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201962798821P | 2019-01-30 | 2019-01-30 | |
US62/798,821 | 2019-01-30 | ||
US16/731,083 US10890916B2 (en) | 2019-01-30 | 2019-12-31 | Location-specific algorithm selection for optimized autonomous driving |
US16/731,083 | 2019-12-31 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20200094655A KR20200094655A (ko) | 2020-08-07 |
KR102373472B1 true KR102373472B1 (ko) | 2022-03-14 |
Family
ID=69187573
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020200004517A KR102373472B1 (ko) | 2019-01-30 | 2020-01-13 | 각 영역에서 최적화된 자율 주행을 수행할 수 있도록 위치 기반 알고리즘 선택을 통해 심리스 파라미터 변경을 수행하는 방법 및 장치 |
Country Status (5)
Country | Link |
---|---|
US (1) | US10890916B2 (zh) |
EP (1) | EP3690725A1 (zh) |
JP (1) | JP7092383B2 (zh) |
KR (1) | KR102373472B1 (zh) |
CN (1) | CN111507373B (zh) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102598402B1 (ko) * | 2018-07-24 | 2023-11-06 | 현대자동차 주식회사 | 기어 검사장치 및 이를 이용한 기어 검사방법 |
US11880997B2 (en) | 2020-08-28 | 2024-01-23 | Samsung Electronics Co., Ltd. | Method and apparatus with pose estimation |
US11938941B2 (en) | 2020-08-31 | 2024-03-26 | Denso International America, Inc. | Mode selection according to system conditions |
KR102345267B1 (ko) * | 2020-10-12 | 2021-12-31 | 서울대학교산학협력단 | 목표 지향적 강화학습 방법 및 이를 수행하기 위한 장치 |
KR102588450B1 (ko) * | 2021-11-02 | 2023-10-13 | 주식회사 오비고 | 특정 사용자의 자율주행 경험 만족도 제고를 위한 자율주행 알고리즘 개인화 방법 및 장치 |
KR102421289B1 (ko) * | 2022-01-03 | 2022-07-18 | 주식회사 아라종합기술 | 패러렐 디시전 보팅 알고리즘에 따른 영상기반 시정 탐지 학습 방법 및 학습 장치, 그리고 이를 이용한 테스트 방법 및 테스트 장치 |
CN117593686B (zh) * | 2024-01-19 | 2024-04-09 | 福思(杭州)智能科技有限公司 | 基于车况真值数据的模型评测方法和装置 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10176388B1 (en) * | 2016-11-14 | 2019-01-08 | Zoox, Inc. | Spatial and temporal information for semantic segmentation |
Family Cites Families (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20010049323A1 (en) * | 2000-02-10 | 2001-12-06 | Fox Gary T. | Treadmill |
US10019652B2 (en) * | 2016-02-23 | 2018-07-10 | Xerox Corporation | Generating a virtual world to assess real-world video analysis performance |
CN107180220B (zh) * | 2016-03-11 | 2023-10-31 | 松下电器(美国)知识产权公司 | 危险预测方法 |
US10390003B1 (en) * | 2016-08-29 | 2019-08-20 | Perceptln Shenzhen Limited | Visual-inertial positional awareness for autonomous and non-autonomous device |
US20180239969A1 (en) | 2017-02-23 | 2018-08-23 | Ford Global Technologies, Llc | Free Space Detection Using Monocular Camera and Deep Learning |
US10108850B1 (en) * | 2017-04-24 | 2018-10-23 | Intel Corporation | Recognition, reidentification and security enhancements using autonomous machines |
US10007269B1 (en) | 2017-06-23 | 2018-06-26 | Uber Technologies, Inc. | Collision-avoidance system for autonomous-capable vehicle |
US10474160B2 (en) | 2017-07-03 | 2019-11-12 | Baidu Usa Llc | High resolution 3D point clouds generation from downsampled low resolution LIDAR 3D point clouds and camera images |
US10496104B1 (en) * | 2017-07-05 | 2019-12-03 | Perceptin Shenzhen Limited | Positional awareness with quadocular sensor in autonomous platforms |
US10192113B1 (en) * | 2017-07-05 | 2019-01-29 | PerceptIn, Inc. | Quadocular sensor design in autonomous platforms |
US10095977B1 (en) * | 2017-10-04 | 2018-10-09 | StradVision, Inc. | Learning method and learning device for improving image segmentation and testing method and testing device using the same |
US10089743B1 (en) * | 2017-10-05 | 2018-10-02 | StradVision, Inc. | Method for segmenting an image and device using the same |
US10169679B1 (en) * | 2017-10-13 | 2019-01-01 | StradVision, Inc. | Learning method and learning device for adjusting parameters of CNN by using loss augmentation and testing method and testing device using the same |
US10049323B1 (en) * | 2017-10-13 | 2018-08-14 | StradVision, Inc. | Method and device for performing activation and convolution operation at the same time and learning method and learning device for the same |
US10007865B1 (en) * | 2017-10-16 | 2018-06-26 | StradVision, Inc. | Learning method and learning device for adjusting parameters of CNN by using multi-scale feature maps and testing method and testing device using the same |
US10902615B2 (en) * | 2017-11-13 | 2021-01-26 | Qualcomm Incorporated | Hybrid and self-aware long-term object tracking |
US11080886B2 (en) * | 2017-11-15 | 2021-08-03 | Qualcomm Incorporated | Learning disentangled invariant representations for one shot instance recognition |
US10535138B2 (en) * | 2017-11-21 | 2020-01-14 | Zoox, Inc. | Sensor data segmentation |
US10324467B1 (en) * | 2017-12-29 | 2019-06-18 | Apex Artificial Intelligence Industries, Inc. | Controller systems and methods of limiting the operation of neural networks to be within one or more conditions |
JP7011472B2 (ja) | 2018-01-15 | 2022-01-26 | キヤノン株式会社 | 情報処理装置、情報処理方法 |
US20190361454A1 (en) * | 2018-05-24 | 2019-11-28 | GM Global Technology Operations LLC | Control systems, control methods and controllers for an autonomous vehicle |
US10311578B1 (en) * | 2019-01-23 | 2019-06-04 | StradVision, Inc. | Learning method and learning device for segmenting an image having one or more lanes by using embedding loss to support collaboration with HD maps required to satisfy level 4 of autonomous vehicles and softmax loss, and testing method and testing device using the same |
-
2019
- 2019-12-31 US US16/731,083 patent/US10890916B2/en active Active
-
2020
- 2020-01-13 KR KR1020200004517A patent/KR102373472B1/ko active IP Right Grant
- 2020-01-21 EP EP20152973.2A patent/EP3690725A1/en active Pending
- 2020-01-22 JP JP2020008780A patent/JP7092383B2/ja active Active
- 2020-01-23 CN CN202010077090.XA patent/CN111507373B/zh active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10176388B1 (en) * | 2016-11-14 | 2019-01-08 | Zoox, Inc. | Spatial and temporal information for semantic segmentation |
Also Published As
Publication number | Publication date |
---|---|
CN111507373A (zh) | 2020-08-07 |
US20200241544A1 (en) | 2020-07-30 |
US10890916B2 (en) | 2021-01-12 |
CN111507373B (zh) | 2023-09-08 |
EP3690725A1 (en) | 2020-08-05 |
KR20200094655A (ko) | 2020-08-07 |
JP7092383B2 (ja) | 2022-06-28 |
JP2020123346A (ja) | 2020-08-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102373472B1 (ko) | 각 영역에서 최적화된 자율 주행을 수행할 수 있도록 위치 기반 알고리즘 선택을 통해 심리스 파라미터 변경을 수행하는 방법 및 장치 | |
KR102296507B1 (ko) | 트래킹 네트워크를 포함한 cnn을 사용하여 객체를 트래킹하는 방법 및 이를 이용한 장치 | |
US20210362596A1 (en) | End-To-End Tracking of Objects | |
EP3707466B1 (en) | Method of computer vision based localisation and navigation and system for performing the same | |
US11427210B2 (en) | Systems and methods for predicting the trajectory of an object with the aid of a location-specific latent map | |
JP7109091B2 (ja) | 物体検出器の学習方法及びテスト方法、それを利用した学習装置及びテスト装置 | |
US10466361B2 (en) | Systems and methods for multi-sensor fusion using permutation matrix track association | |
CN112000754A (zh) | 地图构建方法、装置、存储介质及计算机设备 | |
US20210096576A1 (en) | Deep learning based motion control of a vehicle | |
KR102301631B1 (ko) | 협업 주행을 수행하는 자동차들로부터 획득된 주행 이미지들을 통합하는 방법 및 이를 이용한 주행 이미지 통합 장치 | |
CN111507369B (zh) | 自动行驶车辆空间学习方法及装置、测试方法及装置 | |
US20230243658A1 (en) | Systems, Methods and Devices for Map-Based Object's Localization Deep Learning and Object's Motion Trajectories on Geospatial Maps Using Neural Network | |
KR102296493B1 (ko) | 어텐션 드리븐(attention-driven) 알고리즘을 이용하여 랜드마크를 검출하여 경로 플래닝을 위한 자율 주행 차량의 위치를 결정하는 방법 및 장치 | |
EP3690756B1 (en) | Learning method and learning device for updating hd map by reconstructing 3d space by using depth estimation information and class information on each object, which have been acquired through v2x information integration technique, and testing method and testing device using the same | |
US20230085296A1 (en) | Systems and methods for predicting trajectories of multiple vehicles | |
KR102372687B1 (ko) | 비최대값 억제를 학습하는 병합 네트워크를 이용한 이종 센서 융합을 위한 학습 방법 및 학습 장치 | |
US11200679B1 (en) | System and method for generating a probability distribution of a location of an object | |
KR20160048530A (ko) | 자율 이동 차량의 경로 생성 방법 및 경로 생성 장치 | |
CN111505690A (zh) | 实时检测应急车辆并规划行驶路径的方法及装置 | |
US20210397198A1 (en) | Enhanced vehicle operation | |
Xu et al. | Trajectory prediction for autonomous driving with topometric map | |
EP3913530B1 (en) | Learning method and learning device for updating object detector, based on deep learning, of autonomous vehicle to adapt the object detector to driving circumstance, and updating method and updating device using the same | |
US11878684B2 (en) | System and method for trajectory prediction using a predicted endpoint conditioned network | |
US12086695B2 (en) | System and method for training a multi-task model | |
Aswini et al. | Custom Based Obstacle Detection Using Yolo v3 for Low Flying Drones |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |