KR102372243B1 - Manufacturing method of composite material containing various waste plastics - Google Patents

Manufacturing method of composite material containing various waste plastics Download PDF

Info

Publication number
KR102372243B1
KR102372243B1 KR1020200176120A KR20200176120A KR102372243B1 KR 102372243 B1 KR102372243 B1 KR 102372243B1 KR 1020200176120 A KR1020200176120 A KR 1020200176120A KR 20200176120 A KR20200176120 A KR 20200176120A KR 102372243 B1 KR102372243 B1 KR 102372243B1
Authority
KR
South Korea
Prior art keywords
pressure
viscosity
waste plastics
extrusion
temperature
Prior art date
Application number
KR1020200176120A
Other languages
Korean (ko)
Other versions
KR102372243B9 (en
Inventor
최두영
김광석
김정필
Original Assignee
한국생산기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생산기술연구원 filed Critical 한국생산기술연구원
Priority to KR1020200176120A priority Critical patent/KR102372243B1/en
Application granted granted Critical
Publication of KR102372243B1 publication Critical patent/KR102372243B1/en
Publication of KR102372243B9 publication Critical patent/KR102372243B9/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/76Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0001Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/46Means for plasticising or homogenising the moulding material or forcing it into the mould
    • B29C45/47Means for plasticising or homogenising the moulding material or forcing it into the mould using screws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/76Measuring, controlling or regulating
    • B29C45/766Measuring, controlling or regulating the setting or resetting of moulding conditions, e.g. before starting a cycle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/76Measuring, controlling or regulating
    • B29C45/77Measuring, controlling or regulating of velocity or pressure of moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/92Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/58Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising fillers only, e.g. particles, powder, beads, flakes, spheres
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Environmental & Geological Engineering (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

According to the present invention, a method for manufacturing a composite material including various kinds of waste plastics includes: determining an appropriate range of a process by recognizing a size of an extrusion nozzle disposed in an extrusion molding device, a viscosity inside the extrusion nozzle, and a shear rate; improving a shape of a material recycling composition by controlling a temperature, a pressure, and an injection speed; analyzing a process variable condition through analysis of the pressure and the viscosity, which are elements required for a resin physical property measurement system; and performing a compounding process by mixing graphene by using SRF and RDF plastics obtained by mixing recycled PE (LDPE, HDPE), PP, PS, and PET, and materials recycled into waste plastic PE (rPE) and waste plastic PP (rPP). Accordingly, an optimal process condition is provided.

Description

다종 폐플라스틱을 포함하는 복합소재의 제조방법{Manufacturing method of composite material containing various waste plastics}Manufacturing method of composite material containing various waste plastics

본 발명은 다종 폐플라스틱을 포함하는 복합소재의 제조방법에 대한 것으로서, 열분석을 통해 이종소재 및 점도 등에 따라 물질의 재활용 공정에 필요한 온도 및 압력 조건을 확보함으로써 재활용 원소재 물성 분석을 통한 공정 개선 방안에 대한 것이다.The present invention relates to a method for manufacturing a composite material containing multiple types of waste plastics, and through thermal analysis, the temperature and pressure conditions necessary for the recycling process of materials are secured according to different materials and viscosities, etc., thereby improving the process through analysis of the properties of recycled raw materials it's about the room.

플라스틱은 우수한 가공성과 물성 및 저렴한 가격으로 우리의 일상생활을 풍요롭게 만들어주고 있지만 비닐, 스티로폼, 플라스틱 용기 등이 제대로 분리수거 및 재활용되지 못하고 소각이나 매립에 따른 환경오염 문제가 발생한다.Plastics enrich our daily life with excellent processability, physical properties and low prices, but vinyl, styrofoam, and plastic containers are not properly separated, collected and recycled, and environmental pollution problems occur due to incineration or landfill.

폐플라스틱을 재활용하는 방법으로는 '물질 재활용', '화학적 재활용', '열적 재활용'으로 크게 나눌 수 있는데, '물질 재활용'은 플라스틱의 화학구조를 유지한 상태에서 분리, 선별, 포장, 세척, 파쇄, 배합 등의 과정을 거쳐 다시 사용이 가능한 플라스틱으로 재생하는 기술이다.The methods of recycling waste plastics can be broadly divided into 'material recycling', 'chemical recycling', and 'thermal recycling'. It is a technology that recycles plastics that can be reused through processes such as crushing and mixing.

'물질 재활용' 관련해서 생활에서 주로 발생하는 폐플라스틱은 재질선별과 이물질 제거 공정을 통해 재생원료로 만드는 재활용과정을 거치게 되는데, 좀 더 효율적인 분리 및 선별작업을 위해 풍력, 정전기, 물을 이용한 비중분리 방법 등 다양한 기계적 분류방법이 개발되고 있다. 재질선별과 세척공정을 거친 폐플라스틱 조각들은 재생압출기를 통해 펠렛(Pellet)으로 만들어져 재생원료로 사용된다.Regarding 'material recycling', waste plastics, which are mainly generated in daily life, go through a recycling process to make them into recycled raw materials through material selection and foreign material removal process. Various mechanical classification methods are being developed. The waste plastic pieces that have undergone material selection and cleaning processes are made into pellets through a regenerated extruder and used as recyclable materials.

'화학적 재활용'은 플라스틱의 화학구조 자체를 변화시켜 원료로 재생하는 방법이며 종류별 고도분리작업을 할 필요가 없으며, 오염된 폐기물에 대해서도 크게 민감하지 않고 소비 에너지 측면에서도 물질 재활용 공정보다 유리하다는 장점이 있는데, 주로 열분해 및 화학반응 공정을 통해 이뤄진다.'Chemical recycling' is a method of recycling plastics as raw materials by changing the chemical structure itself, does not require advanced separation by type, is not very sensitive to polluted waste, and has the advantage of being more advantageous than the material recycling process in terms of energy consumption. It is mainly achieved through pyrolysis and chemical reaction processes.

'열적 재활용'은 열에너지 회수 방법으로 폐플라스틱을 친환경 공정을 통해 효율적으로 열에너지로 변화시키는 기술을 말한다.'Thermal recycling' refers to a technology that efficiently converts waste plastics into thermal energy through an eco-friendly process as a thermal energy recovery method.

플라스틱 폐기물은 원료가 석유로 되어 있어 발열량이 높아 연료화가 가능한데, 폐플라스틱을 연료화시키는 기술에는 'RDF(Refuse Derived Fuel)', 'SRF(Solid Refuse Fuel)'과 'RPF(Refuse Plastic Fuel)'이 있다. RDF, SRF와 RPF는 모두 폐기물에서 가연물을 선별해 제조한 신재생 에너지라는 점에서는 공통점이 있으나, RDF는 일반 생활폐기물, RPF는 폐플라스틱이나 목재와 같은 산업 폐기물이 원료가 되기 때문에 품질의 차이가 나게 된다.Plastic waste has a high calorific value and can be converted into fuel because the raw material is petroleum. The technologies for converting waste plastic into fuel include 'RDF (Refuse Derived Fuel)', 'SRF (Solid Refuse Fuel)' and 'RPF (Refuse Plastic Fuel)'. there is. RDF, SRF, and RPF are all new and renewable energy manufactured by selecting combustibles from waste, but there is a difference in quality because RDF uses general household waste and RPF uses industrial waste such as plastic or wood as raw materials. will come out

재활용 플라스틱 생산에서 가장 어려운 문제는 수거 시 동일 종류 플라스틱만 수거가 되는 것이 아니고 이종 플라스틱이 혼입되어 수거되는 것인바, 이와 같은 혼입은 열사이클 설계 어려움 및 재생 플라스틱의 품질 저하의 문제를 발생시킨다.The most difficult problem in the production of recycled plastics is that not only the same type of plastic is collected during collection, but heterogeneous plastics are mixed and collected.

한편, 현재는 투입되는 수거된 플라스틱의 상태를 특정 조건으로 가정하고 공정 사이클을 수행하는데, 이러한 공정을 통해 생산되는 재생 플라스틱 품질의 경우 즉각적인 품질 판정이 어렵고 수요업체에 납품 이후 문제가 발생하면 폐기 또는 반품 악순환이 반복된다.Meanwhile, at present, the process cycle is performed assuming the state of the collected plastic to be inputted as a specific condition. In the case of the quality of recycled plastic produced through this process, it is difficult to immediately determine the quality, and if a problem occurs after delivery to the consumer, it is discarded or The return cycle repeats itself.

상술한 내용을 고려할 때, 재활용 복합재 생산 중에 제조되는 플라스틱의 품질 변화를 감지하고 즉각적인 대처가 가능할 수 있는 공정최적화 기술이 필요하게 된다.In consideration of the above, there is a need for a process optimization technology that can detect changes in the quality of plastics manufactured during the production of recycled composites and take immediate action.

폐플라스틱을를 친환경적으로 처리하고, 에너지 및 무기물등을 회수할 수 있는 폐플라스틱 처리 방법 및 장치를 제공하는 문헌으로는 등록특허 10-0981851을 참조할 수 있다.As a document providing a waste plastic treatment method and apparatus capable of environmentally friendly treatment of waste plastics and recovering energy and inorganic substances, reference may be made to Patent Registration No. 10-0981851.

본 발명은 투입되는 재활용 원소재에 대한 물성 분석을 통한 공정 개선 요소를 파악하여 공정 최적 조건을 파악하고, 열분석을 통해 이종소재 및 점도 등에 따라 물질의 재활용 공정에 필요한 온도 및 압력 조건을 확보함으로써 다종 폐플라스틱을 포함하는 복합소재의 제조방법 개선 방안에 관한 것이다.The present invention identifies process improvement factors through physical property analysis of recycled raw materials to be input, identifies process optimal conditions, and secures temperature and pressure conditions necessary for the recycling process of materials according to different materials and viscosities through thermal analysis. It relates to a method for improving a manufacturing method of a composite material containing a variety of waste plastics.

상기와 같은 목적을 달성하기 위한 본 발명에 따른 다종 폐플라스틱을 포함하는 복합소재의 제조방법은 압출 성형기에 배치된 압출 노즐의 사이즈, 상기 압출 노즐 내의 점도 및 shear rate 파악을 통한 공정 적정 범위 확정단계; 온도, 압력, 사출속도 제어를 통한 물질재활용 조성물 형상을 개선하는 단계; 및 수지 물성측정 시스템에 필요한 요소인 압력과 점도 분석을 통한 공정변수 조건을 분석하는 단계;를 포함하는 것을 특징으로 한다.The method for manufacturing a composite material containing multiple types of waste plastics according to the present invention for achieving the above object is a step of determining the appropriate range of the process by identifying the size of the extrusion nozzle disposed in the extrusion machine, the viscosity and the shear rate in the extrusion nozzle ; improving the shape of the material recycling composition through temperature, pressure, and injection speed control; and analyzing the process variable conditions through pressure and viscosity analysis, which are elements required for the resin property measurement system.

상기 방법은, 재활용 PE(LDPE, HDPE), PP, PS, PET가 혼합된 SRF, RDF 플라스틱과, 폐플라스틱 PE(rPE), 폐플라스틱 PP(rPP)로 재활용된 소재를 활용하여 그래핀을 혼합하여 컴파운딩 공정 단계;를 더 포함하는 것이 바람직할 수 있다.The method uses recycled PE (LDPE, HDPE), PP, PS, and PET mixed SRF and RDF plastics, and materials recycled as waste plastics PE (rPE) and waste plastics PP (rPP) to mix graphene It may be preferable to further include a compounding process step.

본 발명은 이종소재 비율에 따라서 혼합 및 사출 공정에서 품질 변화를 적게 유지하기 위해 온도, 압력 및 속도 조건을 최적화하는 것이 바람직할 수 있다.According to the present invention, it may be desirable to optimize the temperature, pressure and speed conditions in order to keep the quality change in the mixing and injection process small according to the dissimilar material ratio.

상술한 바와 같은 본 발명은 재활용 원소재인 폐플라스틱에 대한 물성 분석을 통한 공정 개선 요소를 파악하여 원소재 물성을 분석하고 이에 맞는 실험적으로 확립된 공정 최적 조건을 제공한다.As described above, the present invention analyzes raw material properties by identifying process improvement factors through physical property analysis on waste plastics, a recycled raw material, and provides experimentally established optimal conditions for the process.

상기 원소재 물성 파악을 위해 모세관 점도계와 유사한 구조인 압출성형기나 압출기의 경우 간략한 측정 원리로 내부 물성의 변화를 파악할 수 있게 한다.In the case of an extruder or an extruder having a structure similar to a capillary viscometer in order to grasp the physical properties of the raw material, it is possible to grasp the change of the internal physical properties by a simple measurement principle.

또한, 압출성형기를 이루는 압출 노즐의 적정 사이즈 및 압출 노즐 내의 점도 및 shear rate를 파악하며 공정 적정 범위를 확정한다.In addition, the appropriate size of the extrusion nozzle constituting the extruder and the viscosity and shear rate in the extrusion nozzle are identified, and the appropriate range of the process is determined.

본 발명은 공급되는 폐플라스틱에 대한 온도, 압력, 사출속도 제어를 통한 물질재활용 조성물 형상을 개선하고자 하는 것으로서, 수지 물성측정 시스템에 필요한 요소인 압력과 점도 분석을 통한 공정변수 조건을 분석하고, 사출/프레스 공정에서 각 소재 성형에 필요한 온도, 압력, 속도 조건을 최적화하고 원소재 물성과 상관관계를 분석함으로써 확립된 공정 최적 조건을 제공한다.The present invention is to improve the shape of a material recycling composition through temperature, pressure, and injection speed control for the supplied waste plastic, and analyzes process variable conditions through pressure and viscosity analysis, which are elements required for a resin property measurement system, and injection /In the press process, it optimizes the temperature, pressure, and speed conditions required for molding each material and provides the established process optimum conditions by analyzing the correlation with the raw material properties.

도 1은 모세관 점도계와 유사한 구조인 압출성형기나 압출기의 경우 간략한 측정 원리로 내부 물성의 변화를 파악하는 것을 보인다.
도 2는 재활용 원소재인 폐플라스틱에 대한 열중량분석(TGA) 결과를 보인다.
도 3은 용융지수(MI) 측정결과를 통해 흐름성 및 점도를 비교한 것을 보인다.
도 4는 SRF, rPP, rPE 및 MR에 대하여 전단속도에 따른 점도 그래프를 보인다.
도 5는 srf 및 mr 주요 재활용플라스틱 함량비(상대비)를 보인다.
도 6은 압출노즐의 내부 노즐 직경에 따른 노즐 내부 발생 shear rate를 보인다.
도 7은 압출속도에 따른 압출압력 그래프를 보인다.
도 8은 다양한 온도 상태에서 전단속도에 따른 점도 그래프를 보인다.
도 9는 SRF, rPP, rPE 및 SRF+그래핀에 대한 인장강도 변화를 보인다.
Figure 1 shows that in the case of an extruder or extruder having a structure similar to that of a capillary viscometer, changes in internal physical properties are grasped by a simple measurement principle.
2 shows the results of thermogravimetric analysis (TGA) of waste plastic, which is a recycled raw material.
3 shows a comparison of flowability and viscosity through melt index (MI) measurement results.
4 shows a graph of viscosity according to shear rate for SRF, rPP, rPE and MR.
Figure 5 shows the srf and mr main recycled plastic content ratio (relative comparison).
6 shows the shear rate generated inside the nozzle according to the inner nozzle diameter of the extrusion nozzle.
7 shows a graph of the extrusion pressure according to the extrusion speed.
8 is a graph showing the viscosity according to the shear rate in various temperature states.
9 shows the tensile strength changes for SRF, rPP, rPE and SRF + graphene.

이하, 첨부된 도면을 참조하여 본 발명의 실시예를 더욱 상세히 설명하기로 한다. 그러나, 본 발명은 이하에서 개시되는 실시예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이다. 도면 상에서 동일 부호는 동일한 요소를 지칭한다.Hereinafter, embodiments of the present invention will be described in more detail with reference to the accompanying drawings. However, the present invention is not limited to the embodiments disclosed below, but will be implemented in various different forms, and only these embodiments allow the disclosure of the present invention to be complete, and the scope of the invention to those of ordinary skill in the art It is provided for complete information. In the drawings, like reference numerals refer to like elements.

본 발명에서 사용되는 폐플라스틱은 산업계와 생활계에서 배출되는 포장재 플라스틱을 이용한 재활용 플라스틱을 통칭하며, SRF는 합성수지 단일 및 복합재질 필름 또는 시트형 포장재와 그 부분품 (마게, 라벨, 잡자재 등)을 이용한 폐플라스틱으로 명시한다.Waste plastics used in the present invention collectively refer to recycled plastics using packaging plastics discharged from industry and life, and SRF is waste using synthetic resin single and composite film or sheet-type packaging materials and their parts (eggs, labels, miscellaneous materials, etc.) specified as plastic.

본 발명에 따른 다종 폐플라스틱을 포함하는 복합소재의 제조방법은, 압출 성형기에 배치된 압출 노즐의 사이즈, 상기 압출 노즐 내의 점도 및 shear rate 파악을 통한 공정 적정 범위 확정단계; 온도, 압력, 사출속도 제어를 통한 물질재활용 조성물 형상을 개선하는 단계; 및 수지 물성측정 시스템에 필요한 요소인 압력과 점도 분석을 통한 공정변수 조건을 분석하는 단계;를 포함한다.The method for manufacturing a composite material containing multiple types of waste plastics according to the present invention comprises: determining the appropriate range of the process by identifying the size of the extrusion nozzle disposed in the extrusion machine, the viscosity and shear rate in the extrusion nozzle; improving the shape of the material recycling composition through temperature, pressure, and injection speed control; and analyzing the process variable conditions through pressure and viscosity analysis, which are elements required for the resin property measurement system.

또한, 본 발명은 재활용 PE(LDPE, HDPE), PP, PS, PET가 혼합된 SRF, RDF 플라스틱과, 폐플라스틱 PE(rPE), 폐플라스틱 PP(rPP)로(흔히 단일 소재) 재활용된 소재를 활용하여 그래핀을 혼합하는 컴파운딩 공정 단계를 더 포함한다.In addition, the present invention provides recycled PE (LDPE, HDPE), PP, PS, PET mixed SRF and RDF plastics, and recycled materials as waste plastics PE (rPE) and waste plastics PP (rPP) (often a single material). It further includes a compounding process step of mixing graphene by utilizing it.

이를 통해 인장강도가 강화된 그래핀 복합소재를 구현한다.Through this, a graphene composite material with enhanced tensile strength is realized.

그래핀은 1 wt% ~ 10 wt% 혼합한다.Graphene is mixed with 1 wt% to 10 wt%.

도 1은 모세관 점도계와 유사한 구조인 압출성형기나 압출기의 경우 간략한 측정 원리로 내부 물성의 변화를 파악하는 것을 보인다.1 shows that the change of internal physical properties is grasped by a simple measurement principle in the case of an extruder or an extruder having a structure similar to that of a capillary viscometer.

도 1을 참조하면, 원소재 물성 표준화 및 신뢰성 향상을 위하여 모세관 점도계와 유사한 구조인 압출성형기나 압출기의 경우 간략한 측정 원리로 내부 물성의 변화를 파악할 수 있다.Referring to FIG. 1 , in the case of an extruder or an extruder having a structure similar to a capillary viscometer in order to standardize raw material properties and improve reliability, changes in internal physical properties can be identified by a simple measurement principle.

모세관 점도계와 압출 성형기는 구조적 유사성이 있으며, 이와 같은 유사성을 이용하여 압출성형기의 성형품의 품질 변화를 측정할 수 있다.Capillary viscometer and extruder have structural similarity, and by using this similarity, the quality change of the molded article of the extruder can be measured.

즉, 적정 압출 노즐 및 노즐 내 점도 및 shear rate를 파악하며 공정 모니터링을 실시한다. 구체적으로, 모세관 점도계와 유사구조를 이용한 압출성형기에서의 점도 산출식을 이용하여 용융지수 및 압력에 따라 원재료 분석 및 분류를 실시한다.That is, process monitoring is carried out by identifying the appropriate extrusion nozzle and viscosity and shear rate in the nozzle. Specifically, the raw materials are analyzed and classified according to the melt index and pressure using the formula for calculating the viscosity in the extruder using a capillary viscometer and a similar structure.

압출 노즐은 0.5mm ~ 2.0 mm을 적용하여 노즐 내부에서 발생하는 shear rate 계산하고, 가장 일반적으로 통용되며 적절한 shear rate를 보이는 1.0mm를 사용하여 압출 속도에 따른 압출압력 결과와 전단속도에 따른 점도 결과를 측정한다.For the extrusion nozzle, 0.5mm ~ 2.0mm is applied to calculate the shear rate that occurs inside the nozzle, and 1.0mm, which is the most commonly used and shows an appropriate shear rate, is used. measure

도 2는 재활용 원소재인 폐플라스틱에 대한 열중량분석 결과를 보인다.2 shows the results of thermogravimetric analysis of waste plastics, which are recycled raw materials.

rPE는 190 ℃, 5 kgf 이상의 공정압력이 필요며, rPP는 230 ℃ 이하 공정이 적합할 것으로 판단된다.rPE requires a process pressure of 190 ℃ and 5 kgf or more, and it is judged that a process below 230 ℃ for rPP is suitable.

다종의 플라스틱이 혼합된 경우 더 높은 공정온도와 압력을 요구한다.When multiple plastics are mixed, higher processing temperature and pressure are required.

rPE, rPP 모두 2~5 wt% 이종소재 혼합으로 높은 공정온도를 필요로 한다.Both rPE and rPP require a high process temperature by mixing 2~5 wt% of different materials.

이종소재 비율에 따라, 혼합 및 사출 공정에서 품질 변화를 적게 유지하기 위해 높은 온도, 압력 및 속도 조건을 최적화한다.Depending on the dissimilar material ratio, it optimizes high temperature, pressure and speed conditions to keep quality variations small in the mixing and injection process.

도 3은 용융지수(MI) 측정결과를 통해 흐름성 및 점도를 비교한 것을 보인다.3 shows a comparison of flowability and viscosity through the melt index (MI) measurement results.

용융지수(MI) 측정은 각각의 소재에 대해 온도에 따른 흐름점도에 대한 공정변수를 측정하는 방식으로 진행한다.Melt index (MI) measurement is carried out by measuring process variables for flow viscosity according to temperature for each material.

구체적으로, 측정 단위는 어떤 수지에 대해 무게가 온도에 의해 10분동안 흘러나온 양으로 한다.Specifically, the unit of measurement is the amount of a resin that is weighed out by temperature in 10 minutes.

본 결과를 통해 융해 유동성 우수, 성형성 우수, 표면광택 우수 여부를 판단한다. 한편, MI 가 낮으면 강도, 신장율, 내충격성, 내마모성이 저하된다는 것으로 판단한다.Through this result, it is judged whether the melt fluidity is excellent, the moldability is excellent, and the surface gloss is excellent. On the other hand, when the MI is low, it is judged that the strength, elongation, impact resistance, and abrasion resistance are lowered.

SRF 소재를 미분으로 가공 시 같은 온도와 압력에서도 흐름성이 10배 이상으로 상당히 개선된다.When processing SRF material into fine powder, the flowability is significantly improved by more than 10 times even at the same temperature and pressure.

특정 지역 소재에 따른 가공/성형 공정 조건 최적화를 통한 에너지 효율성 및 CO2 배출 저감이 가능한 것을 보인다.It shows that energy efficiency and CO2 emission reduction are possible through optimization of processing/molding process conditions according to specific regional materials.

MI 값에 따라 제품특성을 개선 가능한 상태를 보인다. 구체적으로는, 0.5는 미세성형품, 1.5는 시트 및 막대, 2 이상은 단순 벌크를 보인다.According to the MI value, the product characteristics can be improved. Specifically, 0.5 shows microformed products, 1.5 shows sheets and rods, and 2 or more shows simple bulk.

결과적으로, 각 SRF 소재에 따른 공정조건인 온도, 압력 등 성형 조건을 개선한다.As a result, molding conditions such as temperature and pressure, which are process conditions according to each SRF material, are improved.

도 5는 srf 및 mr 주요 재활용플라스틱 함량비(상대비)를 보인다.Figure 5 shows the srf and mr main recycled plastic content ratio (relative comparison).

구체적으로는, 열분석 및 화학분석을 통해 혼합소재 폐플라스틱 종류에 따른 상대적 함량비를 계산한다.Specifically, the relative content ratio according to the type of mixed material waste plastic is calculated through thermal analysis and chemical analysis.

도 6은 압출노즐의 내부 노즐 직경에 따른 노즐 내부 발생 shear rate를 보인다.6 shows the shear rate generated inside the nozzle according to the inner nozzle diameter of the extrusion nozzle.

구체적으로는, 적정 압출노즐 사이즈 및 공정 상태에서의 노즐 내 점도 및 shear rate를 파악하며 공정 모니터링 및 시스템을 적정한다.Specifically, the viscosity and shear rate in the nozzle under the proper extrusion nozzle size and process condition are identified, and the process monitoring and system are titrated.

현재 사용하고 있는 노즐 사이즈(0.5mm, 1.0mm, 1.5mm, 2.0mm) 별로 노즐 내부에서 발생하는 shear rate를 계산하고 검증 모델로는 가장 많이 사용되고 있는 노즐 직경 1mm의 노즐을 사용한다. The shear rate occurring inside the nozzle is calculated for each nozzle size currently used (0.5mm, 1.0mm, 1.5mm, 2.0mm), and a nozzle with a nozzle diameter of 1mm, which is the most used as a verification model, is used.

본 발명 상에서는 rPP, rPE 모두 온도 200℃ ~ 260℃ 범위에서 사출속도에 따른 노즐 내 압력, 전단 속도에 따른 점도를 측정하여 적정한 온도와 그에 따른 압력, 점도를 분석하여 성형공정에 필요한 온도, 속도 등 공정조건을 분석한다. In the present invention, both rPP and rPE measure the pressure in the nozzle according to the injection rate and the viscosity according to the shear rate in the temperature range of 200 ° C to 260 ° C. Analyze process conditions.

도 7은 압출속도에 따른 압출압력 그래프를 보인다.7 shows a graph of the extrusion pressure according to the extrusion speed.

SRF에 대한 결과로, 압출속도에 따른 압출압력 그래프를 보면 압출온도와 압출속도가 증가할수록 압출압력이 증가하는 것을 확인할 수 있다.As a result of the SRF, looking at the graph of the extrusion pressure according to the extrusion speed, it can be seen that the extrusion pressure increases as the extrusion temperature and extrusion speed increase.

구체적으로, 각 온도 조건에서의 압출압력 및 압출속도는 (a) 5 mm/s, (b) 10 mm/s, (c) 30 mm/s, (d) 60 mm/s (e) 100 mm/s 에 해당하는 것을 보인다.Specifically, the extrusion pressure and extrusion speed at each temperature condition were (a) 5 mm/s, (b) 10 mm/s, (c) 30 mm/s, (d) 60 mm/s (e) 100 mm Shows the equivalent of /s .

도 8은 다양한 온도 상태에서 전단속도에 따른 점도 그래프를 보인다.8 is a graph showing the viscosity according to the shear rate in various temperature states.

SRF에 대한 결과로, 전단속도에 따른 점도 그래프를 살펴보면 압출온도와 전단속도가 증가할수록 점도가 감소하는 것을 확인할 수 있다.As a result of the SRF, looking at the viscosity graph according to the shear rate, it can be seen that the viscosity decreases as the extrusion temperature and shear rate increase.

도 7 및 도 8을 참조하면, SRF도 위와 같이 속도에 따른 압력, 점도를 분석하였다. 성형품의 형태(미세성형, 단순형태, 벌크 형상)에 따라 측정된 점도, 전단속도, 노즐내 압력 등을 비교하여 온도 및 사출 속도를 결정할 수 있다.Referring to FIGS. 7 and 8 , the pressure and viscosity according to the speed were analyzed as above for SRF. The temperature and injection rate can be determined by comparing the viscosity, shear rate, and nozzle pressure measured according to the shape of the molded product (micro-molding, simple shape, bulk shape).

SRF의 경우 (PS 5%, PP 11%, PE 83% 상대비) 벌크형상이나 단순형태의 경우 200℃ ~ 230℃온도에서 수초 (1~10 sec) 사출속도를 갖고 성형이 하는 공정이 최적이며, 그 이상의 미세성형을 위해서는 260℃의 온도가 필요하나 이종소재 혼합으로 그 점도 감소영향(흐름성 상승 효과)가 그리 크지 않을 수 있다.In the case of SRF (PS 5%, PP 11%, PE 83% relative ratio), in the case of a bulk shape or a simple shape, the process of molding with an injection speed of several seconds (1-10 sec) at a temperature of 200℃ ~ 230℃ is optimal, For fine molding beyond that, a temperature of 260°C is required, but the effect of reducing the viscosity (increasing flowability) by mixing different materials may not be so great.

도 9는 SRF, rPP, rPE 및 SRF+그래핀에 대한 인장강도 변화를 보인다.9 shows the tensile strength changes for SRF, rPP, rPE and SRF + graphene.

본 발명은 공급되는 폐플라스틱에 대한 온도, 압력, 사출속도 제어를 통한 물질재활용 조성물 형상을 개선하고자 하는 것으로서, 수지 물성측정 시스템에 필요한 요소인 압력과 점도 분석을 통한 공정변수 조건을 분석하고, 사출/프레스 공정에서 각 소재 성형에 필요한 온도, 압력, 속도 조건을 최적화하고 원소재 물성과 상관관계를 분석함으로써 확립된 공정 최적 조건을 제공한다.The present invention is to improve the shape of a material recycling composition through temperature, pressure, and injection speed control for the supplied waste plastic, and analyzes process variable conditions through pressure and viscosity analysis, which are elements required for a resin property measurement system, and injection /In the press process, it optimizes the temperature, pressure, and speed conditions required for molding each material and provides the established process optimum conditions by analyzing the correlation with the raw material properties.

이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명에 개시된 실시예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.The above description is merely illustrative of the technical spirit of the present invention, and various modifications and variations will be possible without departing from the essential characteristics of the present invention by those skilled in the art to which the present invention pertains. Accordingly, the embodiments disclosed in the present invention are not intended to limit the technical spirit of the present invention, but to explain, and the scope of the technical spirit of the present invention is not limited by these embodiments. The protection scope of the present invention should be construed by the following claims, and all technical ideas within the scope equivalent thereto should be construed as being included in the scope of the present invention.

Claims (3)

압출 성형기에 배치된 압출 노즐의 사이즈, 상기 압출 노즐 내의 점도 및 상기 압출 노즐의 내부 직경에 따라 상기 압축 노즐 내부에 발생하는 전단율(shear rate) 파악을 통한 공정 적정 범위 확정단계;
온도, 압력, 사출 속도 제어를 실시하는 단계;
수지 물성측정 시스템에 필요한 요소로서 공정변수인 압력과 점도를 분석하는 단계; 및
재활용 PE(LDPE, HDPE), PP, PS, PET가 혼합된 SRF, RDF 플라스틱과, 폐플라스틱 PE(rPE), 폐플라스틱 PP(rPP)로 재활용된 소재를 활용하여 그래핀을 1 wt% ~ 10 wt% 혼합하는 단계;를 더 포함하며,
상기 압출 노즐의 사이즈는 직경 1mm의 노즐을 사용하고,
상기 SRF는 200℃ ~ 230℃ 온도에서 1~10 sec의 사출속도를 갖는 상태에서 성형을 실시하는 것을 특징으로 하는,
다종 폐플라스틱을 포함하는 복합소재의 제조방법.
Determining the appropriate range of the process by identifying the shear rate generated inside the compression nozzle according to the size of the extrusion nozzle disposed in the extrusion molding machine, the viscosity in the extrusion nozzle, and the inner diameter of the extrusion nozzle;
performing temperature, pressure, and injection speed control;
Analyzing pressure and viscosity, which are process variables as elements necessary for a resin property measurement system; and
1 wt% ~ 10% of graphene by using recycled materials from recycled PE (LDPE, HDPE), PP, PS, and PET mixed SRF and RDF plastics, waste plastics PE (rPE), and waste plastics PP (rPP) The step of mixing by wt%; further comprising,
The size of the extrusion nozzle uses a nozzle having a diameter of 1 mm,
The SRF is characterized in that molding is carried out at a temperature of 200 ° C to 230 ° C and an injection speed of 1 to 10 sec.
A method for manufacturing a composite material containing multiple types of waste plastics.
삭제delete 제1항에 있어서,
이종소재 비율에 따라서 혼합 및 사출 공정에서 온도, 압력 및 속도 조건을 조절하는 것을 특징으로 하는,
다종 폐플라스틱을 포함하는 복합소재의 제조방법.
The method of claim 1,
Characterized in controlling the temperature, pressure and speed conditions in the mixing and injection process according to the ratio of different materials,
A method for manufacturing a composite material containing multiple types of waste plastics.
KR1020200176120A 2020-12-16 2020-12-16 Manufacturing method of composite material containing various waste plastics KR102372243B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200176120A KR102372243B1 (en) 2020-12-16 2020-12-16 Manufacturing method of composite material containing various waste plastics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200176120A KR102372243B1 (en) 2020-12-16 2020-12-16 Manufacturing method of composite material containing various waste plastics

Publications (2)

Publication Number Publication Date
KR102372243B1 true KR102372243B1 (en) 2022-03-10
KR102372243B9 KR102372243B9 (en) 2022-07-06

Family

ID=80816211

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200176120A KR102372243B1 (en) 2020-12-16 2020-12-16 Manufacturing method of composite material containing various waste plastics

Country Status (1)

Country Link
KR (1) KR102372243B1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101336156B1 (en) * 2012-05-31 2013-12-03 서울과학기술대학교 산학협력단 An apparatus for viscosity measurement with a mold module and a method therefor
KR20200012872A (en) * 2017-04-27 2020-02-05 뉴사우쓰 이노베이션스 피티와이 리미티드 Preparation of Filament Material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101336156B1 (en) * 2012-05-31 2013-12-03 서울과학기술대학교 산학협력단 An apparatus for viscosity measurement with a mold module and a method therefor
KR20200012872A (en) * 2017-04-27 2020-02-05 뉴사우쓰 이노베이션스 피티와이 리미티드 Preparation of Filament Material

Also Published As

Publication number Publication date
KR102372243B9 (en) 2022-07-06

Similar Documents

Publication Publication Date Title
Cress et al. Effect of recycling on the mechanical behavior and structure of additively manufactured acrylonitrile butadiene styrene (ABS)
Luijsterburg et al. Assessment of plastic packaging waste: Material origin, methods, properties
Goodship Introduction to plastics recycling
CN104893339A (en) Wood-plastic composite and preparation method thereof
AU2022100190A4 (en) Manufacture of filament material
KR102372243B1 (en) Manufacturing method of composite material containing various waste plastics
Howell A ten year review of plastics recycling
Delva et al. EVALUATION OF POST-CONSUMER MIXED POLYOLEFINES AND THEIR INJECTION MOULDED BLENDS WITH VIRGIN POLYETHYLENE.
Makenji Mechanical methods for recycling waste composites
Zhang Analysis the property changes of the thermal recycled HDPE and LDPE
Khangale et al. A review of recent trends and status of plastics recycling in industries.
Oyewale et al. A review and bibliometric analysis of sorting and recycling of plastic wastes
Mohammadzadeh Characterization of recycled thermoplastic polymers
Dvorak Applicability of recycled HDPE for rotational molding
Kasala Recycled technical plastics as raw material for plastics and composite products
Debnath et al. Life Cycle Assessment (LCA) of Flax-Based Green Composite Product Fabricated by Injection Moulding Process
Kozlowski Recycling of Food Packaging Materials
Al-Salem et al. Degradation kinetic parameter determination of blends containing polyethylene terephthalate (PET) and other polymers with nanomaterials
Uzosike et al. Small-Scale Mechanical Recycling of Solid Plastic Wastes: A Review of PET, PEs, and PP
Spilka et al. Integrated recycling technology
Jadon et al. plastic solid waste recycling: A state-of-the-art assessment and potential applications
Radin Mohamed et al. Energy recovery from polyethylene terephthalate (PET) recycling process
KRISHNAKUMAR et al. Assessment and Review of Plastic Wastes For and Post Recycling.
Koo et al. Community waste plastic recycling system through plastic injection molding
Alatas Life cycle assessment study on pyrolysis of post-consumer plastic waste

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
G170 Re-publication after modification of scope of protection [patent]