KR102369745B1 - Manifold Dielectric with Reaction Barrier for Molten Carbonate Fuel Cell Stack - Google Patents

Manifold Dielectric with Reaction Barrier for Molten Carbonate Fuel Cell Stack Download PDF

Info

Publication number
KR102369745B1
KR102369745B1 KR1020170120646A KR20170120646A KR102369745B1 KR 102369745 B1 KR102369745 B1 KR 102369745B1 KR 1020170120646 A KR1020170120646 A KR 1020170120646A KR 20170120646 A KR20170120646 A KR 20170120646A KR 102369745 B1 KR102369745 B1 KR 102369745B1
Authority
KR
South Korea
Prior art keywords
manifold
mcfc
electric
molten carbonate
dielectric
Prior art date
Application number
KR1020170120646A
Other languages
Korean (ko)
Other versions
KR20190032112A (en
KR102369745B9 (en
Inventor
문지웅
전재호
이성연
Original Assignee
재단법인 포항산업과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인 포항산업과학연구원 filed Critical 재단법인 포항산업과학연구원
Priority to KR1020170120646A priority Critical patent/KR102369745B1/en
Publication of KR20190032112A publication Critical patent/KR20190032112A/en
Application granted granted Critical
Publication of KR102369745B1 publication Critical patent/KR102369745B1/en
Publication of KR102369745B9 publication Critical patent/KR102369745B9/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2484Details of groupings of fuel cells characterised by external manifolds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1254Sol or sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • C23C4/11Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/134Plasma spraying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2404Processes or apparatus for grouping fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/242Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes comprising framed electrodes or intermediary frame-like gaskets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • H01M2008/147Fuel cells with molten carbonates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • Plasma & Fusion (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Fuel Cell (AREA)

Abstract

본 발명은 외부 매니폴드형 용융탄산염연료전지 스택의 매니폴드 다이일렉트릭 및 그 제조방법에 관한 것으로서, 본 발명에 의해 제공되는 MCFC용 매니폴드 다이일렉트릭은 알루미나를 포함하는 다이일렉트릭의 적어도 일면에 CeO2, Y2O3 및 Sm2O3로 이루어진 그룹으로부터 선택되는 적어도 하나로 된 반응방지층을 포함하는 MCFC용 매니폴드 다이일렉트릭이다.The present invention relates to a manifold dielectric of an external manifold type molten carbonate fuel cell stack and a method for manufacturing the same, wherein the manifold dielectric for MCFC provided by the present invention is CeO 2 , Y 2 O 3 and Sm 2 O 3 It is a manifold die-electric for MCFC comprising at least one reaction prevention layer selected from the group consisting of.

Description

반응방지층을 갖는 용융탄산염 연료전지 스택용 매니폴드 다이일렉트릭 {Manifold Dielectric with Reaction Barrier for Molten Carbonate Fuel Cell Stack}Manifold Dielectric with Reaction Barrier for Molten Carbonate Fuel Cell Stack

본 발명은 외부 매니폴드형 용융탄산염연료전지 스택의 매니폴드 다이일렉트릭 및 그 제조방법에 관한 것이다.The present invention relates to a manifold die-electric for an external manifold type molten carbonate fuel cell stack and a method for manufacturing the same.

외부 매니폴드형 용융탄산염 연료전지(MCFC)는 도 1에 나타낸 바와 같이 연료 및 공기를 공급하는 금속재질의 외부 매니폴드 및 상기 매니폴드와 스택 사이에서 기체 밀봉과 절연을 유지하는 매니폴드 밀봉부재를 포함한다. As shown in FIG. 1, an external manifold type molten carbonate fuel cell (MCFC) includes a metal external manifold for supplying fuel and air, and a manifold sealing member that maintains gas sealing and insulation between the manifold and the stack. include

상기 매니폴드 밀봉부재로서는 스택과 직접 접촉하여 가스 밀봉기능을 제공하는 가스켓 및 상기 가스켓과 금속재질의 매니폴드 사이에서 기계적으로 지지하면서 절연기능을 제공하는 유전체(dielectric)로 구성된다.The manifold sealing member is composed of a gasket providing a gas sealing function in direct contact with the stack, and a dielectric providing an insulating function while mechanically supporting between the gasket and a metal manifold.

한편, 상기 외부 매니폴드와 스택간의 전기적 절연을 제공하고, 금속 매니폴드에 강성을 부여 제공하며, 가스켓을 균일하게 압착하여 밀봉을 형성하는 기능을 수행하는 절연체를 매니폴드 다이일렉트릭이라고 한다.On the other hand, an insulator that provides electrical insulation between the external manifold and the stack, provides rigidity to the metal manifold, and uniformly compresses the gasket to form a seal is referred to as a manifold direct electric.

일반적으로, 다이일렉트릭 소재의 표면은 99.5% 이상의 고순도 알루미나 소결체로 제작된다. 앞서 설명한 바와 같이, 상기 다이일렉트릭의 일 면은 MCFC 스택과 직접 접촉하고 있는 가스켓과 접촉하게 되는데, 상기 가스켓에는 MCFC 스택의 전해질인 용융탄산염 성분이 일부 흡수되게 된다. 550 내지 650℃ 정도의 MCFC 작동 온도에서 장기간 사용하면 다이일렉트릭의 알루미나가 가스켓에 흡수된 Li2CO3, K2CO3, Na2CO3 등의 용융탄산염 전해질과 고온 화학반응이 일어난다.In general, the surface of the die-electric material is made of a high-purity alumina sintered body of 99.5% or more. As described above, one surface of the die-electric comes into contact with a gasket that is in direct contact with the MCFC stack, and the molten carbonate component, which is an electrolyte of the MCFC stack, is partially absorbed into the gasket. When used for a long time at an MCFC operating temperature of about 550 to 650° C., a high-temperature chemical reaction occurs with a molten carbonate electrolyte such as Li 2 CO 3 , K 2 CO 3 , Na 2 CO 3 and the like in which Dielectric’s alumina is absorbed into the gasket.

Al2O3는 Li2CO3와 반응하는데, 반응물인 LiAlO2는 밀도가 결정구조가 알파, 베타, 감마 등이 존재하는데, 이론밀도가 각각3.40g/cc, 2.59g/cc, 2.62g/cc로 3.98g/cc인 알파-알루미나(Al2O3)에 대비하여 부피가 크기 때문에 팽창이 발생하여 미세 균열을 야기한다. 이러한 미세 균열로 인한 파손시 가스누설로 스택 전체를 교체해야 하는 상황을 야기하며, 나아가, 사용 후 다이일렉트릭의 재사용을 곤란하게 하는 등, 많은 문제를 일으킨다.Al 2 O 3 reacts with Li 2 CO 3 , and LiAlO 2 as a reactant has a density of alpha, beta, gamma, etc., and has a theoretical density of 3.40 g/cc, 2.59 g/cc, and 2.62 g/, respectively. As cc is 3.98 g/cc of alpha-alumina (Al 2 O 3 ), it expands because of its large volume, thereby causing microcracks. In case of breakage due to such microcracks, gas leakage causes a situation in which the entire stack must be replaced, and further, it causes many problems, such as making it difficult to reuse the die-electric after use.

또한, 매니폴드 다이일렉트릭은 초기 장착단계에서는 도 2의 좌측과 같이, 스택 적층 방향으로 압축력만 가해진다. 이 때문에 장착 초기에는 다이일렉트릭이 파손될 확률이 거의 없다. 그러나, MCFC를 고온에서 대략 5년 이상 장기간 운전하는 경우에는 도 2의 우측에 나타낸 바와 같이 셀 패키지를 구성하는 금속분리판이 수평방향으로 성장하여 매니폴드 다이일렉트릭은 굽힘 응력을 받는 상태에 놓이게 된다. In addition, in the initial mounting stage of the manifold die-electric, only compressive force is applied in the stack stacking direction, as shown on the left side of FIG. 2 . For this reason, there is little chance that the die-electric will be damaged at the initial stage of installation. However, when the MCFC is operated at a high temperature for about 5 years or longer, the metal separator constituting the cell package grows in the horizontal direction as shown on the right side of FIG.

이러한 응력에 의하여 MCFC의 장기 운전 시, MCFC의 스택에 장착된 상당수의 다이일렉트릭에 파손이 발생하게 되며, 이는 MCFC 스택의 재활용을 불가능하게 한다. 나아가, 경우에 따라서는 다이일렉트릭의 파손으로 인해 발생한 크랙을 통해 가스누설도 수반되어 스택의 수명을 단축시킨다. Due to this stress, during long-term operation of the MCFC, a significant number of electrics mounted on the stack of the MCFC are damaged, which makes recycling of the MCFC stack impossible. Furthermore, in some cases, gas leakage is also accompanied through cracks generated due to the breakdown of the die electric, thereby shortening the life of the stack.

본 발명은 다이일렉트릭과 MCFC 전해질인 용융탄산염이 직접 접촉할 수 있는 부분인 스택 밀봉용 가스켓과 접촉하는 부분에서 용융탄산염과의 고온화학반응을 억제할 수 있는 용융탄산염연료전지 스택의 매니폴드 다이일렉트릭 및 그 제조방법을 제공하고자 한다.The present invention relates to a manifold dielectric of a molten carbonate fuel cell stack capable of suppressing a high-temperature chemical reaction with molten carbonate at a part in contact with a gasket for stack sealing, which is a part where molten carbonate, which is an MCFC electrolyte, can directly contact with dielectric. and to provide a method for manufacturing the same.

나아가, 본 발명은 매니폴드 다이일렉트릭의 크랙이 없는 CeO2, Y2O3, Sm2O3 등을 반응방지층으로 형성하는 것을 특징으로 하는 용융탄산염연료전지 스택의 매니폴드 다이일렉트릭 제조에 관한 것이다.Furthermore, the present invention relates to a manifold die-electric manufacturing of a molten carbonate fuel cell stack, characterized in that CeO 2 , Y 2 O 3 , Sm 2 O 3 , etc. without cracks of the manifold die-electric are formed as a reaction prevention layer. .

본 발명은 MCFC용 매니폴드 다이일렉트릭을 제공하고자 하는 것으로서, 본 발명의 일 구현예에 따르면, 알루미나를 포함하는 다이일렉트릭의 적어도 일면에 CeO2, Y2O3 및 Sm2O3로 이루어진 그룹으로부터 선택되는 적어도 하나로 된 반응방지층을 포함하는 MCFC용 매니폴드 다이일렉트릭이 제공된다.The present invention is to provide a manifold dielectric for MCFC. According to one embodiment of the present invention, CeO 2 , Y 2 O 3 and Sm 2 O 3 A manifold die-electric for an MCFC comprising at least one selected reaction barrier layer is provided.

상기 반응방지층은 3 내지 10㎛의 두께를 갖는 것이 바람직하다.The reaction preventing layer preferably has a thickness of 3 to 10㎛.

본 발명은 또한, MCFC용 스택, 가스켓 및 상기 MCFC용 매니폴드 다이일렉트릭의 순서로 배치되고, 상기 MCFC용 매니폴드 다이일렉트릭은 상기 가스켓과 접하는 측면에 상기 반응방지층이 형성된 용융탄산염 연료전지를 제공한다.The present invention also provides a molten carbonate fuel cell in which a stack for MCFC, a gasket, and the manifold direct for MCFC are arranged in the order, wherein the manifold direct for MCFC has the reaction prevention layer formed on a side thereof in contact with the gasket. .

본 발명은 다른 견지로서, 알루미나 함유 다이일렉트릭의 적어도 일면에 CeO2, Y2O3 및 Sm2O3로 이루어진 그룹으로부터 선택되는 적어도 하나의 희토류 원소의 산화물을 코팅하여 반응방지층을 형성하는 단계를 포함하는 MCFC용 매니폴드 다이일렉트릭 제조방법을 제공한다.In another aspect, the present invention provides a step of forming a reaction prevention layer by coating at least one surface of an alumina-containing die electric with an oxide of at least one rare earth element selected from the group consisting of CeO 2 , Y 2 O 3 and Sm 2 O 3 . It provides a method for manufacturing a manifold direct electric for MCFC comprising.

상기 알루미나 함유 다이일렉트릭은 99.5% 이상의 고순도 알루미나 분말을 압축 성형하여 소정 형상의 알루미나 성형체를 제조하는 단계를 포함하는 방법에 의해 제조될 수 있다.The alumina-containing die-electric may be manufactured by a method comprising the step of compression molding high-purity alumina powder of 99.5% or more to prepare an alumina compact having a predetermined shape.

상기 반응방지층은 상기 희토류 원소의 산화물을 에어로졸 증착법(Aerosol Deposition Method) 또는 슬러리 플라즈마 용사법에 의해 형성할 수 있다. The reaction prevention layer may be formed of the oxide of the rare earth element by an aerosol deposition method or a slurry plasma spraying method.

본 발명에 따르면, 가스켓과의 접촉면에 반응방지막이 형성된 Al2O3 조성의 다이일렉트릭은 반응방지층에 의하여 용융탄산염과 모재인 Al2O3의 고온 화학반응이 억제되어 LiAlO2와 같은 반응생성물에 의한 부피팽창 및 이에 따른 미세균열의 성장을 억제할 수 있다.According to the present invention, in the dielectric having a composition of Al 2 O 3 in which a reaction prevention film is formed on the contact surface with the gasket, the high-temperature chemical reaction between the molten carbonate and the base material Al 2 O 3 is suppressed by the reaction prevention layer, so that the reaction product such as LiAlO 2 It is possible to suppress the volume expansion and the growth of microcracks accordingly.

나아가, MCFC의 장기 운전시 다이일렉트릭이 파손되는 현상이 줄어들 뿐만 아니라, 스택의 수명이 다하여 해체하는 경우에도 다이일렉트릭의 재활용 가능 수율을 크게 향상시킬 수 있다.Furthermore, the damage of the die-electric during long-term operation of the MCFC is reduced, and the recyclable yield of the die-electric can be greatly improved even when the stack is dismantled at the end of its lifespan.

도 1은 일반적인 외부 매니폴드형 MCFC에 있어서 외부 매니폴드, 스택 및 매니폴드 밀봉부재의 구조를 개략적으로 나타는 부분 도면이다.
도 2는 매니폴드 다이일렉트릭이 장착된 연료전지의 운전 시간 경과에 따라 금속 분리판의 수평성장에 의한 다이일렉트릭의 파손에 미치는 영향을 개념적으로 나타낸 도면이다.
도 3은 본 발명의 일 구현예에 따른 연료전지의 스택, 가스켓 및 매니폴드 다이일렉트릭의 배치 구조를 나타내는 개략적 단면도이다.
1 is a partial view schematically showing the structure of an external manifold, a stack, and a manifold sealing member in a general external manifold type MCFC.
FIG. 2 is a diagram conceptually illustrating the effect of horizontal growth of a metal bipolar plate on the breakdown of a dielectric according to the lapse of operating time of a fuel cell equipped with a manifold dielectric.
3 is a schematic cross-sectional view illustrating an arrangement structure of a stack, a gasket, and a manifold dielectric of a fuel cell according to an embodiment of the present invention.

MCFC의 고온에서의 장기 운전시에 다이일렉트릭에 대한 파손 발생 여부에 영향을 미치는 요인으로는 다이일렉트릭 소재 내부의 결함 유무에도 관계가 있지만, 표면에 발생한 미세한 균열이 전파 확산되어 거시 균열로 연결되는 경우도 상당하다. 따라서, 최대한 균일한 미세구조의 고밀도 소재를 사용하는 것은 물론 표면연마를 통하여 표면에 균열을 최대한 제거하는 것이 다이일렉트릭의 파손을 방지하는데 바람직하다.Factors affecting whether MCFCs are damaged during long-term operation at high temperatures are related to the presence or absence of defects inside the die-electric materials, but when microcracks generated on the surface propagate and lead to macrocracks is also significant Therefore, it is desirable to prevent damage to the die-electric by using a high-density material having a uniform microstructure as well as maximally removing cracks on the surface through surface polishing.

본 발명의 상기 다이일렉트릭은 99.5% 이상의 고순도 알루미나 분말을 압축 성형하여 소정 형상의 알루미나 성형체를 제조한다. 이와 같은 99.5% 이상의 고순도 알루미나 소결체로 제작되고 있는 다이일렉트릭은 MCFC 스택에 직접 접촉하고 있는 가스켓과 접촉하기 때문에 가스켓에 담지된 용용탄산염과의 고온 화학반응 생성물이 형성됨으로 인한 미세 표면 균열을 발생시키는 문제가 있는바, 이러한 표면 결함 발생의 원인이 되는 용융탄산염과의 고온 화학반응을 근본적으로 방지하는 방법이 요구된다. The die electric of the present invention manufactures an alumina compact of a predetermined shape by compression molding of 99.5% or more of high-purity alumina powder. Dielectric, which is manufactured as such a high-purity alumina sintered compact of 99.5% or more, comes in contact with the gasket that is in direct contact with the MCFC stack. There is a need for a method for fundamentally preventing a high-temperature chemical reaction with molten carbonate that causes such surface defects.

이와 같은 MCFC 스택, 가스켓 및 다이일렉트릭의 순서로 배치된 연료전지 구조에서 다이일렉트릭 소재인 알루미나가 가스켓을 통한 용융탄산염 성분(Li2CO3, K2CO3, Na2CO3)과의 반응을 억제할 필요가 있다.In the fuel cell structure in which the MCFC stack, gasket, and die-electric are arranged in this order, alumina, a die-electric material, reacts with the molten carbonate component (Li 2 CO 3 , K 2 CO 3 , Na 2 CO 3 ) through the gasket. need to be suppressed.

이에, 본 발명은 다이일렉트릭과 가스켓이 접촉하는 측면의 다이일렉트릭의 소재인 알루미나의 표면에 반응방지층을 형성하여 용융탄산염과 다이일렉트릭 소재 간의 고온 화학반응을 방지하고자 한다. Accordingly, the present invention is to prevent a high-temperature chemical reaction between the molten carbonate and the die-electric material by forming a reaction prevention layer on the surface of alumina, which is the material of the die-electric, on the side where the die-electric and the gasket are in contact.

본 발명에 의해 제공되는 다이일렉트릭은 적어도 일 표면에 전해질인 용융탄산염과 고온 반응이 일어나지 않는 성분에 의한 막인 반응방지층을 포함한다. 상기 반응방지층은 다이일렉트릭의 양면에 형성되어도 좋으나, 가스켓과 직접 접촉하는 측의 표면에 전해질인 용융탄산염과 고온 반응이 일어나지 않는 성분에 의한 막인 반응방지층이 형성되는 것이 바람직하다. The dielectric provided by the present invention includes, on at least one surface, a reaction prevention layer, which is a film made of a component that does not react with molten carbonate as an electrolyte at a high temperature. The reaction prevention layer may be formed on both surfaces of the die-electric, but it is preferable that the reaction prevention layer, which is a film made of a component that does not react at high temperature with molten carbonate as an electrolyte, is preferably formed on the surface of the side in direct contact with the gasket.

상기 반응방지층은 용융탄산염 성분과 화합물을 형성하지 않는 것이라면 본 발명에서 적합하게 적용될 수 있는 것으로서, CeO2, Y2O3, Sm2O3 등의 희토류 원소의 산화물층을 형성하는 것이 바람직하다.The reaction prevention layer can be suitably applied in the present invention as long as it does not form a compound with the molten carbonate component, and it is preferable to form an oxide layer of rare earth elements such as CeO 2 , Y 2 O 3 , Sm 2 O 3 .

상기 반응방지층은 다이일렉트릭 표면에 상기 희토류 원소의 산화물 층을 형성할 수 있는 것이라면 본 발명에서 적합하게 사용할 수 있는 것으로서, 특별히 한정하지 않으나, 예를 들면, 에어로졸 증착법(Aerosol Deposition Method), 슬러리 플라즈마(Slurry Plasma) 용사법 등을 들 수 있다.The reaction preventing layer can be suitably used in the present invention as long as it can form an oxide layer of the rare earth element on the surface of the die-electric, and is not particularly limited, but, for example, an aerosol deposition method (Aerosol Deposition Method), slurry plasma ( Slurry Plasma) thermal spraying method, etc. are mentioned.

본 발명의 반응방지층은 특별히 한정하지 않으나, 3 내지 10㎛의 두께를 갖는 것이 바람직하다. 상기 두께가 3㎛ 미만이면 반응방지 효과가 제한적이고 코팅이 안되는 영역이 발생하는 문제가 있고, 그 두께가 10㎛를 초과하면 성막이 어렵고 박리가 발생할 가능성이 있다.The reaction prevention layer of the present invention is not particularly limited, but preferably has a thickness of 3 to 10 μm. If the thickness is less than 3 μm, there is a problem in that the reaction prevention effect is limited and an area that cannot be coated occurs, and if the thickness exceeds 10 μm, film formation is difficult and peeling may occur.

본 발명은 또한 상기와 같은 본 발명에 의해 제공되는 반응방지층을 포함하는 용융탄산염 연료전지를 제공한다. 본 발명에 의해 제공되는 용융탄산염 연료전지는 도 3에 나타낸 바와 같이, MCFC용 스택, 다이일렉트릭, 금속 매니폴드를 포함하며, 상기 다이일렉트릭의 양측에 위치하며, 상기 MCFC 스택과 다이일렉트릭 사이 및 상기 금속매니폴드와 다이일렉트릭 사이에 각각의 가스켓을 포함한다. 이때, 상기 MCFC 스택 측의 다이일렉트릭에는 가스켓과 접하는 측면, 즉, 상기 가스켓과 다이일렉트릭 사이에 본 발명에서 제공되는 상기 반응방지층을 포함한다. The present invention also provides a molten carbonate fuel cell comprising the reaction prevention layer provided by the present invention as described above. As shown in FIG. 3 , the molten carbonate fuel cell provided by the present invention includes a stack for MCFC, a direct electric, and a metal manifold, and is located on both sides of the direct, between the MCFC stack and the direct electric and between the Each gasket is included between the metal manifold and the die electric. In this case, the die-electric at the side of the MCFC stack includes the reaction prevention layer provided in the present invention between the side contacting the gasket, that is, between the gasket and the die-electric.

이와 같이 MCFC 스택 측의 다이일렉트릭에 본 발명의 반응방지층을 포함함으로써 다이일렉트릭은 용융탄산염 전해질과의 직접 접촉을 방지할 수 있으며, 이로 인해 용융탄산염 전해질과의 화학반응으로 인한 미세 표면 균열을 억제할 수 있어, 표면 결함 발생을 방지할 수 있다. As described above, by including the reaction prevention layer of the present invention in the die-electric on the side of the MCFC stack, direct contact with the molten carbonate electrolyte can be prevented, thereby suppressing micro-surface cracking due to chemical reaction with the molten carbonate electrolyte. Therefore, it is possible to prevent the occurrence of surface defects.

Claims (6)

99.5% 이상의 고순도 알루미나를 포함하는 다이일렉트릭과 가스켓이 접하는 측면에 CeO2, Y2O3 및 Sm2O3로 이루어진 그룹으로부터 선택되는 적어도 하나로 된 반응방지층을 포함하고,
상기 반응방지층은 3 내지 10㎛의 두께를 갖는 것인, MCFC용 매니폴드 다이일렉트릭.
A reaction preventing layer made of at least one selected from the group consisting of CeO 2 , Y 2 O 3 and Sm 2 O 3 on the side in contact with the dielectric containing 99.5% or more of high-purity alumina and the gasket,
The reaction preventing layer will have a thickness of 3 to 10㎛, MCFC manifold direct.
삭제delete MCFC용 스택, 가스켓 및 제1항의 MCFC용 매니폴드 다이일렉트릭의 순서로 배치되는, 용융탄산염 연료전지.A molten carbonate fuel cell, which is disposed in the order of the stack for MCFC, the gasket, and the manifold direct for MCFC of claim 1 . 알루미나 함유 다이일렉트릭과 가스켓이 접하는 측면에 CeO2, Y2O3 및 Sm2O3로 이루어진 그룹으로부터 선택되는 적어도 하나의 희토류 원소의 산화물을 코팅하여 3 내지 10㎛의 두께를 갖는 반응방지층을 형성하는 단계를 포함하는 MCFC용 매니폴드 다이일렉트릭 제조방법.A reaction prevention layer having a thickness of 3 to 10 μm is formed by coating an oxide of at least one rare earth element selected from the group consisting of CeO 2 , Y 2 O 3 and Sm 2 O 3 on the side where the alumina-containing die-electric and the gasket are in contact. Manifold direct manufacturing method for MCFC comprising the step of. 제4항에 있어서, 상기 반응방지층은 상기 희토류 원소의 산화물을 에어로졸 증착법(Aerosol Deposition Method) 또는 슬러리 플라즈마 용사법으로 형성하는 것인 MCFC용 매니폴드 다이일렉트릭 제조방법.5. The method of claim 4, wherein the reaction prevention layer is formed by forming the oxide of the rare earth element by an aerosol deposition method or a slurry plasma spraying method. 제4항에 있어서, 상기 알루미나 함유 다이일렉트릭은 99.5% 이상의 고순도 알루미나 분말을 압축 성형하여 소정 형상의 알루미나 성형체를 제조하는 단계를 포함하는 MCFC용 매니폴드 다이일렉트릭 제조방법.[Claim 5] The method according to claim 4, wherein the alumina-containing die-electric material is manufactured by compression molding 99.5% or more of high-purity alumina powder to produce an alumina compact having a predetermined shape.
KR1020170120646A 2017-09-19 2017-09-19 Manifold Dielectric with Reaction Barrier for Molten Carbonate Fuel Cell Stack KR102369745B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170120646A KR102369745B1 (en) 2017-09-19 2017-09-19 Manifold Dielectric with Reaction Barrier for Molten Carbonate Fuel Cell Stack

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170120646A KR102369745B1 (en) 2017-09-19 2017-09-19 Manifold Dielectric with Reaction Barrier for Molten Carbonate Fuel Cell Stack

Publications (3)

Publication Number Publication Date
KR20190032112A KR20190032112A (en) 2019-03-27
KR102369745B1 true KR102369745B1 (en) 2022-03-03
KR102369745B9 KR102369745B9 (en) 2022-12-27

Family

ID=65906769

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170120646A KR102369745B1 (en) 2017-09-19 2017-09-19 Manifold Dielectric with Reaction Barrier for Molten Carbonate Fuel Cell Stack

Country Status (1)

Country Link
KR (1) KR102369745B1 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2846390B1 (en) * 2013-08-07 2018-05-09 Fuelcell Energy, Inc. Gasket for fuel cell system manifold seal
KR101795894B1 (en) * 2015-12-24 2017-12-01 주식회사 포스코 Gasket for molten carbonate fuel cell having a oxide barrier layer for the prevention of electrolyte migration

Also Published As

Publication number Publication date
KR20190032112A (en) 2019-03-27
KR102369745B9 (en) 2022-12-27

Similar Documents

Publication Publication Date Title
US10658684B2 (en) Sanbornite-based glass-ceramic seal for high-temperature applications
US8810992B2 (en) Electrostatic chuck
KR102066121B1 (en) Electrolyte formation process
KR20140131363A (en) Thin, fine grained and fully dense glass-ceramic seal for sofc stack
JP2005183376A (en) Fuel cell assembly
EP2104172A1 (en) A composite glass seal for a solid oxide electrolyser cell stack
KR100733083B1 (en) Anode-supported fuel cell
EP0582426B1 (en) Alumina, calcia, yttria sealing composition
CN115769403A (en) Dielectric separator for fuel cell stack assembly and method of making same
KR102369745B1 (en) Manifold Dielectric with Reaction Barrier for Molten Carbonate Fuel Cell Stack
US8241815B2 (en) Solid oxide fuel cell (SOFC) device having gradient interconnect
CA2418944C (en) Fuel cell stack with internal gas connectors
JPH11515136A (en) High-temperature fuel cell having at least one electrically insulating layer structure and method for manufacturing high-temperature fuel cell
US20040062981A1 (en) Electrolyte matrix, especially for a molten carbonate fuel cell, and a method for producing the same
KR102262040B1 (en) High strength duplex structure mamifold dielectric for molten carbonate fuel cell stack and mehotd for preparing the same
US9564643B2 (en) Engineered glass seals for solid-oxide fuel cells
US20160096771A1 (en) Methods of forming a glass composition
KR101778376B1 (en) Gasket for molten carbonate fuel cell having a barrier layer for the prevention of electrolyte migration
JPH1012252A (en) Solid electrolyte fuel cell and manufacture therefor
KR101795894B1 (en) Gasket for molten carbonate fuel cell having a oxide barrier layer for the prevention of electrolyte migration
KR101353873B1 (en) Sealant for solid electrolyte fuel cell and method for manufacturing the same
US11974382B2 (en) Dielectric substance-electrode assembly and method of manufacturing the same
KR101346205B1 (en) Forming method of air electrodes for solid oxide fuel cells
KR102117739B1 (en) Method of preparing anode-supported solid oxide fuel cell
US10797335B2 (en) Conductive solid oxide fuel cell electrolyte composition and a method for preparing the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application
X091 Application refused [patent]
AMND Amendment
X701 Decision to grant (after re-examination)
G170 Re-publication after modification of scope of protection [patent]