KR102365846B1 - Method of fabricating corrosion protection layer using core shell particles and sunflower oil, and corrosion protection layer fabricated by the same - Google Patents

Method of fabricating corrosion protection layer using core shell particles and sunflower oil, and corrosion protection layer fabricated by the same Download PDF

Info

Publication number
KR102365846B1
KR102365846B1 KR1020200135846A KR20200135846A KR102365846B1 KR 102365846 B1 KR102365846 B1 KR 102365846B1 KR 1020200135846 A KR1020200135846 A KR 1020200135846A KR 20200135846 A KR20200135846 A KR 20200135846A KR 102365846 B1 KR102365846 B1 KR 102365846B1
Authority
KR
South Korea
Prior art keywords
core
sunflower oil
shell
coating
shell particles
Prior art date
Application number
KR1020200135846A
Other languages
Korean (ko)
Inventor
김정구
김경훈
홍민성
박윤정
Original Assignee
성균관대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 성균관대학교산학협력단 filed Critical 성균관대학교산학협력단
Priority to KR1020200135846A priority Critical patent/KR102365846B1/en
Application granted granted Critical
Publication of KR102365846B1 publication Critical patent/KR102365846B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/14Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/02Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
    • B05D3/0254After-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/20Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by magnetic fields
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/10Encapsulated ingredients
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D191/00Coating compositions based on oils, fats or waxes; Coating compositions based on derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints
    • C09D5/082Anti-corrosive paints characterised by the anti-corrosive pigment
    • C09D5/084Inorganic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2202/00Metallic substrate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Powder Metallurgy (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

The present invention relates to a method for manufacturing an anti-corrosion coating using core-shell particle sunflower oil, and an anti-corrosion coating layer using core-shell particle sunflower oil on a metal substrate. The present invention provides an eco-friendly coating agent at a low price in a simple way using sunflower oil and a core-shell composite structure. The coating agent of the present invention can secure excellent corrosion resistance through the photoelectron emission characteristics of a core shell in visible light and an external shielding effect of sunflower oil.

Description

코어쉘 입자 해바라기유를 이용한 부식방지용 코팅의 제조 방법 및 이에 의해 제조된 코팅층 {METHOD OF FABRICATING CORROSION PROTECTION LAYER USING CORE SHELL PARTICLES AND SUNFLOWER OIL, AND CORROSION PROTECTION LAYER FABRICATED BY THE SAME}Method for manufacturing anticorrosion coating using core-shell particle sunflower oil and coating layer prepared thereby

본 발명은 코어쉘 입자 해바라기유를 이용한 부식방지용 코팅의 제조 방법에 관한 것이고, 또한 본 발명은 금속 기재 상의 코어쉘 입자 해바라기유를 이용한 부식방지용 코팅층에 관한 것이다.The present invention relates to a method for producing an anticorrosion coating using core-shell particle sunflower oil, and the present invention also relates to a corrosion protection coating layer using core-shell particle sunflower oil on a metal substrate.

매우 다양한 분야에서 금속을 사용하지만, 매년 금속부식으로 인하여 GNP의 약 4%의 막대한 경제적 손실이 일어나고 있다. 이러한 손실을 줄이기 위해, 부식으로 인한 손실을 최소화하기 위하여 많은 연구가 진행되고 있는 실정이다.Although metals are used in a wide variety of fields, a huge economic loss of about 4% of GNP is occurring every year due to metal corrosion. In order to reduce this loss, many studies are being conducted to minimize the loss due to corrosion.

기존의 부식방지 코팅재는 환경오염, 복잡한 공정, 높은 가격의 단점이 있다. 이러한 문제를 극복하기 위해 새로운 코팅방법들이 개발 및 적용되고 있으나, 현재 라인의 제약 또는 단가로 인하여 그 효과 및 적용은 미미한 실정이다. Conventional anti-corrosion coatings have disadvantages of environmental pollution, complicated processes, and high prices. New coating methods have been developed and applied to overcome this problem, but their effects and applications are insignificant due to current line restrictions or unit prices.

또한, 종래의 광전자 공급을 통한 부식방지 코팅재는 전체 반응속도를 증가시켜, 원치 않는 산소 혹은 수소가 발생하여 부식 속도를 증대시킬 수 있으며, UV 등 강한 광원을 필요로 하여 제한적인 문제점을 안고 있다.In addition, the conventional anti-corrosion coating material through the supply of optoelectronics increases the overall reaction rate, can increase the corrosion rate by generating unwanted oxygen or hydrogen, and has a limited problem because it requires a strong light source such as UV.

본 발명은 코어쉘 입자를 이용한 금속에 광전자 공급과 외부 부식환경과의 차단이 가능한 해바라기유를 이용한 부식방지용 코팅층을 제공하고자 한다.An object of the present invention is to provide a corrosion-preventing coating layer using sunflower oil capable of supplying photoelectrons to metal using core-shell particles and blocking the external corrosive environment.

본 발명의 일 실시예에 따른 코어쉘 입자 해바라기유를 이용한 부식방지용 코팅의 제조 방법은, 코어쉘 입자를 제조하는 단계; 제조된 코어쉘 입자를 자기 여과 방법에 의해 코어쉘 입자를 분리하는 단계; 코어쉘 입자를 해라바기유와 혼합하여 코팅액을 만드는 단계; 혼합된 코팅액을 금속 기재 위에 도포하는 단계; 상기 코팅액이 도포된 금속 기재의 반대편에 자석을 배치하는 단계; 및 퍼니스에서 가열을 하여 해바라기유를 경화시키는 단계를 포함한다.According to an embodiment of the present invention, there is provided a method for manufacturing a coating for corrosion protection using core-shell particles sunflower oil, the method comprising: preparing core-shell particles; separating the core-shell particles from the prepared core-shell particles by magnetic filtration; Mixing the core-shell particles with sunflower oil to make a coating solution; applying the mixed coating solution on the metal substrate; disposing a magnet on the opposite side of the metal substrate to which the coating solution is applied; and curing the sunflower oil by heating in a furnace.

상기 코어쉘 입자는 자성 및 전기적 전도성을 갖는 산화물 입자를 코어로 이용하고, 광전자 방출 특성이 있는 전이금속 디칼코제나이드 물질을 쉘로 이용하여 제조된다.The core-shell particles are manufactured by using oxide particles having magnetic and electrical conductivity as a core and using a transition metal dichalcogenide material having photoelectron emission properties as a shell.

상기 전이금속 디칼코제나이드 물질은 MoS2, MoSe2, MoTe2, WS2, WSe2 중 어느 하나가 이용될 수 있고, 상기 산화물 입자는 Fe, Ni, Co 산화물 입자가 이용될 수 있다.As the transition metal dichalcogenide material, any one of MoS 2 , MoSe 2 , MoTe 2 , WS 2 , and WSe 2 may be used, and as the oxide particles, Fe, Ni, Co oxide particles may be used.

상기 코팅액이 도포된 금속 기재의 반대편에 자석을 배치하는 단계에 의해 상기 코팅액 중의 코어쉘 입자가 금속 기재 쪽으로 배치된다.By disposing a magnet on the opposite side of the metal substrate to which the coating solution is applied, the core-shell particles in the coating solution are disposed toward the metal substrate.

상기 코팅액 중의 코어쉘 입자가 금속 기재 쪽으로 배치됨으로써 코팅층은 2개의 층으로 분리되고, 상기 금속 기재 상의 층은 코어쉘 입자 및 해바라기유를 포함한 층으로 이루어지고, 그 위의 층은 해바라기유를 포함한 층으로 이루어진다.By disposing the core-shell particles in the coating solution toward the metal substrate, the coating layer is separated into two layers, the layer on the metal substrate consists of a layer containing the core-shell particles and sunflower oil, and the layer on the top is a layer containing sunflower oil is made of

본 발명의 일 실시예에 따른 금속 기재 상의 코어쉘 입자 해바라기유를 이용한 부식방지용 코팅층은, 금속 기재; 및 상기 금속 기재 상의 코팅층을 포함하고, 상기 코팅층은 상기 금속 기재 상에 배치된 제 1 층; 및 상기 제 1 층 상에 배치된 제 2 층을 포함하며, 상기 제 1 층은 코어쉘 입자 및 해바라기유를 포함하고, 상기 제 2 층은 해바라기유를 포함한다.Corrosion prevention coating layer using sunflower oil with core-shell particles on a metal substrate according to an embodiment of the present invention, a metal substrate; and a coating layer on the metal substrate, wherein the coating layer includes: a first layer disposed on the metal substrate; and a second layer disposed on the first layer, wherein the first layer comprises core shell particles and sunflower oil, and wherein the second layer comprises sunflower oil.

상기 코팅층은, 가시광선에서 코어쉘 입자의 쉘을 통해 광전자를 금속에 공급하고, 해바라기유에 의해 외부 부식 환경과의 차단이 이루어진다.The coating layer supplies photoelectrons to the metal through the shell of core-shell particles in visible light, and blocks the external corrosive environment by sunflower oil.

상기 코어쉘 입자는 자성 및 전기적 전도성을 갖는 산화물 입자를 코어; 및 광전자 방출 특성이 있는 전이금속 디칼코제나이드 물질을 쉘로 이루어진다.The core-shell particles include a core oxide particle having magnetic and electrical conductivity; and a transition metal dichalcogenide material having photoelectron emission properties as a shell.

상기 전이금속 디칼코제나이드 물질은 MoS2, MoSe2, MoTe2, WS2, WSe2 중 어느 하나일 수 있고, 상기 산화물 입자는 Fe, Ni, Co 산화물 입자일 수 있다.The transition metal dichalcogenide material may be any one of MoS 2 , MoSe 2 , MoTe 2 , WS 2 , and WSe 2 , and the oxide particles may be Fe, Ni, or Co oxide particles.

부식환경에서의 안정적인 금속의 사용을 위해, 본 코팅제는 기존 금속 대비 매우 뛰어난 부식 저항성을 나타내어 부식을 효과적으로 방지할 수 있을 것으로 판단된다.For the stable use of metals in corrosive environments, this coating agent is judged to be able to effectively prevent corrosion by exhibiting very excellent corrosion resistance compared to conventional metals.

도 1은 본 발명의 일 실시예에 따른 코어쉘 입자 해바라기유를 이용한 부식방지용 코팅의 제조 방법의 순서도를 도시한다.
도 2는 MoS2-Fe3O4 코어쉘 입자의 제조 및 코어쉘과 해바라기유를 이용한 부식방지용 코팅 절차를 도시한다.
도 3은 Fe3O4-MoS2 코어쉘과 해바라기유를 이용한 부식방지용 코팅층의 모식도를 도시한다.
도 4는 Fe3O4-MoS2 코어쉘의 주사전자현미경 관찰 결과 및 EDS 관찰 결과를 도시한다.
도 5는 본 발명의 일 실시예에 따라 형성된 코팅층의 전자주사현미경 관찰 결과를 도시한다.
도 6은 본 발명의 일 실시예에 따라 형성된 코팅층의 동전위분극 시험 결과를 도시한다.
도 7은 본 발명의 일 실시예에 따라 형성된 코팅층의 EIS 시험 결과를 도시한다.
다양한 실시예들이 이제 도면을 참조하여 설명되며, 전체 도면에서 걸쳐 유사한 도면번호는 유사한 엘리먼트를 나타내기 위해서 사용된다. 설명을 위해 본 명세서에서, 다양한 설명들이 본 발명의 이해를 제공하기 위해서 제시된다. 그러나 이러한 실시예들은 이러한 특정 설명 없이도 실행될 수 있음이 명백하다. 다른 예들에서, 공지된 구조 및 장치들은 실시예들의 설명을 용이하게 하기 위해서 블록 다이아그램 형태로 제시된다.
1 shows a flowchart of a method for manufacturing an anticorrosion coating using a core-shell particle sunflower oil according to an embodiment of the present invention.
2 shows the preparation of MoS 2 -Fe 3 O 4 core-shell particles and the coating procedure for corrosion protection using the core-shell and sunflower oil.
Figure 3 is Fe 3 O 4 -MoS 2 It shows a schematic diagram of the coating layer for corrosion prevention using a core shell and sunflower oil.
4 shows the scanning electron microscope observation results and EDS observation results of the Fe 3 O 4 -MoS 2 core shell.
5 shows a scanning electron microscope observation result of the coating layer formed according to an embodiment of the present invention.
6 shows the results of the electrostatic polarization test of the coating layer formed according to an embodiment of the present invention.
7 shows an EIS test result of a coating layer formed according to an embodiment of the present invention.
Various embodiments are now described with reference to the drawings, wherein like reference numerals are used to refer to like elements throughout. In this specification for purposes of explanation, various descriptions are presented to provide an understanding of the present invention. However, it is apparent that these embodiments may be practiced without these specific descriptions. In other instances, well-known structures and devices are presented in block diagram form in order to facilitate describing the embodiments.

이하, 첨부한 도면을 참조하여 본 발명의 실시예에 대해 상세히 설명한다. 본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 본문에 상세하게 설명하고자 한다. 그러나 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 각 도면을 설명하면서 유사한 참조부호를 유사한 구성요소에 대해 사용하였다. Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. Since the present invention can have various changes and can have various forms, specific embodiments are illustrated in the drawings and described in detail in the text. However, this is not intended to limit the present invention to the specific disclosed form, it should be understood to include all modifications, equivalents and substitutes included in the spirit and scope of the present invention. In describing each figure, like reference numerals have been used for like elements.

본 출원에서 사용한 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로서 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 특징, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terms used in the present application are only used to describe specific embodiments and are not intended to limit the present invention. The singular expression includes the plural expression unless the context clearly dictates otherwise. In the present application, terms such as “comprise” or “have” are intended to designate that a feature, step, operation, component, part, or combination thereof described in the specification exists, and includes one or more other features or steps. , it should be understood that it does not preclude the possibility of the existence or addition of an operation, a component, a part, or a combination thereof.

본 발명은 해바라기유와 코어쉘 복합 구조를 이용하여 간단한 방법으로 저렴한 가격의 친환경적인 코팅제를 제안하고자 한다. 본 발명의 코팅제는 가시광선에서 코어쉘의 광전자 방출 특성과 해바라기유의 외부차폐 효과를 통한 우수한 부식 내구성을 확보할 수 있다.The present invention intends to propose an eco-friendly coating agent at a low price in a simple way using sunflower oil and a core-shell composite structure. The coating agent of the present invention can secure excellent corrosion durability through the photoelectron emission characteristics of the core shell and the external shielding effect of sunflower oil in visible light.

도 1은 본 발명의 일 실시예에 따른 코어쉘 입자 해바라기유를 이용한 부식방지용 코팅의 제조 방법의 순서도를 도시한다.1 shows a flowchart of a method for manufacturing an anticorrosion coating using a core-shell particle sunflower oil according to an embodiment of the present invention.

도 1을 참고하면, 본 발명의 일 실시예에 따른 코어쉘 입자 해바라기유를 이용한 부식방지용 코팅의 제조 방법은, 코어쉘 입자를 제조하는 단계(S 110); 제조된 코어쉘 입자를 자기 여과 방법에 의해 코어쉘 입자를 분리하는 단계(S 120); 코어쉘 입자를 해라바기유와 혼합하여 코팅액을 만드는 단계(S 130); 혼합된 코팅액을 금속 기재 위에 도포하는 단계(S 140); 상기 코팅액이 도포된 금속 기재의 반대편에 자석을 배치하는 단계(S 150); 및 퍼니스에서 가열을 하여 해바라기유를 경화시키는 단계(S 160)를 포함한다.Referring to FIG. 1 , a method for manufacturing an anticorrosion coating using core-shell particles sunflower oil according to an embodiment of the present invention includes the steps of preparing core-shell particles (S 110); Separating the prepared core-shell particles by a magnetic filtration method (S 120); Mixing the core-shell particles with sunflower oil to make a coating solution (S 130); Applying the mixed coating solution on the metal substrate (S 140); disposing a magnet on the opposite side of the metal substrate to which the coating solution is applied (S150); and curing the sunflower oil by heating in a furnace (S 160).

S 110 단계는 코어쉘 입자를 제조하는 단계이다. 코어쉘 입자는 자성 및 전기적 전도성을 갖는 산화물 입자를 코어로 이용하고, 광전자 방출 특성이 있는 전이금속 디칼코제나이드 물질을 쉘로 이용하여 제조된다.Step S 110 is a step for preparing core-shell particles. The core-shell particles are manufactured by using oxide particles having magnetic and electrical conductivity as a core and using a transition metal dichalcogenide material having photoelectron emission properties as a shell.

코어 입자 및 쉘을 이루는 물질을 함께 오토클레이브에서 반응시켜 제조된다. It is prepared by reacting the material constituting the core particle and the shell together in an autoclave.

전이금속 디칼코제나이드 물질은 MoS2, MoSe2, MoTe2, WS2, WSe2 중 어느 하나가 이용될 수 있고, 산화물 입자는 Fe, Ni, Co 산화물 입자가 이용될 수 있으며, 구체적으로 예를 들어 Fe3O4, NiO, CoO 등이 이용될 수 있다.As the transition metal dichalcogenide material, any one of MoS 2 , MoSe 2 , MoTe 2 , WS 2 , and WSe 2 may be used, and as the oxide particles, Fe, Ni, Co oxide particles may be used, and specifically, for example, For example, Fe 3 O 4 , NiO, CoO, etc. may be used.

S 120 단계에서는 S 110 단계에서 제조된 코어쉘 입자를 자기 여과 방법에 의해 코어쉘 입자를 분리한다. S 110 단계에서 코어 입자 및 쉘을 이루는 물질을 함께 오토클레이브에서 반응시켜 제조한 후 자기 여과 방법(magnetic filtration)을 이용해 코어쉘 입자를 분리한다. 코어쉘 입자는 자성을 띄고 있기 때문에 자석에 의해 분리가 가능하다.In step S 120, the core-shell particles prepared in step S 110 are separated by magnetic filtration. In step S110, the core particles and the materials constituting the shell are reacted together in an autoclave to prepare them, and then the core-shell particles are separated using magnetic filtration. Since core-shell particles are magnetic, they can be separated by a magnet.

S 130 단계에서는 코어쉘 입자를 해라바기유와 혼합하여 코팅액을 만든다. S 120 단계에서 코어쉘 입자를 자기 여과 방법에 의해 분리하고, 분리된 코어쉘 입자를 해바라기유와 혼합하여 코팅액을 제조하는 것이다.In step S 130, the core-shell particles are mixed with sunflower oil to make a coating solution. In step S 120, the core-shell particles are separated by magnetic filtration, and the separated core-shell particles are mixed with sunflower oil to prepare a coating solution.

S 140 단계에서는 S 130 단계에서 혼합된 코팅액을 금속 기재 위에 도포하는 단계를 수행한다.In step S 140, the step of applying the coating solution mixed in step S 130 on the metal substrate is performed.

S 150 단계에서는 코팅액이 도포된 금속 기재의 반대편에 자석을 배치하는 단계를 수행한다. 코팅액이 도포된 금속 기재의 반대편에 자석을 배치하는 단계에 의해 코팅액 중의 코어쉘 입자가 금속 기재 쪽으로 배치된다.In step S 150, a step of disposing a magnet on the opposite side of the metal substrate to which the coating solution is applied is performed. The core-shell particles in the coating solution are disposed toward the metal substrate by disposing a magnet on the opposite side of the metal substrate to which the coating solution is applied.

코팅액 중의 코어쉘 입자가 금속 기재 쪽으로 배치됨으로써 코팅층은 2개의 층으로 분리되고, 금속 기재 상의 층은 코어쉘 입자 및 해바라기유를 포함한 층으로 이루어지고, 그 위의 층은 해바라기유를 포함한 층으로 이루어지게 된다. 이러한 모습은 도 3에서 확인이 가능하다.By disposing the core-shell particles in the coating solution toward the metal substrate, the coating layer is separated into two layers, the layer on the metal substrate consists of a layer containing the core-shell particles and sunflower oil, and the layer above it is composed of a layer containing sunflower oil will lose This appearance can be confirmed in FIG. 3 .

즉, 코팅액이 도포된 금속 기재의 반대편에 자석을 배치함으로써 자석에 의해 자성을 띄는 산화물 입자가 금속 기재 바로 위에 배치됨으로써 금속 기재 / 금속 기재 상의 코어쉘 입자 및 해바라기유를 포함하는 제 1 층 / 상기 제 1 층 상의 해바라기유를 포함하는 제 2 층으로 층 분리가 일어나는 것이다.That is, by disposing a magnet on the opposite side of the metal substrate to which the coating solution is applied, the oxide particles exhibiting magnetism by the magnet are placed directly on the metal substrate, whereby the metal substrate / the first layer containing the core-shell particles and sunflower oil on the metal substrate / the above Layer separation occurs with a second layer comprising sunflower oil on the first layer.

S 160 단계에서는 퍼니스에서 가열을 하여 해바라기유를 경화시키는 단계를 포함한다.In step S 160, it includes a step of curing the sunflower oil by heating in a furnace.

이상에서 설명한 방법에 의해 코어쉘 입자 해바라기유를 이용한 부식방지용 코팅층을 제조하게 된다. 이렇게 제조된 코팅층을 구조는 다음과 같다.By the method described above, a coating layer for corrosion prevention using the core-shell particle sunflower oil is prepared. The structure of the coating layer thus prepared is as follows.

본 발명의 일 실시예에 따른 금속 기재 상의 코어쉘 입자 해바라기유를 이용한 부식방지용 코팅층은, 금속 기재; 상기 금속 기재 상에 배치된 제 1 층; 및 상기 제 1 층 상에 배치된 제 2 층을 포함하고, 상기 제 1 층은 코어쉘 입자 및 해바라기유를 포함하며, 상기 제 2 층은 해바라기유를 포함한다.Corrosion prevention coating layer using sunflower oil with core-shell particles on a metal substrate according to an embodiment of the present invention, a metal substrate; a first layer disposed on the metal substrate; and a second layer disposed on the first layer, wherein the first layer comprises core shell particles and sunflower oil, and wherein the second layer comprises sunflower oil.

상기 코팅층은, 가시광선에서 코어쉘 입자의 쉘을 통해 광전자를 금속에 공급하고, 해바라기유에 의해 외부 부식 환경과의 차단이 이루어진다.The coating layer supplies photoelectrons to the metal through the shell of core-shell particles in visible light, and is blocked from the external corrosive environment by sunflower oil.

이하에서는 구체적인 실시예와 함께 본 발명의 내용을 추가적으로 설명하도록 하겠다.Hereinafter, the content of the present invention will be further described along with specific examples.

실시예에서는 Fe3O4-MoS2 코어쉘 입자를 이용하였다.In the examples, Fe 3 O 4 -MoS 2 core-shell particles were used.

도 2는 MoS2-Fe3O4 코어쉘 입자의 제조 및 코어쉘과 해바라기유를 이용한 부식방지용 코팅 절차를 도시한다. 도 3은 Fe3O4-MoS2 코어쉘과 해바라기유를 이용한 부식방지용 코팅층의 모식도를 도시한다.2 shows the preparation of MoS 2 -Fe 3 O 4 core-shell particles and the coating procedure for corrosion protection using the core-shell and sunflower oil. 3 shows a schematic diagram of a coating layer for corrosion protection using a Fe3O4-MoS2 core shell and sunflower oil.

상용 Fe3O4 나노입자 (< 500nm, core) 와 (NH4)6Mo7O24·4H2O, Thiourea (Shell : MoS2)를 오토클레이브에서 180도 / 10시간 동안 반응시켜 코어쉘 입자를 제조하였고, magnetic filtration (자석을 이용한 여과방법)을 통해 제작된 코어쉘만을 분리하였다. (코어쉘은 코어인 Fe3O4의 자성에 의해 분리되고, residue는 제거됨.) Commercial Fe 3 O 4 nanoparticles (<500nm, core) and (NH 4 ) 6 Mo 7 O 24 4H 2 O, Thiourea (Shell: MoS 2 ) were reacted in an autoclave at 180 degrees / for 10 hours to form core-shell particles was prepared, and only the prepared core shell was separated through magnetic filtration. (The core shell is separated by the magnetism of the core Fe 3 O 4 , and the residue is removed.)

이후 제작된 코어쉘을 해바라기유와 혼합하였고, 혼합된 코팅액을 금속 위에 도포하고 금속 시편 뒤에 자석을 고정하였다. 이때, 자성에 의해 코어쉘이 코팅의 바닥층으로 배열된다.Afterwards, the prepared core shell was mixed with sunflower oil, the mixed coating solution was applied on the metal, and a magnet was fixed behind the metal specimen. At this time, the core shell is arranged as the bottom layer of the coating by magnetism.

이후 275도의 퍼니스에서 약 15분간 가열을 하면 해바라기유가 경화되며, 코어쉘로 형성된 층과 해바라기유로 형성된 층인 2층으로 나뉘게 되는 나노복합층을 얻을 수 있었다. 코어쉘로 형성된 층은 광전자를 이용한 음극반응 억제 작용을 하고 우수한 부식 저항성을 나타내는 코팅제 역할을 하게 된다.After that, when heated in a furnace at 275°C for about 15 minutes, sunflower oil was hardened, and a nanocomposite layer was obtained that was divided into a layer formed of a core shell and a layer formed of sunflower oil. The layer formed of the core-shell acts as a coating agent to inhibit cathodic reaction using photoelectrons and to exhibit excellent corrosion resistance.

실시예 1에서 제작된 코팅층은, 코어쉘 구조로 쉘의 Fe3O4의 자성을 이용하여 해당 코어쉘을 금속표면에 고정시키고, 코어인 MoS2를 통해 광전자를 금속에 공급할 수 있다. 해바라기유를 통해 해당 구조를 고정하고, 외부환경과의 차폐된 환경을 조성할 수 있다.The coating layer prepared in Example 1 has a core-shell structure and uses the magnetism of Fe 3 O 4 of the shell to fix the core-shell to the metal surface, and to supply photoelectrons to the metal through MoS 2 as the core. Sunflower oil can fix the structure and create a shielded environment with the external environment.

본 발명의 코팅제의 구조 및 조성은 주사전자현미경 (SEM)과 X-ray 회절 분석법 (XRD) 을 통해 분석되었으며, 전기화학시험을 통해 부식저항성을 확인하였다. 도 4를 참고하면, 제작된 코어쉘의 EDS 분석 결과 Mo, S, O, Fe peak가 강하게 나타나는 것을 확인할 수 있었으며, 제작된 코어쉘은 내부에는 Fe3O4가, 외부에는 MoS2의 일반적인 형태인 판형의 MoS2가 생성된 것을 확인할 수 있었다.The structure and composition of the coating agent of the present invention were analyzed by scanning electron microscopy (SEM) and X-ray diffraction analysis (XRD), and corrosion resistance was confirmed through an electrochemical test. Referring to FIG. 4, as a result of EDS analysis of the manufactured core shell, it was confirmed that Mo, S, O, and Fe peaks appeared strongly, and the manufactured core shell had Fe 3 O 4 inside and MoS 2 outside the general form It was confirmed that the phosphorus plate-shaped MoS 2 was generated.

도 5를 참고하면, 주사전자 현미경을 통한 표면 관찰 및 Cross-section 관찰 결과 두 개의 layer로 형성된 것을 확인할 수 있었다. layer 1은 견고한 sunFO 층이고, layer 2는 코어쉘이 자석으로 아래쪽으로 배열되어 있는 층으로 EDS 통해 확인한 결과 Mo, Fe와 S의 원소가 존재하는 것 확인된 것을 보아, 코어쉘은 금속 기판과 접촉되어있는 layer 2에 존재하는 것을 확인 할 수 있었다. Referring to FIG. 5 , it was confirmed that two layers were formed as a result of surface observation and cross-section observation through a scanning electron microscope. Layer 1 is a solid sunFO layer, and layer 2 is a layer in which the core shell is arranged downward with a magnet. I was able to confirm that it exists in layer 2.

바닥층의 particle는 EDS (Energy dispersive X-ray Spectroscopy)의 측정을 통하여 코어쉘의 핵심원소인 Mo, S, Fe가 측정됨을 확인하였다.It was confirmed that Mo, S, and Fe, which are core elements of the core shell, were measured for particles in the bottom layer through EDS (Energy dispersive X-ray Spectroscopy) measurement.

부식 테스트는 0.1M NaCl의 환경에서 진행하였다. 동전위분극 시험은 코팅제의 부식저항성 및 부식속도를 비교할 수 있는 시험법이다. 탄소강, 해바라기유 코팅, 해바라기유 코팅+MoS2, 해바라기유 코팅+Fe3O4-MoS2 코어쉘의 가시광선의 유무에 따른 부식 저항성을 비교분석 하였으며, Fe3O4-MoS2 코어쉘을 이용한 해바라기유 코팅이 가장 낮은 부식속도를 나타냄을 확인할 수 있었다. 도 6을 참고하면, SunFO+MoS2 코팅의 경우, 코팅이 없는 시편과 해바라기유가 코팅된 시편보다 낮은 부식속도를 나타내지만, 빛에 노출되면 전체화학반응이 증가하여 오히려 부식속도가 더 증가함을 확인하였다. SunFO+코어쉘 코팅의 경우, 빛에 노출되었을 때 가장 낮은 부식속도를 나타내며, 코팅이 없는 시편대비 약 1/50, 해바라기유 대비 약 1/15의 부식속도를 나타내었다.The corrosion test was conducted in an environment of 0.1M NaCl. Potential polarization test is a test method that can compare the corrosion resistance and corrosion rate of coatings. Corrosion resistance of carbon steel, sunflower oil coating, sunflower oil coating+MoS 2 , sunflower oil coating+Fe 3 O 4 -MoS 2 core shell according to the presence or absence of visible light was comparatively analyzed . It was confirmed that the sunflower oil coating exhibited the lowest corrosion rate. Referring to FIG. 6 , in the case of SunFO + MoS 2 coating, the corrosion rate is lower than that of the sample without coating and the sample coated with sunflower oil, but when exposed to light, the overall chemical reaction increases and the corrosion rate is rather increased. Confirmed. In the case of SunFO + core-shell coating, it showed the lowest corrosion rate when exposed to light, about 1/50 compared to the specimen without coating, and about 1/15 compared to sunflower oil.

도 7은 EIS 시험 결과를 도시한다. EIS 시험은 코팅재의 부식저항성을 electrical resistance를 통해 분석/비교하는 시험법이다. (electrical resistance ∝ 1/부식속도) SunFO+MoS2 코팅의 경우, 코팅이 없는 시편과 해바라기유가 코팅된 시편보다 높은 electrical resistance를 나타내지만, 앞선 동전위분극 시험과 동일하게 빛에 노출되면 electrical resistance가 오히려 감소하게 된다. SunFO+코어쉘 코팅의 경우, 빛에 노출되었을 때 모든 시편 중 가장 높은 electrical resistance를 나타내었다.7 shows the EIS test results. The EIS test is a test method that analyzes/compares the corrosion resistance of coatings through electrical resistance. (electrical resistance ∝ 1/corrosion rate) In the case of SunFO+MoS 2 coating, electrical resistance is higher than that of uncoated specimens and sunflower oil-coated specimens. rather it decreases. The SunFO+ core-shell coating exhibited the highest electrical resistance among all specimens when exposed to light.

상기에서는 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 해당 기술분야의 숙련된 당업자는 하기의 특허 청구 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.Although the above has been described with reference to the preferred embodiments of the present invention, those skilled in the art can variously modify and change the present invention without departing from the spirit and scope of the present invention as set forth in the following claims. You will understand that you can.

Claims (13)

코어쉘 입자를 제조하는 단계;
제조된 코어쉘 입자를 자기 여과 방법에 의해 코어쉘 입자를 분리하는 단계;
코어쉘 입자를 해바라기유와 혼합하여 코팅액을 만드는 단계;
혼합된 코팅액을 금속 기재 위에 도포하는 단계;
상기 코팅액이 도포된 금속 기재의 반대편에 자석을 배치하는 단계; 및
퍼니스에서 가열을 하여 해바라기유를 경화시키는 단계를 포함하는,
코어쉘 입자 해바라기유를 이용한 부식방지용 코팅의 제조 방법.
preparing core-shell particles;
separating the core-shell particles from the prepared core-shell particles by magnetic filtration;
Mixing the core-shell particles with sunflower oil to make a coating solution;
applying the mixed coating solution on the metal substrate;
disposing a magnet on the opposite side of the metal substrate to which the coating solution is applied; and
Heating in a furnace to harden the sunflower oil,
A method for manufacturing an anti-corrosion coating using core-shell particle sunflower oil.
제 1 항에 있어서,
상기 코어쉘 입자는 자성 및 전기적 전도성을 갖는 산화물 입자를 코어로 이용하고, 광전자 방출 특성이 있는 전이금속 디칼코제나이드 물질을 쉘로 이용하여 제조되는,
코어쉘 입자 해바라기유를 이용한 부식방지용 코팅의 제조 방법.
The method of claim 1,
The core-shell particles are manufactured by using oxide particles having magnetic and electrical conductivity as a core and using a transition metal dichalcogenide material having photoelectron emission properties as a shell,
A method for manufacturing an anti-corrosion coating using core-shell particle sunflower oil.
제 2 항에 있어서,
상기 전이금속 디칼코제나이드 물질은 MoS2, MoSe2, MoTe2, WS2, WSe2 중 어느 하나인,
코어쉘 입자 해바라기유를 이용한 부식방지용 코팅의 제조 방법.
3. The method of claim 2,
The transition metal dichalcogenide material is MoS 2 , MoSe 2 , MoTe 2 , WS 2 , WSe 2 Any one of,
A method for manufacturing an anti-corrosion coating using core-shell particle sunflower oil.
제 2 항에 있어서,
상기 산화물 입자는 Fe, Ni, Co 산화물 입자인,
코어쉘 입자 해바라기유를 이용한 부식방지용 코팅의 제조 방법.
3. The method of claim 2,
The oxide particles are Fe, Ni, Co oxide particles,
A method for manufacturing an anti-corrosion coating using core-shell particle sunflower oil.
제 1 항에 있어서,
상기 코팅액이 도포된 금속 기재의 반대편에 자석을 배치하는 단계에 의해 상기 코팅액 중의 코어쉘 입자가 금속 기재 쪽으로 배치되는,
코어쉘 입자 해바라기유를 이용한 부식방지용 코팅의 제조 방법.
The method of claim 1,
By disposing a magnet on the opposite side of the metal substrate to which the coating solution is applied, the core-shell particles in the coating solution are disposed toward the metal substrate,
A method for manufacturing an anti-corrosion coating using core-shell particle sunflower oil.
제 5 항에 있어서,
상기 코팅액 중의 코어쉘 입자가 금속 기재 쪽으로 배치됨으로써 코팅층은 2개의 층으로 분리되고,
상기 금속 기재 상의 층은 코어쉘 입자 및 해바라기유를 포함한 층으로 이루어지고, 그 위의 층은 해바라기유를 포함한 층으로 이루어지는,
코어쉘 입자 해바라기유를 이용한 부식방지용 코팅의 제조 방법.
6. The method of claim 5,
By disposing the core-shell particles in the coating solution toward the metal substrate, the coating layer is separated into two layers,
The layer on the metal substrate consists of a layer containing core-shell particles and sunflower oil, and the layer on it consists of a layer containing sunflower oil,
A method for manufacturing an anti-corrosion coating using core-shell particle sunflower oil.
삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete
KR1020200135846A 2020-10-20 2020-10-20 Method of fabricating corrosion protection layer using core shell particles and sunflower oil, and corrosion protection layer fabricated by the same KR102365846B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200135846A KR102365846B1 (en) 2020-10-20 2020-10-20 Method of fabricating corrosion protection layer using core shell particles and sunflower oil, and corrosion protection layer fabricated by the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200135846A KR102365846B1 (en) 2020-10-20 2020-10-20 Method of fabricating corrosion protection layer using core shell particles and sunflower oil, and corrosion protection layer fabricated by the same

Publications (1)

Publication Number Publication Date
KR102365846B1 true KR102365846B1 (en) 2022-02-22

Family

ID=80493976

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200135846A KR102365846B1 (en) 2020-10-20 2020-10-20 Method of fabricating corrosion protection layer using core shell particles and sunflower oil, and corrosion protection layer fabricated by the same

Country Status (1)

Country Link
KR (1) KR102365846B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116376430A (en) * 2023-03-27 2023-07-04 清华大学 Anti-icing coating based on oil-based magnetized microneedles, and preparation method and application thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Hao Chen, Lin Zhang, Mengyu Li and Guoxin Xie. Synthesis of Core-Shell Micro/Nanoparticles and Their Tribological Application. Materials 2020, 13(20), 4590(2020.10.15.) 1부.* *
Thiruparasakthi Balakrishnan, Sadagopan Sathiyanarayanan, and Sundar Mayavan. Advanced Anticorrosion Coating Materials Derived from Sunflower Oil with Bifunctional Properties. Applied Materials and Interfaces, 2015, 제7권, 제35호, 페이지 19781-19788(2015.08.26.) 1부* *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116376430A (en) * 2023-03-27 2023-07-04 清华大学 Anti-icing coating based on oil-based magnetized microneedles, and preparation method and application thereof
CN116376430B (en) * 2023-03-27 2024-01-30 清华大学 Anti-icing coating based on oil-based magnetized microneedles, and preparation method and application thereof

Similar Documents

Publication Publication Date Title
Cheng et al. Mechanically-induced reverse phase transformation of MoS 2 from stable 2H to metastable 1T and its memristive behavior
Qing et al. Large-area fabrication of superhydrophobic zinc surface with reversible wettability switching and anticorrosion
KR102365846B1 (en) Method of fabricating corrosion protection layer using core shell particles and sunflower oil, and corrosion protection layer fabricated by the same
Le Manh et al. Iron electrodeposition from Fe (II) ions dissolved in a choline chloride: urea eutectic mixture
Mujib et al. Assessing corrosion resistance of two-dimensional nanomaterial-based coatings on stainless steel substrates
Kim et al. Preparation via an electrochemical method of graphene films coated on both sides with NiO nanoparticles for use as high-performance lithium ion anodes
Xavier Novel multilayer structural epoxy composite coating containing graphene oxide and silanized chromium carbide for the protection of steel structures
Zhang et al. Phosphate conversion of electroplated Ni coatings on NdFeB magnets improving the anticorrosion property
Gao et al. Carbon composite coatings on Ti for corrosion protection as bipolar plates of proton exchange membrane fuel cells
Guo et al. Preparation of aniline trimer modified graphene oxide new composite coating and study on anticorrosion performance
Ghorbanian et al. Formation mechanism of Al2O3/MoS2 nanocomposite coating by plasma electrolytic oxidation (PEO)
Arai et al. Mechanism for codeposition of multiwalled carbon nanotubes with copper from acid copper sulfate bath
Liu et al. Electrodeposition of cobalt phosphosulfide nanosheets on carbon fiber paper as efficient electrocatalyst for oxygen evolution
US20150292104A1 (en) Method for preparing of composition for metal surface-treatment, steel sheet surface treated with the composition, and method for manufacturing the steel sheet
Jing et al. The effect of a functionalized defect-rich molybdenum disulfide nanosheets on anticorrosion performance of epoxy coating
Akulich et al. Properties of zinc coatings electrochemically passivated in sodium molybdate
DE102009055828A1 (en) Preparing metal coated particles, useful e.g. in lacquers, colors, inks, pigment mixtures, comprises electrochemical metal deposition of metals on the particle substrate, whose surface is electrically conductive or semi-conductive
Park et al. The effect of bath pH on electrodeposition and corrosion properties of ternary Fe-W-Zn alloy platings
Kordijazi Optimization of Ni–P–Zn electroless bath and investigation of corrosion resistance of as-plated coatings
Takahashi et al. Corrosion behavior of carbon steel coated with a zinc‐rich paint containing metallic compounds under wet and dry cyclic conditions
Hong et al. A photoelectrochemical coating for corrosion protection using Fe3O4@ MoS2 core-shell and sunflower oil
Li et al. Long-term corrosion protection of Q235 steel by graphene oxide composite coating
Moustafa et al. Manufacturing of nickel/nanocontainer composite coatings
Zhang et al. Efficiently Improved Corrosion Resistance of Electrodeposition Ni–Cu Coatings via Site‐Blocking Effect of Ce
Hassan et al. Synthesis and performance of electroless Ni–P–TiCN composite coatings on Al substrate

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant