KR102365772B1 - 회전체 설비 고장발생 위험도 지수 평가 장치 및 그 방법 - Google Patents

회전체 설비 고장발생 위험도 지수 평가 장치 및 그 방법 Download PDF

Info

Publication number
KR102365772B1
KR102365772B1 KR1020160125788A KR20160125788A KR102365772B1 KR 102365772 B1 KR102365772 B1 KR 102365772B1 KR 1020160125788 A KR1020160125788 A KR 1020160125788A KR 20160125788 A KR20160125788 A KR 20160125788A KR 102365772 B1 KR102365772 B1 KR 102365772B1
Authority
KR
South Korea
Prior art keywords
factor
failure
model
real
risk index
Prior art date
Application number
KR1020160125788A
Other languages
English (en)
Other versions
KR20180035549A (ko
Inventor
김동환
김연환
이두영
윤병동
정준하
김명연
Original Assignee
한국전력공사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전력공사 filed Critical 한국전력공사
Priority to KR1020160125788A priority Critical patent/KR102365772B1/ko
Publication of KR20180035549A publication Critical patent/KR20180035549A/ko
Application granted granted Critical
Publication of KR102365772B1 publication Critical patent/KR102365772B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/18Complex mathematical operations for evaluating statistical data, e.g. average values, frequency distributions, probability functions, regression analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0635Risk analysis of enterprise or organisation activities
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/04Manufacturing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/30Computing systems specially adapted for manufacturing

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Economics (AREA)
  • Theoretical Computer Science (AREA)
  • Strategic Management (AREA)
  • Tourism & Hospitality (AREA)
  • Marketing (AREA)
  • General Business, Economics & Management (AREA)
  • Operations Research (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Data Mining & Analysis (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Development Economics (AREA)
  • Game Theory and Decision Science (AREA)
  • Health & Medical Sciences (AREA)
  • Quality & Reliability (AREA)
  • Primary Health Care (AREA)
  • General Health & Medical Sciences (AREA)
  • Mathematical Physics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Manufacturing & Machinery (AREA)
  • General Engineering & Computer Science (AREA)
  • Evolutionary Biology (AREA)
  • Probability & Statistics with Applications (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Algebra (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Databases & Information Systems (AREA)
  • Software Systems (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Educational Administration (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

본 발명은 회전체 고장 발생 위험도 지수 평가 장치에 관한 것으로, 본 발명에 따른 고장 발생 위험도 지수 평가 장치는 고장 유형별로 정의된 제1 건전성 인자 결과값 이력 정보를 이용하여 기본 모델을 생성하고, 실시간으로 수신받은 진동 신호에 대한 제2 건전성 인자 결과값을 이용하여 가변 모델을 생성하는 위험도 지수 모델 생성부; 상기 제2 건전성 인자 결과값을 이용하여 상기 기본 모델의 실시간 오차를 연산하는 연산부; 상기 기본 모델의 실시간 오차 범위가 미리 결정된 기준값을 초과하면 상기 위험도 지수 모델 생성부로 하여금 상기 제2 건전성 인자 결과값을 이용하여 가변 모델을 생성하도록 하는 제어부; 및 상기 기본 모델 및 상기 가변 모델을 분석하여 고장 발생 위험도에 대한 지수를 제공하는 결과 산출부를 포함한다.

Description

회전체 설비 고장발생 위험도 지수 평가 장치 및 그 방법{apparatus and method for evaluating fault risk index of a rotator}
본 발명은 회전체 설비 고장발생 위험도 지수 평가 장치 및 그 방법에 관한 것이다.
대형 화력발전소 회전체 설비(기·가스터빈, 보일러 주급수 펌프, CID-팬 등)는 기기의 특성상 기계적 진동이 유발되기 때문에, 통상적으로 진동신호의 크기 및 주파수를 사용하여 대상 설비의 감시 및 이상 유무를 판단하고 설비보전을 하고 있다. 최근에는 계획/예방 보전을 위한 진단 기술이 발전하면서 설비 상태를 수동적으로 감시하고 진단하는 단계를 벗어나 이에 대한 자동화 기법이 개발되고 있으며, 이에 대한 자동화 기법에서 더 나아가 설비 고장의 상태변화를 분석하기 위한 기술 개발도 활발히 이루어지고 있다. 특히, 회전체 설비 고장의 상태변화를 추측하는 방법들은 일반적으로 과거 진동값과 현재 진동값의 기울기를 직선 혹은 지수함수로 연장하여 수동적으로 변화를 평가하고 있다. 이러한 상태변화 추측 방법들은 정적 설비에 적용되고 있는 누적 손상 모델의 개념을 적용한 것이 대부분이며, 회전체 설비에 적용할 경우, 정적 설비와 다르게 신호가 주변 환경에 민감하게 반응하여 변하기 때문에 고장의 상태변화 분석모델의 일반화가 어려워 실적용하기 어렵고, 설비 고장 유형도 여러가지 형태로 발생되기 때문에 단순 진동값을 이용한 분석기법은 고장의 상태변화에 대한 추상적인 정보만 제공한다. 또한, 대용량의 진동 데이터에 있는 정보를 실시간으로 분석하여 회전체 설비의 상태변화를 자동으로 분석하기에는 부적합한 방법이 대부분이다.
본 발명은 상기와 같은 문제점을 감안하여 이루어진 것으로, 회전체 설비에서 진동 신호를 취득하여 특성인자를 추출하고, 고장 유형별로 위험도를 정량화할 수 있는 건전성 인자를 선별하는 것을 목적으로 한다.
또한, 본 발명은 실시간으로 건전성 인자 분석을 통해 고장 발생 위험도 지수 기본모델 및 가변모델을 생성하고 이를 기반으로 자동으로 회전체 설비의 고장 유형별 발생 위험도 지수를 산출하여 평가할 수 있는 분석 장치 및 방법을 제공하는 것을 목적으로 한다.
상기와 같은 기술적 과제를 해결하기 위하여, 본 발명의 일 실시예에 따른 고장 발생 위험도 지수 평가 장치는 고장 유형별로 정의된 제1 건전성 인자 결과값 이력 정보를 이용하여 기본 모델을 생성하고, 실시간으로 수신받은 진동 신호에 대한 제2 건전성 인자 결과값을 이용하여 가변 모델을 생성하는 위험도 지수 모델 생성부; 상기 제2 건전성 인자 결과값을 이용하여 상기 기본 모델의 실시간 오차를 연산하는 연산부; 상기 기본 모델의 실시간 오차 범위가 미리 결정된 기준값을 초과하면 상기 위험도 지수 모델 생성부로 하여금 상기 제2 건전성 인자 결과값을 이용하여 가변 모델을 생성하도록 하는 제어부; 및 상기 기본 모델 및 상기 가변 모델을 분석하여 고장 발생 위험도에 대한 지수를 제공하는 결과 산출부를 포함한다.
한편, 본 발명의 다른 실시예에 따른 고장 발생 위험도 지수 평가 방법은, 외부 센서로부터 실시간으로 진동 신호를 수신받아 고장 유형별로 제2 건전성 인자 결과값을 생성하는 단계; 상기 제2 건전성 인자 결과값을 이용하여, 고장 유형별로 정의된 제1 건전성 인자 결과값 이력 정보로 생성된 기본 모델에 대한 실시간 오차를 연산하는 단계; 상기 실시간 오차 범위가 미리 결정된 기준값을 초과하면 상기 제2 건전성 인자 결과값을 이용하여 가변모델을 생성하는 단계; 및 상기 가변 모델 및 상기 기본 모델을 실시간으로 비교 분석하여 고장 발생 위험도에 대한 지수를 산출하는 단계를 포함한다.
본 발명에 의하면, 회전체의 운전 중 취득되는 진동 신호에 대응하여 고장 유형별로 건전성 인자를 실시간으로 계산하고 정량화하는 과정을 거쳐 고장발생 가능 시기를 추적할 수 있는 모델을 생성할 수 있다. 또한, 본 발명에 의하면, 기본모델과 가변모델을 현장에 적용함으로써 설비 담당자에게 이상상태 변화를 왜곡 없이 전달하여 관련 설비의 사고 감소와 안전성을 향상시킬 수 있다.
도 1a는 본 발명의 일 실시예에 따른 고장 발생 위험도 지수 평가 장치의 구성도이다.
도 1b는 본 발명의 일 실시예에 따른 저장부의 간략한 내부 구성도이다.
도 2는 진동 신호 특성 인자를 예시적으로 도시한다.
도 3은 진동 신호 특성 인자를 기반으로 생성된 건전성 인자를 예시적으로 도시한다.
도 4는 본 발명의 일 실시예에 따른 고장 발생 위험도 지수 평가 방법의 간략한 순서도이다.
도 5는 본 발명의 일 실시예에 따른 고장 발생 위험도 지수 평가 중의 가변 모델 생성 방법의 간략한 순서도이다.
도 6은 본 발명의 일 실시예에 따른 고장 발생 위험도 지수 평가 모델의 실시간 화면을 예시적으로 도시한다.
도 7은 본 발명의 일 실시예에 따른 고장 발생 위험도 지수 평가 모델 이력 조회 화면을 예시적으로 도시한다.
본 발명은 다양한 변환을 가할 수 있고 여러 가지 실시 예를 가질 수 있는바, 특정 실시 예들을 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변환, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 본 발명을 설명함에 있어서, 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.
본 출원에서 사용한 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
이하, 본 발명에 따른 실시 예들을 첨부도면을 참조하여 상세히 설명하기로 하며, 첨부 도면을 참조하여 설명함에 있어, 동일하거나 대응하는 구성 요소는 동일한 도면번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다.
도 1a는 본 발명의 일 실시예에 따른 고장 발생 위험도 지수 평가 장치(100)의 구성도를 나타낸다.
도 1a에 도시된 바와 같이, 본 발명에 따른 고장 발생 위험도 지수 평가 장치(100)는 수신부(101), 저장부(102), 연산부(104), 제어부(106), 모델 생성부(108), 결과 산출부(110)를 포함할 수 있다.
또한, 도 1b에는 저장부(102)의 간략한 내부 구성도가 도시되어 있다. 저장부(102)는 특성인자 저장부(112), 건전성 인자 저장부(114), 기본모델 저장부(116) 및 가변모델 저장부(118)를 포함한다.
우선, 수신부(101)는 외부 센서로부터 실시간으로 진동 실파형 정보를 수신한다. 외부 센서는 예를 들어, 특정 회전체 설비에 설치된 변위 센서일 수 있다.
또한, 저장부(102) 중 특성인자 저장부(112)에는 기본적인 진동 신호 기반의 특성인자가 저장되어 있고, 건전성 인자 저장부(114)에는 상기 특성인자를 기반으로 미리 설정되어 있는 건전성 인자가 고장 유형별로 저장되어 있다. 진동 신호 기반의 특성인자로는 예를 들어, 시간 영역에서는 Max, 기울기, RMS, 첨도, 파고율, 형상 계수, 임펄스 계수 등이 포함될 수 있다. 또한, 진동 신호 기반의 특성인자로는 예를 들어, 주파수 영역에서는 궤도형상 장단축 비율이 포함될 수 있다. 또한, 특성인자 기반으로 미리 설정되어 있는 건전성 인자로는 예를 들어, 질량불평형, 접촉마모, 오정렬 및 오일 휠(오일 분포 불균형에 따른 문제)이 포함될 수 있다. 저장부(102)에는 이러한 진동 신호 기반의 특성인자 및 건전성 인자가 저장되어 있다.
또한, 저장부(102)의 특성인자 저장부(112)에는 회전체 설비에 설치된 센서로부터 실시간으로 수신된 진동 실파형 정보가 회전체의 회전 1 cycle에 대하여 데이터 샘플링이 된 후 시간/주파수 영역으로 정의된 특성인자에 따라 계산된 값이 저장된다. 또한, 저장부(102)의 건전성 인자 저장부(114)에는 계산된 특성 인자를 이용하여 생성된 건전성 인자의 이력 정보를 저장한다. 이 때, 건전성 인자의 이력 정보는 건전성 인자의 결과값과 시간변수를 포함할 수 있다. 저장부(102)에는 생성된 건전성 인자를 특성 인자와 함께 동기화하여 저장된다. 또한, 저장부(102)의 기본 모델 저장부(116)에는 회전체 고장 유형별로 고장발생 위험도를 정량화할 수 있는 시간대별 건전성 인자 이력 정보를 이용하여 생성된 고장발생 위험도 지수 모델(기본모델)을 저장한다. 이 기본모델은 고장 유형별로 대응되는 건전성 인자 이력 추이를 반영하여 구축되는 것이다.
연산부(104)는 생성된 기본모델에 건전성 인자 이력정보의 시간을 입력변수로 전달하여 결과값(추측값)을 산출하고, 결과값과 해당 시간에 실제 대응되는 건전성 인자의 실제값(실제결과값)의 차이인 건전성 인자 기존오차(Δy)를 계산하고, 기존오차(Δy)에 대한 분포도를 추가로 생성한다.
또한, 연산부(104)는 실시간으로 전달받은 실파형 진동 신호를 이용하여 연산하여 시간 순으로 건전성 인자 저장부(114)에 저장된 건전성 인자들 중 최근 데이터를 중심으로 약 30개 이상(사용자 설정)의 건전성 인자와 개별적으로 생성된 시간 변수들을 기본모델에 입력하여 이에 대응하는 결과값(추측값: 건전성 인자 값)을 산출한다. 실시간 결과값은 0~1(고장 발생시점)까지의 값을 가진다. 고장 발생 위험도 기본모델의 결과값이 1에 가까울수록, 그리고 고장 발생시점의 추측시간과 현재 건전성 인자의 결과값의 시간 차이가 적을수록 회전 설비의 고장발생 경향성이 높아진다는 것을 의미한다.
또한, 연산부(104)는 기본모델에 대한 결과값을 측정하고 일정 시간이 흐른후 '기본모델에 대한 결과값(추측값) - 초기 실파형 진동 신호에 대한 건전성 인자 대응 결과값'의 실시간 오차(Δy0)를 연산한 후, 기본모델 분포도(Δy 분포도)에 베이지안 추론법을 적용하여 가변모델 생성여부를 판단한다. 즉, 연산부(104)는 건전성 인자의 실시간 오차(Δy0)의 본포도가 기본모델 분포도의 경향과 유사한지 베이지안 추론 기법(수식 (1) 참조)을 통해 판단하며, 사용자의 설정한 분포도의 좌우영역 한계점을 초과하는 지 여부를 판단한다.
Figure 112016094797535-pat00001
...수식(1)
도 5를 참조하면, 연산부(104)는 건전성 인자 기존오차 (Δy)의 분포도에서 평균 (
Figure 112016094797535-pat00002
), 표준편차 (
Figure 112016094797535-pat00003
)의 값과, 최근 데이터 중심으로 연산되는 건전성 인자 실시간 오차 (Δy0)의 데이터 수 (M), M의 평균(
Figure 112016094797535-pat00004
)과 표준편차(
Figure 112016094797535-pat00005
)를 사용하여 기존오차 분포도에 대해서 새로운 분포도 (사후 분포도)를 형성한다(사후 분포도의 평균은
Figure 112016094797535-pat00006
, 표준편차는
Figure 112016094797535-pat00007
로 구분됨, 베이지안 추론). 연산부(104)는 기존 Δy 분포 범위를 벗어나는 기준은 2가지로 정의하는데, 이는 실시간 건전성 인자 정보가 반영된 y의 사후분포가 좌/우로 치우치거나 분산이 커져 분포형태가 넓어지는 경우로 분류하되, 건전성 인자의 실시간 오차(Δy0)를 이용하여 생성된 사후분포도의 오차 범위가 기본모델의 건전성 인자 기존오차 (Δy)의 분포도의 미리 결정된 값을 초과하는지 여부로 판단될 수 있다.
제어부(106)는 모델 생성부(108)로 하여금 회전체 고장 유형별로 고장발생 위험도를 정량화할 수 있는 시간대별 건전성 인자 이력 정보를 이용하여 고장발생 위험도 지수 모델(기본모델)을 생성하도록 한다. 또한, 제어부(106)는 연산부(104)에서 사후분포도의 기본 모델의 기존오차(Δy)의 분포도에 대한 오차 범위가 미리 결정된 값을 초과한다고 판단하면, 모델 생성부(108)로 하여금 가변 모델을 생성하도록 한다.
모델 생성부(108)는 건전성 인자 저장부(114)에 저장된 회전체 고장 유형별로 고장발생 위험도를 정량화할 수 있는 건전성 인자 이력 정보를 이용하여 고장발생 위험도 지수 모델(기본모델)을 생성한다. 이 기본 모델은 고장 유형별로 대응되는 건전성 인자 이력 추이를 반영하여 구축되는 것이다.
또한, 모델 생성부(108)는 연산부(104)에서 기본모델의 건전성 인자 기존오차 (Δy)의 분포도에 대한 건전성 인자의 실시간 오차(Δy0)를 이용하여 생성된 사후 분포도의 오차 범위가 미리 결정된 값을 초과한다고 판단하면, 실시간 건전성 인자의 가변모델을 생성한다. 기본모델은 기존의 진동 정보(고정된 시간에 따른 진동 정보)를 이용하여 생성된 시간대별 건전성 인자 이력 정보를 이용하여 생성되는 고정적인 모델인 반면에, 이 실시간 건전성 인자의 가변모델은 (상기 고정된 시간 이후의)실시간으로 수신되는 진동 실파형 정보를 이용하여 계속해서 생성되는 동적모델이다.
결과 산출부(110)는 기본모델의 결과값과 동적으로 생성되는 가변모델의 결과값을 분석하여 고장 유형별 위험도 정보에 대한 지수를 산출하여 제공한다.
도 2는 진동 신호 특성 인자를 예시적으로 도시한다. 개별 회전체 설비에 설치된 변위 센서로부터 실시간으로 진동 실파형 정보를 전달받아, 예를 들어, 초당 8196개의 데이터 샘플링 과정을 거친 후, 1cycle (초당 60 cycle)에 대하여 시간/주파수 영역에 해당되는 특정인자들이 계산된다. 계산된 특정인자의 예는 도 2에 개시된 바와 같다. 구체적으로 예를 들어, 시간 영역에서의 진동신호 기반 특성 인자로는 Max =
Figure 112016094797535-pat00008
, 기울기=
Figure 112016094797535-pat00009
, RMS=
Figure 112016094797535-pat00010
, 첨도=
Figure 112016094797535-pat00011
, 파고율= Max/RMS, 형상 계수= RMS/Mean, 임펄스 계수= Max/Mean이다(여기서, x값은 상기 8196개의 신호를 각각 데이터 샘플링한 값을 의미하고, N은 초당 데이터 샘플링 개수인 8196을 의미한다). 또한, 주파수 영역에서의 진동신호 기반 특성인자로는 궤도형상 장단축 비율에 대한 특성인자가 있다(여기서, X값은 상기 시간 영역에서의 값을 FFT하여 나타나는 60Hz에 해당하는 값을 의미한다).
도 3에는 진동 신호 특정 인자를 기반으로 생성된 건전성 인자가 예시적으로 도시되어 있다. 구체적으로, 예를 들어, 질량불평형에 관한 건전성 인자는
Figure 112016094797535-pat00012
로 정의되며, 여기서 Clearance는 베어링과 축 사이 Gap이고, Max vib는 진동신호 1cycle 중 가장 큰 진동수치 특성인자를 의미한다. 또한, 예를 들어, 접촉마모에 관한 건전성 인자는
Figure 112016094797535-pat00013
로 정의되며, 여기서 Orbit aspect ratio 특성인자가 사용된다. 또한, 예를 들어, 오정렬에 관한 건전성 인자는
Figure 112016094797535-pat00014
로 정의되며, 여기서 Orbit aspect ratio 특성인자가 사용된다. 또한, 예를 들어, 오일 훨에 관한 건전성 인자는
Figure 112016094797535-pat00015
로 정의되며, 이는 주파수 상대적 비율 5의 특성인자가 사용된 것이다.
도 4에는 본 발명의 일 실시예에 따른 고장 발생 위험도 지수 평가 방법의 간략한 순서도가 도시된다.
수신부(101)는 회전체로부터 실시간으로 진동신호를 취득한다(S400). 본 발명의 진단대상으로서의 회전체로는 예를 들어, 대형발전소 증기터빈, 보일러 주급수 펌프 및 CID-팬(회전체 설비)를 들 수 있다.
연산부(104)는 수신된 진동신호를 기반으로 특성인자를 추출한다(S400). 즉, 회전체 설비에 설치된 센서로부터 실시간으로 수신된 진동 실파형 정보가 데이터 샘플링된 후 1 cycle 에 대하여 시간/주파수 영역으로 정의된 특성인자에 따라 계산된다. 진동 신호 기반의 특성인자로는 예를 들어, 시간 영역에서는 Max, 기울기, RMS, 첨도, 파고율, 형상 계수, 임펄스 계수 등이 포함될 수 있다. 구체적으로, 예를 들어, 시간 영역에서의 진동신호 기반 특성 인자로는 Max =
Figure 112016094797535-pat00016
, 기울기=
Figure 112016094797535-pat00017
, RMS=
Figure 112016094797535-pat00018
, 첨도=
Figure 112016094797535-pat00019
, 파고율= Max/RMS, 형상 계수= RMS/Mean, 임펄스 계수= Max/Mean이다. 또한, 주파수 영역에서의 진동신호 기반 특성인자로는 궤도형상 장단축 비율에 대한 특성인자가 있다.
연산부(104)는 추출된 특성인자를 기반으로 회전체의 고장유형별 건전성 인자를 연산한다(S402). 건전성 인자로는 구체적으로, 예를 들어, 질량불평형에 관한 건전성 인자는
Figure 112016094797535-pat00020
로 정의되며, 여기서 Clearance는 베어링과 축 사이 Gap이고, Max vib는 진동신호 1cycle 중 가장 큰 진동수치 특성인자를 의미한다. 또한, 예를 들어, 접촉마모에 관한 건전성 인자는
Figure 112016094797535-pat00021
로 정의되며, 여기서 Orbit aspect ratio 특성인자가 사용된다. 또한, 예를 들어, 오정렬에 관한 건전성 인자는
Figure 112016094797535-pat00022
로 정의되며, 여기서 Orbit aspect ratio 특성인자가 사용된다. 또한, 예를 들어, 오일 훨에 관한 건전성 인자는
Figure 112016094797535-pat00023
로 정의되며, 이는 주파수 상대적 비율 5의 특성인자가 사용된 것이다.
이렇게 연산된 특성인자 및 건전성 인자 결과값은 이력 데이터로서 저장부(102)에 저장된다(S406). 이 때, 특성인자를 기반으로 생성된 건전성 인자 결과값을 해당 특성인자 결과값과 함께 동기화하여 저장된다.
모델 생성부(108)는 건전성 인자 저장부(114)에 저장된 건전성 인자들을 이용하여 기본모델을 생성한 후, 연산부(104)는 기본모델의 건전성 인자 기존오차(Δy)를 연산하고 분포도를 형성한다(S408). 여기서 기존오차(Δy )는 기본모델이 생성된 특정시간 근처 시간에 수신된 실파형 진동 신호를 이용하여 산출된 건전성 인자 결과값과 기본모델 상의 결과값의 차이를 의미한다. 기본모델은 고장유형별로 대응되는 건전성 인자 이력 추이를 반영하여 생성된다. 또한, 생성된 기본모델에 건전성 인자 이력정보 시간을 입력변수로 전달하여 결과값을 산출하여, 그 결과값과 실제 대응되는 이력의 실제값의 차이인 건전성 인자 기존 오차(Δy)를 계산하여, 기존 오차(Δy)에 대한 분포도를 생성한다.
결과 산출부(110)는 건전성 인자를 기반으로 생성된 기본모델의 결과값을 산출하고, 연산부(104)는 수신부(101)가 수신한 실파형 진동 신호를 이용한 건전성 인자의 대응 결과값과 기본모델의 결과값의 차이인 실시간 오차(Δy0)를 연산한다(S410). 여기서 실시간 오차(Δy0)를 생성하는 실파형 진동 신호는 시간의 흐름에 따라 계속적으로 변화하는 값이다.
연산부(104)는 건전성 인자 기존오차 (Δy)의 평균 (
Figure 112016094797535-pat00024
), 표준편차 (
Figure 112016094797535-pat00025
)의 값과, 최근 데이터 중심으로 연산되는 건전성 인자 실시간오차 (Δy0)의 데이터 수 (M), M의 평균(
Figure 112016094797535-pat00026
)과 표준편차(
Figure 112016094797535-pat00027
)를 사용하여 새로운 분포도 (사후 분포도)를 형성한다(사후 분포도의 평균은
Figure 112016094797535-pat00028
, 표준편차는
Figure 112016094797535-pat00029
로 구분됨, 베이지안 추론). 연산부(104)는 기존 Δy 분포 범위를 벗어나는 기준은 2가지로 정의하는데, 이는 실시간 건전성 인자 정보가 반영된 y의 사후분포가 좌/우로 치우치거나 분산이 커져 분포형태가 넓어지는 경우로 분류하되, 건전성 인자의 실시간 오차(Δy0)를 이용하여 생성된 사후분포도의 오차 범위가 기본모델의 건전성 인자 기존오차 (Δy)의 분포도의 미리 결정된 값을 초과하는 지 여부로 판단될 수 있다.
건전성 인자의 실시간 오차(Δy0)를 이용하여 생성된 사후분포도의 오차 범위가 기본모델의 건전성 인자 기존오차 (Δy)의 분포도에서 미리 결정된 값을 초과한다고 판단되면, 제어부(106)는 모델 생성부(108)로 하여금 가변모델을 추가적으로 생성하도록 한다(S412).
결과 산출부(110)는 실시간으로 수신된 진동 실파형 기반 건전성 인자를 이용하여 생성된 가변모델의 결과값을 산출한다(S414). 여기서, 가변모델은 실시간으로 수신되는 진동 실파형을 기본으로 하여 생성되므로, 실시간으로 변동하는 동적인 모델이다.
또한, 결과 산출부(110)는 산출된 기본모델 결과값과 동적으로 변화하는 가변 모델의 결과값을 비교하고 정량화한다(S416). 또한, 결과 산출부(110)는 상기 정량화된 값을 이용하여 고장유형별 위험도 지수 분석결과를 제공한다.
즉, 고장 발생 위험도 지수 평가 장치(100)는 실시간으로 건전성 인자 분석을 통해 고장발생 위험도 지수 분석모델 및 가변모델을 생성하고 이를 기반으로 자동으로 회전체 설비의 고장유형별 발생 위험도 지수를 산출하여 평가하기 위하여, 회전체 설비로부터 진동 데이터(예를 들어, 1 초당 8196개)를 취득하여 이에 대한 특성을 연산하여 추출하는 1단계; 회전체 설비의 고장유형별(예를 들어, 질량불평형, 접촉마모, 오정렬, 오일 훨 등)로 추출된 특성인자를 활용해 건전성 인자를 계산한 후 저장하는 2단계; 고장유형별 저장된 건전성 인자 이력 정보를 기반으로 고장발생 위험도 지수 기본모델 및 Δy(건전성 인자 기존 오차,'기본모델에 대한 결과값(추측값) - 초기 신호 실파형 진동 신호에 대한 건전성 인자 대응 결과값') 분포도가 생성되는 3단계; 실시간 진동신호 데이터를 기반으로 상기 1, 2 단계를 반복한 후 기본모델에 실시간 건전성 인자 데이터 군(예를 들어, 최소 건전성 인자 수 30개)의 결과값 및 Δy0(건전성 인자 실시간 오차, '기본모델 결과값 - 실시간 건전성 인자 실제값')이 연산되는 4단계; 3단계에서 생성한 기본모델 Δy 분포도에 대하여 Δy0에 대한 일정한 수치를 입력하여 베이지안 추론을 통해 사후 분포도를 형성한 후, 상기 Δy 분포도에 대비하여 사후 분포도가 미리 결정된 분포도의 적합범위를 벗어나면, 가변모델이 생성되어 추가 결과값이 산출되는 5단계 및 최신 건전성 인자를 각 생성모델(기본모델, 가변모델)의 입력변수(예를 들어, 특정 시간)로 넣어 고장유형별 위험도 지수를 정량화하여 사용자에게 정보를 제공하는 6단계를 수행한다.
도 5는 고장 발생 위험도 지수 평가 중의 가변 모델 생성 방법의 간략한 순서도이다.
수신부(101)로부터 특정 시간에 수신된 진동 신호로부터 연산되는 특성인자를 기반으로 생성된 건전성 인자를 이용하여 고장 발생 위험도 지수 기본 모델이 생성된다(S500). 512 그래프를 참조하면, 저장부(120)에 저장된 건전성 인자를 이용하여 생성된 기본모델이 도시되어 있다. 세로측의 건전성 인자는 0~1사이의 값이고, 고장 발생 위험도 기본모델의 결과값이 1에 가까울수록, 그리고 고장 발생시점의 추측시간과 현재 건전성 인자의 결과값의 시간 차이가 적을수록 회전 설비의 고장발생 경향성이 높아진다는 것을 의미한다. 따라서, 기본모델이 1에 도달하는 시간을 통하여 해당 회전체의 고장이 예상되는 시간을 예상할 수 있다.
기본모델의 결과값에 대한 이력 건전성 인자의 실제 결과값의 차이인 건전성 인자 기존오차 Δy를 연산하고, 기존오차 Δy의 분포도를 형성한다(S502). 그 뒤로, 건전성 실시간 오차 Δy가 연산되고, 기본모델의 Δy의 분포도에 연산내용이 입력된다(S504). 520의 좌측 그래프를 참조하면, 예시적으로 시간 t0에서 기본 모델의 결과값과 실제값의 차이인 기존오차 Δy가 도시되어 있고, 520의 우측 그래프는 Δy의 분포도가 도시되어 있다.
또한, 생성된 기본모델 Δy 분포도를 이용하여 베이지안 추론을 통해 Δy0의 사후 분포도가 형성된다(S506).
구체적으로, 연산부(104)는 건전성 인자의 실시간 오차(Δy0)가 기본모델 분포도의 경향과 유사한지 베이지안 추론 기법(수식 (1) 참조)을 통해 판단하며, 사용자의 설정한 분포도의 좌우영역 한계점을 초과하는 지 여부를 판단한다.
Figure 112016094797535-pat00030
...수식(1)
연산부(104)는 건전성 인자 기존오차 (Δy)의 평균 (
Figure 112016094797535-pat00031
), 표준편차 (
Figure 112016094797535-pat00032
)의 값과 최근 데이터 중심으로 연산되는 건전성 인자 실시간오차 (Δy0)의 데이터 수 (M), M의 평균(
Figure 112016094797535-pat00033
)과 표준편차(
Figure 112016094797535-pat00034
)를 사용하여 새로운 분포도 (사후 분포도)를 형성한다(사후 분포도의 평균은
Figure 112016094797535-pat00035
, 표준편차는
Figure 112016094797535-pat00036
로 구분됨, 베이지안 추론). 형성된 사후 분포도는 525의 그래프로 도시된다.
사후 분포도가 생성되면, 연산부(104)는 기존 분포도와 사후 분포도를 비교하고 그 결과에 따라 제어부(106)는 가변모델의 생성여부를 판단한다(S508).
구체적으로, 연산부(104)는 기존 Δy 분포 범위를 벗어나는 기준은 2가지로 정의하는데, 실시간 건전성 인자 정보가 반영된 y의 사후분포가 좌/우로 치우치거나 분산이 커져 분포형태가 넓어지는 경우로 분류하되, 건전성 인자의 실시간 오차(Δy0)를 이용하여 생성된 사후분포도의 오차 범위가 미리 결정된 값을 초과하는 지 여부를 판단할 수 있다. 도 5의 530의 그래프를 참조하면, 기존분포에서 벗어나 도시된 사후분포가 미리 결정된 기준치값을 벗어난 경우가 도시되어 있다.
사후 분포도가 미리 결정된 기준치값을 벗어나면, 제어부(106)는 모델 생성부(108)로 하여금 가변모델을 생성하도록 하고, 결과 산출부(110)는 실시간으로 수신된 진동 실파형 기반 건전성 인자를 이용하여 생성된 가변모델의 결과값을 산출한다(S510). 가변모델은 실시간으로 수신되는 진동 실파형을 기본으로 하여 생성되므로, 실시간으로 변동하는 동적인 모델이다. 결과 산출부(110)는 이어서 산출된 가변모델의 결과값을 이용하여 산출된 기본모델 결과값과 비교하고 정량화하고, 상기 정량화된 값을 이용하여 고장유형별 위험도 지수 분석결과를 제공한다.
도 6에는 고장 발생 위험도 지수 평가 모델의 실기간 화면이 예시적으로 도시된다.
도 6의 600을 참조하면 일에 따른 가변모델 및 월에 따른 가변모델이 디스플레이되어 있다. 가변모델은 실시간 진동 신호에 따라 생성된 모델이며 실시간 진동 신호에 따라 생성되므로 실시간 진동 신호 상태에 따라 가변하는 동적인 모델이다.
또한, 도 6의 602를 참조하면 기본모델 및 가변모델이 모두 디스플레이되어 있고, 도 6의 604를 참조하면 건전성 인자 기존 오차(Δy)의 사전 분포도와 건전성 인자 실시간 오차(Δy0)의 사후 분포도가 디스플레이된다.
사후 분포도는 건전성 인자 기존오차 (Δy)의 평균 (
Figure 112016094797535-pat00037
), 표준편차 (
Figure 112016094797535-pat00038
)의 값과 최근 데이터 중심으로 연산되는 건전성 인자 실시간오차 (Δy0)의 데이터 수 (M), M의 평균(
Figure 112016094797535-pat00039
)과 표준편차(
Figure 112016094797535-pat00040
)를 사용하여 기존오차 분포도에 실시간으로 입력되는 데이터를 포함시켜 형성된다(사후 분포도의 평균은
Figure 112016094797535-pat00041
, 표준편차는
Figure 112016094797535-pat00042
로 구분됨, 베이지안 추론). 이에 따라, 디스플레이된 사전 분포도와 사전 분포도를 비교하여, 건전성 인자의 실시간 오차(Δy0)를 이용하여 생성된 사후분포도의 오차 범위가 기본모델의 건전성 인자 기존오차 (Δy)의 분포도의 미리 결정된 값을 초과하는 지 여부가 판단된다.
도 7에는 고장 발생 위험도 지수 평가 모델 이력 조회 화면이 예시적으로 도시된다.
실시간 건전성 인자의 가변모델은 실시간으로 수신되는 진동 실파형 정보를 이용하여 계속해서 생성되는 동적모델이다. 따라서, 가변모델은 실시간으로 변동되기 때문에, 시간의 흐름(시간변수)에 따라 변동되는 가변모델의 이력이 기록된다. 도 7의 700의 이력은 변동되는 가변모델의 이력이다. 따라서, 시간 별로 기록된 가변 모델의 각각의 이력을 통하여 예를 들어, 이상상태 진전도 및 예측지점 분석 위험도 등을 정량화하여 수치로 확인할 수 있다.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명에 개시된 실시예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.
100: 고장 발생 위험도 지수 평가 장치
101: 수신부 102: 저장부
104: 연산부 106: 제어부
108: 모델 생성부 110: 결과 산출부

Claims (17)

  1. 고장 유형별로 정의된 제1 건전성 인자 결과값 이력 정보를 이용하여 기본 모델을 생성하고, 실시간으로 수신받은 진동 신호에 대한 제2 건전성 인자 결과값을 이용하여 가변 모델을 생성하는 위험도 지수 모델 생성부;
    상기 제2 건전성 인자 결과값을 이용하여 상기 기본 모델의 실시간 오차를 연산하는 연산부;
    상기 기본 모델의 실시간 오차 범위가 미리 결정된 기준값을 초과하면 상기 위험도 지수 모델 생성부로 하여금 상기 제2 건전성 인자 결과값을 이용하여 가변 모델을 생성하도록 하는 제어부; 및
    상기 기본 모델 및 상기 가변 모델을 분석하여 고장 발생 위험도에 대한 지수를 제공하는 결과 산출부를 포함하고,
    상기 모델 생성부는 상기 기본모델의 기존오차 확률분포를 생성하고,
    상기 연산부는 실시간 오차를 연산한 후, 상기 기본모델 오차 분포도에 베이지안 추론법을 적용하여 가변모델 생성여부를 판단하며,
    상기 베이지안 추론법은
    Figure 112021125749612-pat00059
    ,
    상기 u는 건전성 인자 기존오차의 평균이고, 상기 r은 상기 건전성 인자 기준오차의 표준 편차이며, M은 건전성 인자 실시간 오차의 데이터 수이고,
    Figure 112021125749612-pat00060
    는 M의 평균값이며,
    Figure 112021125749612-pat00061
    는 M의 표준편차이고,
    Figure 112021125749612-pat00062
    은 사후 분포도의 평균이며,
    Figure 112021125749612-pat00063
    은 사후 분포도의 표준편차이고,
    상기
    Figure 112021125749612-pat00064
    와 상기
    Figure 112021125749612-pat00065
    로 사후 분포도를 형성하는,
    고장 발생 위험도 지수 평가 장치.
  2. 청구항 1에 있어서,
    미리 결정된 특성 인자 및 상기 제1 건전성 인자 결과값의 이력 정보를 저장하는 저장부; 및
    상기 진동 신호를 실시간으로 수신하는 수신부를 더 포함하고,
    상기 연산부는 상기 실시간으로 수신된 진동 신호 및 상기 특성 인자를 이용하여 상기 제2 건전성 인자 결과값을 생성하는 고장 발생 위험도 지수 평가 장치.
  3. 청구항 2에 있어서,
    상기 고장 유형 중 질량 불평형에 대한 상기 건전성 인자는;
    Figure 112021125749612-pat00043
    로 정의되며, 여기서 클리어런스(Clearance)는 베어링과 축 사이 갭(Gap)이고, 맥스 바이브(Max vib)는 진동신호 한 싸이클(cycle) 중 가장 큰 진동수치 특성인자인,
    고장 발생 위험도 지수 평가 장치.
  4. 청구항 2에 있어서,
    상기 고장 유형 중 접촉 마모에 대한 상기 건전성 인자는;
    Figure 112021125749612-pat00044
    로 정의되며, 여기서 궤도 종횡비(Orbit aspect ratio) 특성인자가 사용되는 고장 발생 위험도 지수 평가 장치.
  5. 청구항 2에 있어서,
    상기 고장 유형 중 오정렬에 대한 상기 건전성 인자는;
    Figure 112021125749612-pat00045
    로 정의되며, 여기서 궤도 종횡비(Orbit aspect ratio) 특성인자가 사용되는 고장 발생 위험도 지수 평가 장치.
  6. 청구항 2에 있어서,
    상기 고장 유형 중 오일 훨에 대한 상기 건전성 인자는;
    Figure 112021125749612-pat00046
    로 정의되며, 주파수 상대적 비율 5의 특성인자가 사용되는 고장 발생 위험도 지수 평가 장치.
  7. 청구항 1에 있어서,
    상기 결과값이 1에 가까울수록 고장 발생의 경향성이 높아지는 고장 발생 위험도 지수 평가 장치.
  8. 청구항 1에 있어서,
    상기 기본 모델의 오차 범위가 미리 결정된 기준값을 초과하는 지 여부는 베이지안 추론기법을 이용하여 상기 실시간 오차의 사후분포도를 형성하여 판단되는 고장 발생 위험도 지수 평가 장치.
  9. 청구항 1에 있어서,
    상기 가변모델은 실시간으로 연속적으로 생성되는 동적인 모델인 고장 발생 위험도 지수 평가 장치.
  10. 외부 센서로부터 실시간으로 진동 신호를 수신받아 고장 유형별로 제2 건전성 인자 결과값을 생성하는 단계;
    상기 제2 건전성 인자 결과값을 이용하여, 고장 유형별로 정의된 제1 건전성 인자 결과값 이력 정보로 생성된 기본 모델에 대한 실시간 오차를 연산하는 단계;
    상기 실시간 오차 범위가 미리 결정된 기준값을 초과하면 상기 제2 건전성 인자 결과값을 이용하여 가변모델을 생성하는 단계; 및
    상기 가변 모델 및 상기 기본 모델을 실시간으로 비교 분석하여 고장 발생 위험도에 대한 지수를 산출하는 단계를 포함하고,
    상기 기본 모델에 대한 실시간 오차를 연산하는 단계는 실시간 오차를 연산한 후, 상기 기본모델 오차 분포도에 베이지안 추론법을 적용하여 가변모델 생성여부를 판단하며,
    상기 베이지안 추론법은
    Figure 112021125749612-pat00066
    ,
    상기 u는 건전성 인자 기존오차의 평균이고, 상기 r은 상기 건전성 인자 기준오차의 표준 편차이며, M은 건전성 인자 실시간 오차의 데이터 수이고,
    Figure 112021125749612-pat00067
    는 M의 평균값이며,
    Figure 112021125749612-pat00068
    는 M의 표준편차이고,
    Figure 112021125749612-pat00069
    은 사후 분포도의 평균이며,
    Figure 112021125749612-pat00070
    은 사후 분포도의 표준편차이고,
    상기
    Figure 112021125749612-pat00071
    와 상기
    Figure 112021125749612-pat00072
    로 사후 분포도를 형성하는,
    고장 발생 위험도 지수 평가 방법.
  11. 청구항 10에 있어서,
    상기 고장 유형 중 질량 불평형에 대한 상기 건전성 인자는;
    Figure 112021125749612-pat00047
    로 정의되며, 여기서 클리어런스(Clearance)는 베어링과 축 사이 갭(Gap)이고, 맥스 바이브(Max vib)는 진동신호 한 싸이클(cycle) 중 가장 큰 진동수치 특성인자인 고장 발생 위험도 지수 평가 방법.
  12. 청구항 10에 있어서,
    상기 고장 유형 중 접촉 마모에 대한 상기 건전성 인자는;
    Figure 112021125749612-pat00048
    로 정의되며, 여기서 궤도 종횡비(Orbit aspect ratio) 특성인자가 사용되는 고장 발생 위험도 지수 평가 방법.
  13. 청구항 10에 있어서,
    상기 고장 유형 중 오정렬에 대한 상기 건전성 인자는;
    Figure 112021125749612-pat00049
    로 정의되며, 여기서 궤도 종횡비(Orbit aspect ratio) 특성인자가 사용되는 고장 발생 위험도 지수 평가 방법.
  14. 청구항 10에 있어서,
    상기 고장 유형 중 오일 훨에 대한 상기 건전성 인자는;
    Figure 112021125749612-pat00050
    로 정의되며, 주파수 상대적 비율 5의 특성인자가 사용되는, 고장 발생 위험도 지수 평가 방법.
  15. 청구항 10에 있어서,
    상기 결과값이 1에 가까울수록 고장 발생의 경향성이 높아지는 고장 발생 위험도 지수 평가 방법.
  16. 청구항 10에 있어서,
    상기 기본 모델의 오차 범위가 미리 결정된 기준값을 초과하는 지 여부는 베이지안 추론기법을 이용하여 상기 오차의 사후분포도를 형성하여 판단되는 고장 발생 위험도 지수 평가 방법.
  17. 청구항 10에 있어서,
    상기 가변모델은 연속적으로 생성되는 동적인 모델인 고장 발생 위험도 지수 평가 방법.
KR1020160125788A 2016-09-29 2016-09-29 회전체 설비 고장발생 위험도 지수 평가 장치 및 그 방법 KR102365772B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020160125788A KR102365772B1 (ko) 2016-09-29 2016-09-29 회전체 설비 고장발생 위험도 지수 평가 장치 및 그 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160125788A KR102365772B1 (ko) 2016-09-29 2016-09-29 회전체 설비 고장발생 위험도 지수 평가 장치 및 그 방법

Publications (2)

Publication Number Publication Date
KR20180035549A KR20180035549A (ko) 2018-04-06
KR102365772B1 true KR102365772B1 (ko) 2022-02-21

Family

ID=61973509

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160125788A KR102365772B1 (ko) 2016-09-29 2016-09-29 회전체 설비 고장발생 위험도 지수 평가 장치 및 그 방법

Country Status (1)

Country Link
KR (1) KR102365772B1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109255447B (zh) * 2018-09-19 2021-09-28 华润电力风能(威海)有限公司 一种振动数据的自动分析方法
KR102536984B1 (ko) 2020-05-01 2023-05-25 주식회사 에이티지 발전설비용 정비전략수립을 위한 의사결정 방법 및 시스템
CN113642171A (zh) * 2021-08-10 2021-11-12 国网福建省电力有限公司 一种基于大数据的输变电设备健康状态评估系统及方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100463727B1 (ko) * 2002-04-11 2004-12-29 백수곤 구조체 건전성 평가방법 및 장치
KR101097414B1 (ko) * 2010-01-15 2011-12-23 한국전력기술 주식회사 배관진동 평가방법

Also Published As

Publication number Publication date
KR20180035549A (ko) 2018-04-06

Similar Documents

Publication Publication Date Title
Ayo-Imoru et al. A survey of the state of condition-based maintenance (CBM) in the nuclear power industry
Bangalore et al. An artificial neural network approach for early fault detection of gearbox bearings
Cattaneo et al. A digital twin proof of concept to support machine prognostics with low availability of run-to-failure data
KR101903283B1 (ko) 발전 설비의 자동 진단 시스템 및 자동 진단 방법
Schlechtingen et al. Wind turbine condition monitoring based on SCADA data using normal behavior models. Part 2: Application examples
Blesa et al. An interval NLPV parity equations approach for fault detection and isolation of a wind farm
Saidi et al. An integrated wind turbine failures prognostic approach implementing Kalman smoother with confidence bounds
Butler et al. A feasibility study into prognostics for the main bearing of a wind turbine
KR102365772B1 (ko) 회전체 설비 고장발생 위험도 지수 평가 장치 및 그 방법
Butler et al. Exploiting SCADA system data for wind turbine performance monitoring
JP4024752B2 (ja) 送電に関する改良
US9563198B2 (en) Method and system to model risk of unplanned outages of power generation machine
CN113027703A (zh) 包括传动系统、齿轮箱和发电机的旋转机械的损害和剩余使用寿命的确定
KR20200049295A (ko) 회전기기 고장 예지를 위한 건전성 지표 추이 및 잔존수명 예측 기법
WO2018179937A1 (ja) リスク評価装置、リスク評価方法、及び、リスク評価プログラム
Rinaldi et al. Verification and benchmarking methodology for O&M planning and optimization tools in the offshore renewable energy sector
US9249794B2 (en) Condition-based and predictive maintenance of compressor systems
Tchakoua et al. New trends and future challenges for wind turbines condition monitoring
Pino et al. Bearing diagnostics of hydro power plants using wavelet packet transform and a hidden Markov model with orbit curves
An et al. Detection of process anomalies using an improved statistical learning framework
US8839664B2 (en) Detection and classification of failures of power generating equipment during transient conditions
Zhang et al. A multi-fault modeling approach for fault diagnosis and failure prognosis of engineering systems
Singh et al. Developing RCM strategy for wind turbines utilizing e-condition monitoring
Peeters et al. Stochastic simulation assessment of an automated vibration-based condition monitoring framework for wind turbine gearbox faults
WO2022248004A1 (en) Establishing health indicator of a rotating component

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant