KR102362951B1 - Method of predicting short-term mortality in ischemic stroke using the ratio of procalcitonin to c-reactive protein - Google Patents

Method of predicting short-term mortality in ischemic stroke using the ratio of procalcitonin to c-reactive protein Download PDF

Info

Publication number
KR102362951B1
KR102362951B1 KR1020200101921A KR20200101921A KR102362951B1 KR 102362951 B1 KR102362951 B1 KR 102362951B1 KR 1020200101921 A KR1020200101921 A KR 1020200101921A KR 20200101921 A KR20200101921 A KR 20200101921A KR 102362951 B1 KR102362951 B1 KR 102362951B1
Authority
KR
South Korea
Prior art keywords
concentration
ratio
pct
crp
ischemic stroke
Prior art date
Application number
KR1020200101921A
Other languages
Korean (ko)
Inventor
이종한
Original Assignee
연세대학교 원주산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 연세대학교 원주산학협력단 filed Critical 연세대학교 원주산학협력단
Priority to KR1020200101921A priority Critical patent/KR102362951B1/en
Application granted granted Critical
Publication of KR102362951B1 publication Critical patent/KR102362951B1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6893Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids related to diseases not provided for elsewhere
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/435Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
    • G01N2333/46Assays involving biological materials from specific organisms or of a specific nature from animals; from humans from vertebrates
    • G01N2333/47Assays involving proteins of known structure or function as defined in the subgroups
    • G01N2333/4701Details
    • G01N2333/4737C-reactive protein
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/435Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
    • G01N2333/575Hormones
    • G01N2333/585Calcitonins
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/50Determining the risk of developing a disease

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Immunology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

The present invention relates to a method for providing information for predicting short-term mortality in ischemic stroke using the ratio of procalcitonin (PCT) to c-reactive protein (CRP), and more specifically, to a method for providing the result of measuring PCT concentration and CRP concentration in blood samples isolated from individuals, and calculating the ratio of PCT concentration to CRP concentration (PC ratio) from the measured PCT concentration and CRP concentration as information for predicting short-term mortality in ischemic stroke. In the present invention, after collecting the medical records of patients diagnosed with ischemic stroke, and then retrospectively analyzing the data of patients with both PCT and CRP records, it was found that among several indicators including PCT and CRP, the PCT to CRP ratio (PC ratio) indicator is significantly correlated with short-term (90-day) mortality in ischemic stroke, and it was confirmed that the risk of short-term death increases as the index increases, and thus the PC ratio can be used as a predictive marker of short-term mortality after ischemic stroke.

Description

프로칼시토닌 대 c­반응성 단백질의 비율을 이용한 허혈성 뇌졸중의 단기 사망률 예측 방법{METHOD OF PREDICTING SHORT-TERM MORTALITY IN ISCHEMIC STROKE USING THE RATIO OF PROCALCITONIN TO C-REACTIVE PROTEIN}A method for predicting short-term mortality in ischemic stroke using the ratio of procalcitonin to c-reactive protein

본 발명은 프로칼시토닌(procalcitonin, PCT) 대 c-반응성 단백질(c-reactive protein, CRP)의 비율을 이용한 허혈성 뇌졸중(ischemic stroke)의 단기 사망률 예측을 위한 정보 제공 방법에 관한 것으로서, 보다 구체적으로는, 개체로부터 분리된 혈액 샘플 내의 PCT 농도 및 CRP 농도를 측정하고, 측정된 PCT 농도 및 CRP 농도로부터 PCT 농도 대 CRP 농도의 비율(PC 비율)을 계산한 결과를 허혈성 뇌졸중의 단기 사망률 예측을 위한 정보로서 제공하는 방법에 관한 것이다.The present invention relates to a method for providing information for short-term mortality prediction of ischemic stroke using the ratio of procalcitonin (PCT) to c-reactive protein (CRP), and more specifically , measuring the PCT concentration and CRP concentration in a blood sample isolated from an individual, and calculating the ratio of PCT concentration to CRP concentration (PC ratio) from the measured PCT concentration and CRP concentration information for short-term mortality prediction of ischemic stroke It relates to a method of providing as

허혈성 뇌졸중은 대부분의 국가에서 사망률의 주요 원인으로 남아 있으며, 전 세계적으로 사망의 세 번째 주요 원인이다. 2000-2008년에 발병률은 10만 명당 94-117명으로 추정되고, 뇌졸중으로 매년 전 세계적으로 1,700만 명이 넘는 사망자가 발생하는 것으로 보고되고 있다. 따라서, 허혈성 뇌졸중은 주요한 건강 관심사 및 사회적 부담이며, 막대한 건강 관리 비용이 필요한 질환이다. 또한, 허혈성 뇌졸중 관련 사망률을 낮추려면 조기 진단 및 위험 평가가 필요하다. 이러한 이유로, 허혈성 뇌졸중의 중증도 및 예후의 마커를 확인하기 위해 많은 노력을 기울였으며, 빌리루빈(bilirubin), 감마-글루타밀 트랜스퍼라제(gamma-glutamyl transferase), 요산, 피브리노겐(fibrinogen), 백혈구(white blood cell, WBC) 수, 뇌나트륨이뇨펩티드(brain natriuretic peptide, BNP) 및 트로포닌 I(troponin I, TnI)과 같은 허혈성 뇌졸중에 사용하기 위한 몇몇 바이오마커가 제안되고 있으나, 잘 설계된 임상 연구에서 평가 및 검증 부족으로 인해 임상에서 널리 사용되지는 않는 실정이다.Ischemic stroke remains the leading cause of mortality in most countries and is the third leading cause of death worldwide. In 2000-2008, the incidence was estimated to be 94-117 per 100,000 people, and stroke is reported to cause more than 17 million deaths worldwide every year. Therefore, ischemic stroke is a major health concern and social burden, and is a disease requiring enormous health care costs. In addition, early diagnosis and risk assessment are needed to reduce ischemic stroke-related mortality. For this reason, much effort has been made to identify markers of the severity and prognosis of ischemic stroke, bilirubin, gamma-glutamyl transferase, uric acid, fibrinogen, white blood Several biomarkers for use in ischemic stroke, such as cell, WBC) count, brain natriuretic peptide (BNP) and troponin I (TnI) have been proposed, but have been evaluated and evaluated in well-designed clinical studies. Due to the lack of validation, it is not widely used in clinical practice.

뇌졸중은 상기 설명된 허혈성 뇌졸중 및 출혈성 뇌졸중(hemorrhagic stroke)으로 나뉘며, 허혈성 뇌졸중은 모든 자연 사건의 약 70~90%를 차지한다. 또한, 이들 중 대부분은 심장 색전증(cardioembolism) 및 죽상동맥경화증(atherosclerosis)과 관련이 있다. 이전 연구에 따르면, 전신 염증은 허혈성 뇌졸중의 질병 발생 및 진행과 관련이 있으며, CRP 단백질 수준은 질병 중증도와 관련이 있는 것으로 나타났다. PCT는 칼시토닌(갑상선 C 세포에 의해 생성되는 호르몬)의 116개 아미노산 전구체로서 박테리아 내 독소 또는 염증 매개체에 의해 자극으로 분비된다. 또한, PCT는 패혈증 및 폐렴의 검출을 위한 유망한 바이오마커이며, 주요 외상이 감염이 아닌 염증과 관련이 있을 수 있는 초기 단계에서 PCT 수준이 상승한다고 보고되고 있다. 그러나, 허혈성 뇌졸중에서 PCT 농도 대 CRP 농도의 비율(PC 비율)과 예후와의 연관성을 조사한 연구는 아직 없었다. Stroke is divided into ischemic stroke and hemorrhagic stroke described above, and ischemic stroke accounts for about 70-90% of all natural events. In addition, most of these are associated with cardiac embolism and atherosclerosis. Previous studies have shown that systemic inflammation is associated with disease development and progression of ischemic stroke, and that CRP protein levels are associated with disease severity. PCT is a 116 amino acid precursor of calcitonin (a hormone produced by thyroid C cells) that is secreted stimuli by bacterial endotoxins or inflammatory mediators. In addition, PCT is a promising biomarker for the detection of sepsis and pneumonia, and it is reported that PCT levels are elevated at an early stage when the major trauma may be related to inflammation rather than infection. However, no studies have investigated the relationship between the ratio of PCT concentration to CRP concentration (PC ratio) and prognosis in ischemic stroke.

이에 본 발명자들은 허혈성 뇌졸중 환자의 단기 사망률을 예측할 수 있는 방법을 개발하기 위해 노력한 결과, PC 비율이 허혈성 뇌졸중 환자의 단기 사망률과 관련이 있다는 것을 확인하여 본 발명의 출원에 이르렀다.Accordingly, the present inventors made efforts to develop a method for predicting short-term mortality in ischemic stroke patients. As a result, it was confirmed that the PC ratio is related to short-term mortality in ischemic stroke patients, leading to the application of the present invention.

KR10-1732787 BKR10-1732787 B KR10-2125034 BKR10-2125034 B KR10-2019-0061040 AKR10-2019-0061040 A KR10-20170072215 AKR10-20170072215 A

Makris K, Haliassos A, Chondrogianni M, Tsivgoulis G Blood biomarkers in ischemic stroke: potential role and challenges in clinical practice and research Crit Rev Lab Sci 2018: 1-35.Makris K, Haliassos A, Chondrogianni M, Tsivgoulis G Blood biomarkers in ischemic stroke: potential role and challenges in clinical practice and research Crit Rev Lab Sci 2018: 1-35. Sonderer J, Katan Kahles M Aetiological blood biomarkers of ischaemic stroke Swiss Med Wkly 2015; 145: w14138.Sonderer J, Katan Kahles M Aetiological blood biomarkers of ischemic stroke Swiss Med Wkly 2015; 145: w14138. Carter AM, Catto AJ, Mansfield MW, Bamford JM, Grant PJ Predictive variables for mortality after acute ischemic stroke Stroke 2007; 38: 1873-80.Carter AM, Catto AJ, Mansfield MW, Bamford JM, Grant PJ Predictive variables for mortality after acute ischemic stroke Stroke 2007; 38: 1873-80. Mazidi M, Katsiki N, Mikhailidis DP, Pella D, Banach M Potato consumption is associated with total and cause-specific mortality: a population-based cohort study and pooling of prospective studies with 98,569 participants Arch Med Sci 2020; 16: 260-72.Mazidi M, Katsiki N, Mikhailidis DP, Pella D, Banach M Potato consumption is associated with total and cause-specific mortality: a population-based cohort study and pooling of prospective studies with 98,569 participants Arch Med Sci 2020; 16: 260-72. Oz II, Yucel M, Bilici M, et al Is mean platelet volume a reliable marker to predict ischemic stroke in the follow-up of patients with carotid stenosis? J Stroke Cerebrovasc Dis 2016; 25: 404-9. Oz II, Yucel M, Bilici M, et al Is mean platelet volume a reliable marker to predict ischemic stroke in the follow-up of patients with carotid stenosis? J Stroke Cerebrovasc Dis 2016; 25: 404-9. Furlan J, Vergouwen M, Fang J, Silver F White blood cell count is an independent predictor of outcomes after acute ischaemic stroke Eur J Neurol 2014; 21: 215-22. Furlan J, Vergouwen M, Fang J, Silver F White blood cell count is an independent predictor of outcomes after acute ischemic stroke Eur J Neurol 2014; 21: 215-22. Luo Y, Li J, Zhang J, Xu Y Elevated bilirubin after acute ischemic stroke linked to the stroke severity Int J Dev Neurosci 2013; 31: 634-8.Luo Y, Li J, Zhang J, Xu Y Elevated bilirubin after acute ischemic stroke linked to the stroke severity Int J Dev Neurosci 2013; 31: 634-8. Weikert C, Drogan D, di Giuseppe R, et al Liver enzymes and stroke risk in middle-aged German adults Atherosclerosis 2013; 228: 508-14.Weikert C, Drogan D, di Giuseppe R, et al Liver enzymes and stroke risk in middle-aged German adults Atherosclerosis 2013; 228: 508-14. Kawase S, Kowa H, Suto Y, et al Association between serum uric acid level and activity of daily living in Japanese patients with ischemic stroke J Stroke Cerebrovasc Dis 2017; 26: 1960-5.Kawase S, Kowa H, Suto Y, et al Association between serum uric acid level and activity of daily living in Japanese patients with ischemic stroke J Stroke Cerebrovasc Dis 2017; 26: 1960-5. Di Napoli M, Papa F, Bocola V Prognostic influence of increased C-reactive protein and fibrinogen levels in ischemic stroke Stroke 2001; 32: 133-8 16. Di Napoli M, Papa F, Bocola V Prognostic influence of increased C-reactive protein and fibrinogen levels in ischemic stroke Stroke 2001; 32: 133-8 16. Chaudhuri JR, Sharma VK, Mridula KR, Balaraju B, Bandaru VCSS Association of plasma brain natriuretic peptide levels in acute ischemic stroke subtypes and outcome J Stroke Cerebrovasc Dis 2015; 24: 485-91.Chaudhuri JR, Sharma VK, Mridula KR, Balaraju B, Bandaru VCSS Association of plasma brain natriuretic peptide levels in acute ischemic stroke subtypes and outcome J Stroke Cerebrovasc Dis 2015; 24: 485-91. Taub PR, Fields JD, Wu AH, et al Elevated BNP is associated with vasospasm-independent cerebral infarction following aneurysmal subarachnoid hemorrhage Neurocrit care 2011; 15: 13-8.Taub PR, Fields JD, Wu AH, et al Elevated BNP is associated with vasospasm-independent cerebral infarction following aneurysmal subarachnoid hemorrhage Neurocrit care 2011; 15: 13-8. Barber M, Langhorne P, Rumley A, Lowe GD, Stott DJ D-dimer predicts early clinical progression in ischemic stroke: confirmation using routine clinical assays Stroke 2006; 37: 1113-5.Barber M, Langhorne P, Rumley A, Lowe GD, Stott DJ D-dimer predicts early clinical progression in ischemic stroke: confirmation using routine clinical assays Stroke 2006; 37: 1113-5. Barber M, Langhorne P, Rumley A, Lowe GD, Stott DJ Hemostatic function and progressing ischemic stroke: D-dimer predicts early clinical progression Stroke 2004; 35: 1421-5.Barber M, Langhorne P, Rumley A, Lowe GD, Stott DJ Hemostatic function and progressing ischemic stroke: D-dimer predicts early clinical progression Stroke 2004; 35: 1421-5. Mimoz O, Edouard AR, Samii K, Benoist JF, Assicot M, Bohuon C Procalcitonin and C-reactive protein during the early posttraumatic systemic inflammatory response syndrome Intensive Care Med 1998; 24: 185-8.Mimoz O, Edouard AR, Samii K, Benoist JF, Assicot M, Bohuon C Procalcitonin and C-reactive protein during the early posttraumatic systemic inflammatory response syndrome Intensive Care Med 1998; 24: 185-8.

본 발명은 상기와 같은 종래 기술의 문제점을 해결하기 위하여 안출된 것으로서, 본 발명에서 해결하고자 하는 과제는 허혈성 뇌졸중의 단기 사망률 예측용 바이오마커, 이를 이용한 허혈성 뇌졸중의 단기 사망률 예측을 위한 정보를 제공하는 방법 및 상기 바이오마커의 혈중 농도를 측정하기 위한 시약을 포함하는 진단 키트를 제공하고자 하는 것이다.The present invention has been devised to solve the problems of the prior art as described above, and the problem to be solved in the present invention is a biomarker for short-term mortality prediction of ischemic stroke, and information for short-term mortality prediction of ischemic stroke using the biomarker. An object of the present invention is to provide a diagnostic kit comprising a method and a reagent for measuring the blood concentration of the biomarker.

상기와 같은 과제를 해결하기 위하여, 본 발명은 프로칼시토닌(procalcitonin, PCT) 및 c-반응성 단백질(c-reactive protein, CRP)을 포함하는 허혈성 뇌졸중의 단기 사망률 예측용 바이오마커을 제공한다.In order to solve the above problems, the present invention provides a biomarker for short-term mortality prediction of ischemic stroke, including procalcitonin (PCT) and c-reactive protein (CRP).

상기 PCT 및 CRP는 혈중 단백질로 존재하는 것이 바람직하다.The PCT and CRP are preferably present as blood proteins.

또한, 본 발명은 (1) 개체로부터 분리된 혈액 샘플로부터 프로칼시토닌(procalcitonin, PCT) 농도 및 c-반응성 단백질(c-reactive protein, CRP) 농도를 측정하는 단계; (2) 측정된 PCT 농도 및 CRP 농도로부터 PCT 농도 대 CRP 농도의 비율(PC 비율)을 산정하는 단계; 및 (3) 산정된 PC 비율을 허혈성 뇌졸중의 단기 사망률 예측을 위한 정보로서 제공하는 단계를 포함하는 허혈성 뇌졸중의 단기 사망률 예측을 위한 정보 제공 방법을 제공한다.In addition, the present invention comprises the steps of (1) measuring a procalcitonin (PCT) concentration and a c-reactive protein (CRP) concentration from a blood sample isolated from a subject; (2) calculating a ratio of PCT concentration to CRP concentration (PC ratio) from the measured PCT concentration and CRP concentration; and (3) providing the calculated PC ratio as information for short-term mortality prediction of ischemic stroke.

상기 PCT 농도 및 CRP 농도는 단백질 농도인 것이 바람직하다.The PCT concentration and the CRP concentration are preferably protein concentrations.

상기 PC 비율은 PCT 농도를 CRP 농도로 나눈 값인 것이 바람직하다.The PC ratio is preferably a value obtained by dividing the PCT concentration by the CRP concentration.

상기 PCT 농도는 ng/mL 및 CRP 농도는 mg/L의 단위인 것이 바람직하다.The PCT concentration is preferably in units of ng/mL and the CRP concentration is mg/L.

상기 PC 비율이 19.7×10-6 이상이면 허혈성 뇌졸중의 단기 사망 가능성이 존재하는 것으로 판단하는 것이 바람직하다.If the PC ratio is 19.7×10 −6 or more, it is preferable to determine that the short-term death possibility of ischemic stroke exists.

상기 단기 사망률은 90일 이내 사망률인 것이 바람직하다.The short-term mortality rate is preferably within 90 days.

또한, 본 발명은 개체로부터의 혈액 샘플 중의 프로칼시토닌(procalcitonin, PCT) 및 c-반응성 단백질(c-reactive protein, CRP)을 포함하는 바이오마커의 농도를 특이적으로 측정하는 시약 세트 및 개체로부터 허혈성 뇌졸중의 단기 사망룰 예측용 정보를 제공하기 위한 키트를 사용하기 위한 설명서를 포함하는 허혈성 뇌졸중의 단기 사망률 예측용 정보 제공을 위한 진단 키트를 제공한다.In addition, the present invention provides a set of reagents for specifically measuring the concentration of a biomarker including procalcitonin (PCT) and c-reactive protein (CRP) in a blood sample from a subject and ischemic disease from the subject It provides a diagnostic kit for providing information for short-term mortality prediction of ischemic stroke, including instructions for using the kit for providing information for predicting short-term mortality of stroke.

상기 시약은 단백질의 농도를 측정하는 것이 바람직하다.Preferably, the reagent measures the concentration of the protein.

본 발명에서는 허혈성 뇌졸중 진단을 받은 환자의 의료 기록을 수집한 후, PCT 및 CRP 기록을 모두 가지는 환자의 데이터를 후향적으로 분석한 결과, PCT 및 CRP를 포함한 여러 지표 중 PCT 농도 대 CRP 농도의 비율(PC 비율) 지표가 허혈성 뇌졸중의 단기(90일) 사망률과 유의한 상관관계가 있음을 도출하였고, 상기 지표가 증가할수록 단기 사망의 위험도가 증가하는 것을 확인하였으므로, PC 비율을 허혈성 뇌졸중 후 단기 사망률을 예측하는 마커로 이용할 수 있다.In the present invention, after collecting medical records of patients diagnosed with ischemic stroke, retrospective analysis of data from patients with both PCT and CRP records showed that the ratio of PCT concentration to CRP concentration among various indicators including PCT and CRP. It was derived that the (PC ratio) index had a significant correlation with the short-term (90-day) mortality rate of ischemic stroke, and it was confirmed that the risk of short-term death increased as the index increased. can be used as a marker to predict

도 1은 허혈성 뇌졸중 환자에서 90일 사망률을 예측하기 위한 PCT, CRP 및 PC 비율의 ROC(receiver operating characteristic) 곡선을 나타낸 것이다.
도 2는 PC 비율 사분위에 의한 허혈성 뇌졸중 환자의 Kaplan-Meier 생존 추정치를 나타낸 것이다.
1 shows a ROC (receiver operating characteristic) curve of PCT, CRP and PC ratio for predicting 90-day mortality in ischemic stroke patients.
Figure 2 shows Kaplan-Meier survival estimates of ischemic stroke patients by PC ratio quartiles.

이하, 본 발명을 상세하게 설명한다.Hereinafter, the present invention will be described in detail.

본 발명의 발명자들은 허혈성 뇌졸중 진단을 받은 환자의 예후를 예측하기 위한 혈중 바이오마커를 선별하기 위한 연구를 진행한 결과, 프로칼시토닌(procalcitonin, PCT) 및 c-반응성 단백질(c-reactive protein, CRP)를 포함한 여러 혈중 단백질의 지표 중 PCT 농도 대 CRP 농도의 비율(PC 비율) 지표가 허혈성 뇌졸중의 단기(90일) 사망률과 유의한 상관관계가 있음을 도출하였고, 상기 지표가 증가할수록 단기 사망의 위험도가 증가하는 것을 확인함으로서 본 발명을 완성하였다.The inventors of the present invention conducted a study to select blood biomarkers for predicting the prognosis of a patient diagnosed with ischemic stroke, and as a result, procalcitonin (PCT) and c-reactive protein (CRP) It was derived that the ratio of PCT concentration to CRP concentration (PC ratio) among several blood protein indicators including By confirming that is increased, the present invention was completed.

따라서, 본 발명은 PCT 및 CRP를 포함하는 허혈성 뇌졸중의 단기 사망률 예측용 바이오마커을 제공한다.Accordingly, the present invention provides a biomarker for short-term mortality prediction of ischemic stroke, including PCT and CRP.

본 발명의 바이오마커로서의 PCT 및 CRP는 개체, 예를 들어, 인간, 원숭이, 소, 말, 양, 돼지, 닭, 칠면조, 메추라기, 고양이, 개, 마우스, 쥐, 토끼 또는 기니아 피그, 바람직하게는 포유류, 보다 바람직하게는 인간으로부터 분리된 혈액 내에서 혈중 단백질로 존재하는 것이 바람직하다. PCT and CRP as biomarkers of the present invention are individual, for example human, monkey, cow, horse, sheep, pig, chicken, turkey, quail, cat, dog, mouse, rat, rabbit or guinea pig, preferably It is preferred to be present as a blood protein in blood isolated from a mammal, more preferably a human.

본 발명의 PCT 및 CRP를 포함하는 바이오마커는 아래와 같은 허혈성 뇌졸중의 단기 사망률의 예측을 위한 정보를 제공하는 방법에 적용된다.The biomarker comprising PCT and CRP of the present invention is applied to a method for providing information for prediction of short-term mortality of ischemic stroke as follows.

따라서, 본 발명은 (1) 개체로부터 분리된 혈액 샘플로부터 PCT 농도 및 CRP 농도를 측정하는 단계; (2) 측정된 PCT 농도 및 CRP 농도로부터 PCT 농도 대 CRP 농도의 비율(PC 비율)을 산정하는 단계; 및 (3) 산정된 PC 비율을 허혈성 뇌졸중의 단기 사망률 예측을 위한 정보로서 제공하는 단계를 포함하는 허혈성 뇌졸중의 단기 사망률 예측을 위한 정보 제공 방법을 제공한다.Accordingly, the present invention provides a method comprising the steps of: (1) measuring a PCT concentration and a CRP concentration from a blood sample isolated from a subject; (2) calculating a ratio of PCT concentration to CRP concentration (PC ratio) from the measured PCT concentration and CRP concentration; and (3) providing the calculated PC ratio as information for short-term mortality prediction of ischemic stroke.

상기 개체는 예를 들어, 인간, 원숭이, 소, 말, 양, 돼지, 닭, 칠면조, 메추라기, 고양이, 개, 마우스, 쥐, 토끼 또는 기니아 피그, 바람직하게는 포유류, 보다 바람직하게는 인간이다.The subject is, for example, a human, monkey, cow, horse, sheep, pig, chicken, turkey, quail, cat, dog, mouse, rat, rabbit or guinea pig, preferably a mammal, more preferably a human.

상기 혈액은 개체로부터 통상의 임상병리학적 수단에 의하여 분리될 수 있으며, 바람직하게는 주사 바늘에 의한 채혈에 의하여 수득된다.The blood can be isolated from the subject by conventional clinical pathological means, and is preferably obtained by blood collection using an injection needle.

상기 PCT 농도 및 CRP 농도는 분리된 혈액 중의 단백질의 농도인 것이 바람직하다. 단백질의 농도를 측정하는 방법은, 특별히 제한되지는 않으나, 예를 들어, 면역 검정, 비색 검정, 비탁 검정, 및 유동 세포측정법 중의 하나 이상에 의해 측정될 수 있다. 바이오마커의 양은 절대적인 조건에서 결정될 필요는 없고, 상대적인 조건에서 결정될 수도 있다. 추가로, 바이오마커의 양은 생물학적 샘플 내의 그의 농도에 의해, 바이오마커에 결합하는 항체의 농도에 의해, 또는 바이오마커의 기능적 활성 (즉, 결합 또는 효소 활성)에 의해 표현될 수도 있다.Preferably, the PCT concentration and the CRP concentration are the concentrations of proteins in the separated blood. The method for measuring the concentration of the protein is not particularly limited, but may be measured by, for example, one or more of an immunoassay, a colorimetric assay, a turbidity assay, and a flow cytometry method. The amount of the biomarker need not be determined under absolute conditions, but may be determined under relative conditions. Additionally, the amount of a biomarker may be expressed by its concentration in a biological sample, by the concentration of an antibody that binds the biomarker, or by the functional activity (ie, binding or enzymatic activity) of the biomarker.

본 발명의 PC 비율은 PCT 농도 대 CRP 농도의 비율을 나타내는 것으로서 PCT 농도를 CRP 농도로 나눈 값일 수 있다.The PC ratio of the present invention represents the ratio of the PCT concentration to the CRP concentration, and may be a value obtained by dividing the PCT concentration by the CRP concentration.

본 발명에서는 연구 대상자들의 PCT 및 CRP 농도를 분석함으로서 이들의 혈중 농도와 단기 사망률, 구체적으로 90일 이내 사망률과의 상관 관계를 밝혔다. 높은 특이도(80%)의 임계값으로서 PCT 농도는 1.3 ng/mL로 정하였으며, CRP 농도는 159.0 mg/L로 정하였다. 높은 특이도의 PCT 및 CRP 농도 임계값으로부터 컷-오프 PC 비율이 19.7×10-6로 특정되었다.In the present invention, by analyzing the PCT and CRP concentrations of the study subjects, the correlation between their blood concentrations and short-term mortality, specifically, mortality within 90 days was revealed. As a threshold of high specificity (80%), the PCT concentration was set at 1.3 ng/mL, and the CRP concentration was set at 159.0 mg/L. A cut-off PC ratio of 19.7×10 −6 was specified from the high specificity PCT and CRP concentration thresholds.

바람직한 구체예로서, 상기 PC 비율이 19.7×10-6 이상이면, 허혈성 뇌졸중의 단기 사망 가능성이 높은 것으로 판단하기 위한 정보로서 제공될 수 있을 것이다.As a preferred embodiment, if the PC ratio is 19.7×10 −6 or more, it may be provided as information for determining that the short-term death probability of ischemic stroke is high.

본 발명의 상기 바이오마커 및 이를 이용한 허혈성 뇌졸중의 단기 사망률 예측을 위한 정보 제공 방법은 아래와 같은 키트의 형태로 제공이 가능하다.The biomarker of the present invention and the information providing method for short-term mortality prediction of ischemic stroke using the same can be provided in the form of a kit as follows.

따라서, 본 발명은 개체로부터의 혈액 샘플 중의 PCT 및 CRP를 포함하는 바이오마커의 농도를 특이적으로 측정하는 시약 세트 및 개체로부터 허혈성 뇌졸중의 단기 사망룰 예측용 정보를 제공하기 위한 키트를 사용하기 위한 설명서를 포함하는 허혈성 뇌졸중의 단기 사망률 예측용 정보 제공을 위한 진단 키트를 제공한다.Accordingly, the present invention provides a reagent set for specifically measuring the concentration of a biomarker including PCT and CRP in a blood sample from an individual and a kit for providing information for predicting short-term mortality from ischemic stroke from an individual. Provides a diagnostic kit for providing information for short-term mortality prediction of ischemic stroke, including instructions.

상기 진단 키트는 개체로부터의 샘플 내에서 하나 이상의 바이오마커의 수준을 측정하고, 측정된 수준을 분석하고, 개체가 단기 사망의 위험이 있는지 확인하기 위한 시약 및 물질을 포함할 수 있다. 바람직한 구체예로서, 본 발명의 진단 키트는 개체로부터 샘플을 얻고/얻거나 이를 담기 위한 바늘, 주사기, 바이알, 또는 다른 기구를 포함할 수 있다. 일부 실시양태에서, 키트는 본원에서 개시된 바이오마커를 검출 또는 정량하기 위해 특이적으로 사용되는 적어도 하나의 시약을 포함할 수 있다. 즉, 적합한 시약 및 기법은 바이오마커를 검출 또는 정량하기 위한 키트에 포함하기 위해 당업자에 의해 쉽게 선택될 수 있다.The diagnostic kit may include reagents and materials for measuring the level of one or more biomarkers in a sample from a subject, analyzing the measured level, and determining whether the subject is at risk of short-term death. In a preferred embodiment, the diagnostic kit of the present invention may include a needle, syringe, vial, or other device for obtaining and/or containing a sample from a subject. In some embodiments, a kit may include at least one reagent specifically used to detect or quantify a biomarker disclosed herein. That is, suitable reagents and techniques can be readily selected by one of ordinary skill in the art for inclusion in a kit for detecting or quantifying a biomarker.

상기 시약은 단백질의 농도를 측정하는 것이 바람직하다. 바람직한 구체예로서, 면역검정 (예를 들어, 화학발광 면역검정), 비색 검정, 또는 비탁 검정을 사용하여 단백질을 검출하기 위한 적절한 시약 (예를 들어, 항체)을 포함할 수 있다. 또한, 상기 시약에는 추출 완충제 또는 시약, 증폭 완충제 또는 시약, 반응 완충제 또는 시약, 혼성화 완충제 또는 시약, 면역검출 완충제 또는 시약, 표지 완충제 또는 시약, 및 검출 수단을 포함할 수도 있다.Preferably, the reagent measures the concentration of the protein. In a preferred embodiment, an immunoassay (eg, chemiluminescent immunoassay), a colorimetric assay, or a turbidity assay may be used to detect a protein using an appropriate reagent (eg, an antibody). The reagents may also include extraction buffers or reagents, amplification buffers or reagents, reaction buffers or reagents, hybridization buffers or reagents, immunodetection buffers or reagents, labeling buffers or reagents, and detection means.

상기 진단 키트는 대조군 샘플, 참조 샘플, 내부 표준, 또는 이전에 생성된 실험 데이터일 수 있는 대조군을 포함할 수 있다. 대조군은 정상의 건강한 개체 또는 알려진 질환 상태를 갖는 개체에 상응할 수 있다. 추가로, 대조군은 각각의 바이오마커에 대해 제공될 수 있거나 또는 대조군은 참조 위험 스코어일 수 있다.The diagnostic kit may include a control, which may be a control sample, a reference sample, an internal standard, or previously generated experimental data. Controls may correspond to normal healthy individuals or individuals with a known disease state. Additionally, a control may be provided for each biomarker or a control may be a reference risk score.

상기 진단 키트는 각각의 개별 시약에 대해 하나 이상의 용기를 포함할 수 있다. 키트는 임의의 규제 요건에 따라 본원에서 설명되는 방법의 수행 및/또는 결과의 해석을 위한 설명서를 추가로 포함할 수 있다. 추가로, 검출된 바이오마커 수준의 분석, 위험 스코어의 계산 및/또는 MI의 가능성 결정을 위한 소프트웨어가 키트에 포함될 수 있다. 바람직하게는, 키트는 상업적인 배포, 판매 및/또는 사용을 위해 적합한 용기에 포장된다.The diagnostic kit may include one or more containers for each individual reagent. The kit may further comprise instructions for performing the methods described herein and/or for interpreting the results in accordance with any regulatory requirements. Additionally, software for analysis of detected biomarker levels, calculation of risk scores and/or determination of likelihood of MI may be included in the kit. Preferably, the kit is packaged in a container suitable for commercial distribution, sale and/or use.

이하에서는, 구체적인 실시예를 통하여 본 발명을 더욱 상세하게 설명한다. 하기 실시예는 본 발명의 바람직한 일 구체예를 기재한 것이며, 하기 실시예에 기재된 사항에 의하여 본 발명의 권리범위가 한정되어 해석되는 것은 아니다.Hereinafter, the present invention will be described in more detail through specific examples. The following examples describe a preferred embodiment of the present invention, and the scope of the present invention is not limited and interpreted by the matters described in the following examples.

[실시예][Example]

1. 약어1. Abbreviations

하기 실시예에 기재된 약어의 정의는 다음과 같다.Definitions of abbreviations described in the Examples below are as follows.

CRP, c-반응성 단백질(C-reactive protein); WBC, 백혈구(white blood cell); BNP, 뇌나트륨이뇨펩티드(brain natriuretic peptide); TnI, 트로포닌 I(troponin I); PCT, 프로칼시토닌(procalcitonin); AUC, 곡선하면적(area under the curve); PC ratio, PCT 농도 대 CRP 농도의 비율(PC 비율); EMR, 전자 의료 기록(electronic medical record); ESR, 적혈구 침강 속도(erythrocyte sedimentation rate); CK-MB, 크레아틴키나아제 근육/뇌(creatine kinase muscle/brain); FDP, 섬유소분해산물(fibrin degradation product); IRB, 생명윤리위원회(institutional review board); SD, 표준편차(standard deviation); IQR, 사분위간 범위(interquartile range); ROC, receiver operating characteristic; ANOVA, 분산분석(analysis of variance); OR, 교차비(odds ratio); CI, 신뢰구간(confidence interval).CRP, c-reactive protein; WBC, white blood cell; BNP, brain natriuretic peptide; TnI, troponin I (troponin I); PCT, procalcitonin; AUC, area under the curve; PC ratio, the ratio of PCT concentration to CRP concentration (PC ratio); EMR, electronic medical record; ESR, erythrocyte sedimentation rate; CK-MB, creatine kinase muscle/brain; FDP, fibrin degradation product; IRB, institutional review board; SD, standard deviation; IQR, interquartile range; ROC, receiver operating characteristic; ANOVA, analysis of variance; OR, odds ratio; CI, confidence interval.

2. 연구 방법2. Research Methods

2.1. 연구 설계 및 데이터 수집2.1. Study design and data collection

2008년 2월부터 2018년 1월까지 10년 동안 허혈성 뇌졸중 진단으로 원주 세브란스기독병원(한국 원주에 위치한 3차 대학병원)에 입원한 모든 환자의 기록을 확인하였다. 교란요인(confounding factors)을 최소화하기 위하여, 외상, 발열성 질환, 자가면역질환, 지역사회-획득 폐렴 또는 주요 수술 병력이 있는 환자의 기록은 제외하였다. EMR로부터 환자 데이터를 수집하였다.From February 2008 to January 2018, we checked the records of all patients admitted to Wonju Severance Christian Hospital (a tertiary university hospital located in Wonju, Korea) with an ischemic stroke diagnosis. To minimize confounding factors, records of patients with a history of trauma, febrile disease, autoimmune disease, community-acquired pneumonia, or major surgery were excluded. Patient data was collected from EMR.

그 다음, PC 비율(ng/mL의 PCT 대 mg/L의 CRP 비율)과 단기(90일) 사망률 사이의 연관성을 평가하였다. 혈청 PCT 농도(reference range: ≤ 0.05 ng/mL)는 효소-결합 형광(VIDAS® PCT 분석; bioMerieux, Marcy L' Etoile, France)으로 측정하고, CRP 농도(reference range: < 3.0 mg/L)는 면역비탁법(immunoturbidimetric assay)(Cobas® c 702 module; Roche Diagnostics, Basel, Switzerland)을 사용하여 측정하였다. PCT 농도 단위는 CRP 농도와 동일한 단위로 변환하였고, PC 비율은 PCT 농도를 CRP 농도로 나눈 값으로 계산하였으며, 단위는 '값×10-6'으로 표시하였다. 모든 사례는 90일 이상 추적하였다.We then assessed the association between PC ratio (PCT in ng/mL to CRP ratio in mg/L) and short-term (90-day) mortality. Serum PCT concentrations (reference range: ≤ 0.05 ng/mL) were determined by enzyme-linked fluorescence (VIDAS ® PCT assay; bioMerieux, Marcy L'Etoile, France), and CRP concentrations (reference range: < 3.0 mg/L) were Immunoturbidimetric assay (Cobas ® c 702 module; Roche Diagnostics, Basel, Switzerland) was used. The PCT concentration unit was converted to the same unit as the CRP concentration, and the PC ratio was calculated by dividing the PCT concentration by the CRP concentration, and the unit was expressed as 'value × 10 -6 '. All cases were followed for at least 90 days.

연구 대상자 통계 및 임상 데이터 항목은 다음과 같았다: 연령, 성별, 수축기 및 이완기 혈압, 입원 및 사망 날짜 및 위험 요인(고혈압, 당뇨병, 심방 세동, 울혈성 심부전, 관상 동맥 폐쇄성 질환 및 악성 종양의 병력)의 존재.Study subject statistical and clinical data items were: age, sex, systolic and diastolic blood pressure, hospitalization and death date and risk factors (history of hypertension, diabetes, atrial fibrillation, congestive heart failure, coronary occlusive disease and malignancy) of existence.

실험실 데이터는 다음과 같이 획득하였다: WBC 수 및 호중구(neutrophil) (%)를 ADVIA 2120i automated haematology analyser(Siemens Healthcare Diagnostics Manufacturing Limited, Dublin, Ireland)로 측정하였다; ESR은 TEST-1 analyser(SIRE Analytical Systems, Udine, Italy)로 측정하였다; BNP 및 CK-MB는 Atellica IM 1600 analyser(Siemens)로 측정하였다; FDP, D-다이머(D-dimer) 및 피브리노겐(fibrinogen)은 CS-5100 hemostasis system(Sysmex Corp., Kobe, Japan)으로 측정하였다.Laboratory data were obtained as follows: WBC counts and neutrophils (%) were measured with an ADVIA 2120i automated haematology analyzer (Siemens Healthcare Diagnostics Manufacturing Limited, Dublin, Ireland); ESR was measured with a TEST-1 analyser (SIRE Analytical Systems, Udine, Italy); BNP and CK-MB were measured with an Atellica IM 1600 analyzer (Siemens); FDP, D-dimer and fibrinogen were measured with a CS-5100 hemostasis system (Sysmex Corp., Kobe, Japan).

본 연구는 원주 세브란스기독병원(IRB no. CR318057)의 IRB의 승인을 얻은 후 수행하였다. 본 연구는 후향적으로 수집된 데이터 및 실험실 결과를 사용하여 수행하였다. 분석에 필요한 항목 이외의 개인 또는 의료 정보는 수집하지 않았다.This study was conducted after obtaining IRB approval from Wonju Severance Christian Hospital (IRB no. CR318057). This study was conducted using retrospectively collected data and laboratory results. No personal or medical information other than those required for analysis was collected.

1.2. 데이터 분석1.2. data analysis

연구 대상을 생존자와 비생존자로 나누고, 기초 특성(baseline characteristics)을 분석하였다. Kolmogorov-Smirnov test를 사용하여 숫자 데이터(numeric data)의 정규성(normality)을 확인하고 p 값이 0.05보다 큰 경우 데이터 분포(distribution)를 모수 데이터(parametric data)로 판별하였다. 모수 데이터의 경우, 결과는 평균±표준편차(SD)로 나타내었고, Student's t-test를 사용하여 비교하였다. 비모수적 데이터(non-parametric data)의 경우, 결과는 중앙값(medians)과 사분위간 범위(interquartile ranges; IQR)로 나타내었고, Mann-Whitney U test를 사용하여 비교하였다.The study subjects were divided into survivors and non-survivors, and baseline characteristics were analyzed. The Kolmogorov-Smirnov test was used to confirm the normality of the numeric data, and when the p value was greater than 0.05, the data distribution was determined as parametric data. For parametric data, the results were expressed as mean ± standard deviation (SD) and compared using Student's t-test. For non-parametric data, the results were presented as medians and interquartile ranges (IQR), and were compared using the Mann-Whitney U test.

그 다음, ROC 곡선 분석을 사용하여 PCT, CRP 및 PC 비율을 포함한 다양한 매개 변수를 비교하여 90일 사망률을 예측하였다. AUC를 계산하였다. 민감도와 특이도가 같은 점에서 특이도가 낮은 것(50-65%)을 확인하였다. 따라서, 위양성 비율(false positive rate)을 최소화하기 위해, 고정된 높은 특이도(80%)의 임계값을 계산하였다. 실험실 결과를 위해, 비정상적인 값을 가진 환자의 수(임계값 이상)를 추가로 분석하였다. 또한, 뇌졸중 환자의 사망률을 판별하기 위해 다양한 PC 비율 컷-오프 값(cut-off value)에 따라 진단 효율을 추가로 평가하였다. 민감도, 특이도, 양의 예측값 positive predictive value), 음의 예측값(negative predictive value), 합의 비율(agreement rate), 양의 우도 비율(positive likelihood ratio) 및 음의 우도 비율(negative likelihood ratio)을 다양한 컷-오프 값에 따라 계산하였다.Then, using ROC curve analysis, various parameters including PCT, CRP, and PC ratio were compared to predict 90-day mortality. AUC was calculated. It was confirmed that the specificity was low (50-65%) in that the sensitivity and specificity were the same. Therefore, to minimize the false positive rate, a fixed threshold of high specificity (80%) was calculated. For laboratory results, the number of patients with abnormal values (above threshold) was further analyzed. In addition, diagnostic efficiency was further evaluated according to various PC ratio cut-off values to determine the mortality rate of stroke patients. Sensitivity, specificity, positive predictive value, negative predictive value, agreement rate, positive likelihood ratio, and negative likelihood ratio It was calculated according to the cut-off value.

ANOVA 또는 Kruskal-Wallis test(각각 모수 또는 비모수 데이터에 대해)를 사용하여 숫자 데이터에 대한 결과를 비교하였고, 유의미한 차이가 나타나는 경우 Tukey's adjustment을 사용하여 쌍별 비교(pairwise comparison) 하였다.Results for numerical data were compared using ANOVA or Kruskal-Wallis test (for parametric or non-parametric data, respectively), and if significant differences were found, pairwise comparisons were made using Tukey's adjustment.

범주형 데이터(Categorical data)는 빈도와 백분율로 나타내었고, 그룹 범주형 변수는 Chi-Square test를 사용하여 비교하였다. 그리고, 단변량 및 다변량 로지스틱 회귀 분석은 교란변수를 조정하기 전후에 수행하였다. Kaplan-Meier estimation을 사용하여 생존 분석을 수행하고, Log rank test를 사용하여 통계적 유의성을 확인하였다. 모든 통계 분석에서, p < 0.05는 통계적으로 유의한 것으로 간주하였다.Categorical data were expressed as frequency and percentage, and group categorical variables were compared using the Chi-Square test. And, univariate and multivariate logistic regression analysis were performed before and after adjusting for confounding variables. Survival analysis was performed using Kaplan-Meier estimation, and statistical significance was confirmed using the log rank test. For all statistical analyzes, p < 0.05 was considered statistically significant.

분석은 SPSS version 20.0 (IBM Corp., Armonk, NY, USA) 및 Analyse-it version 5.01 (Analyse-it Software, Ltd., Leeds, UK) added-in Microsoft Excel 2010(Microsoft Corp, Redmond, Washington, USA)을 사용하여 수행하였다.Analysis was performed using SPSS version 20.0 (IBM Corp., Armonk, NY, USA) and Analyze-it version 5.01 (Analyse-it Software, Ltd., Leeds, UK) added-in Microsoft Excel 2010 (Microsoft Corp, Redmond, Washington, USA). ) was used.

2. 연구 결과2. Study Results

2.1. 기초 특성(Baseline characteristics)2.1. Baseline characteristics

2008년 2월부터 2018 년 1월까지의 선정 기준을 충족한 환자는 총 675명이었다. 이 중, PCT 및 CRP 결과를 모두 가지고 있는 333명의 환자 기록을 분석에 사용하였다. 333 명의 환자의 기초 특성은 하기 표 1에 나타내었다. 또한, 모든 환자에 대해 단기 생존(90일)을 평가하였다.A total of 675 patients met the inclusion criteria from February 2008 to January 2018. Among them, the records of 333 patients who had both PCT and CRP results were used for analysis. The basal characteristics of 333 patients are shown in Table 1 below. In addition, short-term survival (90 days) was assessed for all patients.

뇌졸중 환자의 기초 특성Basic characteristics of stroke patients Baseline variablesBaseline variables Unit and thres-
hold
Unit and thres-
hold
FeatureFeature SurvivalSurvival Non-
survival
Non-
survival
P value P value MaleMale FemaleFemale P value P value
nn no. (%)no. (%) 268 (80.5)268 (80.5) 65 (19.5)65 (19.5) -- 201 (60.4)201 (60.4) 132 (39.6)132 (39.6) -- AgeAge yearsyears mean ± SDmean ± SD 73.1 ± 13.573.1 ± 13.5 72.4 ± 12.372.4 ± 12.3 0.7190.719 71.1 ± 14.071.1 ± 14.0 75.3 ± 11.575.3 ± 11.5 0.4190.419 MaleMale no. (%)no. (%) 161 (60.1)161 (60.1) 40 (61.5)40 (61.5) 0.8290.829 FemaleFemale no. (%)no. (%) 107 (39.9)107 (39.9) 25 (38.5)25 (38.5) Medical history ofMedical history of Hyper-
tension
Hyper-
tension
no. (%)no. (%) 42 (15.1)42 (15.1) 9 (13.8)9 (13.8) 0.7140.714 33 (16.4)33 (16.4) 18 (13.6)18 (13.6) 0.5360.536
Diabetes
mellitus
Diabetes
mellitus
no. (%)no. (%) 22 (8.2)22 (8.2) 6 (9.2)6 (9.2) 0.7900.790 20 (10.0)20 (10.0) 8 (6.1)8 (6.1) 0.2330.233
Atrial
fibri-
llation
Atrial
fibri-
llation
no. (%)no. (%) 35 (13.1)35 (13.1) 10 (15.4)10 (15.4) 0.6230.623 25 (12.4)25 (12.4) 20 (15.2)20 (15.2) 0.5140.514
Heart
failure
Heart
failure
no. (%)no. (%) 9 (3.4)9 (3.4) 6 (9.2)6 (9.2) 0.041* 0.041 * 8 (4.0)8 (4.0) 7 (5.3)7 (5.3) 0.5970.597
Coronary
artery
occlusive
disease
Coronary
artery
occlusive
disease
no. (%)no. (%) 9 (3.4)9 (3.4) 2 (3.1)2 (3.1) 0.9090.909 5 (2.5)5 (2.5) 6 (4.5)6 (4.5) 0.3550.355
Malignancy Malignancy no. (%)no. (%) 17 (6.3)17 (6.3) 2 (3.1)2 (3.1) 0.3080.308 13 (6.5)13 (6.5) 11 (8.3)11 (8.3) 0.5240.524 Clinical findings Clinical findings Systolic
blood
pressure
Systolic
blood
pressure
mmHgmmHg mean ± SDmean ± SD 128.3 ± 29.3128.3 ± 29.3 118.4 ± 26.7118.4 ± 26.7 0.032* 0.032 * 125.9 ± 28.4125.9 ± 28.4 127.4 ± 29.8127.4 ± 29.8 0.7010.701
Diastolic
blood
pressure
Diastolic
blood
pressure
mmHgmmHg mean ± SDmean ± SD 74.1 ± 16.774.1 ± 16.7 71.8 ± 18.271.8 ± 18.2 0.3860.386 74.7 ± 16.874.7 ± 16.8 72.2 ± 17.772.2 ± 17.7 0.2800.280
Laboratory findings Laboratory findings White
blood cell
White
blood cell
15.5×10 9/L15.5×10 9 /L no. (%)no. (%) 54 (19.6)54 (19.6) 16 (28.1)16 (28.1) 0.1560.156 43 (21.4)43 (21.4) 27 (20.5)27 (20.5) 0.8910.891
Neutrophil Neutrophil 88.2
%
88.2
%
no. (%)no. (%) 56 (20.3)56 (20.3) 20 (35.1)20 (35.1) 0.023* 0.023 * 46 (22.9)46 (22.9) 30 (22.7)30 (22.7) 0.9990.999
PCT PCT 1.3 ng/mL1.3 ng/mL no. (%)no. (%) 52 (18.8)52 (18.8) 24 (42.1)24 (42.1) < 0.001* < 0.001 * 46 (22.9)46 (22.9) 30 (22.7)30 (22.7) 0.9990.999 CRP CRP 159.0 mg/L159.0 mg/L no. (%)no. (%) 57 (20.7)57 (20.7) 14 (24.6)14 (24.6) 0.4840.484 50 (24.9)50 (24.9) 21 (15.9)21 (15.9) 0.0560.056 ESR ESR 18.0 mm/h18.0 mm/h no. (%)no. (%) 181 (65.6)181 (65.6) 31 (54.4)31 (54.4) 0.1300.130 125 (62.2)125 (62.2) 87 (65.9)87 (65.9) 0.5600.560 BNP BNP 453.6 pg/mL453.6 pg/mL no. (%)no. (%) 30 (10.9)30 (10.9) 10 (17.5)10 (17.5) 0.1790.179 20 (10.0)20 (10.0) 20 (15.2)20 (15.2) 0.1700.170 CK-MB CK-MB 3.3 ng/mL3.3 ng/mL no. (%)no. (%) 180 (65.2)180 (65.2) 38 (66.7)38 (66.7) 0.8790.879 133 (66.2)133 (66.2) 85 (64.4)85 (64.4) 0.8140.814 FDP FDP 22.2 μg/mL22.2 μg/mL no. (%)no. (%) 30 (10.9)30 (10.9) 11 (19.3)11 (19.3) 0.1180.118 21 (10.4)21 (10.4) 20 (15.2)20 (15.2) 0.2340.234 D-dimer D-dimer 1569.0 mg/L1569.0 mg/L no. (%)no. (%) 34 (12.3)34 (12.3) 13 (22.8)13 (22.8) 0.0570.057 20 (10.0)20 (10.0) 27 (20.5)27 (20.5) 0.010* 0.010 * Fibrinogen Fibrinogen 385.0 mg/dL385.0 mg/dL no. (%)no. (%) 116 (42.0)116 (42.0) 21 (36.8)21 (36.8) 0.5550.555 76 (37.8)76 (37.8) 61 (46.2)61 (46.2) 0.1400.140

* P 값 < 0.05는 통계적 유의성을 나타낸다.* P value < 0.05 indicates statistical significance.

† 비정상적인 실험실 소견(표 2에서 결정된 임계값 초과)을 가진 환자의 수와 백분율을 나타낸다.† Shows the number and percentage of patients with abnormal laboratory findings (exceeding the thresholds determined in Table 2).

그 결과, 65 명의 환자(19.5 %)가 90일의 추적 기간 내에 사망한 것을 확인하였다. 의학적 병력 측면에서, 심부전은 더 빈번했고(p = 0.041), 수축기 혈압은 비생존자에서 더 높았다(p = 0.032). 실험실 결과에서 비정상 호중구(%)와 PCT를 갖는 환자의 비율은 생존자보다 비생존자에서 더 높았다(각각 p = < 0.001 및 0.023). 반면, 연구 대상의 기초 특성을 성별로 나누고 동일한 방식으로 분석한 경우, 남성과 여성 간에 유의한 차이는 없었다(p > 0.05).As a result, it was confirmed that 65 patients (19.5%) died within the 90-day follow-up period. In terms of medical history, heart failure was more frequent (p = 0.041) and systolic blood pressure was higher in non-survivors (p = 0.032). In laboratory results, the proportion of patients with abnormal neutrophils (%) and PCT was higher in non-survivors than in survivors (p = < 0.001 and 0.023, respectively). On the other hand, when the basic characteristics of the study subjects were divided by gender and analyzed in the same way, there was no significant difference between males and females (p > 0.05).

2.2. PCT, CRP 및 PC 비율의 예측 능력 확인2.2. Check the predictive power of PCT, CRP and PC ratios

비생존자에서 PCT 및 CRP 값은 생존자보다 더 높은 경향이 있지만 통계적 유의성을 나타나지 않음을 확인하였다. 그러나, 생존자(5.0, IQR 2.0-17.0)보다 비생존자(16.5, IQR 4.4-45.6)의 평균 PC 비율이 유의하게 높게 나타남을 확인하였다(p = 0.002). ROC 곡선 분석의 결과는 도 1 및 표 2에 나타내었다. 또한, 뇌졸중 환자의 사망률을 판별하기 위한 다양한 PC 비율 컷-오프 값에 따른 진단 효율을 표 3에 나타내었다(평균 및 95 % 신뢰 구간을 표시함).It was confirmed that PCT and CRP values in non-survivors tended to be higher than in survivors, but did not show statistical significance. However, it was confirmed that the average PC ratio of non-survivors (16.5, IQR 4.4-45.6) was significantly higher than that of survivors (5.0, IQR 2.0-17.0) (p = 0.002). The results of the ROC curve analysis are shown in FIG. 1 and Table 2. In addition, the diagnostic efficiencies according to various PC ratio cut-off values for determining mortality in stroke patients are shown in Table 3 (mean and 95% confidence intervals are indicated).

ROC 곡선 분석ROC curve analysis ParameterParameter MortalityMortality AUCAUC 95% CI95% CI P value P value Threshold
(80% specificity)
Threshold
(80% specificity)
Sensitivity at decision point(%)Sensitivity at decision point (%)
PCTPCT 0.6760.676 0.597-0.7540.597-0.754 0.0050.005 1.3 ng/mL1.3 ng/mL 42.142.1 CRPCRP 0.5300.530 0.441-0.6190.441-0.619 0.4360.436 159.0 mg/L159.0 mg/L 24.624.6 PC ratioPC ratio 0.6990.699 0.629-0.7700.629-0.770 0.0020.002 19.7×10-6 19.7×10 -6 47.447.4 WBCWBC 0.5230.523 0.437-0.6090.437-0.609 0.5810.581 15.5×109/L15.5×10 9 /L 28.128.1 NeutrophilNeutrophil 0.6140.614 0.530-0.6970.530-0.697 0.0080.008 88.2 %88.2% 34.534.5 ESRESR 0.5340.534 0.447-0.6210.447-0.621 0.4860.486 18.0 mm/h18.0 mm/h 29.529.5 BNPBNP 0.6440.644 0.547-0.7410.547-0.741 0.0070.007 453.6 pg/mL453.6 pg/mL 31.331.3 CK-MBCK-MB 0.6220.622 0.507-0.7380.507-0.738 0.0670.067 3.3 ng/mL3.3 ng/mL 42.442.4 FDPFDP 0.6370.637 0.523-0.7510.523-0.751 0.0430.043 22.2 μg/mL22.2 μg/mL 37.937.9 D-dimerD-dimer 0.5810.581 0.483-0.6790.483-0.679 0.0700.070 1569.0 mg/L1569.0 mg/L 31.731.7 FibrinogenFibrinogen 0.5390.539 0.428-0.6500.428-0.650 0.4410.441 385.0 mg/dL385.0 mg/dL 30.030.0

다양한 PC 비율 컷-오프 값에서 뇌졸중 사망률 판별을 위한 진단 효율(평균 및 95% 신뢰 구간)Diagnostic Efficiency (Mean and 95% Confidence Intervals) for Determining Stroke Mortality at Various PC Ratio Cut-Off Values Cut-
off
Cut-
off
Sensitivity
(%)
Sensitivity
(%)
Specificity
(%)
Specificity
(%)
PPV
(%)
PPV
(%)
NPV
(%)
NPV
(%)
LR+LR+ LR-LR-
≥0.9≥0.9 91.2 (87.6-94.0)91.2 (87.6-94.0) 6.2
(4.0-10.4)
6.2
(4.0-10.4)
16.7 (8.8-28.4)16.7 (8.8-28.4) 77.3 (73.6-82.2)77.3 (73.6-82.2) 0.97 (0.86-1.08)0.97 (0.86-1.08) 1.42 (1.14-3.38)1.42 (1.14-3.38)
≥2.2≥2.2 84.2 (79.9-88.6)84.2 (79.9-88.6) 27.2 (21.4-31.1)27.2 (21.4-31.1) 19.3 (10.4-29.8)19.3 (10.4-29.8) 89.3 (86.7-92.4)89.3 (86.7-92.4) 1.16 (0.35-3.46)1.16 (0.35-3.46) 0.58 (0.34-1.04)0.58 (0.34-1.04) ≥3.5≥3.5 75.4 (65.5-81.0)75.4 (65.5-81.0) 38.4 (29.0-44.5)38.4 (29.0-44.5) 20.2 (11.9-32.3)20.2 (11.9-32.3) 88.3 (85.6-91.7)88.3 (85.6-91.7) 1.22 (0.33-4.14)1.22 (0.33-4.14) 0.64 (0.35-1.18)0.64 (0.35-1.18) ≥6.4≥6.4 63.2 (55.7-76.4)63.2 (55.7-76.4) 52.5 (48.7-56.2)52.5 (48.7-56.2) 21.6 (12.5-33.6)21.6 (12.5-33.6) 87.3 (85.1-91.3)87.3 (85.1-91.3) 1.33 (0.53-4.50)1.33 (0.53-4.50) 0.70 (0.48-1.03)0.70 (0.48-1.03) ≥9.0≥9.0 61.4 (52.9-73.7)61.4 (52.9-73.7) 61.6 (58.2-64.1)61.6 (58.2-64.1) 24.8 (14.1-39.8)24.8 (14.1-39.8) 88.5 (85.4-91.9)88.5 (85.4-91.9) 1.60 (0.44-4.65)1.60 (0.44-4.65) 0.63 (0.43-1.03)0.63 (0.43-1.03) ≥19.7≥19.7 47.4 (23.9-62.9)47.4 (23.9-62.9) 79.7 (77.0-81.1)79.7 (77.0-81.1) 32.5 (12.4-61.9)32.5 (12.4-61.9) 88.0 (84.7-91.5)88.0 (84.7-91.5) 2.33 (1.14-4.49)2.33 (1.14-4.49) 0.66 (0.46-0.99)0.66 (0.46-0.99) ≥34.6≥34.6 36.8 (13.8-56.5)36.8 (13.8-56.5) 85.5 (84.7-86.5)85.5 (84.7-86.5) 34.4 (12.1-63.0)34.4 (12.1-63.0) 86.8 (84.1-88.6)86.8 (84.1-88.6) 2.54 (1.45-5.36)2.54 (1.45-5.36) 0.74 (0.52-1.14)0.74 (0.52-1.14) ≥79.3≥79.3 19.3 (4.9-38.7))19.3 (4.9-38.7)) 89.5 (88.5-90.8)89.5 (88.5-90.8) 27.5 (13.9-41.7)27.5 (13.9-41.7) 84.3 (81.5-86.7)84.3 (81.5-86.7) 1.84 (0.23-8.95)1.84 (0.23-8.95) 0.90 (0.82-1.02)0.90 (0.82-1.02)

표 3의 약어: PPV, 양의 예측값; NPV, 음의 예측값; LR+, 양의 우도 비율; LR-, 음의 우도 비율.Abbreviations in Table 3: PPV, positive predicted value; NPV, negative predictive value; LR+, positive likelihood ratio; LR-, negative likelihood ratio.

2.3. PC 비율과 관련 변수의 관계 확인2.3. Determine the relationship between PC ratio and related variables

333 명의 연구 대상은 제 1 사분위 0-2.1, 제 2 사분위 2.2-6.3, 제 3 사분위 6.4-19.6, 제 4 사분위 19.7 이상인 PC 비율 (×10-6) 사분위수를 나타냄을 확인하였다. 또한, 최저 PC 비율 사분위(quartile) (0-2.1)와 비교하여 90일 사망률에 대한 교차비(odds ratio)는 다음과 같았다: 연령, 성별, 병력 및 검사실 결과를 조정한 후, 2 사분위(2nd quartile) (2.2-6.3, p = 0.440)의 경우 1.47 (95 % CI, 0.62-4.20), 3 사분위(3rd quartile) (6.4-19.6, p = 0.048)의 경우 2.54 (95 % CI, 0.95-5.91), 및 4 사분위(4th quartile) (≥ 19.7, p = 0.002)의 경우 4.10 (95 % CI, 1.73-9.80). 표 4는 PC 비율의 사분위별 환자의 특성을 확인한 것이다. 대부분의 실험실 항목은 통계적 유의성을 보였지만(p < 0.05), PCT만이 각 사분위에 따라 유의미한 증가를 보임을 확인하였다(p <0.05의 경향).It was confirmed that 333 subjects had a PC ratio (×10 -6 ) quartile of 0-2.1 in the 1st quartile, 2.2-6.3 in the 2nd quartile, 6.4-19.6 in the 3rd quartile, and 19.7 in the 4th quartile. . In addition, the odds ratios for 90-day mortality compared to the lowest PC ratio quartile (0-2.1) were as follows: After adjusting for age, sex, medical history and laboratory results, the second quartile ( 1.47 (95% CI, 0.62-4.20) for the 2nd quartile (2.2-6.3, p = 0.440) and 2.54 (95% CI, 0.95) for the 3rd quartile (6.4-19.6, p = 0.048). -5.91), and 4.10 (95% CI, 1.73-9.80) for the 4th quartile (≥ 19.7, p = 0.002). Table 4 confirms the characteristics of patients by quartile of PC ratio. Most laboratory items showed statistical significance (p < 0.05), but only PCT showed a significant increase according to each quartile (p < 0.05 trend).

PC 비율이 사분위(quartile)에 따른 환자 특성Patient characteristics according to quartiles with PC ratios Baseline variablesBaseline variables Unit and thresholdUnit and threshold FeatureFeature Q1Q1 Q2Q2 Q3Q3 Q4Q4 P value P value nn no. (%)no. (%) 83 (24.9)83 (24.9) 84 (25.3)84 (25.3) 83 (24.9)83 (24.9) 83 (24.9)83 (24.9) -- AgeAge yearsyears mean ± SDmean ± SD 74.0 ± 14.374.0 ± 14.3 74.8 ± 10.474.8 ± 10.4 72.3 ± 11.172.3 ± 11.1 70.1 ± 16.070.1 ± 16.0 0.0960.096 MaleMale no. (%)no. (%) 54 (65.1)54 (65.1) 50 (59.5)50 (59.5) 48 (57.8)48 (57.8) 49 (59.0)49 (59.0) 0.7830.783 FemaleFemale no. (%)no. (%) 29 (34.9)29 (34.9) 34 (40.5)34 (40.5) 35 (42.2)35 (42.2) 34 (41.0)34 (41.0) Medical history ofMedical history of Hyper-
tension
Hyper-
tension
no. (%)no. (%) 11 (13.3)11 (13.3) 20 (23.8)20 (23.8) 10 (12.0)10 (12.0) 10 (12.0)10 (12.0) 0.0970.097
Diabetes
mellitus
Diabetes
mellitus
no. (%)no. (%) 6 (7.2)6 (7.2) 7 (8.3)7 (8.3) 8 (9.6)8 (9.6) 7 (8.4)7 (8.4) 0.9570.957
Atrial
fibri-
llation
Atrial
fibri-
llation
no. (%)no. (%) 11 (13.3)11 (13.3) 17 (20.2)17 (20.2) 6 (7.2)6 (7.2) 11 (13.3)11 (13.3) 0.1090.109
Heart
failure
Heart
failure
no. (%)no. (%) 4 (4.8)4 (4.8) 4 (4.8)4 (4.8) 4 (4.8)4 (4.8) 3 (3.6)3 (3.6) 0.9770.977
Coronary
artery
occlusive
disease
Coronary
artery
occlusive
disease
no. (%)no. (%) 1 (1.2)1 (1.2) 2 (2.4)2 (2.4) 2 (2.4)2 (2.4) 6 (7.2)6 (7.2) 0.1340.134
Malignancy Malignancy no. (%)no. (%) 6 (7.2)6 (7.2) 5 (6.0)5 (6.0) 6 (7.2)6 (7.2) 2 (2.4)2 (2.4) 0.4930.493 Clinical findingsClinical findings Systolic
blood
pressure
Systolic
blood
pressure
mmHgmmHg mean ± SDmean ± SD 129.6 ± 18.7129.6 ± 18.7 128.1 ± 22.3128.1 ± 22.3 130.6 ± 28.8130.6 ± 28.8 116.8 ± 41.3116.8 ± 41.3 0.035* 0.035 *
Diastolic
blood
pressure
Diastolic
blood
pressure
mmHgmmHg mean ± SDmean ± SD 74.5 ± 11.674.5 ± 11.6 74.2 ± 13.874.2 ± 13.8 78.3 ± 19.978.3 ± 19.9 67.7 ± 20.767.7 ± 20.7 0.008* 0.008 *
Laboratory findings Laboratory findings White
blood cell
White
blood cell
15.5×
10 9/L
15.5×
10 9 /L
no. (%)no. (%) 9 (10.8)9 (10.8) 20 (23.8)20 (23.8) 16 (19.3)16 (19.3) 25 (30.1)25 (30.1) 0.020* 0.020 *
Neutrophil Neutrophil 88.2 %88.2% no. (%)no. (%) 7 (8.4)7 (8.4) 17 (20.2)17 (20.2) 17 (20.5)17 (20.5) 35 (42.2)35 (42.2) < 0.001* < 0.001 * PCT PCT 1.3 ng/mL1.3 ng/mL no. (%)no. (%) 0 (0.0)0 (0.0) 2 (2.4)2 (2.4) 16 (19.3)16 (19.3) 58 (69.9)58 (69.9) < 0.001* < 0.001 * CRP CRP 159.0 mg/L159.0 mg/L no. (%)no. (%) 17 (20.5)17 (20.5) 10 (11.9)10 (11.9) 15 (18.1)15 (18.1) 29 (34.9)29 (34.9) 0.014* 0.014 * ESR ESR 18.0 mm/h18.0 mm/h no. (%)no. (%) 62 (74.7)62 (74.7) 57 (67.9)57 (67.9) 46 (55.4)46 (55.4) 47 (56.6)47 (56.6) 0.026* 0.026 * BNP BNP 453.6 pg/mL453.6 pg/mL no. (%)no. (%) 5 (6.0)5 (6.0) 7 (8.3)7 (8.3) 10 (12.0)10 (12.0) 18 (21.7)18 (21.7) 0.010* 0.010 * CK-MB CK-MB 3.3 ng/mL3.3 ng/mL no. (%)no. (%) 59 (71.1)59 (71.1) 56 (66.7)56 (66.7) 46 (55.4)46 (55.4) 57 (68.7)57 (68.7) 0.4290.429 FDP FDP 22.2 μg/mL22.2 μg/mL no. (%)no. (%) 5 (6.0)5 (6.0) 6 (7.1)6 (7.1) 11 (13.3)11 (13.3) 19 (22.9)19 (22.9) 0.003* 0.003 * D-dimer D-dimer 1569.0 mg/L1569.0 mg/L no. (%)no. (%) 9 (10.8)9 (10.8) 12 (14.3)12 (14.3) 9 (10.8)9 (10.8) 17 (20.5)17 (20.5) 0.2360.236 Fibrinogen Fibrinogen 385.0 mg/dL385.0 mg/dL no. (%)no. (%) 28 (33.7)28 (33.7) 36 (42.9)36 (42.9) 30 (36.1)30 (36.1) 43 (51.8)43 (51.8) 0.0810.081

* P 값 < 0.05는 통계적 유의성을 나타낸다.* P value < 0.05 indicates statistical significance.

† 비정상적인 실험실 소견(표 2에서 결정된 임계값 초과)을 가진 환자의 수와 백분율을 나타낸다.† Shows the number and percentage of patients with abnormal laboratory findings (exceeding the thresholds determined in Table 2).

2.4. PC 비율에 따른 생존 분석2.4. Survival Analysis by PC Ratio

로지스틱 회귀를 사용하여 PC 비율과 90일 생존 사이의 연관성을 평가하였다. 표 5는 가능한 교란변수를 조정한 후 얻은 일변량 및 다변량 로지스틱 회귀 결과를 나타낸 것이다. 일변량 로지스틱 회귀 분석에서 PC 비율의 3 및 4 사분위의 환자는 1 사분위의 환자보다 90일 사망률이 높게 나타나고, 2 사분위의 환자는 유의미하지 않은 증가를 보이는 것을 확인하였다. 또한, 연령, 성별, 병력 및 실험실 결과(예 : 포도당, 호중구(%), 림프구(%), 단핵구(%) 및 피브리노겐)에 맞게 조정된 다변량 로지스틱 회귀 분석도 비슷한 결과가 나타남을 확인하였다.Logistic regression was used to evaluate the association between PC rates and 90-day survival. Table 5 shows the results of univariate and multivariate logistic regression obtained after adjusting for possible confounders. In univariate logistic regression analysis, it was confirmed that the patients in the 3rd and 4th quartiles of the PC ratio showed a higher 90-day mortality rate than the patients in the 1st quartile, and the patients in the 2nd quartile showed an insignificant increase. In addition, multivariate logistic regression analysis adjusted for age, sex, medical history, and laboratory results (eg glucose, neutrophils (%), lymphocytes (%), monocytes (%), and fibrinogen) showed similar results.

PC 비율과 단기(90일) 사망률 간 연관의 일변량 및 다변량 로지스틱 회귀Univariate and Multivariate Logistic Regression of the Association Between PC Rate and Short-Term (90-Day) Mortality PC ratio quintilesPC ratio quintiles UnivariateUnivariate MultivatiateMultivatiate 1†One† MultivariateMultivariate OR (95% CI)OR (95% CI) P value P value OR (95% CI)OR (95% CI) P value P value OR (95% CI)OR (95% CI) P value P value First quartileFirst quartile 1One -- 1One -- 1One -- Second quartileSecond quartile 1.56 (0.60-4.05)1.56 (0.60-4.05) 0.3580.358 1.59 (0.61-4.13)1.59 (0.61-4.13) 0.3500.350 1.47 (0.62-4.20)1.47 (0.62-4.20) 0.4400.440 Third quartileThird quartile 2.49 (1.01-6.15)2.49 (1.01-6.15) 0.048* 0.048 * 2.56 (1.04-6.43)2.56 (1.04-6.43) 0.046*0.046* 2.54 (0.95-5.91)2.54 (0.95-5.91) 0.048* 0.048 * Fouth quartileFour quartiles 4.52 (1.91-10.70)4.52 (1.91-10.70) 0.001* 0.001 * 4.89 (1.98-11.31)4.89 (1.98-11.31) < 0.001* < 0.001 * 4.10 (1.73-9.80)4.10 (1.73-9.80) 0.002* 0.002 *

* P 값 < 0.05는 통계적 유의성을 나타낸다.* P value < 0.05 indicates statistical significance.

† 연령, 성별, 고혈압 병력, 당뇨병, 심방 세동(atrial fibrillation), 심부전, 관상 동맥 폐쇄성 질환(coronary artery occlusive disease) 및 악성 종양에 맞게 조정되었다.† Adjusted for age, sex, history of hypertension, diabetes, atrial fibrillation, heart failure, coronary artery occlusive disease and malignancy.

§ 연령, 성별, 고혈압 병력, 당뇨병, 심방 세동(atrial fibrillation), 심부전, 관상 동맥 폐쇄성 질환, 악성 종양 및 실험실 결과에 맞게 조정되었다.§ Adjusted for age, sex, history of hypertension, diabetes, atrial fibrillation, heart failure, coronary occlusive disease, malignancy, and laboratory findings.

입원 후 90일에서의 생존율은 PC 비율의 사분위와 역의 상관관계가 나타남을 확인하였다(p = 0.001의 경우 p). 또한, 입원 후 7일 동안 사망한 비생존자의 비율이 4 사분위에서 가장 많았다(표 6).It was confirmed that the survival rate at 90 days after hospitalization had an inverse correlation with the quartile of the PC ratio (p = 0.001 p). In addition, the proportion of non-survivors who died 7 days after admission was the highest in the fourth quartile (Table 6).

성별에 따른 90일째 비생존자 비율을 추가로 분석한 결과 통계적 유의성은 없음을 확인하였다. 사망 원인도 분석한 결과에서도 PC 비율의 사분위에 따라, 심지어 신경 학적 및 비-신경학적 원인으로 나누더라도 유의한 차이는 없음을 확인하였다.As a result of additional analysis of the ratio of non-survivors on the 90th day by gender, it was confirmed that there was no statistical significance. In the result of analyzing the cause of death, it was confirmed that there was no significant difference according to the quartile of the PC ratio, even when divided into neurological and non-neurological causes.

PC 비율 사분위에 대한 사망률Mortality for PC rate quartiles CharacteristicCharacteristic No. (%)No. (%) Q1Q1 Q2Q2 Q3Q3 Q4Q4 P value P value 90-day mortality90-day mortality Survival Survival 74 (89.2)74 (89.2) 72 (85.7)72 (85.7) 66 (79.5)66 (79.5) 56 (67.5)56 (67.5) 0.001* 0.001 * Non-survival Non-survival 9 (10.8)9 (10.8) 12 (14.3)12 (14.3) 17 (20.5)17 (20.5) 27 (32.5)27 (32.5) Gender differenceGender difference Male (Total death) Male (Total death) 5 (6.0)5 (6.0) 6 (7.2)6 (7.2) 11 (13.2)11 (13.2) 20 (24.1)20 (24.1) 0.2230.223 (Neurological) (Neurological) 2 (2.4)2 (2.4) 1 (1.2)1 (1.2) 3 (3.6)3 (3.6) 9 (10.8)9 (10.8) Female (Total death) Female (Total death) 4 (4.8)4 (4.8) 6 (7.2)6 (7.2) 6 (7.2)6 (7.2) 7 (8.4)7 (8.4) (Neurological) (Neurological) 0 (0.0)0 (0.0) 4 (4.8)4 (4.8) 3 (3.6)3 (3.6) 4 (4.8)4 (4.8) Cause of deathCause of death Neurological event Neurological event 2 (2.4)2 (2.4) 5 (6.0)5 (6.0) 6 (7.2)6 (7.2) 13 (15.7)13 (15.7) 0.1870.187 Pneumonia Pneumonia 2 (2.4)2 (2.4) 2 (2.4)2 (2.4) 3 (3.6)3 (3.6) 3 (3.6)3 (3.6) Sepsis Sepsis 2 (2.4)2 (2.4) 0 (0.0)0 (0.0) 3 (3.6)3 (3.6) 7 (8.4)7 (8.4) Cardiac event Cardiac event 2 (2.4)2 (2.4) 2 (2.4)2 (2.4) 2 (2.4)2 (2.4) 1 (1.2)1 (1.2) Other or unknown Other or unknown 1 (1.2)1 (1.2) 3 (3.6)3 (3.6) 3 (3.6)3 (3.6) 3 (3.6)3 (3.6) Length of survivalLength of survival Died 0-7 days Died 0-7 days 2 (2.4)2 (2.4) 3 (3.6)3 (3.6) 2 (2.4)2 (2.4) 15 (18.1)15 (18.1) 0.008* 0.008 * Died 8-15 days Died 8-15 days 3 (3.6)3 (3.6) 2 (2.4)2 (2.4) 4 (4.8)4 (4.8) 4 (4.8)4 (4.8) Died 16-30 days Died 16-30 days 3 (3.6)3 (3.6) 3 (3.6)3 (3.6) 5 (6.0)5 (6.0) 4 (4.8)4 (4.8) Died 31-60 days Died 31-60 days 0 (0.0)0 (0.0) 3 (3.6)3 (3.6) 5 (6.0)5 (6.0) 3 (3.6)3 (3.6) Died 61-90 days Died 61-90 days 1 (1.2)1 (1.2) 1 (1.2)1 (1.2) 1 (1.2)1 (1.2) 1 (1.2)1 (1.2)

PC 비율의 사분위별 Kaplan-Meier 생존 추정치는 도 2에 나타내었다. 또한, 생존율은 PC 비율의 사분위수와 유의하고 음의 상관관계가 있는 것으로 나타났다(p <0.001).Kaplan-Meier survival estimates for each quartile of PC ratio are shown in FIG. 2 . In addition, the survival rate was found to have a significant and negative correlation with the quartile of the PC ratio (p <0.001).

상기의 결과는 PC 비율이 허혈성 뇌졸중 환자에서 단기(90일) 사망률과 양의 상관 관계가 있음을 시사하고, 이에 PC 비율을 허혈성 뇌졸중 환자의 사망률을 예측하기 위한 마커로 이용할 수 있음을 시사한다.The above results suggest that the PC ratio is positively correlated with short-term (90-day) mortality in ischemic stroke patients, suggesting that the PC ratio can be used as a marker for predicting mortality in ischemic stroke patients.

3. 결론3. Conclusion

본 연구의 ROC 곡선 분석에서 매개 변수가 0.8보다 높은 AUC 값을 나타내지 않았다. 그러나, PCT는 그 중에서도 가장 높은 AUC 값을 보였으며 각 마커의 조합에서 PC 비율이 가장 높은 AUC 값을 나타냈다. 따라서, 본 실험에서는 허혈성 뇌졸중에서 예후 마커로서 PCT 및 CRP의 능력에 중점을 두었다. 그 결과, 비생존자가 생존자보다 비정상적인 PCT 농도를 갖는 환자의 비율이 훨씬 높았으며, PC 사분위가 높을수록 단기(90일) 사망률과 더 높은 상관관계가 있음을 확인하였다. In the analysis of the ROC curve in this study, the parameter did not show an AUC value higher than 0.8. However, PCT showed the highest AUC value among them, and the PC ratio showed the highest AUC value in each combination of markers. Therefore, this experiment focused on the ability of PCT and CRP as prognostic markers in ischemic stroke. As a result, it was confirmed that non-survivors had a much higher proportion of patients with abnormal PCT concentrations than survivors, and that the higher the PC quartile, the higher the correlation with short-term (90-day) mortality.

그러므로, PC 비율을 허혈성 뇌졸중의 사망률을 예측하는 데 유용한 혈액 마커로 이용할 수 있고, 뇌졸중 환자의 단기 사망률 평가를 위한 새로운 물질의 스크리닝 도구로 이용할 수 있다. Therefore, the PC ratio can be used as a useful blood marker for predicting mortality from ischemic stroke, and can be used as a screening tool for new substances for short-term mortality assessment of stroke patients.

Claims (10)

삭제delete 삭제delete 다음의 단계들을 포함하는 허혈성 뇌졸중으로 인한 90일 이내 사망률 예측을 위한 정보 제공 방법:
(1) 개체로부터 분리된 혈액 샘플로부터 프로칼시토닌(procalcitonin, PCT) 농도 및 c-반응성 단백질(c-reactive protein, CRP) 농도를 측정하는 단계;
(2) 측정된 PCT 농도 및 CRP 농도로부터 PCT 농도 대 CRP 농도의 비율(PC 비율)을 산정하는 단계; 및
(3) 산정된 PC 비율이 19.7×10-6 이상이면 허혈성 뇌졸중으로 인한 90일 이내 사망 가능성이 존재하는 것으로 판단하는 단계.
An informational method for predicting mortality within 90 days from ischemic stroke comprising the following steps:
(1) measuring procalcitonin (PCT) concentration and c-reactive protein (CRP) concentration from a blood sample isolated from a subject;
(2) calculating a ratio of PCT concentration to CRP concentration (PC ratio) from the measured PCT concentration and CRP concentration; and
(3) If the calculated PC ratio is 19.7×10 -6 or higher, it is determined that there is a possibility of death within 90 days due to ischemic stroke.
제 3항에 있어서, 상기 PCT 농도 및 CRP 농도는 단백질 농도인 것을 특징으로 하는 방법.
4. The method of claim 3, wherein the PCT concentration and the CRP concentration are protein concentrations.
제 3항에 있어서, 상기 PC 비율은 PCT 농도를 CRP 농도로 나눈 값인 것을 특징으로 하는 방법.
The method of claim 3, wherein the PC ratio is a value obtained by dividing the PCT concentration by the CRP concentration.
제 5항에 있어서, 상기 PCT 농도는 ng/mL 및 CRP 농도는 mg/L의 단위인 것을 특징으로 하는 방법.
6. The method of claim 5, wherein the PCT concentration is in ng/mL and the CRP concentration is in mg/L.
삭제delete 삭제delete 개체로부터의 혈액 샘플 중의 프로칼시토닌(procalcitonin, PCT) 및 c-반응성 단백질(c-reactive protein, CRP)을 포함하는 바이오마커의 농도를 특이적으로 측정하는 시약 세트 및 개체로부터 허혈성 뇌졸중으로 인한 90일 이내 사망률 예측용 정보를 제공하기 위한 진단 키트를 사용하기 위한 설명서를 포함하는 허혈성 뇌졸중으로 인한 90일 이내 사망률 예측용 정보 제공을 위한 진단 키트로서,
상기 설명서는 측정한 PCT 농도 및 CRP 농도로부터 PCT 농도 대 CRP 농도의 비율(PC 비율)을 산정하고, 산정된 PC 비율이 19.7×10-6 이상이면 허혈성 뇌졸중으로 인한 90일 이내 사망 가능성이 존재하는 것으로 판단함이 설명된, 진단 키트.
A reagent set that specifically measures the concentration of biomarkers including procalcitonin (PCT) and c-reactive protein (CRP) in a blood sample from a subject and 90 days from an ischemic stroke from a subject As a diagnostic kit for providing information for predicting mortality within 90 days due to ischemic stroke, comprising instructions for using the diagnostic kit for providing information for predicting mortality within
The above instructions calculate the ratio (PC ratio) of the PCT concentration to the CRP concentration from the measured PCT concentration and CRP concentration, and if the calculated PC ratio is 19.7×10 -6 or higher, the possibility of death within 90 days due to ischemic stroke exists. A diagnostic kit described as being determined.
제 9항에 있어서, 상기 시약은 단백질의 농도를 측정하는 것을 특징으로 하는 진단 키트.The diagnostic kit according to claim 9, wherein the reagent measures the protein concentration.
KR1020200101921A 2020-08-13 2020-08-13 Method of predicting short-term mortality in ischemic stroke using the ratio of procalcitonin to c-reactive protein KR102362951B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200101921A KR102362951B1 (en) 2020-08-13 2020-08-13 Method of predicting short-term mortality in ischemic stroke using the ratio of procalcitonin to c-reactive protein

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200101921A KR102362951B1 (en) 2020-08-13 2020-08-13 Method of predicting short-term mortality in ischemic stroke using the ratio of procalcitonin to c-reactive protein

Publications (1)

Publication Number Publication Date
KR102362951B1 true KR102362951B1 (en) 2022-02-14

Family

ID=80254324

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200101921A KR102362951B1 (en) 2020-08-13 2020-08-13 Method of predicting short-term mortality in ischemic stroke using the ratio of procalcitonin to c-reactive protein

Country Status (1)

Country Link
KR (1) KR102362951B1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110263821A1 (en) * 2008-10-24 2011-10-27 B.R.A.H.M.S. Gmbh Prognosis and risk assessment in stroke patients by determining the level of marker peptides
JP2015057611A (en) * 2009-10-13 2015-03-26 ベー.エル.アー.ハー.エム.エス ゲゼルシャフト ミット ベシュレンクテル ハフツング Procalcitonin for diagnosis of bacterial infection and guidance of antibiotic treatment in patient with acute stroke or transient ischemic attack
KR101732787B1 (en) 2015-03-16 2017-05-08 대구한의대학교산학협력단 The peptide probes high specific and high selective for target biomarker, and the biochip for clinical prediction of sepsis
KR20170072215A (en) 2014-10-22 2017-06-26 에프. 호프만-라 로슈 아게 Biomarkers and methods of prediction
KR20190061040A (en) 2016-09-29 2019-06-04 오와이 메딕스 바이오케미카 에이비 How to determine the risk associated with cardiovascular disease
KR102125034B1 (en) 2012-05-15 2020-06-19 모치다 세이야쿠 가부시키가이샤 Cardiovascular disease primary prevention agent for patients having high blood levels of high-sensitivity c-reactive protein

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110263821A1 (en) * 2008-10-24 2011-10-27 B.R.A.H.M.S. Gmbh Prognosis and risk assessment in stroke patients by determining the level of marker peptides
JP2015057611A (en) * 2009-10-13 2015-03-26 ベー.エル.アー.ハー.エム.エス ゲゼルシャフト ミット ベシュレンクテル ハフツング Procalcitonin for diagnosis of bacterial infection and guidance of antibiotic treatment in patient with acute stroke or transient ischemic attack
KR102125034B1 (en) 2012-05-15 2020-06-19 모치다 세이야쿠 가부시키가이샤 Cardiovascular disease primary prevention agent for patients having high blood levels of high-sensitivity c-reactive protein
KR20170072215A (en) 2014-10-22 2017-06-26 에프. 호프만-라 로슈 아게 Biomarkers and methods of prediction
KR101732787B1 (en) 2015-03-16 2017-05-08 대구한의대학교산학협력단 The peptide probes high specific and high selective for target biomarker, and the biochip for clinical prediction of sepsis
KR20190061040A (en) 2016-09-29 2019-06-04 오와이 메딕스 바이오케미카 에이비 How to determine the risk associated with cardiovascular disease

Non-Patent Citations (18)

* Cited by examiner, † Cited by third party
Title
Barber M, Langhorne P, Rumley A, Lowe GD, Stott DJ D-dimer predicts early clinical progression in ischemic stroke: confirmation using routine clinical assays Stroke 2006; 37: 1113-5.
Barber M, Langhorne P, Rumley A, Lowe GD, Stott DJ Hemostatic function and progressing ischemic stroke: D-dimer predicts early clinical progression Stroke 2004; 35: 1421-5.
Carter AM, Catto AJ, Mansfield MW, Bamford JM, Grant PJ Predictive variables for mortality after acute ischemic stroke Stroke 2007; 38: 1873-80.
Chaudhuri JR, Sharma VK, Mridula KR, Balaraju B, Bandaru VCSS Association of plasma brain natriuretic peptide levels in acute ischemic stroke subtypes and outcome J Stroke Cerebrovasc Dis 2015; 24: 485-91.
Di Napoli M, Papa F, Bocola V Prognostic influence of increased C-reactive protein and fibrinogen levels in ischemic stroke Stroke 2001; 32: 133-8 16.
Furlan J, Vergouwen M, Fang J, Silver F White blood cell count is an independent predictor of outcomes after acute ischaemic stroke Eur J Neurol 2014; 21: 215-22.
Kawase S, Kowa H, Suto Y, et al Association between serum uric acid level and activity of daily living in Japanese patients with ischemic stroke J Stroke Cerebrovasc Dis 2017; 26: 1960-5.
LING YANSHULING et al., ‘Procalcitonin as a prognostic marker of patients with acute ischemic stroke’, J Clin Lab Anal., (2020.03.), Vol. 34, pp 1-4. 1부.* *
Luo Y, Li J, Zhang J, Xu Y Elevated bilirubin after acute ischemic stroke linked to the stroke severity Int J Dev Neurosci 2013; 31: 634-8.
Makris K, Haliassos A, Chondrogianni M, Tsivgoulis G Blood biomarkers in ischemic stroke: potential role and challenges in clinical practice and research Crit Rev Lab Sci 2018: 1-35.
Mazidi M, Katsiki N, Mikhailidis DP, Pella D, Banach M Potato consumption is associated with total and cause-specific mortality: a population-based cohort study and pooling of prospective studies with 98,569 participants Arch Med Sci 2020; 16: 260-72.
Mimoz O, Edouard AR, Samii K, Benoist JF, Assicot M, Bohuon C Procalcitonin and C-reactive protein during the early posttraumatic systemic inflammatory response syndrome Intensive Care Med 1998; 24: 185-8.
Oz II, Yucel M, Bilici M, et al Is mean platelet volume a reliable marker to predict ischemic stroke in the follow-up of patients with carotid stenosis? J Stroke Cerebrovasc Dis 2016; 25: 404-9.
Sonderer J, Katan Kahles M Aetiological blood biomarkers of ischaemic stroke Swiss Med Wkly 2015; 145: w14138.
Taub PR, Fields JD, Wu AH, et al Elevated BNP is associated with vasospasm-independent cerebral infarction following aneurysmal subarachnoid hemorrhage Neurocrit care 2011; 15: 13-8.
Weikert C, Drogan D, di Giuseppe R, et al Liver enzymes and stroke risk in middle-aged German adults Atherosclerosis 2013; 228: 508-14.
WON-HO HAHN et al., ‘Is procalcitonin to c-reactive protein ratio useful for the detection of late onset neonatal sepsis?’, The Journal of Maternal-Fetal & Neonatal Medicine, 2017, pp 1-5. 1부.* *
YOU-MEI LI et al., ‘Serum levels of procalcitonin and high sensitivity C-reactive protein are associated with long-term mortality in acute ischemic stroke’, Journal of the Neurological Sciences, 2015,* *

Similar Documents

Publication Publication Date Title
Zhang et al. D‐dimer levels on admission to predict in‐hospital mortality in patients with Covid‐19
Meijers et al. Elevated plasma galectin-3 is associated with near-term rehospitalization in heart failure: a pooled analysis of 3 clinical trials
Ali et al. Presepsin is an early monitoring biomarker for predicting clinical outcome in patients with sepsis
EP2834638B1 (en) Methods for diagnosis and prognosis of sepsis
EP3577465B1 (en) Proadm as marker indicating an adverse event
EP2836841A1 (en) Prognosis of adverse events in patients with suspected chronic heart failure
WO2014064202A1 (en) Biomarkers for the prognosis of ischemic stroke
MA Aziz Correlation of urine biomarkers: microalbuminuria and spot urine protein among diabetic patients. application of spot urine protein in diabetic kidney disease, nephropathy, proteinuria estimation, diagnosing and monitoring
US8673644B2 (en) Serum markers for type II diabetes mellitus
Agarwal et al. Validation of the procalcitonin (PCT) assay: Experience in a pediatric hospital
de Nooijer et al. Inflammatory biomarkers to predict the prognosis of acute bacterial and viral infections
Li et al. Diagnostic utility of total NT-proBNP testing by immunoassay based on antibodies targeting glycosylation-free regions of NT-proBNP
US20140120174A1 (en) Methods of prognosis and diagnosis of sepsis
Koh et al. Diabetes does not influence activation of coagulation, fibrinolysis or anticoagulant pathways in Gram-negative sepsis (melioidosis)
EP2550535B1 (en) Hbf and a1m as early stage markers for preeclampsia
Chrostek et al. The diagnostic accuracy of carbohydrate-deficient transferrin, sialic acid and commonly used markers of alcohol abuse during abstinence
KR102362951B1 (en) Method of predicting short-term mortality in ischemic stroke using the ratio of procalcitonin to c-reactive protein
Cho et al. Procalcitonin to C-reactive protein ratio is associated with short-term mortality in ischemic stroke patients: preliminary report
Xu et al. Clinical value of serum cystatin C by ELISA for estimation of glomerular filtration rate
US12007391B2 (en) Means and methods for determining risk of type-1 diabetes by serum protein biomarkers
EP3719497A1 (en) Body fluid antibody biomarker for highly sensitive detection of risk of onset of cerebral infarction
EP3004891B1 (en) Biomarker of rehospitalization after heart failure
Katar et al. Comparison of inflammation markers in different severities of COVID-19 disease.
El-Alfy et al. Alpha-2-Macroglobulin in Saliva as a Noninvasive Glycemic Control Marker in Type 2 Diabetes Mellitus Patients
Miguel et al. Early detection of acute renal lesions by serum cystatin C in children at hospital and university Centre of Brazzaville

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant