KR102358180B1 - Surface roughening method - Google Patents

Surface roughening method Download PDF

Info

Publication number
KR102358180B1
KR102358180B1 KR1020167020998A KR20167020998A KR102358180B1 KR 102358180 B1 KR102358180 B1 KR 102358180B1 KR 1020167020998 A KR1020167020998 A KR 1020167020998A KR 20167020998 A KR20167020998 A KR 20167020998A KR 102358180 B1 KR102358180 B1 KR 102358180B1
Authority
KR
South Korea
Prior art keywords
organic resin
layer
substrate
etching
surface roughening
Prior art date
Application number
KR1020167020998A
Other languages
Korean (ko)
Other versions
KR20160137958A (en
Inventor
야스노부 소메야
리키마루 사카모토
타카히로 키시오카
Original Assignee
닛산 가가쿠 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 닛산 가가쿠 가부시키가이샤 filed Critical 닛산 가가쿠 가부시키가이샤
Publication of KR20160137958A publication Critical patent/KR20160137958A/en
Application granted granted Critical
Publication of KR102358180B1 publication Critical patent/KR102358180B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/854Arrangements for extracting light from the devices comprising scattering means
    • H01L51/5268
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/1262Multistep manufacturing methods with a particular formation, treatment or coating of the substrate
    • H01L51/0096
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • H01L2251/5369
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/331Nanoparticles used in non-emissive layers, e.g. in packaging layer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/877Arrangements for extracting light from the devices comprising scattering means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Materials For Photolithography (AREA)

Abstract

본 발명은, 기판 상에 또는 기판보다 상방의 층 상에 무기입자(a1)와 유기수지(a2)를 포함하는 조성물(a3)을 도포하고 건조와 경화를 행해 유기수지층(A)을 형성하는 제1 공정과, 이 기판의 상방으로부터 에칭을 행해 동일기판의 표면을 조화하는 제2 공정을 포함하는 표면조화방법에 관한 것이다.The present invention provides a composition (a3) containing inorganic particles (a1) and an organic resin (a2) on a substrate or on a layer above the substrate, followed by drying and curing to form an organic resin layer (A) It relates to a surface roughening method comprising a first step and a second step of roughening the surface of the same substrate by etching from above the substrate.

Description

표면조화방법{SURFACE ROUGHENING METHOD}Surface roughening method {SURFACE ROUGHENING METHOD}

본 발명은 기판 상의 표면조화방법에 관한 것으로, 이 방법은 특히 LED 등의 광추출층에 적용할 수 있다.
The present invention relates to a surface roughening method on a substrate, and this method is particularly applicable to a light extraction layer such as an LED.

최근, LED 기술이 이용되고 있다. 그리고, 그 발광효율의 향상을 위한 기술로서 광추출층의 연구가 이루어지고 있다.Recently, LED technology has been used. And, as a technology for improving the luminous efficiency, the study of the light extraction layer is being made.

LED 등의 광추출층으로는 유기 EL 소자 내부의 발광층과 기판 사이에, 광산란층을 마련하는 방법이 제안되어 있다(특허문헌 1 참조). 광산란층으로는, 투명한 수지에, 이 수지와는 굴절률이 상이한 미립자가 분산된 것이 이용된다. 발광부에서 발광한 광은, 광산란층에 의해 산란되어, 여러 가지 방향으로 진행방향을 바꾼다. 다중산란의 결과, 공기와의 계면에 있어서 전반사각 내의 각도역에 입사한 광이 추출될 수 있다. 광산란층에 있어서는, 광의 진행방향이 랜덤으로 변하므로, 미립자의 사이즈 분포는 넓고, 미립자의 배열은 랜덤이며, 또한 미립자의 체적분율은 큰 것이 바람직하다. 여기서 미립자의 사이즈 분포가 좁으면, 혹은 미립자의 체적분율이 작으면, 광산란층의 산란능이 낮아진다. 그러나, 미립자의 사이즈 분포가 넓으면 수지 중에서 미립자를 이상적으로 배열시키기 곤란해지고, 또한 미립자의 사이즈 분포가 넓은 경우에 체적분율을 크게 하고자 하면, 광산란층의 평탄성이 현저하게 저하되고, 이에 따라 박막구조인 발광부의 평탄성이 손상되어, 발광소자의 신뢰성이 크게 저하된다.
As a light extraction layer, such as an LED, the method of providing a light scattering layer between the light emitting layer inside an organic electroluminescent element and a board|substrate is proposed (refer patent document 1). As a light-scattering layer, what disperse|distributed the microparticles|fine-particles from which the refractive index differs from this resin to transparent resin disperse|distributed is used. The light emitted from the light emitting part is scattered by the light scattering layer and changes the traveling direction in various directions. As a result of multiple scattering, light incident on the angular region within the total reflection angle at the interface with air can be extracted. In the light scattering layer, since the traveling direction of light changes randomly, it is preferable that the size distribution of the fine particles is wide, the arrangement of the fine particles is random, and the volume fraction of the fine particles is large. Here, when the size distribution of the fine particles is narrow or the volume fraction of the fine particles is small, the scattering ability of the light scattering layer is low. However, when the size distribution of the fine particles is wide, it is difficult to ideally arrange the fine particles in the resin, and if the volume fraction is to be increased when the size distribution of the fine particles is wide, the flatness of the light scattering layer is remarkably reduced, and thus the thin film structure The flatness of the phosphorus light emitting part is damaged, and the reliability of the light emitting device is greatly reduced.

또한, 반사층과, 상기 반사층 상에 형성된, 변동계수가 10% 이하인 미립자 및 상기 미립자와 굴절률이 상이한 매트릭스를 포함하는 3차원 회절층을 구비하고, 상기 미립자의 3차원 회절층의 체적에 대한 체적분율이 50% 이상이고, 상기 미립자가 배열하여 단거리주기성을 갖는 제1의 영역을 형성하고, 다시 그 제1의 영역이 랜덤한 방향으로 인접하여 집합한 제2의 영역을 형성하고 있는 것을 특징으로 하는, 광추출층이 개시되어 있다(특허문헌 2 참조).
In addition, a three-dimensional diffraction layer comprising a reflective layer and a matrix having a coefficient of variation of 10% or less and a matrix having a refractive index different from that of the fine particles formed on the reflective layer, wherein the volume fraction of the particulates relative to the volume of the three-dimensional diffraction layer is 50% or more, and the particles are arranged to form a first region having short-range periodicity, and the first region again forms a second region in which the first region is adjacent to each other in a random direction. , a light extraction layer is disclosed (see Patent Document 2).

일본특허공개 2006-107744Japanese Patent Laid-Open 2006-107744 일본특허공개 2009-216862Japanese Patent Laid-Open 2009-216862

본 발명은 기판의 표면을 조화하는 방법을 제공하는 것을 과제로 한다. 특히, 본 발명은 기판 상에 무기물과 유기물이 혼재하는 층을 이용하여, 무기물과 유기물의 산소가스의 에칭속도차를 이용하여 기판의 표면에 산소가스가 에칭되는 부분과 에칭되지 않는 표면조화층을 형성할 수 있는 방법, 그리고 다시 그 표면조화층을 마스크로 하여 산소가스 또는 불소계 가스의 에칭에 의해 기판 표면을 조화, 예를 들어 기판 상에 미세한 요철을 형성할 수 있고, 또한, 가스에칭 대신에 산성 수용액을 이용하는 습식에칭에 의해서도 동일하게 표면을 조화할 수 있는 방법을 제공하는 것을 과제로 한다.
An object of the present invention is to provide a method for roughening the surface of a substrate. In particular, the present invention uses a layer in which an inorganic material and an organic material are mixed on a substrate, and a portion in which oxygen gas is etched and a surface roughening layer that is not etched on the surface of the substrate by using the difference in the etching rate of the oxygen gas of the inorganic material and the organic material. A method capable of forming, and again using the surface roughening layer as a mask, the surface of the substrate can be roughened by etching with oxygen gas or fluorine-based gas, for example, fine irregularities can be formed on the substrate, and also instead of gas etching An object of the present invention is to provide a method capable of roughening the surface in the same manner even by wet etching using an acidic aqueous solution.

본 발명은 제1 관점으로서, 기판 상에 또는 기판보다 상방의 층 상에 무기입자(a1)와 유기수지(a2)를 포함하는 조성물(a3)을 도포하고 건조와 경화를 행해 유기수지층(A)을 형성하는 제1 공정과, 이 기판의 상방으로부터 에칭을 행해 동일기판의 표면을 조화하는 제2 공정을 포함하는 표면조화방법,As a first aspect of the present invention, a composition (a3) containing inorganic particles (a1) and an organic resin (a2) is applied on a substrate or on a layer above the substrate, dried and cured to form an organic resin layer (A) A surface roughening method comprising a first step of forming a, and a second step of roughening the surface of the same substrate by etching from above the substrate;

제2 관점으로서, 상기 에칭은 적어도 1회 이루어지며, 그 중 적어도 1회의 에칭은 산소계 가스에 의한 가스에칭인 제1 관점에 기재된 표면조화방법,As a second aspect, the etching is performed at least once, and the at least one etching is gas etching using an oxygen-based gas. The surface roughening method according to the first aspect,

제3 관점으로서, 상기 에칭은 산성 수용액에 의한 습식에칭인 제1 관점에 기재된 표면조화방법,As a third aspect, the etching is a surface roughening method according to the first aspect, wherein the etching is wet etching with an acidic aqueous solution;

제4 관점으로서, 상기 무기입자(a1)는 평균입자경 5~1000nm의 금속산화물입자인 제1 관점 내지 제3 관점 중 어느 하나에 기재된 표면조화방법,As a fourth aspect, the surface roughening method according to any one of the first to third aspects, wherein the inorganic particles (a1) are metal oxide particles having an average particle diameter of 5 to 1000 nm;

제5 관점으로서, 상기 조성물(a3)은, 무기입자(a1)로서 실리카가 유기용제에 분산된 실리카졸과, 유기수지(a2)의 용액을 포함하는 것인 제1 관점에 기재된 표면조화방법,As a fifth aspect, the composition (a3) comprises a silica sol in which silica is dispersed in an organic solvent as the inorganic particles (a1), and a solution of the organic resin (a2).

제6 관점으로서, 상기 유기수지층(A)은, 유기수지(a2) 100질량부에 대하여 무기입자(a1)를 5~50질량부의 비율로 함유하는 것인 제1 관점 내지 제5 관점 중 어느 하나에 기재된 표면조화방법,As a sixth aspect, the organic resin layer (A) contains the inorganic particles (a1) in a ratio of 5 to 50 parts by mass relative to 100 parts by mass of the organic resin (a2) in any one of the first to fifth aspects The surface roughening method described in

제7 관점으로서, 상기 유기수지(a2)는, 하이드록시기, 카르복실기, 아미노기, 또는 이들의 조합으로 이루어진 관능기를 포함하는 반복단위구조를 가지고 이루어진 것인 제1 관점 내지 제6 관점 중 어느 하나에 기재된 표면조화방법,As a seventh aspect, the organic resin (a2) has a repeating unit structure comprising a functional group consisting of a hydroxyl group, a carboxyl group, an amino group, or a combination thereof. In any one of the first to sixth aspects described surface roughening method,

제8 관점으로서, 에칭이 기판 상에 형성된 (높이)/(직경)으로 표시되는 구멍의 애스팩트비로 0.1~20의 범위로 형성할 때까지 행해지는 제1 관점 내지 제7 관점 중 어느 하나에 기재된 표면조화방법,As an eighth aspect, as described in any one of the first to seventh aspects, the etching is performed until forming in the range of 0.1 to 20 with an aspect ratio of the hole expressed by (height)/(diameter) formed on the substrate surface roughening method,

제9 관점으로서, 상기 유기수지층(A)은 0.001~10μm의 막두께를 갖는 층인 제1 관점 내지 제8 관점 중 어느 하나에 기재된 표면조화방법,As a ninth aspect, the surface roughening method according to any one of the first to eighth aspects, wherein the organic resin layer (A) is a layer having a film thickness of 0.001 to 10 μm;

제10 관점으로서, 제1 공정이, 기판 상에 또는 기판보다 상방의 층 상에 유기수지(b2)를 포함하는 조성물(b3)을 도포하고 건조와 경화를 행해 유기수지층(B)을 형성하고, 다시 유기수지층(B) 상에 무기입자(a1)와 유기수지(a2)를 포함하는 조성물(a3)을 도포하고 건조와 경화를 행해 유기수지층(A)을 형성하는 제1’공정인 제2 관점 내지 제9 관점 중 어느 하나에 기재된 표면조화방법,As a tenth aspect, in the first step, the composition (b3) containing the organic resin (b2) is applied on the substrate or on a layer above the substrate, followed by drying and curing to form the organic resin layer (B), The second aspect, which is the first 'process of forming the organic resin layer (A) by coating the composition (a3) containing the inorganic particles (a1) and the organic resin (a2) on the organic resin layer (B) again, drying and curing the organic resin layer (A) The surface roughening method according to any one of the ninth aspects,

제11 관점으로서, 상기 유기수지(b2)로서 유기수지(a2)로부터 선택되는 수지를 이용하는 제10 관점에 기재된 표면조화방법,As an eleventh aspect, the surface roughening method according to the tenth aspect using a resin selected from organic resins (a2) as the organic resin (b2);

제12 관점으로서, 상기 유기수지층(B)은 0.001~10μm의 막두께를 갖는 층인 제10 관점 또는 제11 관점에 기재된 표면조화방법,As a twelfth aspect, the surface roughening method according to the tenth aspect or the eleventh aspect, wherein the organic resin layer (B) is a layer having a film thickness of 0.001 to 10 μm;

제13 관점으로서, 상기 조성물(a3) 및/또는 조성물(b3)은 추가로 가교제 및 가교촉매를 함유하고 있는 제1 관점 내지 제12 관점 중 어느 하나에 기재된 표면조화방법, 그리고As a thirteenth aspect, the composition (a3) and/or the composition (b3) further contains a crosslinking agent and a crosslinking catalyst. The surface roughening method according to any one of the first to twelfth aspects, and

제14 관점으로서, 형성되는 표면조화층은 LED의 광추출층인 제1 관점 내지 제 13 관점 중 어느 하나에 기재된 표면조화방법이다.
As a fourteenth aspect, the surface roughening layer to be formed is the surface roughening method according to any one of the first to thirteenth aspects, which is a light extraction layer of an LED.

본 발명을 통해, 기판의 표면을 조화하는 신규한 방법이 제공된다. 특히, 본 발명의 방법은, 기판 상에 무기물과 유기물이 혼재하는 층을 이용하여, 무기물과 유기물의 산소가스의 에칭속도차를 이용할 수 있으므로, 기판의 표면에 산소가스가 에칭되는 부분과 에칭되지 않는 표면조화층을 형성할 수 있고, 그리고 다시 그 표면조화층을 마스크로 하여 산소가스 또는 불소계 가스의 에칭에 의해 기판 표면을 조화, 예를 들어 기판 상에 미세한 요철을 형성할 수 있고, 또한, 본 발명의 방법에 따르면, 가스에칭 대신에 산성 수용액을 이용하는 습식에칭에 의해서도 동일하게 표면을 조화할 수 있다.
Through the present invention, a novel method of roughening the surface of a substrate is provided. In particular, the method of the present invention uses a layer in which an inorganic material and an organic material are mixed on the substrate, so that the difference in the etching rate of the oxygen gas of the inorganic material and the organic material can be used. It is possible to form a surface roughening layer that does not have a roughened surface, and again using the surface roughening layer as a mask to roughen the substrate surface by etching with oxygen gas or fluorine-based gas, for example, to form fine irregularities on the substrate, According to the method of the present invention, the surface can be similarly roughened by wet etching using an acidic aqueous solution instead of gas etching.

도 1은 실시예 1에서 얻어진 SiO2 막 피복 웨이퍼 상의 유기수지층(B)과 유기수지층(A)의 단면도(배율은 100,000배)이다.
도 2는 실시예 1에서 얻어진 SiO2 막 피복 웨이퍼 상의 유기수지층(B)과 유기수지층(A)의 단면도(배율은 100,000배, 틸트각은 20도)이다.
도 3은 실시예 2에서 얻어진 SiO2 막 피복 웨이퍼 상의 유기수지층(B)과 유기수지층(A)의 단면도(배율은 100,000배)이다.
도 4는 실시예 4에서 얻어진 SiO2 막 피복 웨이퍼 상의 유기수지층(B)과 유기수지층(A)의 단면도(배율은 100,000배)이다.
도 5는 실시예 8에서 얻어진 SiO2 막 피복 웨이퍼 상의 유기수지층(A)의 단면도(배율은 100,000배)이다.
도 6은 비교예 1에서 얻어진 SiO2 막 피복 웨이퍼 상의 유기수지층(B)의 단면도(배율은 100,000배)이다.
도 7은 실시예 1에서 얻어진 SiO2 막 피복 웨이퍼 상의 SiO2 막을 가공한 단면도(배율은 100,000배)이다.
도 8은 실시예 1에서 얻어진 SiO2 막 피복 웨이퍼 상의 SiO2 막을 가공한 단면도(배율은 100,000배, 틸트각은 20도)이다.
1 is a cross-sectional view (magnification is 100,000 times) of an organic resin layer (B) and an organic resin layer (A) on the SiO 2 film-coated wafer obtained in Example 1. FIG.
2 is a cross-sectional view (magnification is 100,000 times, tilt angle is 20 degrees) of the organic resin layer (B) and the organic resin layer (A) on the SiO 2 film-coated wafer obtained in Example 1;
3 is a cross-sectional view (magnification is 100,000 times) of the organic resin layer (B) and the organic resin layer (A) on the SiO 2 film-coated wafer obtained in Example 2;
4 is a cross-sectional view (magnification is 100,000 times) of the organic resin layer (B) and the organic resin layer (A) on the SiO 2 film-coated wafer obtained in Example 4;
Fig. 5 is a cross-sectional view (magnification is 100,000 times) of the organic resin layer (A) on the SiO 2 film-coated wafer obtained in Example 8.
6 is a cross-sectional view (magnification is 100,000 times) of the organic resin layer (B) on the SiO 2 film-coated wafer obtained in Comparative Example 1. FIG.
7 is a cross-sectional view (magnification is 100,000 times) obtained by processing the SiO 2 film on the SiO 2 film-coated wafer obtained in Example 1. FIG.
FIG. 8 is a cross-sectional view (magnification of 100,000 times, tilt angle of 20 degrees) obtained by processing the SiO 2 film on the SiO 2 film-coated wafer obtained in Example 1. FIG.

유기 EL 디스플레이에서는, 유리나 투명플라스틱 등의 기판 상에 ITO 전극, 정공주입층, 정공수송층, 발광층, 전자수송층, 전자주입층, 전극이 형성된다.In the organic EL display, an ITO electrode, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, and an electrode are formed on a substrate such as glass or transparent plastic.

또한, 사파이어 상에 N형 반도체, 발광역, P형 반도체, ITO 전극, SiO2 층이 형성된다.
In addition, an N-type semiconductor, a light emitting region, a P-type semiconductor, an ITO electrode, and a SiO 2 layer are formed on the sapphire.

본 발명에서는 이들 광추출층으로 사용되는 유리나 투명플라스틱이나 SiO2 층 등의 표면을 조화, 예를 들어 미세한 요철을 형성함으로써 광의 반사를 저감하는 것이 가능하고, 이에 따라 발광효율을 향상시킬 수 있다.
In the present invention, it is possible to reduce the reflection of light by roughening the surface of glass, transparent plastic, or SiO 2 layer used as these light extraction layers, for example, by forming fine irregularities, thereby improving the luminous efficiency.

종래법으로서 광추출층에 이용되는 기판에 무기입자 등을 부착시키는 수법이 있는데 밀착성이 문제시되고 있었다. 본 발명은 이들 수법과는 달리, 기판 표면을 물리적인 에칭에 의해 조화, 예를 들어 요철 등을 형성시키는 것이다.
As a conventional method, there is a method of attaching inorganic particles to a substrate used for a light extraction layer, but adhesion is a problem. Unlike these methods, in the present invention, roughening, for example, irregularities, etc. are formed on the substrate surface by physical etching.

본 발명은 조화시키는 기판 상에 또는 기판보다 상방의 층 상에 무기입자(a1)와 유기수지(a2)를 포함하는 조성물(a3)을 도포하고 건조와 경화를 행해 유기수지층(A)을 형성하는 제1 공정과, 이에 이어지는 이 기판의 상방으로부터 가스로 에칭을 행해 동일기판의 표면을 조화하는 제2 공정을 포함하고 있다. 유기수지층(A)에 포함되는 무기입자(a1)와 유기수지(a2)의 산소가스의 에칭속도차를 이용하여, 유기수지층(A)에 요철을 형성한다. 유기수지층(A)의 요철은 그 후, 다시 이어지는 산소가스의 에칭, 또는 그 밖의 가스(불소계 가스, 염소계 가스)에 의해 기판 표면에 에칭되는 부분과 에칭되지 않는 부분이 생겨 요철이 형성된다.The present invention is to form an organic resin layer (A) by coating a composition (a3) containing inorganic particles (a1) and an organic resin (a2) on a substrate to be harmonized or on a layer above the substrate and drying and curing It includes a first step and a second step of roughening the surface of the same substrate by etching with a gas from above the substrate. Concavities and convexities are formed in the organic resin layer (A) by using the etching rate difference between the oxygen gas of the inorganic particles (a1) and the organic resin (a2) included in the organic resin layer (A). As for the unevenness of the organic resin layer (A), a portion that is etched and a portion that is not etched are formed on the surface of the substrate by subsequent etching of oxygen gas or other gas (fluorine-based gas, chlorine-based gas).

경우에 따라서는 형성된 요철이 다시 에칭되어 기판의 하방을 향해 에칭층이 형성된다.In some cases, the formed unevenness is etched again to form an etched layer toward the lower side of the substrate.

건조와 경화는 동시에 행할 수도 있고, 건조를 한 후에 경화를 행할 수도 있다.
Drying and hardening may be performed simultaneously, and hardening may be performed after drying.

상기 유기수지층(A)은 산소에칭을 행한 다음에 마스크의 기능을 한다. 기판 상에 무기입자를 포함하지 않는 유기수지층(B)을 형성하고, 그 위에 무기입자를 포함하는 유기수지층(A)을 형성하여, 산소가스로 에칭함으로써, 마스크로서의 (A)층과 (B)층의 막두께가 두꺼워지고, 그 후의 산소계 가스 또는 그 밖의 가스에칭(예를 들어 불소계 가스)에 의해 에칭차를 발생시키기 쉬워지므로 높은 애스팩트비를 갖는 기판의 조화가 가능해진다.The organic resin layer (A) functions as a mask after oxygen etching. An organic resin layer (B) containing no inorganic particles is formed on a substrate, an organic resin layer (A) containing inorganic particles is formed thereon, and etched with oxygen gas, whereby (A) layer and (B) as a mask Since the film thickness of the layer becomes thick and it becomes easy to generate|occur|produce an etching difference by subsequent oxygen-based gas or other gas etching (for example, fluorine-type gas), it becomes possible to harmonize the board|substrate which has a high aspect-ratio.

또한, 가스에칭 대신에 산성 수용액을 이용하는 습식에칭에 의해서도 상기와 마찬가지로 조화가 가능해진다.
Moreover, roughening becomes possible similarly to the above also by wet etching using an acidic aqueous solution instead of gas etching.

상기 조화란 기판 표면을 에칭에 의해 거칠게 하는 것으로, 기판 표면에 화학적이나 물리적인 변화를 일으키게 한다. 그 일 예로서 기판 표면에 요철이 형성된다.
The roughening refers to roughening the substrate surface by etching, and causes chemical or physical changes to the substrate surface. As an example, irregularities are formed on the surface of the substrate.

기판의 조화는 무기입자의 평균입자경이나, 유기수지층(A)에 포함되는 무기입자의 농도(비율)에 따라 변하며, 필요로 하는 기판 상의 조화형상(요철형상)에 따라 결정된다.
The roughness of the substrate changes depending on the average particle diameter of the inorganic particles or the concentration (ratio) of the inorganic particles included in the organic resin layer (A), and is determined according to the required roughening shape (concave-convex shape) on the substrate.

본 발명에서는 에칭이 적어도 1회 이루어지며, 그 중 적어도 1회의 에칭은 산소계 가스에 의한 가스에칭으로 행해진다. 산소계 가스는 가스성분으로서 산소를 포함하는 에칭가스이고, 산소에 의해 유기수지층(A)이나 그 하층에 존재하는 유기수지층(B) 중의 유기수지(a2)나 유기수지(b2)가 수직방향으로 에칭되고, 또한 유기수지층(A) 중의 무기입자(a1)는 산소가스에 대하여 에칭저항을 나타낸다. 그리고, 유기수지층(A)이나 유기수지층(B)의 에칭이 기판면에 도달한 단계에서, 계속해서 산소계 가스로 에칭을 행하는 경우나, 그 밖의 가스(예를 들어, 불소성분을 포함하는 가스)에 의해 기판을 에칭할 수 있다.
In the present invention, etching is performed at least once, and among them, at least one etching is performed by gas etching using an oxygen-based gas. The oxygen-based gas is an etching gas containing oxygen as a gas component, and the organic resin (a2) or the organic resin (b2) in the organic resin layer (A) or the organic resin layer (B) present thereunder is etched in the vertical direction by oxygen. In addition, the inorganic particles (a1) in the organic resin layer (A) exhibit etching resistance to oxygen gas. Then, at the stage in which the organic resin layer (A) or the organic resin layer (B) has reached the substrate surface, when etching is continued with an oxygen-based gas, or other gases (eg, a gas containing a fluorine component) can etch the substrate.

또한, 본 발명에서는 에칭이 산성 수용액에 의한 습식에칭으로 행할 수 있다. 산성 수용액에 의해 유기수지층(A)이나 그 하층에 존재하는 유기수지층(B) 중의 유기수지(a2)나 유기수지(b2)가 수직방향으로 에칭되고, 또한 유기수지층(A) 중의 무기입자(a1)는 산성 수용액에 대하여 에칭저항을 나타낸다. 그리고, 유기수지층(A)이나 유기수지층(B)의 에칭이 기판면에 도달한 단계에서, 계속해서 산성 수용액으로 기판을 에칭할 수 있다.
In the present invention, the etching can be performed by wet etching with an acidic aqueous solution. The organic resin (a2) or the organic resin (b2) in the organic resin layer (A) or the organic resin layer (B) present under the acidic aqueous solution is etched in the vertical direction, and the inorganic particles (a1) in the organic resin layer (A) ) represents the etching resistance to acidic aqueous solution. Then, at the stage in which the etching of the organic resin layer (A) or the organic resin layer (B) reaches the substrate surface, the substrate can be etched with the acidic aqueous solution continuously.

습식에칭에 이용되는 산성 수용액은, 산과 물을 포함하고 있고, 필요에 따라 과산화수소나 수용성 유기용제를 함유할 수 있다. 산은 황산, 질산, 염산이 이용된다. 수용성 유기용제는 알코올계나 에테르계나 케톤계나 에스테르계이다. 예를 들어, 에틸렌글리콜모노메틸에테르, 에틸렌글리콜모노에틸에테르, 메틸셀로솔브아세테이트, 에틸셀로솔브아세테이트, 프로필렌글리콜모노부틸에테르, 프로필렌글리콜모노부틸에테르아세테이트, 디에틸렌글리콜모노메틸에테르, 디에틸렌글리콜모노에틸에테르, 프로필렌글리콜, 프로필렌글리콜모노메틸에테르, 프로필렌글리콜모노메틸에테르아세테이트, 프로필렌글리콜모노에틸에테르, 프로필렌글리콜모노에틸에테르아세테이트, 프로필렌글리콜모노프로필에테르아세테이트, 톨루엔, 자일렌, 메틸에틸케톤, 시클로펜타논, 시클로헥사논, 2-하이드록시프로피온산에틸, 2-하이드록시-2-메틸프로피온산에틸, 에톡시아세트산에틸, 하이드록시아세트산에틸, 2-하이드록시-3-메틸부탄산메틸, 3-메톡시프로피온산메틸, 3-메톡시프로피온산에틸, 3-에톡시프로피온산메틸, 3-에톡시프로피온산에틸, 피루브산메틸, 피루브산에틸, 아세트산에틸, 아세트산부틸, 유산에틸, 유산부틸 등을 이용할 수 있다. 이들 유기용제는 단독으로, 또는 2종 이상의 조합으로 사용된다.The acidic aqueous solution used for wet etching contains an acid and water, and may contain hydrogen peroxide or a water-soluble organic solvent as needed. Sulfuric acid, nitric acid, and hydrochloric acid are used as the acid. Water-soluble organic solvents are alcohol-based, ether-based, ketone-based, or ester-based. For example, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, methyl cellosolve acetate, ethyl cellosolve acetate, propylene glycol monobutyl ether, propylene glycol monobutyl ether acetate, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, propylene glycol, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether, propylene glycol monoethyl ether acetate, propylene glycol monopropyl ether acetate, toluene, xylene, methyl ethyl ketone, Cyclopentanone, cyclohexanone, 2-hydroxyethyl propionate, 2-hydroxy-2-methylpropionate ethyl, ethoxyethyl acetate, ethyl hydroxyacetate, 2-hydroxy-3-methylbutanoate, 3- Methyl methoxypropionate, ethyl 3-methoxypropionate, methyl 3-ethoxypropionate, ethyl 3-ethoxypropionate, methyl pyruvate, ethyl pyruvate, ethyl acetate, butyl acetate, ethyl lactate, butyl lactate, etc. can be used. These organic solvents are used individually or in combination of 2 or more types.

물과 유기용제를 합한 전체용제 중에서의 산의 농도는 0.01~97질량%이고, 전체용제 중에서의 과산화수소의 농도는 0.01~40질량%이다.
The concentration of the acid in the total solvent including water and the organic solvent is 0.01 to 97 mass%, and the concentration of hydrogen peroxide in the total solvent is 0.01 to 40 mass%.

본 발명에서는 가스에칭과 습식에칭을 모두 조합하여 행할 수도 있다.
In the present invention, both gas etching and wet etching may be combined.

본 발명에 이용되는 무기입자(a1)는 금속산화물이 이용된다. 예를 들어 산화규소(실리카), 산화티탄, 산화지르코늄, 산화알루미늄 등을 들 수 있다. 특히 산화규소(실리카)가 바람직하다. 평균입자경으로는 5~1000nm, 또는 5~200nm, 또는 10~50nm의 범위에서 이용할 수 있다. 이들 무기입자는 콜로이드상태로 유기수지(a2)에 첨가하는 것이 바람직하고, 상기 무기입자(a1)의 유기용제에 분산된 졸을, 유기수지(a2) 또는 유기수지(a2)의 용액에 첨가함으로써 조성물(a3)이 얻어지고, 이 조성물(a3)이 기재에, 또는 미리 유기수지층(B)이 형성된 기재에 피복된다.As the inorganic particles (a1) used in the present invention, a metal oxide is used. For example, silicon oxide (silica), titanium oxide, zirconium oxide, aluminum oxide, etc. are mentioned. Silicon oxide (silica) is particularly preferable. As an average particle diameter, it can use in the range of 5-1000 nm, or 5-200 nm, or 10-50 nm. These inorganic particles are preferably added to the organic resin (a2) in a colloidal state, and the sol dispersed in the organic solvent of the inorganic particles (a1) is added to a solution of the organic resin (a2) or the organic resin (a2). A composition (a3) is obtained, and the composition (a3) is coated on a substrate or on a substrate on which an organic resin layer (B) has been previously formed.

전형적으로는 무기입자(a1)로서 실리카가 유기용제에 분산된 실리카졸과, 유기수지(a2)의 용액을 혼합하여 조성물(a3)이 얻어진다.
Typically, the composition (a3) is obtained by mixing a silica sol in which silica is dispersed in an organic solvent as the inorganic particles (a1) and a solution of the organic resin (a2).

조성물(a3) 중 및, 그 조성물(a3)을 도포하여 얻어지는 유기수지층(A) 중에는, 유기수지(a2) 100질량부에 대하여 무기입자(a1)를 1~100질량부의 비율로 함유하여 형성된다.
In the composition (a3) and in the organic resin layer (A) obtained by applying the composition (a3), the inorganic particles (a1) are contained in a ratio of 1 to 100 parts by mass relative to 100 parts by mass of the organic resin (a2). .

유기수지(a2)로는 반복단위에 하이드록시기, 카르복실기, 아미노기, 또는 이들의 조합을 갖는 극성기를 관능기로서 갖는 것이 바람직하다. 이들 관능기는 무기입자와의 상용성이나, 기판에 대한 도포성의 점에서 바람직하다.
The organic resin (a2) preferably has, as a functional group, a polar group having a hydroxyl group, a carboxyl group, an amino group, or a combination thereof in the repeating unit. These functional groups are preferable in terms of compatibility with inorganic particles and applicability to a substrate.

상기 관능기를 포함하는 수지로는 아크릴계 수지, 노볼락계 수지 등을 들 수 있다.
Examples of the resin containing the functional group include an acrylic resin, a novolak-based resin, and the like.

아크릴계 수지로는, 하이드록시기나 카르복실기나 아미노기를 갖는 모노머의 단독 중합체나, 이들과 그 밖의 수지의 공중합체를 들 수 있다. 모노머로는 (메트)아크릴산이나, (메트)아크릴산에스테르나, 비닐 화합물을 들 수 있다.
As acrylic resin, the homopolymer of the monomer which has a hydroxyl group, a carboxyl group, and an amino group, and the copolymer of these and other resin are mentioned. As a monomer, (meth)acrylic acid, (meth)acrylic acid ester, and a vinyl compound are mentioned.

하이드록실기나 카르복실기나 아미노기를 갖는 모노머는, (메트)아크릴산, (메트)아크릴아미드, 하이드록시알킬(메트)아크릴레이트, 카르복시알킬(메트)아크릴레이트, 아미노알킬(메트)아크릴레이트, 하이드록시스티렌, 하이드록시비닐나프탈렌, 안식향산비닐 등의 모노머의 단독 중합체나, 그 밖의 수지의 공중합체를 들 수 있다. 그 밖의 수지로는 상기 관능기를 포함하지 않는 모노머를 들 수 있고, 예를 들어, 메틸(메트)아크릴레이트, 에틸(메트)아크릴레이트 등의 알킬(메트)아크릴레이트, 페닐(메트)아크릴레이트, 벤질(메트)아크릴레이트, 스티렌, t-부틸스티렌, 비닐나프탈렌 등을 들 수 있다.
Monomers having a hydroxyl group, a carboxyl group, or an amino group are (meth)acrylic acid, (meth)acrylamide, hydroxyalkyl (meth)acrylate, carboxyalkyl (meth)acrylate, aminoalkyl (meth)acrylate, hydroxy The homopolymer of monomers, such as styrene, hydroxyvinyl naphthalene, and a vinyl benzoate, and the copolymer of other resin are mentioned. Examples of the other resin include monomers not containing the above functional group, for example, alkyl (meth) acrylates such as methyl (meth) acrylate and ethyl (meth) acrylate, phenyl (meth) acrylate, Benzyl (meth)acrylate, styrene, t-butyl styrene, vinyl naphthalene, etc. are mentioned.

이들 아크릴계 모노머는 라디칼중합이나 양이온중합으로 상기 아크릴계 수지가 얻어진다.
The acrylic resin is obtained by radical polymerization or cationic polymerization of these acrylic monomers.

노볼락 수지로는, 페놀성 하이드록시기 함유 화합물이나 아미노기 함유 방향족 화합물과, 알데히드 화합물의 반응으로 얻어지는 노볼락 수지나, 페놀성 하이드록시기 함유 화합물이나 아미노기 함유 방향족 화합물과, 하이드록시기나 카르복실기나 아미노기 함유알데히드 화합물의 반응으로 얻어지는 노볼락 수지를 들 수 있다. 페놀성 하이드록시기를 갖는 화합물로는, 페놀, 크레졸, 살리실산, 나프톨 등의 1가페놀, 카테콜, 레조르시놀 등의 2가페놀, 피로갈롤, 플로로글리시놀 등의 3가페놀, 비페놀, 비스페놀A, 비스페놀S 등의 다핵페놀을 들 수 있다.
Examples of the novolac resin include a novolak resin obtained by reacting a phenolic hydroxyl group-containing compound or an amino group-containing aromatic compound with an aldehyde compound, a phenolic hydroxyl group-containing compound or an amino group-containing aromatic compound, and a hydroxyl group or a carboxyl group and a novolak resin obtained by reaction of an amino group-containing aldehyde compound. Examples of the compound having a phenolic hydroxyl group include monohydric phenols such as phenol, cresol, salicylic acid and naphthol; dihydric phenols such as catechol and resorcinol; trihydric phenols such as pyrogallol and phloroglycinol; and polynuclear phenols such as phenol, bisphenol A and bisphenol S.

아미노기 함유 방향족 화합물로는, 피롤, 페닐나프틸아민, 페닐인돌, 카바졸 등을 들 수 있다.
Examples of the amino group-containing aromatic compound include pyrrole, phenylnaphthylamine, phenylindole, and carbazole.

알데히드류로는, 포름알데히드, 파라포름알데히드, 아세트알데히드, 프로필알데히드, 부틸알데히드, 이소부틸알데히드, 발레르알데히드, 카프론알데히드, 2-메틸부틸알데히드, 헥실알데히드, 운데칸알데히드, 7-메톡시-3,7-디메틸옥틸알데히드, 시클로헥산알데히드, 3-메틸-2-부틸알데히드, 글리옥살, 말론알데히드, 석신알데히드, 글루타르알데히드, 아디프알데히드 등의 포화지방족 알데히드류, 아크롤레인, 메타크롤레인 등의 불포화지방족 알데히드류, 푸르푸랄, 피리딘알데히드 등의 헤테로환식 알데히드류, 벤즈알데히드, 나프틸알데히드, 안트릴알데히드, 페난트릴알데히드, 살리실알데히드, 페닐아세트알데히드, 3-페닐프로피온알데히드, 톨릴알데히드, (N,N-디메틸아미노)벤즈알데히드, 아세톡시벤즈알데히드 등의 방향족 알데히드류 등을 들 수 있다. 이 중에서도 하이드록시기 또는 카르복실기 함유 알데히드 화합물이 바람직하고, 예를 들어 하이드록시벤즈알데히드, 카르복시벤즈알데히드, 하이드록시나프트알데히드, 카르복시나프트알데히드, 하이드록시피렌알데히드, 카르복시피렌알데히드를 들 수 있다.
Aldehydes include formaldehyde, paraformaldehyde, acetaldehyde, propylaldehyde, butylaldehyde, isobutylaldehyde, valeraldehyde, capronaldehyde, 2-methylbutylaldehyde, hexylaldehyde, undecanaldehyde, 7-methoxy- Saturated aliphatic aldehydes such as 3,7-dimethyloctylaldehyde, cyclohexanealdehyde, 3-methyl-2-butylaldehyde, glyoxal, malonaldehyde, succinaldehyde, glutaraldehyde, adipaldehyde, acrolein, methacrolein, etc. heterocyclic aldehydes such as unsaturated aliphatic aldehydes of and aromatic aldehydes such as N,N-dimethylamino)benzaldehyde and acetoxybenzaldehyde. Among these, the aldehyde compound containing a hydroxyl group or a carboxyl group is preferable, for example, hydroxybenzaldehyde, carboxybenzaldehyde, hydroxynaphthaldehyde, carboxynaphthaldehyde, hydroxypyrenealdehyde, and carboxypyrenaldehyde are mentioned.

페놀성 하이드록시기 함유 화합물이나 아미노기 함유 방향족 화합물과 알데히드 화합물은, 페닐기 1당량에 대하여, 알데히드류를 0.1~10당량의 비율로 이용할 수 있다. 상기 축합반응에서 이용되는 산촉매로는, 예를 들어 황산, 인산, 과염소산 등의 무기산류, p-톨루엔설폰산, p-톨루엔설폰산일수화물 등의 유기 설폰산류, 포름산, 옥살산 등의 카르본산류가 사용된다. 산촉매의 사용량은, 사용하는 산류의 종류에 따라 다양하게 선택된다. 통상, 페놀성 하이드록시기 함유 화합물이나 아미노기 함유 방향족 화합물과 알데히드 화합물의 합계의 100질량부에 대하여, 0.001~10000질량부, 바람직하게는 0.01~1000질량부, 보다 바람직하게는 0.1~100질량부이다.
The phenolic hydroxyl group-containing compound, the amino group-containing aromatic compound, and the aldehyde compound can be used in an amount of 0.1 to 10 equivalents of aldehydes with respect to 1 equivalent of the phenyl group. Examples of the acid catalyst used in the condensation reaction include inorganic acids such as sulfuric acid, phosphoric acid and perchloric acid, organic sulfonic acids such as p-toluenesulfonic acid and p-toluenesulfonic acid monohydrate, and carboxylic acids such as formic acid and oxalic acid. used The amount of the acid catalyst to be used is variously selected depending on the type of acid to be used. Usually, with respect to 100 mass parts of a total of a phenolic hydroxyl-group containing compound, an amino-group containing aromatic compound, and an aldehyde compound, 0.001-1000 mass parts, Preferably it is 0.01-1000 mass parts, More preferably, 0.1-100 mass parts to be.

상기 축합반응은 무용제로도 행해지는데, 통상 용제를 이용하여 행해진다. 용제로는 반응을 저해하지 않는 것이면 모두 사용할 수 있다. 예를 들어 테트라하이드로퓨란, 디옥산 등의 환상 에테르류를 들 수 있다. 또한, 사용하는 산촉매가 예를 들어 포름산과 같은 액상의 것이라면 용제로서의 역할을 겸비하게 할 수도 있다.
The condensation reaction is also carried out without a solvent, but is usually carried out using a solvent. As the solvent, any solvent that does not inhibit the reaction can be used. For example, cyclic ethers, such as tetrahydrofuran and a dioxane, are mentioned. Moreover, if the acid catalyst to be used is a liquid one, for example, formic acid, it can also serve as a solvent.

축합시의 반응온도는 통상 40℃~200℃이다. 반응시간은 반응온도에 따라 다양하게 선택되는데, 통상 30분~50시간 정도이다.
The reaction temperature at the time of condensation is 40 to 200 degreeC normally. The reaction time is variously selected depending on the reaction temperature, and is usually about 30 minutes to 50 hours.

본 발명에 이용되는 유기수지(a2), 또한 이하에 서술되는 유기수지(b2)는 이하에 예시할 수 있다.The organic resin (a2) used in the present invention and the organic resin (b2) described below can be exemplified below.

[화학식 1][Formula 1]

Figure 112016074269605-pct00001

Figure 112016074269605-pct00001

본 발명에 이용되는 조성물(a3)은 상기 유기수지(a2)와 무기입자(a1)와 용제를 포함한다. 필요에 따라 계면활성제 등의 첨가제를 포함할 수 있다.
The composition (a3) used in the present invention includes the organic resin (a2), the inorganic particles (a1), and a solvent. If necessary, additives such as surfactants may be included.

이 조성물의 고형분은 0.1~70질량%, 또는 0.1~60질량%이다. 고형분은 조성물(a3)에서 용제를 제외한 전체성분의 함유비율이다. 고형분 중에 유기수지(a2)를 1~99.9질량%, 또는 20~99.9질량%의 비율로 함유할 수 있다.
Solid content of this composition is 0.1-70 mass %, or 0.1-60 mass %. The solid content is the content ratio of all components excluding the solvent in the composition (a3). The organic resin (a2) may be contained in a proportion of 1 to 99.9 mass%, or 20 to 99.9 mass% in the solid content.

본 발명에 이용되는 유기수지(a2)는, 중량평균분자량이 600~1000000, 또는 600~200000이다.
The organic resin (a2) used in the present invention has a weight average molecular weight of 600 to 1000000, or 600 to 200000.

또한, 본 발명의 표면조화방법은, 기판 상에 유기수지(b2)를 포함하는 조성물(b3)을 도포하고 건조와 경화를 행해 유기수지층(B)을 형성하고, 다시 유기수지층(B) 상에 무기입자(a1)와 유기수지(a2)를 포함하는 조성물(a3)을 도포하고 건조와 경화를 행해 유기수지층(A)을 형성하는 제1 공정(이 공정을 특별히 제1’공정이라 함)과, 기판의 상방으로부터 에칭(가스에칭 또는 습식에칭)을 행해 동일기판의 표면을 조화하는 제2 공정을 포함하는 것이기도 하다.
In addition, in the surface roughening method of the present invention, a composition (b3) containing an organic resin (b2) is applied on a substrate, dried and cured to form an organic resin layer (B), and again on the organic resin layer (B) A first step of forming the organic resin layer (A) by applying the composition (a3) containing the inorganic particles (a1) and the organic resin (a2), drying and curing (this step is specifically referred to as the first step) and , also includes a second step of roughening the surface of the same substrate by performing etching (gas etching or wet etching) from above the substrate.

유기수지층(B)의 유기수지(b2)는, 상기 유기수지층(A)의 유기수지(a2)와 동일한 범위의 수지로부터 선택할 수 있다. 또한 유기수지(b2)와 유기수지(a2)는 동일 수지를 이용할 수 있다.
The organic resin (b2) of the organic resin layer (B) can be selected from the same range of resins as the organic resin (a2) of the organic resin layer (A). In addition, the same resin may be used for the organic resin (b2) and the organic resin (a2).

본 발명에 이용되는 조성물(b3)은 상기 유기수지(b2)와 용제를 포함한다. 필요에 따라 계면활성제 등의 첨가제를 포함할 수 있다. 이 조성물의 고형분은 0.1~70질량%, 또는 0.1~60질량%이다. 고형분은 조성물(b3)에서 용제를 제외한 전체성분의 함유비율이다. 고형분 중에 유기수지(b2)를 1~100질량%, 또는 1~99.9질량%, 또는 50~99.9질량%의 비율로 함유할 수 있다.
The composition (b3) used in the present invention includes the organic resin (b2) and a solvent. If necessary, additives such as surfactants may be included. Solid content of this composition is 0.1-70 mass %, or 0.1-60 mass %. The solid content is the content ratio of all components excluding the solvent in the composition (b3). The organic resin (b2) may be contained in a proportion of 1 to 100% by mass, or 1 to 99.9% by mass, or 50 to 99.9% by mass in the solid content.

본 발명에 이용되는 유기수지(b2)는, 중량평균분자량이 600~1000000, 또는 600~200000이다.
The organic resin (b2) used in the present invention has a weight average molecular weight of 600 to 1000000, or 600 to 200000.

유기수지층(B)은 조성물(b3)을 기판 상에 도포하고 건조와 경화를 행해 얻어지는데, 유기수지층(B)의 상층에 유기수지층(A)이 상도(上塗)되므로, 인터믹싱(층혼합)을 방지하기 위해, 조성물(b3)은 추가로 가교제 및 가교촉매를 함유할 수 있다.
The organic resin layer (B) is obtained by coating the composition (b3) on a substrate and drying and curing. Since the organic resin layer (A) is applied on top of the organic resin layer (B), intermixing (layer mixing) In order to prevent contamination, the composition (b3) may further contain a crosslinking agent and a crosslinking catalyst.

또한, 필요에 따라 유기수지층(A)도, 조성물(a3)에 가교제 및 가교촉매를 함유할 수 있다.
In addition, if necessary, the organic resin layer (A) may also contain a crosslinking agent and a crosslinking catalyst in the composition (a3).

조성물(a3)이나 조성물(b3)에 이용되는 가교제로는, 멜라민계, 치환 요소계, 또는 이들의 폴리머계 등을 들 수 있다. 바람직하게는, 적어도 2개의 가교형성 치환기를 갖는 가교제이고, 메톡시메틸화글리콜우릴, 부톡시메틸화글리콜우릴, 메톡시메틸화멜라민, 부톡시메틸화멜라민, 메톡시메틸화벤조구아나민, 부톡시메틸화벤조구아나민, 메톡시메틸화요소, 부톡시메틸화요소, 또는 메톡시메틸화티오요소 등의 화합물이다. 또한, 이들 화합물의 축합체도 사용할 수 있다. 가교제의 첨가량은, 사용하는 도포용제, 사용하는 하지기판, 요구되는 용액점도, 요구되는 막형상 등에 따라 변동하는데, 전체고형분에 대하여 0.001~80질량%, 바람직하게는 0.01~50질량%, 더욱 바람직하게는 0.05~40질량%이다.
Examples of the crosslinking agent used in the composition (a3) or the composition (b3) include a melamine type, a substituted urea type, or a polymer type thereof. Preferably, it is a crosslinking agent having at least two crosslinking substituents, methoxymethylated glycoluril, butoxymethylated glycoluril, methoxymethylated melamine, butoxymethylated melamine, methoxymethylated benzoguanamine, butoxymethylated benzoguanamine , methoxymethylated urea, butoxymethylated urea, or methoxymethylated thiourea. Condensates of these compounds can also be used. The amount of the crosslinking agent added varies depending on the coating solvent used, the underlying substrate used, the required solution viscosity, the required film shape, etc., and is 0.001 to 80 mass%, preferably 0.01 to 50 mass%, more preferably based on the total solid Preferably, it is 0.05-40 mass %.

본 발명에서는 상기 가교반응을 촉진하기 위한 촉매로는, p-톨루엔설폰산, 트리플루오로메탄설폰산, 피리디늄p-톨루엔설폰산, 살리실산, 설포살리실산, 구연산, 안식향산, 하이드록시안식향산, 나프탈렌카르본산 등의 산성 화합물 또는/및 2,4,4,6-테트라브로모시클로헥사디에논, 벤조인토실레이트, 2-니트로벤질토실레이트, 기타 유기 설폰산알킬에스테르 등의 열산발생제를 배합할 수 있다. 배합량은 전체고형분에 대하여, 0.0001~20질량%, 바람직하게는 0.0005~10질량%, 더욱 바람직하게는 0.01~3질량%이다.
In the present invention, as a catalyst for promoting the crosslinking reaction, p-toluenesulfonic acid, trifluoromethanesulfonic acid, pyridinium p-toluenesulfonic acid, salicylic acid, sulfosalicylic acid, citric acid, benzoic acid, hydroxybenzoic acid, naphthalenecarinic acid Acidic compounds such as main acid and/or thermal acid generators such as 2,4,4,6-tetrabromocyclohexadienone, benzointosylate, 2-nitrobenzyltosylate, and other organic sulfonic acid alkyl esters may be blended. can A compounding quantity is 0.0001-20 mass % with respect to total solid, Preferably it is 0.0005-10 mass %, More preferably, it is 0.01-3 mass %.

본 발명에서 조성물(a3)이나 조성물(b3)에 이용되는 계면활성제로는, 예를 들어 폴리옥시에틸렌라우릴에테르, 폴리옥시에틸렌스테아릴에테르, 폴리옥시에틸렌세틸에테르, 폴리옥시에틸렌올레일에테르 등의 폴리옥시에틸렌알킬에테르류, 폴리옥시에틸렌옥틸페놀에테르, 폴리옥시에틸렌노닐페놀에테르 등의 폴리옥시에틸렌알킬알릴에테르류, 폴리옥시에틸렌·폴리옥시프로필렌블록코폴리머류, 솔비탄모노라우레이트, 솔비탄모노팔미테이트, 솔비탄모노스테아레이트, 솔비탄모노올레이트, 솔비탄트리올레이트, 솔비탄트리스테아레이트 등의 솔비탄지방산에스테르류, 폴리옥시에틸렌솔비탄모노라우레이트, 폴리옥시에틸렌솔비탄모노팔미테이트, 폴리옥시에틸렌솔비탄모노스테아레이트, 폴리옥시에틸렌솔비탄트리올레이트, 폴리옥시에틸렌솔비탄트리스테아레이트 등의 폴리옥시에틸렌솔비탄지방산에스테르류 등의 비이온계 계면활성제, EFTOP EF301, EF303, EF352(Tohkem Products Corporation 제, 상품명), MEGAFAC F171, F173, R40(Dainippon Ink and Chemicals, Inc.제, 상품명), FLUORAD FC430, FC431(Sumitomo 3M Limited.제, 상품명), ASAHI GUARD AG710, SURFLON S382, SC101, SC102, SC103, SC104, SC105, SC106(Asahi Glass Co., Ltd.제, 상품명) 등의 불소계 계면활성제, Organosiloxane polymer KP341(Shin-Etsu Chemical Co., Ltd.제) 등을 들 수 있다. 이들 계면활성제의 배합량은, 본 발명의 리소그래피용 레지스트 하층막 재료의 전체고형분에 대하여 통상 2.0질량% 이하, 바람직하게는 1.0질량% 이하이다. 이들 계면활성제는 단독으로 첨가할 수도 있고, 또한 2종 이상의 조합으로 첨가할 수도 있다.
As the surfactant used in the composition (a3) or the composition (b3) in the present invention, for example, polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, polyoxyethylene cetyl ether, polyoxyethylene oleyl ether, etc. polyoxyethylene alkyl ethers, polyoxyethylene octyl phenol ether, polyoxyethylene alkyl allyl ethers such as polyoxyethylene nonyl phenol ether, polyoxyethylene polyoxypropylene block copolymers, sorbitan monolaurate, Sorbitan fatty acid esters such as tan monopalmitate, sorbitan monostearate, sorbitan monooleate, sorbitan trioleate, and sorbitan tristearate, polyoxyethylene sorbitan monolaurate, polyoxyethylene sorbitan Nonionic surfactants such as polyoxyethylene sorbitan fatty acid esters such as monopalmitate, polyoxyethylene sorbitan monostearate, polyoxyethylene sorbitan trioleate, and polyoxyethylene sorbitan tristearate, EFTOP EF301 , EF303, EF352 (manufactured by Tohkem Products Corporation, trade name), MEGAFAC F171, F173, R40 (manufactured by Dainippon Ink and Chemicals, Inc., trade name), FLUORAD FC430, FC431 (manufactured by Sumitomo 3M Limited, trade name), ASAHI GUARD AG710, Fluorine surfactants, such as SURFLON S382, SC101, SC102, SC103, SC104, SC105, SC106 (made by Asahi Glass Co., Ltd., brand name), Organosiloxane polymer KP341 (made by Shin-Etsu Chemical Co., Ltd.), etc. are mentioned can The compounding quantity of these surfactant is 2.0 mass % or less normally with respect to the total solid of the resist underlayer film material for lithography of this invention, Preferably it is 1.0 mass % or less. These surfactants may be added individually or in combination of 2 or more types.

본 발명에서 조성물(a3)이나 조성물(b3)에 이용되는 용제로는, 에틸렌글리콜모노메틸에테르, 에틸렌글리콜모노에틸에테르, 메틸셀로솔브아세테이트, 에틸셀로솔브아세테이트, 디에틸렌글리콜모노메틸에테르, 디에틸렌글리콜모노에틸에테르, 프로필렌글리콜, 프로필렌글리콜모노메틸에테르, 프로필렌글리콜모노메틸에테르아세테이트, 프로필렌글리콜모노에틸에테르, 프로필렌글리콜모노에틸에테르아세테이트, 프로필렌글리콜모노프로필에테르아세테이트, 톨루엔, 자일렌, 메틸에틸케톤, 시클로펜타논, 시클로헥사논, 2-하이드록시프로피온산에틸, 2-하이드록시-2-메틸프로피온산에틸, 에톡시아세트산에틸, 하이드록시아세트산에틸, 2-하이드록시-3-메틸부탄산메틸, 3-메톡시프로피온산메틸, 3-메톡시프로피온산에틸, 3-에톡시프로피온산메틸, 3-에톡시프로피온산에틸, 피루브산메틸, 피루브산에틸, 아세트산에틸, 아세트산부틸, 유산에틸, 유산부틸 등을 이용할 수 있다. 이들 유기용제는 단독으로, 또는 2종 이상의 조합으로 사용된다.
In the present invention, the solvent used in the composition (a3) or the composition (b3) includes ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, methyl cellosolve acetate, ethyl cellosolve acetate, diethylene glycol monomethyl ether, Diethylene glycol monoethyl ether, propylene glycol, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether, propylene glycol monoethyl ether acetate, propylene glycol monopropyl ether acetate, toluene, xylene, methyl ethyl Ketone, cyclopentanone, cyclohexanone, 2-hydroxyethyl propionate, 2-hydroxy-2-methylpropionate ethyl, ethoxyethyl acetate, ethyl hydroxyacetate, 2-hydroxy-3-methylbutanoate methyl; 3-methoxymethyl propionate, 3-methoxy ethyl propionate, 3-ethoxy methyl propionate, 3-ethoxy ethyl propionate, methyl pyruvate, ethyl pyruvate, ethyl acetate, butyl acetate, ethyl lactate, butyl lactate, etc. can be used. . These organic solvents are used individually or in combination of 2 or more types.

또한, 프로필렌글리콜모노부틸에테르, 프로필렌글리콜모노부틸에테르아세테이트 등의 고비점용제를 혼합하여 사용할 수 있다. 이들 용제 중에서 프로필렌글리콜모노메틸에테르, 프로필렌글리콜모노메틸에테르아세테이트, 유산에틸, 유산부틸, 및 시클로헥사논 등이 레벨링성의 향상에 있어 바람직하다.
Moreover, high boiling point solvents, such as propylene glycol monobutyl ether and propylene glycol monobutyl ether acetate, can be mixed and used. Among these solvents, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, ethyl lactate, butyl lactate, cyclohexanone and the like are preferable for improving leveling properties.

다음에 본 발명의 표면조화방법에 대하여 설명하면, 기판이나 기재의 표면에 스피너, 코터 등의 적당한 도포방법에 의해 조성물(b3)이나 조성물(a3)을 도포한 후, 베이크하여 경화시켜 유기수지층(A)이나 유기수지층(B)을 작성한다.
Next, the surface roughening method of the present invention will be described. After applying the composition (b3) or the composition (a3) to the surface of a substrate or substrate by an appropriate application method such as a spinner or a coater, baking and curing the organic resin layer ( A) or an organic resin layer (B) is prepared.

본 발명에서는 유기수지층(A)이 0.001~10μm, 또는 0.005~3.0μm의 막두께를 가지고 있고, 유기수지층(B)이 0.001~10μm, 또는 0.005~3.0μm의 막두께를 갖는다.
In the present invention, the organic resin layer (A) has a film thickness of 0.001 to 10 µm, or 0.005 to 3.0 µm, and the organic resin layer (B) has a film thickness of 0.001 to 10 µm, or 0.005 to 3.0 µm.

또한 도포 후 베이킹하는 조건으로는 80~400℃에서 0.5~120분간이다.
In addition, the conditions for baking after application are 0.5 to 120 minutes at 80 to 400 ° C.

기판 상에 유기수지층(B)을 형성하고 그 위에 유기수지층(A)을 형성하거나, 또는 유기수지층(B)을 형성하지 않고 유기수지층(A)을 형성하고, 상기 조건으로 경화시킨 후, 기판의 상방으로부터 가스로 에칭을 행해 동일기판의 표면을 조화한다. 이 에칭가스는 처음에 산소계 가스에 의한 에칭이 행해지는 것이 바람직하고, 이에 따라 무기입자(a1)가 존재하지 않는 부분이 수직방향으로 깎인다. 에칭이 기판면에 도달한 단계에서, 계속해서 산소계 가스로 에칭하는 것도 가능한데, 그 밖의 가스(예를 들어 불소계 가스)로 에칭할 수 있고, 이에 따라 기판에 요철을 형성하여 조면화할 수 있다.
After forming the organic resin layer (B) on the substrate and forming the organic resin layer (A) thereon, or forming the organic resin layer (A) without forming the organic resin layer (B), and curing under the above conditions, the The surface of the same substrate is roughened by etching with gas from above. It is preferable that the etching gas is first etched with an oxygen-based gas, and accordingly, the portion in which the inorganic particles a1 does not exist is cut off in the vertical direction. In the stage in which the etching reaches the substrate surface, it is also possible to continue etching with an oxygen-based gas, but etching can be performed with other gases (eg, fluorine-based gas), thereby forming irregularities in the substrate and roughening.

상기 기판은 기판 자체나 기판 상에 SiO2 등을 피복한 피복기판도 포함하여, 기판이나 피복기판의 표면을 조화할 수 있다.
The substrate may roughen the surface of the substrate or the coated substrate, including the substrate itself or a coated substrate coated with SiO 2 or the like on the substrate.

산소계 가스로는, 산소, 산소와 질소의 혼합가스, 산소와 아르곤의 혼합가스 등을 들 수 있다.
Examples of the oxygen-based gas include oxygen, a mixed gas of oxygen and nitrogen, and a mixed gas of oxygen and argon.

그 밖의 가스로서 불소계 가스나 염소계 가스를 들 수 있다. CF4, C4F8, C4F6, CHF3, CH2F2 등의 불소함유가스를 들 수 있다. 또한, Cl2 등의 염소계 가스를 이용할 수도 있다.
Other gases include fluorine-based gas and chlorine-based gas. and fluorine-containing gases such as CF 4 , C 4 F 8 , C 4 F 6 , CHF 3 , and CH 2 F 2 . Moreover, chlorine - type gas, such as Cl2, can also be used.

또한, 본 발명에 있어서는, 기판 상에 유기수지층(B)을 형성하고 그 위에 유기수지층(A)을 형성하거나, 또는 유기수지층(B)을 형성하지 않고 기판 상에 유기수지층(A)을 형성하고, 상기 조건으로 경화시킨 후, 기판의 상방으로부터 상기 산성 수용액으로 에칭을 행해 동일기판의 표면을 조화한다. 이 습식에칭에 의해 무기입자(a1)가 존재하지 않는 부분이 수직방향으로 깎인다. 에칭이 기판면에 도달한 단계에서, 계속해서 산성 수용액으로 에칭하는 것도 가능하며, 이에 따라 기판에 요철을 형성하여 조면화할 수 있다.
In addition, in the present invention, the organic resin layer (B) is formed on the substrate and the organic resin layer (A) is formed thereon, or the organic resin layer (A) is formed on the substrate without forming the organic resin layer (B), After curing under the above conditions, etching is performed with the acidic aqueous solution from above to roughen the surface of the same substrate. By this wet etching, the portion in which the inorganic particles a1 does not exist is cut in the vertical direction. In the stage in which the etching reaches the substrate surface, it is also possible to continue etching with an acidic aqueous solution, thereby forming irregularities on the substrate and roughening.

상기 기판은 기판 자체나 기판 상에 SiO2 등을 피복한 피복기판도 포함하여, 기판이나 피복기판의 표면을 조화할 수 있다.
The substrate may roughen the surface of the substrate or the coated substrate, including the substrate itself or a coated substrate coated with SiO 2 or the like on the substrate.

가스 또는 산성 수용액에 의한 에칭이 기판 상에 형성된 (높이)/(직경)으로 표시되는 구멍의 애스팩트비로 0.1~20, 또는 0.1~10의 범위로 형성할 때까지 행해지는데, 통상은 에칭시간으로는 1초~1시간이다.
Etching with a gas or acidic aqueous solution is performed until it is formed in the range of 0.1 to 20, or 0.1 to 10, with the aspect ratio of the hole represented by (height)/(diameter) formed on the substrate, usually in etching time. is 1 second to 1 hour.

또한 이렇게 하여 얻어진 조화표면을 마스크로 하여 하층에 존재하는 기재를 가공할 수 있다. 하층기재의 가공에는 가스에 의한 드라이에칭 또는 습식에칭을 이용할 수 있다.
In addition, the substrate existing in the lower layer can be processed by using the roughened surface obtained in this way as a mask. Dry etching or wet etching by gas may be used for processing the lower substrate.

드라이에칭용 가스로서 불소계 가스나 염소계 가스를 들 수 있다. CF4, C4F8, C4F6, CHF3, CH2F2 등의 불소함유가스를 들 수 있다. 또한, Cl2 등의 염소계 가스를 이용할 수도 있다. 그 밖의 가스로서, 아르곤, 질소, 수소, 산소 등을 들 수 있다.
Examples of the dry etching gas include fluorine-based gas and chlorine-based gas. and fluorine-containing gases such as CF 4 , C 4 F 8 , C 4 F 6 , CHF 3 , and CH 2 F 2 . Moreover, chlorine - type gas, such as Cl2, can also be used. Examples of other gases include argon, nitrogen, hydrogen, and oxygen.

기판으로는 예를 들어 실리콘, 산화실리콘, 유리, 사파이어 등을 들 수 있다.
Examples of the substrate include silicon, silicon oxide, glass, and sapphire.

실시예
Example

<합성예 1><Synthesis Example 1>

100ml 플라스크에 플로로글루시놀(Tokyo Chemical Industry Co., Ltd.제) 12.0g, 4-하이드록시벤즈알데히드(Tokyo Chemical Industry Co., Ltd.제) 7.3g, 메탄설폰산(Tokyo Chemical Industry Co., Ltd.제) 0.59g, 프로필렌글리콜모노메틸에테르 46.5g을 넣었다. 그 후 가열환류하에서 약 3시간 환류교반하였다. 반응종료 후, 이온교환처리를 행하여, 다갈색의 플로로글루시놀 수지용액을 얻었다. 얻어진 폴리머는 식(1-1)에 상당하였다. GPC에 의해 폴리스티렌 환산으로 측정되는 중량평균분자량 Mw는 680, 다분산도 Mw/Mn은 1.3이었다.
In a 100 ml flask, 12.0 g of phloroglucinol (manufactured by Tokyo Chemical Industry Co., Ltd.), 7.3 g of 4-hydroxybenzaldehyde (manufactured by Tokyo Chemical Industry Co., Ltd.), and methanesulfonic acid (manufactured by Tokyo Chemical Industry Co., Ltd.) Ltd.) 0.59 g and propylene glycol monomethyl ether 46.5 g were put. Thereafter, the mixture was stirred under reflux under heating for about 3 hours under reflux. After completion of the reaction, ion exchange treatment was performed to obtain a dark brown phloroglucinol resin solution. The obtained polymer corresponded to Formula (1-1). The weight average molecular weight Mw measured in terms of polystyrene by GPC was 680, and the polydispersity Mw/Mn was 1.3.

<합성예 2><Synthesis Example 2>

300ml 플라스크에 플로로글루시놀(Tokyo Chemical Industry Co., Ltd.제) 25.0g, 테레프탈알데히드산(Tokyo Chemical Industry Co., Ltd.제) 25.4g, 프로필렌글리콜모노메틸에테르 151.1g을 넣었다. 그 후 가열환류하에서 약 2시간 환류교반하였다. 반응종료 후, 이온교환처리를 행하여, 다갈색의 플로로글루시놀 수지용액을 얻었다. 얻어진 폴리머는 식(1-2)에 상당하였다. GPC에 의해 폴리스티렌 환산으로 측정되는 중량평균분자량 Mw는 2,400, 다분산도 Mw/Mn은 1.6이었다.
In a 300 ml flask, 25.0 g of phloroglucinol (manufactured by Tokyo Chemical Industry Co., Ltd.), 25.4 g of terephthalaldehyde (manufactured by Tokyo Chemical Industry Co., Ltd.), and 151.1 g of propylene glycol monomethyl ether were placed. Thereafter, the mixture was stirred under reflux under heating for about 2 hours under reflux. After completion of the reaction, ion exchange treatment was performed to obtain a dark brown phloroglucinol resin solution. The obtained polymer corresponded to Formula (1-2). The weight average molecular weight Mw measured in terms of polystyrene by GPC was 2,400, and the polydispersity Mw/Mn was 1.6.

<합성예 3><Synthesis Example 3>

스티렌 7.0g(Tokyo Chemical Industry Co., Ltd.제), 하이드록시에틸메타크릴레이트 8.7g(Tokyo Chemical Industry Co., Ltd.제), 2,2’-아조비스이소부티로니트릴 0.79g, 프로필렌글리콜모노메틸에테르아세테이트 38.6g을 용해시킨 후, 이 용액을 가열하고, 85℃에서 약 20시간 교반하였다. 얻어진 폴리머는 상기 식(1-3)에 상당하였다. GPC에 의해 폴리스티렌 환산으로 측정되는 중량평균분자량 Mw는 9,700이었다.
Styrene 7.0 g (manufactured by Tokyo Chemical Industry Co., Ltd.), hydroxyethyl methacrylate 8.7 g (manufactured by Tokyo Chemical Industry Co., Ltd.), 2,2'-azobisisobutyronitrile 0.79 g, propylene After dissolving 38.6 g of glycol monomethyl ether acetate, the solution was heated and stirred at 85° C. for about 20 hours. The obtained polymer corresponded to the said Formula (1-3). The weight average molecular weight Mw measured in terms of polystyrene by GPC was 9,700.

<합성예 4><Synthesis Example 4>

100ml 가지형 플라스크에 카바졸(Tokyo Chemical Industry Co., Ltd.제)8.0g, 1-나프트알데히드(Tokyo Chemical Industry Co., Ltd.제) 28.0g, p-톨루엔설폰산일수화물(Tokyo Chemical Industry Co., Ltd.제) 3.6g, 톨루엔(Kanto Chemical Co., Inc.제) 143.8g을 넣었다. 그 후 플라스크 내를 질소치환한 후 가열하고, 약 27시간 환류교반하였다. 반응종료 후, 테트라하이드로퓨란(Kanto Chemical Co., Inc.제) 90.5g으로 희석하였다. 희석액을 메탄올 2000ml에 적하하고, 재침전시켰다. 얻어진 침전물을 흡인여과하고, 여물을 메탄올로 세정 후, 85℃에서 하룻밤 감압건조하여 노볼락 수지를 37.9g 얻었다. 얻어진 폴리머는 식(1-4)에 상당하였다. GPC에 의해 폴리스티렌 환산으로 측정되는 중량평균분자량 Mw는, 3,800이었다.
8.0 g of carbazole (manufactured by Tokyo Chemical Industry Co., Ltd.), 28.0 g of 1-naphthaldehyde (manufactured by Tokyo Chemical Industry Co., Ltd.), p-toluenesulfonic acid monohydrate (Tokyo Chemical Industry) in a 100 ml eggplant-type flask Co., Ltd.) 3.6 g and toluene (manufactured by Kanto Chemical Co., Inc.) 143.8 g were added. After that, the inside of the flask was replaced with nitrogen, heated, and stirred under reflux for about 27 hours. After completion of the reaction, it was diluted with 90.5 g of tetrahydrofuran (manufactured by Kanto Chemical Co., Inc.). The diluted liquid was dripped at 2000 ml of methanol, and it was made to reprecipitate. The obtained precipitate was filtered with suction, and the filtrate was washed with methanol and then dried under reduced pressure at 85°C overnight to obtain 37.9 g of novolak resin. The obtained polymer corresponded to Formula (1-4). The weight average molecular weight Mw measured in terms of polystyrene by GPC was 3,800.

<조성물(a3)에 상당하는 표면조화재 조제예 1><Preparation example 1 of surface roughening material equivalent to composition (a3)>

합성예 1에서 얻은 수지 0.66g을, 오르가노실리카졸(Nissan Chemical Industries, Ltd.제〔상품명〕PGM-ST, 분산매는 프로필렌글리콜모노메틸에테르, 실리카농도는 30질량%, 평균입자경 10~15nm) 0.37g, 테트라메톡시메틸글리콜우릴 0.13g, 프로필렌글리콜모노메틸에테르 26.2g, 프로필렌글리콜모노메틸에테르아세테이트 2.6g에 첨가하여 용액으로 하였다. 그 후, 구멍직경 0.2μm의 폴리에틸렌제 마이크로필터를 이용하여 여과하고, 조성물(a3-1)의 용액을 조제하였다.
0.66 g of the resin obtained in Synthesis Example 1 was mixed with organosilicasol (Nissan Chemical Industries, Ltd. [brand name] PGM-ST, dispersion medium was propylene glycol monomethyl ether, silica concentration was 30 mass %, average particle diameter 10 to 15 nm) 0.37 g, tetramethoxymethyl glycoluril 0.13 g, propylene glycol monomethyl ether 26.2 g, and propylene glycol monomethyl ether acetate 2.6 g were added to make a solution. Thereafter, it was filtered using a polyethylene microfilter having a pore diameter of 0.2 µm to prepare a solution of the composition (a3-1).

<조성물(a3)에 상당하는 표면조화재 조제예 2><Preparation example 2 of surface roughening material equivalent to composition (a3)>

합성예 2에서 얻은 수지 0.64g을, 오르가노실리카졸(Nissan Chemical Industries, Ltd.제〔상품명〕PGM-ST, 분산매는 프로필렌글리콜모노메틸에테르, 실리카농도는 30질량%, 평균입자경 10~15nm) 0.43g, 테트라메톡시메틸글리콜우릴 0.13g, 프로필렌글리콜모노메틸에테르 20.4g, 프로필렌글리콜모노메틸에테르아세테이트 8.4g에 첨가하여 용액으로 하였다. 그 후, 구멍직경 0.2μm의 폴리에틸렌제 마이크로필터를 이용하여 여과하고, 조성물(a3-2)의 용액을 조제하였다.
0.64 g of the resin obtained in Synthesis Example 2 was mixed with organosilicasol (Nissan Chemical Industries, Ltd. [brand name] PGM-ST, dispersion medium was propylene glycol monomethyl ether, silica concentration was 30 mass %, average particle diameter 10 to 15 nm) 0.43 g, tetramethoxymethyl glycoluril 0.13 g, propylene glycol monomethyl ether 20.4 g, and propylene glycol monomethyl ether acetate 8.4 g were added to make a solution. Then, it filtered using the polyethylene microfilter with a pore diameter of 0.2 micrometer, and the solution of the composition (a3-2) was prepared.

<조성물(a3)에 상당하는 표면조화재 조제예 3><Preparation example 3 of surface roughening material equivalent to composition (a3)>

합성예 3에서 얻은 수지 0.64g을, 오르가노실리카졸용액(Nissan Chemical Industries, Ltd.제〔상품명〕PGM-ST, 분산매는 프로필렌글리콜모노메틸에테르, 실리카농도는 30질량%, 평균입자경 10~15nm) 0.43g, 테트라메톡시메틸글리콜우릴 0.13g, 프로필렌글리콜모노메틸에테르 23.3g, 프로필렌글리콜모노메틸에테르아세테이트 5.5g에 첨가하여 용액으로 하였다. 그 후, 구멍직경 0.2μm의 폴리에틸렌제 마이크로필터를 이용하여 여과하고, 조성물(a3-3)의 용액을 조제하였다.
0.64 g of the resin obtained in Synthesis Example 3 was mixed with an organosilica sol solution (Nissan Chemical Industries, Ltd. [brand name] PGM-ST, dispersion medium was propylene glycol monomethyl ether, silica concentration was 30 mass %, average particle size was 10 to 15 nm) ) 0.43 g, tetramethoxymethyl glycoluril 0.13 g, propylene glycol monomethyl ether 23.3 g, and propylene glycol monomethyl ether acetate 5.5 g were added to prepare a solution. Thereafter, it was filtered using a polyethylene microfilter having a pore diameter of 0.2 µm to prepare a solution of the composition (a3-3).

<조성물(a3)에 상당하는 표면조화재 조제예 4><Preparation example 4 of surface roughening material equivalent to composition (a3)>

합성예 1에서 얻은 수지 0.65g을, 오르가노실리카졸용액(Nissan Chemical Industries, Ltd.제〔상품명〕IPA-ST, 분산매는 이소프로판올, 실리카농도는 30질량%, 평균입자경 10~15nm) 0.38g, 테트라메톡시메틸글리콜우릴 0.13g, 프로필렌글리콜모노메틸에테르 28.8g에 첨가하여 용액으로 하였다. 그 후, 구멍직경 0.2μm의 폴리에틸렌제 마이크로필터를 이용하여 여과하고, 조성물(a3-4)의 용액을 조제하였다.
0.65 g of the resin obtained in Synthesis Example 1, 0.38 g of an organosilica sol solution (Nissan Chemical Industries, Ltd. [brand name] IPA-ST, the dispersion medium is isopropanol, the silica concentration is 30% by mass, average particle size 10 to 15 nm); It was added to 0.13 g of tetramethoxymethyl glycoluril and 28.8 g of propylene glycol monomethyl ether, and it was set as the solution. Thereafter, it was filtered using a polyethylene microfilter having a pore diameter of 0.2 µm to prepare a solution of the composition (a3-4).

<조성물(a3)에 상당하는 표면조화재 조제예 5><Preparation example 5 of surface roughening material equivalent to composition (a3)>

합성예 1에서 얻은 수지 0.65g을, 오르가노실리카졸용액(Nissan Chemical Industries, Ltd.제〔상품명〕MIBK-ST, 분산매는 메틸이소부틸케톤, 실리카농도는 30질량%, 평균입자경 10~15nm) 0.38g, 테트라메톡시메틸글리콜우릴 0.13g, 프로필렌글리콜모노메틸에테르 28.8g에 첨가하여 용액으로 하였다. 그 후, 구멍직경 0.2μm의 폴리에틸렌제 마이크로필터를 이용하여 여과하고, 조성물(a3-5)의 용액을 조제하였다.
0.65 g of the resin obtained in Synthesis Example 1 was mixed with an organosilica sol solution (MIBK-ST manufactured by Nissan Chemical Industries, Ltd. [brand name] MIBK-ST as a dispersion medium, a silica concentration of 30 mass %, an average particle size of 10 to 15 nm) 0.38 g, 0.13 g of tetramethoxymethyl glycoluril, and 28.8 g of propylene glycol monomethyl ether were added to make a solution. Then, it filtered using the polyethylene microfilter with a pore diameter of 0.2 micrometer, and the solution of the composition (a3-5) was prepared.

<조성물(a3)에 상당하는 표면조화재 조제예 6><Preparation example 6 of surface roughening material equivalent to composition (a3)>

합성예 1에서 얻은 수지 0.65g을, 오르가노실리카졸용액(Nissan Chemical Industries, Ltd.제〔상품명〕IPA-ST-L, 분산매는 이소프로판올, 실리카농도는 30질량%, 평균입자경 40~50nm) 0.38g, 테트라메톡시메틸글리콜우릴 0.13g, 프로필렌글리콜모노메틸에테르 28.8g에 첨가하여 용액으로 하였다. 그 후, 구멍직경 0.2μm의 폴리에틸렌제 마이크로필터를 이용하여 여과하고, 조성물(a3-6)의 용액을 조제하였다.
0.65 g of the resin obtained in Synthesis Example 1 was mixed with an organosilica sol solution (Nissan Chemical Industries, Ltd. [brand name] IPA-ST-L, the dispersion medium was isopropanol, the silica concentration was 30 mass %, the average particle size was 40 to 50 nm) 0.38 g, 0.13 g of tetramethoxymethyl glycoluril, and 28.8 g of propylene glycol monomethyl ether were added to prepare a solution. Thereafter, it was filtered using a polyethylene microfilter having a pore diameter of 0.2 µm to prepare a solution of the composition (a3-6).

<조성물(a3)에 상당하는 표면조화재 조제예 7><Preparation example 7 of surface roughening material equivalent to composition (a3)>

합성예 1에서 얻은 수지 0.65g을, 오르가노실리카졸용액(Nissan Chemical Industries, Ltd.제〔상품명〕MIBK-ST-L, 분산매는 메틸이소부틸케톤, 실리카농도는 30질량%, 평균입자경 40~50nm) 0.65g, 테트라메톡시메틸글리콜우릴 0.13g, 프로필렌글리콜모노메틸에테르 28.8g에 첨가하여 용액으로 하였다. 그 후, 구멍직경 0.2μm의 폴리에틸렌제 마이크로필터를 이용하여 여과하고, 조성물(a3-7)의 용액을 조제하였다.
0.65 g of the resin obtained in Synthesis Example 1 was mixed with an organosilica sol solution (MIBK-ST-L manufactured by Nissan Chemical Industries, Ltd. [brand name], the dispersion medium was methyl isobutyl ketone, the silica concentration was 30 mass %, the average particle diameter was 40 to 50 nm) 0.65 g, tetramethoxymethyl glycoluril 0.13 g, and propylene glycol monomethyl ether 28.8 g were added to make it a solution. Thereafter, it was filtered using a polyethylene microfilter having a pore diameter of 0.2 µm to prepare a solution of the composition (a3-7).

<조성물(b3)에 상당하는 유기 하드마스크재 조제예 1><Preparation example 1 of organic hard mask material corresponding to composition (b3)>

합성예 4에서 얻은 수지 2g에, 테트라메톡시메틸글리콜우릴 0.3g, 피리디늄-p-톨루엔설포네이트 0.03g, 계면활성제(DIC corporation제, 품명: MEGAFAC 〔상품명〕R-40, 성분은 불소계 계면활성제) 0.002g, 프로필렌글리콜모노메틸에테르아세테이트 6.8g, 프로필렌글리콜모노메틸에테르 15.8g에 용해시켜 용액으로 하였다. 그 후, 구멍직경 0.2μm의 폴리에틸렌제 마이크로필터를 이용하여 여과하고, 조성물(b3-1)의 용액을 조제하였다.
To 2 g of the resin obtained in Synthesis Example 4, 0.3 g of tetramethoxymethyl glycoluril, 0.03 g of pyridinium-p-toluenesulfonate, a surfactant (manufactured by DIC Corporation, product name: MEGAFAC [brand name] R-40, component is a fluorine-based interface (activator) 0.002 g, propylene glycol monomethyl ether acetate 6.8 g, and propylene glycol monomethyl ether 15.8 g were dissolved in it, and it was set as the solution. Then, it filtered using the polyethylene microfilter with a pore diameter of 0.2 micrometer, and the solution of the composition (b3-1) was prepared.

<실시예 1><Example 1>

유기 하드마스크재 조제예 1에서 얻어진 조성물(b3-1)의 용액을 스핀코터로 기판에 도포하고, 240℃ 1분간 소성하여 150nm의 유기수지층(B)(유기 하드마스크층)을 형성하였다. 얻어진 유기수지층(B)(유기 하드마스크층) 상에 표면조화재 조제예 1에서 얻어진 조성물(a3-1)의 용액을 스핀코터로 기판에 도포하고, 240℃ 1분간 소성하여 유기수지층(A)(표면조화층)을 형성하였다.
The solution of the composition (b3-1) obtained in Preparation Example 1 of the organic hard mask material was applied to the substrate by a spin coater, and baked at 240° C. for 1 minute to form an organic resin layer (B) (organic hard mask layer) having a thickness of 150 nm. On the obtained organic resin layer (B) (organic hard mask layer), the solution of the composition (a3-1) obtained in Preparation Example 1 of the surface roughening material was applied to the substrate with a spin coater, and baked at 240° C. for 1 minute to obtain the organic resin layer (A) (surface roughening layer) was formed.

<실시예 2><Example 2>

유기 하드마스크재 조제예 1에서 얻어진 조성물(b3-1)의 용액을 스핀코터로 기판에 도포하고, 240℃ 1분간 소성하여 150nm의 유기수지층(B)(유기 하드마스크층)을 형성하였다. 얻어진 유기수지층(B)(유기 하드마스크층) 상에 표면조화재 조제예 2에서 얻어진 조성물(a3-2)의 용액을 스핀코터로 기판에 도포하고, 240℃ 1분간 소성하여 유기수지층(A)(표면조화층)을 형성하였다.
The solution of the composition (b3-1) obtained in Preparation Example 1 of the organic hard mask material was applied to the substrate by a spin coater, and baked at 240° C. for 1 minute to form an organic resin layer (B) (organic hard mask layer) having a thickness of 150 nm. On the obtained organic resin layer (B) (organic hard mask layer), the solution of the composition (a3-2) obtained in Preparation Example 2 of the surface roughening material was applied to the substrate with a spin coater, and baked at 240° C. for 1 minute to obtain the organic resin layer (A) (surface roughening layer) was formed.

<실시예 3><Example 3>

유기 하드마스크재 조제예 1에서 얻어진 조성물(b3-1)의 용액을 스핀코터로 기판에 도포하고, 240℃ 1분간 소성하여 150nm의 유기수지층(B)(유기 하드마스크층)을 형성하였다. 얻어진 유기수지층(B)(유기 하드마스크층) 상에 표면조화재 조제예 3에서 얻어진 조성물(a3-3)의 용액을 스핀코터로 기판에 도포하고, 240℃ 1분간 소성하여 유기수지층(A)(표면조화층)을 형성하였다.
The solution of the composition (b3-1) obtained in Preparation Example 1 of the organic hard mask material was applied to the substrate by a spin coater, and baked at 240° C. for 1 minute to form an organic resin layer (B) (organic hard mask layer) having a thickness of 150 nm. On the obtained organic resin layer (B) (organic hard mask layer), the solution of the composition (a3-3) obtained in Preparation Example 3 of the surface roughening material was applied to the substrate with a spin coater, and baked at 240° C. for 1 minute to obtain the organic resin layer (A) (surface roughening layer) was formed.

<실시예 4><Example 4>

유기 하드마스크재 조제예 1에서 얻어진 조성물(b3-1)의 용액을 스핀코터로 기판에 도포하고, 240℃ 1분간 소성하여 150nm의 유기수지층(B)(유기 하드마스크층)을 형성하였다. 얻어진 유기수지층(B)(유기 하드마스크층) 상에 표면조화재 조제예 4에서 얻어진 조성물(a3-4)의 용액을 스핀코터로 기판에 도포하고, 240℃ 1분간 소성하여 유기수지층(A)(표면조화층)을 형성하였다.
The solution of the composition (b3-1) obtained in Preparation Example 1 of the organic hard mask material was applied to the substrate by a spin coater, and baked at 240° C. for 1 minute to form an organic resin layer (B) (organic hard mask layer) having a thickness of 150 nm. On the obtained organic resin layer (B) (organic hard mask layer), the solution of the composition (a3-4) obtained in Preparation Example 4 of the surface roughening material was applied to the substrate by a spin coater, and baked at 240° C. for 1 minute to obtain the organic resin layer (A) (surface roughening layer) was formed.

<실시예 5><Example 5>

유기 하드마스크재 조제예 1에서 얻어진 조성물(b3-1)의 용액을 스핀코터로 기판에 도포하고, 240℃ 1분간 소성하여 150nm의 유기수지층(B)(유기 하드마스크층)을 형성하였다. 얻어진 유기수지층(B)(유기 하드마스크층) 상에 표면조화재 조제예 5에서 얻어진 조성물(a3-5)의 용액을 스핀코터로 기판에 도포하고, 240℃ 1분간 소성하여 유기수지층(A)(표면조화층)을 형성하였다.
The solution of the composition (b3-1) obtained in Preparation Example 1 of the organic hard mask material was applied to the substrate by a spin coater, and baked at 240° C. for 1 minute to form an organic resin layer (B) (organic hard mask layer) having a thickness of 150 nm. On the obtained organic resin layer (B) (organic hard mask layer), the solution of the composition (a3-5) obtained in Preparation Example 5 of the surface roughening material was applied to the substrate with a spin coater, and baked at 240° C. for 1 minute to obtain the organic resin layer (A) (surface roughening layer) was formed.

<실시예 6><Example 6>

유기 하드마스크재 조제예 1에서 얻어진 조성물(b3-1)의 용액을 스핀코터로 기판에 도포하고, 240℃ 1분간 소성하여 150nm의 유기수지층(B)(유기 하드마스크층)을 형성하였다. 얻어진 유기수지층(B)(유기 하드마스크층) 상에 표면조화재 조제예 6에서 얻어진 조성물(a3-6)의 용액을 스핀코터로 기판에 도포하고, 240℃ 1분간 소성하여 유기수지층(A)(표면조화층)을 형성하였다.
The solution of the composition (b3-1) obtained in Preparation Example 1 of the organic hard mask material was applied to the substrate by a spin coater, and baked at 240° C. for 1 minute to form an organic resin layer (B) (organic hard mask layer) having a thickness of 150 nm. On the obtained organic resin layer (B) (organic hard mask layer), the solution of the composition (a3-6) obtained in Preparation Example 6 of the surface roughening material was applied to the substrate with a spin coater, and baked at 240° C. for 1 minute to obtain the organic resin layer (A) (surface roughening layer) was formed.

<실시예 7><Example 7>

유기 하드마스크재 조제예 1에서 얻어진 조성물(b3-1)의 용액을 스핀코터로 기판에 도포하고, 240℃ 1분간 소성하여 150nm의 유기수지층(B)(유기 하드마스크층)을 형성하였다. 얻어진 유기수지층(B)(유기 하드마스크층) 상에 표면조화재 조제예 7에서 얻어진 조성물(a3-7)의 용액을 스핀코터로 기판에 도포하고, 240℃ 1분간 소성하여 유기수지층(A)(표면조화층)을 형성하였다.
The solution of the composition (b3-1) obtained in Preparation Example 1 of the organic hard mask material was applied to the substrate by a spin coater, and baked at 240° C. for 1 minute to form an organic resin layer (B) (organic hard mask layer) having a thickness of 150 nm. On the obtained organic resin layer (B) (organic hard mask layer), the solution of the composition (a3-7) obtained in Preparation Example 7 of the surface roughening material was applied to the substrate with a spin coater, and baked at 240° C. for 1 minute to obtain the organic resin layer (A) (surface roughening layer) was formed.

<실시예 8><Example 8>

표면조화재 조제예 1에서 얻어진 조성물(a3-1)의 용액을 스핀코터로 기판에 도포하고, 240℃ 1분간 소성하여 유기수지층(A)(표면조화층)을 형성하였다.
The solution of the composition (a3-1) obtained in Preparation Example 1 of the surface roughening material was applied to the substrate with a spin coater, and baked at 240° C. for 1 minute to form an organic resin layer (A) (surface roughening layer).

<비교예 1><Comparative Example 1>

유기 하드마스크재 조제예 1에서 얻어진 조성물(b3-1)의 용액을 스핀코터로 기판에 도포하고, 240℃ 1분간 소성하여 유기수지층(B)(유기 하드마스크층)을 형성하였다.
The solution of the composition (b3-1) obtained in Organic Hard Mask Material Preparation Example 1 was applied to a substrate by a spin coater, and baked at 240° C. for 1 minute to form an organic resin layer (B) (organic hard mask layer).

[표면조화 평가][Evaluation of surface roughness]

실시예 1~8로부터 얻어진 표면조화층이 형성된 웨이퍼를 RIE-10NR(Samco Inc.제)에 의해 이용하여 에칭을 행하였다. 에칭가스로서 O2가스를 사용하여 실시예 1~7에서는 90초간 에칭하고, 실시예 8과 비교예 1에서는 60초간 에칭함으로써, 표면조화층의 유기성분만을 우선적으로 에칭하였다. 실시예 1~7에서는 유기 하드마스크층을 에칭함으로써 표면조화층을 형성하였다.The wafers with the surface roughening layer obtained in Examples 1 to 8 were etched using RIE-10NR (manufactured by Samco Inc.). By using O 2 gas as the etching gas, etching was performed for 90 seconds in Examples 1 to 7, and by etching for 60 seconds in Examples 8 and 1, only organic components of the surface roughening layer were preferentially etched. In Examples 1 to 7, the surface roughening layer was formed by etching the organic hard mask layer.

얻어진 유기수지층(A) 또는 유기수지층(A)과 유기수지층(B)에 의한 표면조화층에 대하여 주사형 전자현미경(Hitachi S-4800)을 이용하여 형상을 관찰하였다(도 1~도 5를 참조).The shape of the obtained organic resin layer (A) or the surface roughened layer formed of the organic resin layer (A) and the organic resin layer (B) was observed using a scanning electron microscope (Hitachi S-4800) (refer to FIGS. 1 to 5). ).

마찬가지로 유기수지층(B)만에 의한 표면조화의 형상을 관찰하였다(도 6).
Similarly, the shape of the surface roughening by only the organic resin layer (B) was observed (FIG. 6).

Figure 112016074269605-pct00002

Figure 112016074269605-pct00002

[하지 TEOS 가공 평가][Not TEOS processing evaluation]

실시예 1로부터 얻어진 유기수지층(A)과 유기수지층(B)에 의한 표면조화층이 형성된 웨이퍼를 RIE-10NR(Samco Inc.제)에 의해 이용하여 에칭을 행하였다. 에칭가스로서 O2가스를 사용하여 90초간 에칭함으로써, 표면조화층의 유기성분만을 우선적으로 에칭하고, 다시 유기 하드마스크층을 에칭함으로써 표면조화층을 형성하였다. 계속해서 표면조화층을, 에칭가스로서 C4F8/Ar/O2가스를 사용하여 180초간 에칭함으로써 하층의 TEOS(테트라에톡시실란의 가수분해축합물에 의한 SiO2 피막)의 가공을 행하였다.The wafer on which the surface roughening layer of the organic resin layer (A) and the organic resin layer (B) obtained in Example 1 was formed was etched using RIE-10NR (manufactured by Samco Inc.). By etching for 90 seconds using O 2 gas as an etching gas, only the organic components of the surface roughening layer were preferentially etched, and the organic hard mask layer was again etched to form the surface roughening layer. Subsequently, the surface roughening layer is etched for 180 seconds using C 4 F 8 /Ar/O 2 gas as an etching gas to process the lower TEOS (SiO 2 film by hydrolysis-condensation product of tetraethoxysilane). did

얻어진 기판에 대하여 주사형 전자현미경(Hitachi S-4800)을 이용하여 형상을 관찰하였다(도 7~도 8을 참조).
The shape of the obtained substrate was observed using a scanning electron microscope (Hitachi S-4800) (refer to FIGS. 7 to 8).

산업상 이용가능성Industrial Applicability

본 발명을 통해, 기판의 표면을 조화하는 신규한 방법이 제공된다. 특히, 본 발명의 방법은, 기판 상에 무기물과 유기물이 혼재하는 층을 이용할 수 있으므로, 무기물과 유기물의 산소가스 또는 산성 수용액의 에칭속도차를 이용하여 기판의 표면에 산소가스 또는 산성 수용액에 의해 에칭되는 부분과 에칭되지 않는 표면조화층을 형성할 수 있고, 그리고 다시 그 표면조화층을 마스크로 하여 산소가스 또는 불소계 가스 등의 가스나, 산성 수용액의 에칭에 의해 기판 표면을 조화, 예를 들어 기판 상에 미세한 요철을 형성할 수 있다. 또한, 이들 성질을 이용하여 LED 등의 광추출층에 적용할 수 있다.Through the present invention, a novel method of roughening the surface of a substrate is provided. In particular, since the method of the present invention can use a layer in which an inorganic material and an organic material are mixed on a substrate, the oxygen gas or an acidic aqueous solution is applied to the surface of the substrate by using the etching rate difference between the oxygen gas or the acidic aqueous solution of the inorganic material and the organic material. An etched portion and a non-etched surface roughening layer can be formed, and again using the surface roughening layer as a mask, the substrate surface is roughened by etching with a gas such as oxygen gas or fluorine-based gas or an acidic aqueous solution, for example Fine irregularities can be formed on the substrate. In addition, by using these properties, it can be applied to a light extraction layer such as an LED.

Claims (15)

기판 상에 또는 기판보다 상방의 층 상에 유기수지(b2)를 포함하는 조성물(b3)을 도포하고 건조와 경화를 행해 유기수지층(B)을 형성하고, 다시 유기수지층(B) 상에 무기입자(a1)와 유기수지(a2)를 포함하는 조성물(a3)을 도포하고 건조와 경화를 행해 유기수지층(A)을 형성하는 제1 공정과,
이 기판의 상방으로부터 에칭을 행해 동일기판의 표면을 조화하는 제2 공정을 포함하고,
상기 유기수지층(A)은, 유기수지(a2) 100질량부에 대하여 무기입자(a1)를 5~50질량부의 비율로 함유하고
상기 유기수지(b2)로서 노볼락 수지를 이용하는 것인 표면조화방법.
A composition (b3) containing an organic resin (b2) is applied on a substrate or on a layer above the substrate, followed by drying and curing to form an organic resin layer (B), and again inorganic particles on the organic resin layer (B) A first step of forming an organic resin layer (A) by applying a composition (a3) containing (a1) and an organic resin (a2), drying and curing;
a second step of roughening the surface of the same substrate by etching from above the substrate;
The organic resin layer (A) contains the inorganic particles (a1) in a ratio of 5 to 50 parts by mass relative to 100 parts by mass of the organic resin (a2),
A surface roughening method of using a novolak resin as the organic resin (b2).
제1항에 있어서,
상기 에칭은 적어도 1회 이루어지며, 그 중 적어도 1회의 에칭은 산소계 가스에 의한 가스에칭인 표면조화방법.
According to claim 1,
The etching is performed at least once, of which at least one etching is gas etching using an oxygen-based gas.
제1항에 있어서,
상기 에칭은 산성 수용액에 의한 습식에칭인 표면조화방법.
According to claim 1,
The etching is a surface roughening method that is wet etching with an acidic aqueous solution.
제1항에 있어서,
상기 무기입자(a1)는 평균입자경 5~1000nm의 금속산화물입자인 표면조화방법.
According to claim 1,
The inorganic particle (a1) is a surface roughening method of a metal oxide particle having an average particle diameter of 5 to 1000 nm.
제1항에 있어서,
상기 조성물(a3)은, 무기입자(a1)로서 실리카가 유기용제에 분산된 실리카졸과, 유기수지(a2)의 용액을 포함하는 것인 표면조화방법.
According to claim 1,
The composition (a3) is a surface roughening method comprising a silica sol in which silica is dispersed in an organic solvent as inorganic particles (a1) and a solution of an organic resin (a2).
삭제delete 제1항에 있어서,
상기 유기수지(a2)는, 하이드록시기, 카르복실기, 아미노기, 또는 이들의 조합으로 이루어진 관능기를 포함하는 반복단위구조를 가지고 이루어진 것인 표면조화방법.
According to claim 1,
The organic resin (a2) has a repeating unit structure comprising a functional group consisting of a hydroxyl group, a carboxyl group, an amino group, or a combination thereof.
제1항에 있어서,
에칭이 기판 상에 형성된 (높이)/(직경)으로 표시되는 구멍의 애스팩트비로 0.1~20의 범위로 형성할 때까지 행해지는 표면조화방법.
According to claim 1,
A surface roughening method in which etching is performed until forming in the range of 0.1 to 20 with an aspect ratio of a hole expressed by (height)/(diameter) formed on the substrate.
제1항 내지 제5항, 제7항 및 제8항 중 어느 한 항에 있어서,
상기 유기수지층(A)은 0.001~10μm의 막두께를 갖는 층인 표면조화방법.
9. The method according to any one of claims 1 to 5, 7 and 8,
The surface roughening method wherein the organic resin layer (A) is a layer having a film thickness of 0.001 to 10 μm.
삭제delete 삭제delete 제1항에 있어서,
상기 유기수지층(B)은 0.001~10μm의 막두께를 갖는 층인 표면조화방법.
According to claim 1,
The surface roughening method wherein the organic resin layer (B) is a layer having a film thickness of 0.001 to 10 μm.
제1항 내지 제5항, 제7항 및 제8항 중 어느 한 항에 있어서,
상기 조성물(a3)은 추가로 가교제 및 가교촉매를 함유하고 있는 표면조화방법.
9. The method according to any one of claims 1 to 5, 7 and 8,
The composition (a3) further comprises a crosslinking agent and a crosslinking catalyst.
제1항 내지 제5항, 제7항 및 제8항 중 어느 한 항에 있어서,
형성되는 표면조화층은 LED의 광추출층인 표면조화방법.
9. The method according to any one of claims 1 to 5, 7 and 8,
The surface roughening layer formed is a surface roughening method that is a light extraction layer of an LED.
제1항에 있어서,
상기 조성물(b3)은 추가로 가교제 및 가교촉매를 함유하고 있는 표면조화방법.
According to claim 1,
The composition (b3) further comprises a crosslinking agent and a crosslinking catalyst.
KR1020167020998A 2014-03-28 2015-03-27 Surface roughening method KR102358180B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014068009 2014-03-28
JPJP-P-2014-068009 2014-03-28
PCT/JP2015/059755 WO2015147294A1 (en) 2014-03-28 2015-03-27 Surface roughening method

Publications (2)

Publication Number Publication Date
KR20160137958A KR20160137958A (en) 2016-12-02
KR102358180B1 true KR102358180B1 (en) 2022-02-04

Family

ID=54195798

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020167020998A KR102358180B1 (en) 2014-03-28 2015-03-27 Surface roughening method

Country Status (5)

Country Link
JP (1) JP6551691B2 (en)
KR (1) KR102358180B1 (en)
CN (1) CN106061627B (en)
TW (1) TWI651017B (en)
WO (1) WO2015147294A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102492366B1 (en) * 2015-09-15 2023-01-27 닛산 가가쿠 가부시키가이샤 Surface roughening method by wet treatment
CN108770378A (en) * 2015-12-08 2018-11-06 荷兰应用自然科学研究组织Tno Shining in improved OLED
TWI803390B (en) * 2022-07-15 2023-05-21 三福化工股份有限公司 Etching composition and etching method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110012086A1 (en) * 2009-07-15 2011-01-20 General Electric Company Nanostructured functional coatings and devices

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3313741B2 (en) * 1991-08-02 2002-08-12 大日本印刷株式会社 Manufacturing method of partially evaporated decorative sheet
JP2006107744A (en) 2004-09-30 2006-04-20 Toshiba Corp Organic electroluminescent display device
JP4887612B2 (en) * 2004-10-20 2012-02-29 日油株式会社 Anti-reflection material and electronic image display device using the same
CN1921156A (en) * 2005-08-26 2007-02-28 鸿富锦精密工业(深圳)有限公司 Luminous dipolar object light source module and and method for preparing same
JP5214284B2 (en) 2008-03-10 2013-06-19 株式会社東芝 Light extraction layer for light emitting device, and organic electroluminescence element using the same
EP2380045B1 (en) * 2008-12-30 2017-06-28 3M Innovative Properties Company Antireflective articles and methods of making the same
KR101853598B1 (en) * 2010-03-23 2018-04-30 가부시키가이샤 아사히 러버 Silicone resin reflective substrate, manufacturing method for same, and base material composition used in reflective substrate
US9085484B2 (en) * 2010-04-30 2015-07-21 Corning Incorporated Anti-glare surface treatment method and articles thereof
JP2012175052A (en) * 2011-02-24 2012-09-10 Stanley Electric Co Ltd Semiconductor light-emitting device manufacturing method
US8692446B2 (en) * 2011-03-17 2014-04-08 3M Innovative Properties Company OLED light extraction films having nanoparticles and periodic structures
JP2013072929A (en) * 2011-09-27 2013-04-22 Toshiba Corp Display device
CN102540562A (en) * 2012-01-06 2012-07-04 中国电子科技集团公司第五十五研究所 High-transmittance low-reflection electromagnetic screening structure for liquid crystal display screen and manufacturing method for structure
US20150056412A1 (en) * 2012-03-26 2015-02-26 3M Innovative Properties Company Article and method of making the same
JP6371032B2 (en) * 2012-08-01 2018-08-08 スリーエム イノベイティブ プロパティズ カンパニー Anti-reflective hard coat and anti-reflective article
KR102492366B1 (en) * 2015-09-15 2023-01-27 닛산 가가쿠 가부시키가이샤 Surface roughening method by wet treatment

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110012086A1 (en) * 2009-07-15 2011-01-20 General Electric Company Nanostructured functional coatings and devices

Also Published As

Publication number Publication date
CN106061627B (en) 2020-08-04
KR20160137958A (en) 2016-12-02
TWI651017B (en) 2019-02-11
TW201611659A (en) 2016-03-16
JPWO2015147294A1 (en) 2017-04-13
JP6551691B2 (en) 2019-07-31
CN106061627A (en) 2016-10-26
WO2015147294A1 (en) 2015-10-01

Similar Documents

Publication Publication Date Title
JP7050137B2 (en) Stable metal compounds as hard masks and filling materials, their compositions, and how to use them
KR101158298B1 (en) Composition For Forming Nitride Coating Film For Hard Mask
JP5062420B2 (en) Lithographic underlayer film forming composition comprising polysilane compound
JP6471873B2 (en) Resist underlayer film forming composition
US9409793B2 (en) Spin coatable metallic hard mask compositions and processes thereof
JP4793583B2 (en) Lithographic underlayer film forming composition containing metal oxide
KR102511277B1 (en) Resist underlayer film forming composition containing an amide solvent
KR102358180B1 (en) Surface roughening method
US9152051B2 (en) Antireflective coating composition and process thereof
KR102492366B1 (en) Surface roughening method by wet treatment
KR20180123155A (en) A resist underlayer film forming composition comprising a compound having a glycoluril skeleton as an additive
JP2021141205A (en) Surface-roughening method and substrate having surface-roughened layer
KR20200090917A (en) Crack-resistant polysiloxane dielectric planarizing compositions, methods and films

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant