KR102356174B1 - Deposition Method of Coating for Body Insertion Medical Device - Google Patents

Deposition Method of Coating for Body Insertion Medical Device Download PDF

Info

Publication number
KR102356174B1
KR102356174B1 KR1020190159794A KR20190159794A KR102356174B1 KR 102356174 B1 KR102356174 B1 KR 102356174B1 KR 1020190159794 A KR1020190159794 A KR 1020190159794A KR 20190159794 A KR20190159794 A KR 20190159794A KR 102356174 B1 KR102356174 B1 KR 102356174B1
Authority
KR
South Korea
Prior art keywords
coating film
delete delete
sample
chamber
medical device
Prior art date
Application number
KR1020190159794A
Other languages
Korean (ko)
Other versions
KR20210071119A (en
Inventor
김왕렬
박인욱
김준호
허성보
김현동
Original Assignee
한국생산기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생산기술연구원 filed Critical 한국생산기술연구원
Priority to KR1020190159794A priority Critical patent/KR102356174B1/en
Publication of KR20210071119A publication Critical patent/KR20210071119A/en
Application granted granted Critical
Publication of KR102356174B1 publication Critical patent/KR102356174B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/3094Designing or manufacturing processes
    • A61F2/30942Designing or manufacturing processes for designing or making customized prostheses, e.g. using templates, CT or NMR scans, finite-element analysis or CAD-CAM techniques
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/32Joints for the hip
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/28Materials for coating prostheses
    • A61L27/30Inorganic materials
    • A61L27/303Carbon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3435Applying energy to the substrate during sputtering
    • C23C14/345Applying energy to the substrate during sputtering using substrate bias
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0227Pretreatment of the material to be coated by cleaning or etching
    • C23C16/0245Pretreatment of the material to be coated by cleaning or etching by etching with a plasma
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/046Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material with at least one amorphous inorganic material layer, e.g. DLC, a-C:H, a-C:Me, the layer being doped or not
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2002/30925Special external or bone-contacting surface, e.g. coating for improving bone ingrowth etched
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2002/30929Special external or bone-contacting surface, e.g. coating for improving bone ingrowth having at least two superposed coatings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00389The prosthesis being coated or covered with a particular material
    • A61F2310/00574Coating or prosthesis-covering structure made of carbon, e.g. of pyrocarbon
    • A61F2310/0058Coating made of diamond or of diamond-like carbon DLC
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/60Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a special physical form
    • A61L2300/606Coatings
    • A61L2300/608Coatings having two or more layers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2400/00Materials characterised by their function or physical properties
    • A61L2400/18Modification of implant surfaces in order to improve biocompatibility, cell growth, fixation of biomolecules, e.g. plasma treatment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/24Materials or treatment for tissue regeneration for joint reconstruction

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Transplantation (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Inorganic Chemistry (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Heart & Thoracic Surgery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cardiology (AREA)
  • Vascular Medicine (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Geometry (AREA)
  • Plasma & Fusion (AREA)
  • Dermatology (AREA)
  • Medicinal Chemistry (AREA)
  • Epidemiology (AREA)
  • Physical Vapour Deposition (AREA)
  • Materials For Medical Uses (AREA)

Abstract

본 발명에 따른 신체삽입용 의료기기의 코팅막 증착방법은, 샘플에 대해 전처리를 수행하는 (a)단계, 챔버 내에 수용된 상기 샘플의 표면에 타이타늄(Ti) 및 질화타이타늄(TiN) 코팅막으로 중간층을 형성하는 (b)단계 및 상기 중간층 상에 DLC(Diamond-like Carbon) 코팅막으로 최종층을 형성하는 (c)단계를 포함한다.The method for depositing a coating film for a medical device for body implantation according to the present invention comprises the steps of (a) performing pretreatment on a sample, and forming an intermediate layer with a titanium (Ti) and titanium nitride (TiN) coating film on the surface of the sample accommodated in a chamber (b) and (c) of forming a final layer with a DLC (Diamond-like Carbon) coating film on the intermediate layer.

Description

신체삽입용 의료기기의 코팅막 증착방법{Deposition Method of Coating for Body Insertion Medical Device}Coating film deposition method of medical device for body insertion {Deposition Method of Coating for Body Insertion Medical Device}

본 발명은 신체삽입용 의료기기의 코팅막 증착방법에 관한 것으로서, 보다 상세하게는 신체삽입용 의료기기의 표면에 중간층 및 DLC코팅막으로 형성되는 최종층을 형성하여 결함이 없는 코팅막을 형성시키기 위한 신체삽입용 의료기기의 코팅막 증착방법에 관한 것이다.The present invention relates to a method for depositing a coating film for a medical device for body insertion, and more particularly, to form a final layer formed of an intermediate layer and a DLC coating film on the surface of a medical device for body insertion to form a coating film without defects. It relates to a coating film deposition method for medical devices.

최근 의료기술이 발달하고 인구의 고령화로 인한 사회의 의료복지 기능이 강조되고 있으며, 치료용 또는 생체 대체용으로 인체 내에 투입되어 사용되는 신체 삽입용 의료기기의 중요성이 부각되고 있다.Recently, medical technology has developed and the social welfare function is being emphasized due to the aging of the population, and the importance of medical devices for insertion into the body that are used in the body for treatment or replacement of a living body is being emphasized.

그리고 이와 같은 신체삽입용 의료기기에서 가장 우선시되는 점은 신체적합성, 안정성이라 할 수 있다.And it can be said that body composition and stability are the most prioritized points in such a medical device for body insertion.

기존에 신체삽입용 의료기기로서 사용되는 소재로는 고분자, 세라믹 물질이 있으며, 금속의 경우에는 신체에 무해한 타이타늄, 타이타늄 합금, 코발트 합금 등을 위주로 하여 적용되고 있다.Materials used as medical devices for body insertion in the past include polymers and ceramic materials, and in the case of metals, titanium, titanium alloys, cobalt alloys, etc., which are harmless to the body, are mainly applied.

특히 신체삽입용 의료기기가 사용되는 대표적인 부위는 고관절 부분으로서, 고관절 마모에 의한 고관절치환술이 널리 시술되고 있다. 하지만, 아직까지 이러한 의료기기 표면에 코팅을 적용시켜 사용하는 사례는 매우 적다.In particular, a representative part of a body implantable medical device is the hip joint, and hip joint replacement due to wear of the hip joint is widely used. However, there are still very few cases in which coatings are applied to the surface of such medical devices.

신체삽입용 의료기기의 경우, 절제술을 통하여 몸속에 삽입되어 장기간 유지되어야 하기 때문에 신체에 무해하며, 조직과 반응 시 다른 해를 끼치지 않아야 하며, 독성이 없고, 마찰력이 낮으며, 부식에 강해야 하기 때문에 용이하게 적용이 어렵다.In the case of medical devices for body insertion, they must be inserted into the body through resection and maintained for a long period of time, so they must be harmless to the body, do not cause any other harm when reacting with tissues, have no toxicity, have low friction, and be resistant to corrosion. Therefore, it is difficult to apply easily.

따라서 이와 같은 문제점들을 해결하기 위한 방법이 요구된다.Therefore, a method for solving these problems is required.

한국등록특허 제10-0266850호Korean Patent Registration No. 10-0266850

본 발명은 상술한 종래 기술의 문제점을 해결하기 위하여 안출된 발명으로서, 신체삽입용 의료기기의 표면에 결함이 없는 코팅막을 형성시켜 신체적합성, 안정성을 향상시키기 위한 신체삽입용 의료기기의 코팅막 증착방법을 제공하기 위한 목적을 가진다.The present invention is an invention devised to solve the problems of the prior art, and a method for depositing a coating film for a medical device for body insertion to form a coating film without defects on the surface of the medical device for body insertion to improve physical composition and stability has the purpose to provide

본 발명의 과제들은 이상에서 언급한 과제들로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.The problems of the present invention are not limited to the problems mentioned above, and other problems not mentioned will be clearly understood by those skilled in the art from the following description.

상기한 목적을 달성하기 위한 본 발명의 신체삽입용 의료기기의 코팅막 증착방법은, 샘플에 대해 전처리를 수행하는 (a)단계, 챔버 내에 수용된 상기 샘플의 표면에 타이타늄(Ti) 및 질화타이타늄(TiN) 코팅막으로 중간층을 형성하는 (b)단계 및 상기 중간층 상에 DLC(Diamond-like Carbon) 코팅막으로 최종층을 형성하는 (c)단계를 포함한다.The method for depositing a coating film for a medical device for insertion into the body of the present invention for achieving the above object is a step (a) of performing a pretreatment on a sample, titanium (Ti) and titanium nitride (TiN) on the surface of the sample accommodated in the chamber ) (b) of forming an intermediate layer with a coating film and (c) of forming a final layer with a DLC (Diamond-like Carbon) coating film on the intermediate layer.

이때 상기 (a)단계는, 상기 샘플을 세척용액에 세척하는 (a-1)단계 및 상기 샘플을 챔버에 장입하고, 이온소스를 이용하여 플라즈마 에칭을 수행하는 (a-2)단계를 포함할 수 있다.In this case, the step (a) may include a step (a-1) of washing the sample in a cleaning solution and a step (a-2) of loading the sample into a chamber and performing plasma etching using an ion source. can

그리고 상기 (b)단계는, 스퍼터링 방식을 통해 수행되며, 스퍼터 타겟에 500~700V의 전압을 가하여 5~8x10-3torr에서 증착을 수행하여 상기 중간층을 형성할 수 있다.And the step (b) is performed through a sputtering method, and the intermediate layer can be formed by applying a voltage of 500 to 700 V to the sputter target and performing deposition at 5 to 8x10 -3 torr.

또한 상기 (b)단계는, 200~300℃의 온도 분위기에서 30분~1시간 동안 수행되는 것으로 할 수 있다.In addition, the step (b) may be performed for 30 minutes to 1 hour in a temperature atmosphere of 200 to 300 °C.

그리고 상기 (c)단계는, 상기 챔버 내에 처리가스를 주입하고, 플라즈마 밀도를 증가시켜 상기 최종층을 형성할 수 있다.In the step (c), a processing gas may be injected into the chamber and the plasma density may be increased to form the final layer.

여기서 상기 처리가스는 아세틸렌 가스, 메탄 가스 및 벤젠 가스 중 적어도 어느 하나를 포함하는 것으로 할 수 있다.Here, the processing gas may include at least one of acetylene gas, methane gas, and benzene gas.

또한 상기 (c)단계는, 상기 처리가스를 400~800sccm의 유량으로 공급하는 것으로 할 수 있다.In addition, in step (c), the processing gas may be supplied at a flow rate of 400 to 800 sccm.

더불어 상기 (c)단계는, 200~400℃의 온도 분위기에서 수행되는 것으로 할 수 있다.In addition, step (c) may be performed in a temperature atmosphere of 200 to 400 °C.

한편 상기 (c)단계는, 선형이온원을 이용하여 상기 최종층의 증착을 보조할 수 있다.Meanwhile, in step (c), the deposition of the final layer may be aided by using a linear ion source.

이때 상기 (c)단계는, 상기 선형이온원을 1000~1500V의 전압 및 1.0~1.5A의 전류 조건으로 가동하는 것으로 할 수 있다.In this case, in step (c), the linear ion source may be operated under the conditions of a voltage of 1000 to 1500 V and a current of 1.0 to 1.5 A.

그리고 상기 (c)단계는, 바이어스 전압(Bias Voltage)을 -500V~-700V로 설정하여 상기 최종층을 증착하는 것으로 할 수 있다.And, the step (c) may be performed by depositing the final layer by setting the bias voltage to -500V to -700V.

또한 상기 (c)단계는, 바이어스 전압(Bias Voltage)을 -700V로 설정하여 상기 최종층을 증착하는 것으로 할 수 있다.Also, in step (c), the final layer may be deposited by setting the bias voltage to -700V.

상기한 과제를 해결하기 위한 본 발명의 신체삽입용 의료기기의 코팅막 증착방법은, 코팅막이 적용된 의료기기가 저마찰력을 가지고, 부식에 강하며 반드시 필요한 인체적합성을 부여할 수 있도록 하는 장점을 가진다.The method for depositing a coating film for a medical device for body insertion of the present invention for solving the above problems has an advantage in that the medical device to which the coating film is applied has a low frictional force, is strong against corrosion, and provides the necessary human compatibility.

또한 본 발명에 의해 중간층 및 최종층이 형성된 의료기기는 표면조도가 상대적으로 뛰어나고, 핀홀(Pin Hole) 또는 매크로 파티클(Macro Particle)과 같은 결함이 없는 코팅막을 형성시킬 수 있으므로, 마찰을 감소시키고 생체유착을 방지하여 인공 관절에 대한 사용 수명을 늘림으로써 환자의 정신적, 신체적, 경제적 부담을 줄일 수 있는 장점이 있다.In addition, the medical device in which the intermediate layer and the final layer are formed according to the present invention has relatively excellent surface roughness and can form a coating film without defects such as pin holes or macro particles, thereby reducing friction and reducing the biomaterials. It has the advantage of reducing the mental, physical, and economic burden of the patient by preventing adhesions and extending the lifespan of the artificial joint.

본 발명의 효과들은 이상에서 언급한 효과들로 제한되지 않으며, 언급되지 않은 또 다른 효과들은 청구범위의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.Effects of the present invention are not limited to the effects mentioned above, and other effects not mentioned will be clearly understood by those skilled in the art from the description of the claims.

도 1은 본 발명의 일 실시예에 따른 신체삽입용 의료기기의 코팅막 증착방법을 적용하기 위한 코팅막 증착장치의 모습을 나타낸 도면;
도 2는 본 발명의 일 실시예에 따른 신체삽입용 의료기기의 코팅막 증착방법의 각 단계를 나타낸 도면;
도 3은 본 발명의 일 실시예에 따른 신체삽입용 의료기기의 코팅막 증착방법에 있어서, 바이어스 전압에 따른 DLC코팅막의 기계적 특성을 나타낸 도면;
도 4는 본 발명의 일 실시예에 따른 신체삽입용 의료기기의 코팅막 증착방법에 의해 코팅막이 증착된 샘플 표면의 FE-SEM이미지;
도 5는 본 발명의 일 실시예에 따른 신체삽입용 의료기기의 코팅막 증착방법에 의해 코팅막이 증착된 샘플의 밀착력 분석 결과를 나타낸 도면; 및
도 6은 본 발명의 일 실시예에 따른 신체삽입용 의료기기의 코팅막 증착방법에 의해 코팅막이 증착된 샘플의 변수 별 표면조도 결과를 나타낸 도면이다.
1 is a view showing a state of a coating film deposition apparatus for applying a coating film deposition method of a medical device for body insertion according to an embodiment of the present invention;
Figure 2 is a view showing each step of the coating film deposition method of the medical device for body insertion according to an embodiment of the present invention;
3 is a view showing the mechanical properties of the DLC coating film according to the bias voltage in the coating film deposition method of the medical device for body insertion according to an embodiment of the present invention;
4 is a FE-SEM image of a sample surface on which a coating film is deposited by a coating film deposition method of a medical device for body insertion according to an embodiment of the present invention;
5 is a view showing the results of analysis of the adhesion force of the coating film deposited by the coating film deposition method of the medical device for body insertion according to an embodiment of the present invention; and
6 is a view showing the surface roughness results for each variable of the sample on which the coating film is deposited by the coating film deposition method of the medical device for body insertion according to an embodiment of the present invention.

이하 본 발명의 목적이 구체적으로 실현될 수 있는 본 발명의 바람직한 실시예를 첨부된 도면을 참조하여 설명한다. 본 실시예를 설명함에 있어서, 동일 구성에 대해서는 동일 명칭 및 동일 부호가 사용되며 이에 따른 부가적인 설명은 생략하기로 한다.Hereinafter, preferred embodiments of the present invention in which the object of the present invention can be specifically realized will be described with reference to the accompanying drawings. In describing the present embodiment, the same names and the same reference numerals are used for the same components, and an additional description thereof will be omitted.

도 1은 본 발명의 일 실시예에 따른 신체삽입용 의료기기의 코팅막 증착방법을 적용하기 위한 코팅막 증착장치의 모습을 나타낸 도면이다.1 is a view showing a state of a coating film deposition apparatus for applying a coating film deposition method of a medical device for body insertion according to an embodiment of the present invention.

도 1에 도시된 바와 같이, 본 발명의 일 실시예에 따른 신체삽입용 의료기기의 코팅막 증착방법을 적용하기 위한 코팅막 증착장치는 수용공간(102)이 형성된 챔버(100)와, 챔버(100)의 일측에 장착되는 이온빔조사유닛(120)과, 챔버(100)의 타측에 장착되는 스퍼터링유닛(130)과, 샘플(10)이 거치되는 지그(110)를 포함한다.As shown in Fig. 1, the coating film deposition apparatus for applying the coating film deposition method of the medical device for body insertion according to an embodiment of the present invention includes a chamber 100 having an accommodation space 102 formed therein, and the chamber 100. It includes an ion beam irradiation unit 120 mounted on one side of the, a sputtering unit 130 mounted on the other side of the chamber 100, and a jig 110 on which the sample 10 is mounted.

이때 본 실시예에서 상기 지그(110)는 중심점을 기준으로 회전 가능하게 구비되는 회전부(112)와, 상기 회전부(112)로부터 수직 방향으로 연장되어 양측에 샘플(10)을 거치할 수 있도록 구비되는 거치부(114)를 포함한다.At this time, in this embodiment, the jig 110 includes a rotating part 112 that is rotatably provided with respect to a central point, and extends in a vertical direction from the rotating part 112 to mount the sample 10 on both sides. It includes a cradle 114 .

그리고 도 2는 본 발명의 일 실시예에 따른 신체삽입용 의료기기의 코팅막 증착방법의 각 단계를 나타낸 도면이다.And Figure 2 is a view showing each step of the coating film deposition method of the medical device for body insertion according to an embodiment of the present invention.

도 2에 도시된 바와 같이, 본 발명의 일 실시예에 따른 신체삽입용 의료기기의 코팅막 증착방법은 샘플에 대해 전처리를 수행하는 (a)단계와, 챔버 내에 수용된 상기 샘플의 표면에 타이타늄(Ti) 및 질화타이타늄(TiN) 코팅막으로 중간층을 형성하는 (b)단계와, 상기 중간층 상에 DLC(Diamond-like Carbon) 코팅막으로 최종층을 형성하는 (c)단계를 포함한다.As shown in FIG. 2 , the method for depositing a coating film for a medical device for body insertion according to an embodiment of the present invention includes (a) performing pretreatment on a sample, and titanium (Ti) on the surface of the sample accommodated in the chamber. ) and (b) forming an intermediate layer with a titanium nitride (TiN) coating film, and (c) forming a final layer with a DLC (Diamond-like Carbon) coating film on the intermediate layer.

여기서 상기 DLC (Diamond-like Carbon) 코팅막은 CVD, PVD 방식 등 다양한 방식을 통하여 증착될 수 있으며, 본 발명에서는 기존 CVD 방식에 Pulsed 파워 서플라이를 이용하여 증착시키며, 이온소스를 동시에 적용시켜 플라즈마 밀도 및 이온에너지를 상승시켜 코팅막의 밀도를 높임으로써 밀착력을 향상시키고, 표면조도 및 마찰계수를 낮추도록 할 수 있다.Here, the DLC (Diamond-like Carbon) coating film can be deposited through various methods such as CVD and PVD methods, and in the present invention, it is deposited using a pulsed power supply in the existing CVD method, and plasma density and By increasing the ion energy to increase the density of the coating film, it is possible to improve the adhesion and lower the surface roughness and friction coefficient.

이와 같은 방식을 이용하면 핀홀(Pin-Hole)이나 매크로 파티클(Macro Particle)과 같은 결함을 줄일 수 있어, 표면조도 및 마찰계수를 낮추는데 큰 효과를 발휘할 수 있게 된다.By using this method, defects such as pin-holes and macro particles can be reduced, and thus, it is possible to exert a great effect in lowering the surface roughness and the coefficient of friction.

또한 이러한 결함이 없어야 신체 내에 삽입하여 사용 시 발생할 수 있는 인공관절의 부식이나 조직유착과 같은 문제의 발생을 줄일 수 있다.In addition, if there are no such defects, it is possible to reduce the occurrence of problems such as corrosion or tissue adhesion of artificial joints that may occur when inserted into the body and used.

그리고 상기 (a)단계는, 상기 샘플을 세척용액에 세척하는 (a-1)단계와, 상기 샘플을 챔버에 장입하고, 이온소스를 이용하여 플라즈마 에칭을 수행하는 (a-2)단계를 포함할 수 있다.And the step (a) includes the step (a-1) of washing the sample in a cleaning solution, and the step (a-2) of loading the sample into a chamber and performing plasma etching using an ion source. can do.

이때 상기 (a-1)단계에서 세척용액은 아세톤 및 IPA용액일 수 있으며, 상기 (a-2)단계는 샘플을 챔버에 장입하고, 이온소스를 이용하여 플라즈마 에칭공정을 거치게 된다. 이와 같은 플라즈마 에칭공정은 샘플의 표면 상태를 여기시켜 밀착력을 향상시키는 효과를 줄 수 있다.In this case, the cleaning solution in step (a-1) may be acetone and IPA solution, and in step (a-2), a sample is charged into a chamber and subjected to a plasma etching process using an ion source. Such a plasma etching process can give an effect of improving adhesion by exciting the surface state of the sample.

다음으로 상기 (b)단계는, 챔버 내에 수용된 상기 샘플의 표면에 타이타늄(Ti) 및 질화타이타늄(TiN) 코팅막으로 중간층을 형성하는 과정으로서, 스퍼터링 방식으로 수행될 수 있다.Next, step (b) is a process of forming an intermediate layer with a titanium (Ti) and titanium nitride (TiN) coating film on the surface of the sample accommodated in the chamber, and may be performed by a sputtering method.

구체적으로 본 실시예에서 상기 (b)단계는, 스퍼터 타겟에 500~700V의 전압을 가하여 5~8x10-3torr에서 증착을 수행하여 상기 중간층을 형성하는 것으로 할 수 있으며, 더불어 200~300℃의 온도 분위기에서 30분~1시간 동안 수행되는 것으로 할 수 있다.Specifically, in this embodiment, step (b) may be performed to form the intermediate layer by applying a voltage of 500 to 700V to the sputter target and performing deposition at 5 to 8x10 -3 torr, and also at 200 to 300 ℃ It can be carried out for 30 minutes to 1 hour in a temperature atmosphere.

다음으로 상기 (c)단계는, 상기 중간층 상에 DLC(Diamond-like Carbon) 코팅막으로 최종층을 형성하게 되며, 특히 상기 DLC코팅막 층은 워킹 레이어(Working Layer)로서 가장 중요한 역할을 하게 된다.Next, in step (c), a final layer is formed with a DLC (Diamond-like Carbon) coating film on the intermediate layer, and in particular, the DLC coating film layer plays the most important role as a working layer.

이때 상기 (c)단계는 상기 챔버 내에 처리가스를 주입하고, 플라즈마 밀도를 증가시켜 상기 최종층을 형성하는 것으로 하며, 구체적으로 상기 처리가스는 아세틸렌 가스, 메탄 가스 및 벤젠 가스 중 적어도 어느 하나를 포함하는 것으로 할 수 있다.In this case, in step (c), the processing gas is injected into the chamber and the plasma density is increased to form the final layer, and specifically, the processing gas includes at least one of acetylene gas, methane gas, and benzene gas. it can be done by doing

그리고 본 단계에서는 이와 같은 아세틸렌 가스 또는 메탄, 벤젠 가스를 400~800 sccm의 유량으로 유입시키고, 공정온도는 200~400℃를 유지하도록 한다.And in this step, such an acetylene gas or methane, benzene gas is introduced at a flow rate of 400 ~ 800 sccm, and the process temperature is maintained at 200 ~ 400 ℃.

한편 상기 (c)단계는, 선형이온원을 이용하여 상기 최종층의 증착을 보조하도록 어시스트 공정을 수행할 수 있다.Meanwhile, in step (c), an assist process may be performed to assist the deposition of the final layer using a linear ion source.

이를 위해 선형이온원은 확산모드로 가동시킬 수 있으며, 1000~1500V의 전압 및 1.0~1.5A의 전류 조건으로 가동될 수 있다.For this purpose, the linear ion source can be operated in diffusion mode, and can be operated under the conditions of a voltage of 1000~1500V and a current of 1.0~1.5A.

또한 상기 (c)단계는, 바이어스 전압(Bias Voltage)을 -500V~-700V로 설정하여 상기 최종층을 증착하는 것으로 할 수 있으며, 바람직하게는 바이어스 전압(Bias Voltage)을 -700V로 설정하여 상기 최종층을 증착하는 것으로 할 수 있다.In addition, the step (c) may be performed by depositing the final layer by setting the bias voltage to -500V to -700V, preferably by setting the bias voltage to -700V to set the bias voltage to -700V. It can be set as vapor-depositing a final layer.

이하의 표 1은 바이어스 전압에 따른 코팅막의 표면경도, 마찰계수 및 밀착력을 나타내는 것이다.Table 1 below shows the surface hardness, friction coefficient and adhesion of the coating film according to the bias voltage.

-100V-100V -300V-300V -500V-500V -700V-700V 경도 (GPa)Hardness (GPa) NoneNone 1515 2020 2323 마찰계수coefficient of friction NoneNone 0.120.12 0.10.1 0,10,1 밀착력(N)Adhesion (N) NoneNone 1515 2222 2828

표 1에 나타난 바와 같이, 바이어스 전압을 -100V, -300V, -500V, -700V 로 설정하여 DLC 코팅막을 증착시켰다. 그 결과, -100V 에서는 코팅막이 벗겨짐이 발생하며 제대로 증착되지 않았으며, -300V 이상에서 코팅막이 증착되는 것을 알 수 있었다.As shown in Table 1, the DLC coating film was deposited by setting the bias voltage to -100V, -300V, -500V, and -700V. As a result, it was found that the coating film was peeled off at -100V and not deposited properly, and the coating film was deposited at -300V or higher.

다만, 바이어스 전압이 증가할수록 표면경도 및 밀착력은 향상되는 것을 알 수 있었으며, 표면조도는 -500V 일 때와 -700V 일 때, 0.1 이하의 값을 나타내는 것을 알 수 있었다. 이에 따른 표면의 상태는 FE-SEM을 이용하여 관찰하였으며, 그 결과 마크로파티클(Macro Particle)이나 핀홀(Pin Hole)과 같은 결함은 발견되지 않았고, 표면조도 또한 수~수십nm 이하로서 매우 뛰어남을 알 수 있었다.However, it was found that as the bias voltage increased, the surface hardness and adhesion were improved, and the surface roughness showed a value of 0.1 or less at -500V and -700V. As a result, the state of the surface was observed using FE-SEM, and as a result, defects such as macro particles or pin holes were not found, and the surface roughness was also very excellent as several to tens of nm or less. could

또한 표면경도의 경우 점차적으로 증가하여 -700V 일 때, 약 23GPa을 나타내었으며, 밀착력도 28N으로 가장 높은 값을 나타낸다.Also, in the case of surface hardness, it gradually increased, and when it was -700V, it was about 23GPa, and the adhesion was also the highest at 28N.

이는 도 3과 같이 바이어스 전압에 따른 DLC코팅막의 기계적 특성을 나타낸 그래프로서 정리될 수 있다.This can be summarized as a graph showing the mechanical properties of the DLC coating film according to the bias voltage as shown in FIG. 3 .

이하에서는, 이와 같이 본원발명에 의해 형성된 코팅막에 대해 실험을 통해 증명된 다른 특성들에 설명하도록 한다.Hereinafter, the coating film formed by the present invention as described above will be described with respect to other properties proven through experiments.

도 4는 본 발명의 일 실시예에 따른 신체삽입용 의료기기의 코팅막 증착방법에 의해 코팅막이 증착된 샘플 표면의 FE-SEM이미지이며, 도 4에 도시된 바와 같이, 본 발명에 의해 형성도니 코팅막의 표면 조직은 치밀하게 형성되는 것을 확인할 수 있다.4 is an FE-SEM image of a sample surface on which a coating film is deposited by a coating film deposition method of a medical device for body insertion according to an embodiment of the present invention, and as shown in FIG. 4, a coating film formed by the present invention It can be seen that the surface structure of the is densely formed.

도 5는 본 발명의 일 실시예에 따른 신체삽입용 의료기기의 코팅막 증착방법에 의해 코팅막이 증착된 샘플의 밀착력 분석 결과를 나타낸 도면이다.5 is a view showing the results of analysis of the adhesion force of the sample on which the coating film is deposited by the coating film deposition method of the medical device for body insertion according to an embodiment of the present invention.

도 5에 도시된 바와 같이, 바이어스 전압이 -100V인 상태에서 형성된 코팅막은 3N의 압력에 의해 벗겨짐이 발생하며, -300V인 상태에서 형성된 코팅막은 15N의 압력, -500V인 상태에서 형성된 코팅막은 22N, -700V인 상태에서 형성된 코팅막은 28N의 압력에서 벗겨짐이 발생하여 -700V의 바이어스 전압 조건에서 가장 우수한 밀착력을 나타내게 된다.As shown in Figure 5, the coating film formed in the state of the bias voltage of -100V is peeled off by the pressure of 3N, the coating film formed in the state of -300V is the pressure of 15N, the coating film formed in the state of -500V is 22N , the coating film formed in the state of -700V peels off at a pressure of 28N, and exhibits the best adhesion under the bias voltage condition of -700V.

또한 도 6은 본 발명의 일 실시예에 따른 신체삽입용 의료기기의 코팅막 증착방법에 의해 코팅막이 증착된 샘플의 변수 별 표면조도 결과를 나타낸 도면이다.6 is a view showing the surface roughness results for each variable of the sample on which the coating film is deposited by the coating film deposition method of the medical device for body insertion according to an embodiment of the present invention.

도 6의 각 도면에 도시된 바와 같이, 바이어스 전압이 -100V인 상태에서 형성된 코팅막은 표면 조도가 99nm로 다소 떨어지나, 바이어스 전압이 -300V, -500V -700V인 상태에서 형성된 코팅막은 각각 16nm, 18nm, 20nm로 모두 우수한 표면 조도를 가지는 것을 확인할 수 있다.As shown in each figure of FIG. 6 , the coating film formed in a state where the bias voltage is -100V has a slightly lower surface roughness to 99nm, but the coating film formed in the state where the bias voltage is -300V, -500V -700V is 16nm and 18nm, respectively. , it can be seen that all of them have excellent surface roughness at 20 nm.

이상과 같이 본 발명에 따른 바람직한 실시예를 살펴보았으며, 앞서 설명된 실시예 이외에도 본 발명이 그 취지나 범주에서 벗어남이 없이 다른 특정 형태로 구체화될 수 있다는 사실은 해당 기술에 통상의 지식을 가진 이들에게는 자명한 것이다. 그러므로, 상술된 실시예는 제한적인 것이 아니라 예시적인 것으로 여겨져야 하고, 이에 따라 본 발명은 상술한 설명에 한정되지 않고 첨부된 청구항의 범주 및 그 동등 범위 내에서 변경될 수도 있다.As described above, preferred embodiments according to the present invention have been reviewed, and the fact that the present invention can be embodied in other specific forms without departing from the spirit or scope of the present invention in addition to the above-described embodiments is one of ordinary skill in the art. It is obvious to them. Therefore, the above-described embodiments are to be regarded as illustrative rather than restrictive, and accordingly, the present invention is not limited to the above description, but may be modified within the scope of the appended claims and their equivalents.

10: 샘플
100: 챔버
102: 수용공간
110: 지그
112: 회전부
114: 거치부
120: 이온빔조사유닛
130: 스퍼터링유닛
10: sample
100: chamber
102: accommodation space
110: jig
112: rotating part
114: mounting portion
120: ion beam irradiation unit
130: sputtering unit

Claims (12)

수용공간이 형성된 챔버와, 상기 챔버의 일측에 장착되는 이온빔조사유닛과, 상기 챔버의 타측에 장착되는 스퍼터링유닛과, 중심점을 기준으로 회전 가능하게 구비되는 회전부 및 상기 회전부로부터 수직 방향으로 연장되어 양측에 샘플을 거치할 수 있도록 구비되는 거치부를 포함하는 지그를 포함하는 코팅막 증착장치에 의해 수행되는 코팅막 증착방법에 있어서,
상기 샘플에 대해 전처리를 수행하는 (a)단계;
상기 챔버 내에 수용된 상기 샘플의 표면에 타이타늄(Ti) 및 질화타이타늄(TiN) 코팅막으로 중간층을 형성하는 (b)단계; 및
화학기상증착(CVD) 방식에 펄스드(Pulsed) 파워 서플라이를 이용하여, 상기 중간층 상에 DLC(Diamond-like Carbon) 코팅막으로 최종층을 형성하는 (c)단계;
를 포함하며,
상기 (a)단계는,
상기 샘플을 아세톤 및 IPA용액을 포함하는 세척용액에 세척하는 (a-1)단계; 및
상기 샘플을 챔버에 장입하고, 이온소스를 이용하여 플라즈마 에칭을 수행하는 (a-2)단계;
를 포함하고,
상기 (b)단계는,
스퍼터링 방식을 통해 수행되며, 스퍼터 타겟에 500~700V의 전압을 가하여 5~8x10-3torr에서 증착을 수행하여 상기 중간층을 형성하되, 200~300℃의 온도 분위기에서 30분~1시간 동안 수행되며,
상기 (c)단계는,
상기 챔버 내에 아세틸렌 가스, 메탄 가스 및 벤젠 가스 중 적어도 어느 하나를 포함하는 처리가스를 400~800sccm의 유량으로 공급하고, 200~400℃의 온도 분위기에서 플라즈마 밀도를 증가시키며, 선형이온원을 이용하여 상기 최종층의 증착을 보조하도록 어시스트 공정을 수행하되, 상기 선형이온원은 1000~1500V의 전압 및 1.0~1.5A의 전류 조건에서 바이어스 전압(Bias Voltage)을 -700V로 설정하여 확산모드로 가동시킴에 따라 상기 최종층을 증착하는,
신체삽입용 의료기기의 코팅막 증착방법.
A chamber having an accommodating space, an ion beam irradiation unit mounted on one side of the chamber, a sputtering unit mounted on the other side of the chamber, a rotating unit rotatably provided with respect to a central point, and both sides extending in a vertical direction from the rotating unit In the coating film deposition method carried out by a coating film deposition apparatus comprising a jig including a holder provided to mount a sample on the
(a) performing pretreatment on the sample;
(b) forming an intermediate layer with a titanium (Ti) and titanium nitride (TiN) coating film on the surface of the sample accommodated in the chamber; and
(c) forming a final layer with a DLC (Diamond-like Carbon) coating film on the intermediate layer using a pulsed power supply in a chemical vapor deposition (CVD) method;
includes,
Step (a) is,
(a-1) washing the sample in a washing solution containing acetone and an IPA solution; and
(a-2) loading the sample into a chamber and performing plasma etching using an ion source;
including,
Step (b) is,
It is performed through a sputtering method, and the intermediate layer is formed by applying a voltage of 500 to 700 V to the sputtering target and performing deposition at 5 to 8x10 -3 torr, but is performed for 30 minutes to 1 hour in a temperature atmosphere of 200 to 300 ℃,
Step (c) is,
A process gas containing at least one of acetylene gas, methane gas, and benzene gas is supplied in the chamber at a flow rate of 400 to 800 sccm, and plasma density is increased in a temperature atmosphere of 200 to 400 ° C. Using a linear ion source An assist process is performed to assist the deposition of the final layer, but the linear ion source operates in a diffusion mode by setting the bias voltage to -700V under the conditions of a voltage of 1000~1500V and a current of 1.0~1.5A. to deposit the final layer according to
Coating film deposition method for medical devices for body insertion.
삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete
KR1020190159794A 2019-12-04 2019-12-04 Deposition Method of Coating for Body Insertion Medical Device KR102356174B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190159794A KR102356174B1 (en) 2019-12-04 2019-12-04 Deposition Method of Coating for Body Insertion Medical Device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190159794A KR102356174B1 (en) 2019-12-04 2019-12-04 Deposition Method of Coating for Body Insertion Medical Device

Publications (2)

Publication Number Publication Date
KR20210071119A KR20210071119A (en) 2021-06-16
KR102356174B1 true KR102356174B1 (en) 2022-02-04

Family

ID=76602926

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190159794A KR102356174B1 (en) 2019-12-04 2019-12-04 Deposition Method of Coating for Body Insertion Medical Device

Country Status (1)

Country Link
KR (1) KR102356174B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003200350A (en) * 2001-12-27 2003-07-15 Nachi Fujikoshi Corp Film stripping method and regenerating method for hard carbon coating film, and regenerated base material

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10203896A (en) * 1997-01-17 1998-08-04 Mitsubishi Electric Corp Member having diamond-like carbon thin film formed thereon and its formation
KR100841779B1 (en) * 2004-03-30 2008-06-27 토요 어드밴스드 테크놀로지스 컴퍼니 리미티드 Method for treating surface of material, surface-treated material, medical material, and medical instrument

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003200350A (en) * 2001-12-27 2003-07-15 Nachi Fujikoshi Corp Film stripping method and regenerating method for hard carbon coating film, and regenerated base material

Also Published As

Publication number Publication date
KR20210071119A (en) 2021-06-16

Similar Documents

Publication Publication Date Title
WO2018113053A1 (en) Structural member with diamond-like array, and preparation method therefor
US9775713B2 (en) Applications of diffusion hardening techniques
EP1754684A1 (en) Method for treating surface of base, surface-treated base, material for medical use and instrument for medical use
EP2526977A2 (en) A PEEK medical implant and a method of formation of surface layers on medical implants
EP2221274B1 (en) Carbonaceous thin film and manufacturing method for same
US20090246243A1 (en) Carbonaceous Protective Multifunctional Coatings
Jamesh et al. Evaluation of corrosion resistance and cytocompatibility of graded metal carbon film on Ti and NiTi prepared by hybrid cathodic arc/glow discharge plasma-assisted chemical vapor deposition
WO2001048262A1 (en) Method for forming a tio2-x film on a material surface by using plasma immersion ion implantation and the use thereof
US20120239157A1 (en) Ultra-passivation of chromium containing alloy and methods of producing same
US20210355577A1 (en) Process for coating a conductive component and conductive component coating
Ege et al. Nitride, zirconia, alumina, and carbide coatings on Ti6Al4V femoral heads: Effect of deposition techniques on mechanical and tribological properties
Kwok et al. Hemocompatibility of nitrogen‐doped, hydrogen‐free diamond‐like carbon prepared by nitrogen plasma immersion ion implantation–deposition
Clem et al. Mesenchymal stem cell adhesion and spreading on microwave plasma‐nitrided titanium alloy
KR102356174B1 (en) Deposition Method of Coating for Body Insertion Medical Device
EP1305063B1 (en) Intravascular stent with expandable coating
KR100841779B1 (en) Method for treating surface of material, surface-treated material, medical material, and medical instrument
KR101101837B1 (en) Menufacturing method of sputtering target using tooth ash powder and surface reform method of dental implant using the same
Fedel Blood compatibility of diamond-like carbon (DLC) coatings
JP5659362B2 (en) Endothelial cell proliferating material
CN113278919B (en) Preparation method of TiN/DLC multilayer composite film applied to artificial joint surface
Nakatani et al. Development of new hydrogen-containing tetrahydral amorphous carbon thin films using cathodic arc plasma for dental implant
Muster et al. Plasma deposition, plasma coating, and ion implantation to improve metallic implants and prostheses
JP5502373B2 (en) Method for inhibiting smooth muscle cell proliferation
US20230405183A1 (en) Orthopedic implants with increased hardness and increased depth of hardness and method of making
KR20230098218A (en) Metal material for medical device, manufacturing method of metal material for medical device, and medical device

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant