KR102355774B1 - An adjuvant composition comprising glycol chitosan derivatives - Google Patents

An adjuvant composition comprising glycol chitosan derivatives Download PDF

Info

Publication number
KR102355774B1
KR102355774B1 KR1020180137788A KR20180137788A KR102355774B1 KR 102355774 B1 KR102355774 B1 KR 102355774B1 KR 1020180137788 A KR1020180137788 A KR 1020180137788A KR 20180137788 A KR20180137788 A KR 20180137788A KR 102355774 B1 KR102355774 B1 KR 102355774B1
Authority
KR
South Korea
Prior art keywords
antigen
glycol chitosan
virus
adjuvant
methyl acrylate
Prior art date
Application number
KR1020180137788A
Other languages
Korean (ko)
Other versions
KR20200054485A (en
Inventor
윤인중
유성식
심영정
안영훈
최준식
이영화
Original Assignee
주식회사 중앙백신연구소
충남대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 중앙백신연구소, 충남대학교산학협력단 filed Critical 주식회사 중앙백신연구소
Priority to KR1020180137788A priority Critical patent/KR102355774B1/en
Publication of KR20200054485A publication Critical patent/KR20200054485A/en
Application granted granted Critical
Publication of KR102355774B1 publication Critical patent/KR102355774B1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • A61K39/215Coronaviridae, e.g. avian infectious bronchitis virus
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • C08B37/0024Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid beta-D-Glucans; (beta-1,3)-D-Glucans, e.g. paramylon, coriolan, sclerotan, pachyman, callose, scleroglucan, schizophyllan, laminaran, lentinan or curdlan; (beta-1,6)-D-Glucans, e.g. pustulan; (beta-1,4)-D-Glucans; (beta-1,3)(beta-1,4)-D-Glucans, e.g. lichenan; Derivatives thereof
    • C08B37/00272-Acetamido-2-deoxy-beta-glucans; Derivatives thereof
    • C08B37/003Chitin, i.e. 2-acetamido-2-deoxy-(beta-1,4)-D-glucan or N-acetyl-beta-1,4-D-glucosamine; Chitosan, i.e. deacetylated product of chitin or (beta-1,4)-D-glucosamine; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L5/00Compositions of polysaccharides or of their derivatives not provided for in groups C08L1/00 or C08L3/00
    • C08L5/08Chitin; Chondroitin sulfate; Hyaluronic acid; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55511Organic adjuvants
    • A61K2039/55583Polysaccharides

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Virology (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Immunology (AREA)
  • Veterinary Medicine (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Communicable Diseases (AREA)
  • Pulmonology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Materials Engineering (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

본 발명은 메틸 아크릴레이트 수식된 글리콜 키토산 유도체로서, 카르복실기가 치환된 글리콜 키토산 유도체 및 이를 포함하는 애주번트 조성물에 관한 것이다. 본 발명의 애주번트 조성물 및 항원을 포함하는 백신 조성물은, 시판중인 애주번트를 포함하는 백신 조성물과 비교하여 증가된 면역원성을 나타냈다. The present invention relates to a glycol chitosan derivative modified with methyl acrylate, a glycol chitosan derivative substituted with a carboxyl group, and an adjuvant composition comprising the same. The adjuvant composition of the present invention and the vaccine composition comprising the antigen exhibited increased immunogenicity compared to a vaccine composition comprising a commercially available adjuvant.

Description

글리콜 키토산 유도체를 포함하는 애주번트 조성물 {An adjuvant composition comprising glycol chitosan derivatives}An adjuvant composition comprising glycol chitosan derivatives

본 발명은 신규한 애주번트 조성물에 관한 것이다. 보다 구체적으로 본 발명은 글리콜 키토산 기반의 백신 애주번트 조성물에 관한 것이다. The present invention relates to novel adjuvant compositions. More specifically, the present invention relates to a vaccine adjuvant composition based on glycol chitosan.

다양한 질병을 치료하기 위해서 치료용 백신을 환자에게 투여하였을 때 그 자체 만으로의 효율도 중요하지만, 백신의 효력의 저하 시키는 다양한 체내 환경을 극복하여야 한다. 이를 위해, 백신을 에멀젼 (emulsion), 리포좀 (liposome), 나노파티클 (nanoparticle) 등을 이용하여 함께 전달하는 기술이 개발되었으며, 최근에는 면역자극에 대한 애주번트 (adjuvant), 및 수용체 (receptor)를 이용한 작용제 등이 개발되고 있다 (Seth A, Ritchie FK, Wibowo N, Lua LHL, Middelberg APJ. Non-Carrier Nanoparticles Adjuvant Modular Protein Vaccine in a Particle-Dependent Manner. PloS one. 2015;10). 특히, 면역보조제 또는 면역증강제로서 애주번트는 다양한 방법으로 제조 가능하여 백신 제조시 많이 사용되고 있다. 이상적인 애주번트는 재현성이 가능한 제조방법을 지녀야 하며, 독성이 없어야 한다. 이와같이, *?**?*애주번트*?**?*는 특이적 항원을 구성하지는 않지만, 동시 투여된 항원에 대한 면역 반응의 강도 및 수명을 증진시키는 제제를 의미하며, 면역치료에 대한 안전하고 새로운 애주번트 또는 백신보조제의 개발을 위한 연구가 꾸준히 수행되고 있다 (Batista-Duharte A, Lindblad EB, Oviedo-Orta E. Progress in understanding adjuvant immunotoxicity mechanisms. Toxicology letters. 2011;203:97-105). When a therapeutic vaccine is administered to a patient in order to treat various diseases, the efficiency itself is important, but it is necessary to overcome various internal environments that reduce the efficacy of the vaccine. To this end, a technology for delivering vaccines together using emulsions, liposomes, nanoparticles, etc. has been developed, and recently, adjuvants for immune stimulation, and receptors have been developed. Agents used are being developed (Seth A, Ritchie FK, Wibowo N, Lua LHL, Middelberg APJ. Non-Carrier Nanoparticles Adjuvant Modular Protein Vaccine in a Particle-Dependent Manner. PloS one. 2015;10). In particular, as an adjuvant or an adjuvant as an adjuvant, it can be prepared in a variety of ways, and thus is widely used in the manufacture of vaccines. An ideal adjuvant should have a reproducible manufacturing process and should be non-toxic. As such, *?**?*adjuvant*?**?* refers to an agent that does not constitute a specific antigen, but enhances the strength and lifespan of the immune response to the co-administered antigen, and is safe for immunotherapy. and research for the development of new adjuvants or vaccine adjuvants is continuously being conducted (Batista-Duharte A, Lindblad EB, Oviedo-Orta E. Progress in understanding adjuvant immunotoxicity mechanisms. Toxicology letters. 2011;203:97-105).

키토산 (chitosan)은 N-아세틸클루코사민 (N-acetylglucosamine)으로 명명되는 긴 체인 (long chain)의 고분자로서, 독성이 없고 생체 적합하며 자연에서 유래된 물질로 잘 알려져 있다 (Zaharoff DA, Rogers CJ, Hance KW, Schlom J, Greiner JW. Chitosan solution enhances the immunoadjuvant properties of GM-CSF. Vaccine. 2007;25:8673-86). 키토산 유도체들은 현재 유전자와 약물 전달체로서 광범위하게 사용되고 있으며, 제약분야에서도 적용되고 있다 (Haryono A, Salsabila K, Restu WK, Harmami SB, Safari D. Effect of Chitosan and Liposome Nanoparticles as Adjuvant Codelivery on the Immunoglobulin G Subclass Distribution in a Mouse Model. J Immunol Res. 2017; Saenz L, Neira-Carrillo A, Paredes R, Cortes M, Bucarey S, Arias JL. Chitosan formulations improve the immunogenicity of a GnRH-I peptide-based vaccine. International journal of pharmaceutics. 2009;369:64-71). 그러나 키토산은 물에 잘 녹지 않고 산성의 용액을 사용해야만 녹는다는 특성을 가지고 있다. 반면에 키토산의 유도체인 글리콜 키토산 (Glycol chitosan)은 기존의 키토산과 동일하게 독성이 없으며, 생체 적합성과 생분해성을 지니고, 수용성인 특징을 가지고 있다 (Pawar D, Mangal S, Goswami R, Jaganathan KS. Development and characterization of surface modified PLGA nanoparticles for nasal vaccine delivery: effect of mucoadhesive coating on antigen uptake and immune adjuvant activity. European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik eV. 2013;85:550-9). 글리콜 키토산이 레이저 면역치료 (laser immunotherapy)에서 큰 효과를 보인다는 것이 보고된 바 있으며 (Chen WR, Liu H, Ritchey JW, Bartels KE, Lucroy MD, Nordquist RE. Effect of different components of laser immunotherapy in treatment of metastatic tumors in rats. Cancer Res. 2002;62:4295-9), 이는 글리콜 키토산이 잠재적으로 유용한 면역보조제로서 이용될 수 있음을 보여주는 결과이다. 또한, 폴리포스파젠-폴리락산의 면역자극 활성이 카르복실산 (carboxylic acid)의 함량에 의존한다는 것이 확인된 바 있으며, 그 결과, 카르복실산의 함량이 낮아지면 면역자극 활성도가 떨어지고, 함량이 증가하면 면역 자극 활성도가 증가하는 것이 밝혀진 바 있다 (Andrianov AK, Svirkin YY, LeGolvan MP. Synthesis and biologically relevant properties of polyphosphazene polyacids. Biomacromolecules. 2004;5:1999-2006). 한편, 한국특허출원 제 10-1998-0703215호는 키토산을 보조제로 포함하는 인플루엔자 백신 조성물을 기술하고 있다. 이러한 기존의 연구를 바탕으로 보았을 때, 본 발명에서 사용하고자 하는 키토산 유도체인 글리콜 키토산은 수용성이며 생체 적합성과 생 분해성이 뛰어난 물질임을 확인할 수 있었다. Chitosan is a long-chain polymer named N-acetylglucosamine, which is non-toxic, biocompatible, and well-known as a substance derived from nature (Zaharoff DA, Rogers CJ, Hance KW, Schlom J, Greiner JW. Chitosan solution enhances the immunoadjuvant properties of GM-CSF. Vaccine. 2007;25:8673-86). Chitosan derivatives are currently being widely used as gene and drug carriers, and are also being applied in the pharmaceutical field (Haryono A, Salsabila K, Restu WK, Harmami SB, Safari D. Effect of Chitosan and Liposome Nanoparticles as Adjuvant Codelivery on the Immunoglobulin G Subclass Distribution in a Mouse Model. J Immunol Res. 2017; Saenz L, Neira-Carrillo A, Paredes R, Cortes M, Bucarey S, Arias JL. Chitosan formulations improve the immunogenicity of a GnRH-I peptide-based vaccine. Pharmaceutics.2009;369:64-71). However, chitosan does not dissolve well in water and only dissolves when an acidic solution is used. On the other hand, glycol chitosan, a derivative of chitosan, is non-toxic, has biocompatibility and biodegradability, and is water-soluble (Pawar D, Mangal S, Goswami R, Jaganathan KS. Development and characterization of surface modified PLGA nanoparticles for nasal vaccine delivery: effect of mucoadhesive coating on antigen uptake and immune adjuvant activity. European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik eV. 2013;85:550-9). It has been reported that glycol chitosan shows a great effect in laser immunotherapy (Chen WR, Liu H, Ritchey JW, Bartels KE, Lucroy MD, Nordquist RE. Effect of different components of laser immunotherapy in treatment of metastatic tumors in rats. Cancer Res. 2002;62:4295-9), which shows that glycol chitosan can be used as a potentially useful adjuvant. In addition, it has been confirmed that the immunostimulatory activity of polyphosphazene-polylactic acid depends on the content of carboxylic acid. It has been shown that increased immunostimulatory activity increases (Andrianov AK, Svirkin YY, LeGolvan MP. Synthesis and biologically relevant properties of polyphosphazene polyacids. Biomacromolecules. 2004;5:1999-2006). Meanwhile, Korean Patent Application No. 10-1998-0703215 describes an influenza vaccine composition comprising chitosan as an adjuvant. Based on these previous studies, it was confirmed that glycol chitosan, a chitosan derivative to be used in the present invention, is water-soluble and has excellent biocompatibility and biodegradability.

이에, 본 발명자들은 키토산 유도체를 이용한 백신보조제를 개발하고자 노력하였다. 애주번트로서 글리콜 키토산을 이용하고 이를 메틸 아크릴레이트 (methyl acrylate)로 수식 (modification) 하였다. 또한, 에스테르 가수분해 (ester hydrolysis) 방법을 이용하여 GC-MA의 끝 부분을 카르복실산으로 치환하였다. 그 결과, 본 발명이 글리콜 키토산 유도체가 애주번트 또는 백신 보조제로서가 우수한 효과를 갖는 것을 본 발명을 완성하였다. Accordingly, the present inventors tried to develop a vaccine adjuvant using a chitosan derivative. Glycol chitosan was used as an adjuvant and this was modified with methyl acrylate. In addition, the end of GC-MA was substituted with carboxylic acid using an ester hydrolysis method. As a result, the present invention has completed the present invention that the glycol chitosan derivative has an excellent effect as an adjuvant or vaccine adjuvant.

한국특허출원 제 10-1998-0703215호Korean Patent Application No. 10-1998-0703215

Seth A, Ritchie FK, Wibowo N, Lua LHL, Middelberg APJ. Non-Carrier Nanoparticles Adjuvant Modular Protein Vaccine in a Particle-Dependent Manner. PloS one. 2015;10.Seth A, Ritchie FK, Wibowo N, Lua LHL, Middelberg APJ. Non-Carrier Nanoparticles Adjuvant Modular Protein Vaccine in a Particle-Dependent Manner. PloS one. 2015;10. Batista-Duharte A, Lindblad EB, Oviedo-Orta E. Progress in understanding adjuvant immunotoxicity mechanisms. Toxicology letters. 2011;203:97-105.Batista-Duharte A, Lindblad EB, Oviedo-Orta E. Progress in understanding adjuvant immunotoxicity mechanisms. Toxicology letters. 2011;203:97-105. Haryono A, Salsabila K, Restu WK, Harmami SB, Safari D. Effect of Chitosan and Liposome Nanoparticles as Adjuvant Codelivery on the Immunoglobulin G Subclass Distribution in a Mouse Model. J Immunol Res. 2017.Haryono A, Salsabila K, Restu WK, Harmami SB, Safari D. Effect of Chitosan and Liposome Nanoparticles as Adjuvant Codelivery on the Immunoglobulin G Subclass Distribution in a Mouse Model. J Immunol Res. 2017. Saenz L, Neira-Carrillo A, Paredes R, Cortes M, Bucarey S, Arias JL. Chitosan formulations improve the immunogenicity of a GnRH-I peptide-based vaccine. International journal of pharmaceutics. 2009;369:64-71.Saenz L, Neira-Carrillo A, Paredes R, Cortes M, Bucarey S, Arias JL. Chitosan formulations improve the immunogenicity of a GnRH-I peptide-based vaccine. International journal of Pharmaceutics. 2009;369:64-71. Pawar D, Mangal S, Goswami R, Jaganathan KS. Development and characterization of surface modified PLGA nanoparticles for nasal vaccine delivery: effect of mucoadhesive coating on antigen uptake and immune adjuvant activity. European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik eV. 2013;85:550-9.Pawar D, Mangal S, Goswami R, Jaganathan KS. Development and characterization of surface modified PLGA nanoparticles for nasal vaccine delivery: effect of mucoadhesive coating on antigen uptake and immune adjuvant activity. European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik eV. 2013;85:550-9. Chen WR, Liu H, Ritchey JW, Bartels KE, Lucroy MD, Nordquist RE. Effect of different components of laser immunotherapy in treatment of metastatic tumors in rats. Cancer Res. 2002;62:4295-9.Chen WR, Liu H, Ritchey JW, Bartels KE, Lucroy MD, Nordquist RE. Effect of different components of laser immunotherapy in treatment of metastatic tumors in rats. Cancer Res. 2002;62:4295-9. Andrianov AK, Svirkin YY, LeGolvan MP. Synthesis and biologically relevant properties of polyphosphazene polyacids. Biomacromolecules. 2004;5:1999-2006.Andrianov AK, Svirkin YY, LeGolvan MP. Synthesis and biologically relevant properties of polyphosphazene polyacids. Biomacromolecules. 2004;5:1999-2006.

이와 같이, 본 발명은 애주번트 조성물의 제조에 사용될 수 있는 글리콜 키토산 유도체를 제공하는 것을 목적으로 한다.As such, an object of the present invention is to provide a glycol chitosan derivative that can be used in the preparation of an adjuvant composition.

본 발명의 다른 목적은 메틸 아크릴레이트를 가수분해하여 카르복실기를 갖는 글리콜 키토산 유도체를 포함하는 애주번트 조성물을 제공하는 것이다.Another object of the present invention is to provide an adjuvant composition comprising a glycol chitosan derivative having a carboxyl group by hydrolyzing methyl acrylate.

본 발명의 또 다른 목적은 본 발명의 애주번트 조성물 및 항원을 포함하는 백신 조성물을 제공하는 것이다. Another object of the present invention is to provide a vaccine composition comprising the adjuvant composition and antigen of the present invention.

본 발명의 또 다른 목적은 상기 백신 조성물을 백신의 투여를 필요로 하는 사람 또는 동물에 투여하는 것을 포함하여 사람 또는 동물을 면역화 하는 방법을 제공하는 것이다. Another object of the present invention is to provide a method for immunizing a human or animal comprising administering the vaccine composition to the human or animal in need of administration of the vaccine.

상기 목적을 달성하기 위해, 본 발명은 하기 화학식 1의 구조식을 갖는 메틸 아크릴레이트 수식된 글리콜 키토산 유도체:In order to achieve the above object, the present invention provides a methyl acrylate-modified glycol chitosan derivative having the structural formula of the following formula (1):

화학식 1Formula 1

Figure 112018111697389-pat00001
Figure 112018111697389-pat00001

(상기 식에서, n은 1 내지 5,000 이하의 정수이고, R1 및 R2는 각각 독립적으로, 수소, 니트로, C1∼C5 알킬기, C5∼C10 아릴기, C4∼C10 헤테로아릴기, C3∼C10 시클로알킬기 또는 C3∼C10 헤테로시클로알킬기이다).(Wherein, n is an integer of 1 to 5,000 or less, R 1 and R 2 are each independently hydrogen, nitro, C 1 to C 5 alkyl group, C 5 to C 10 aryl group, C 4 to C 10 heteroaryl group, a C 3 -C 10 cycloalkyl group or a C 3 -C 10 heterocycloalkyl group).

본 발명은 또한 상기 화학식 1의 구조식을 갖는 메틸 아크릴레이트 수식된 클리콜 키토산을 포함하는 애주번트 조성물을 제공한다. The present invention also provides an adjuvant composition comprising a methyl acrylate-modified glycol chitosan having the structural formula of Formula 1 above.

바람직하게는, 그리고 비제한적인 예로서, 상기 글리콜 키토산 유도체의 분자량은 1,000 Da 내지 1,000,000 Da이며, 상기 글리콜 키토산 유도체는 10% 내지 100%의 메틸 아크릴레이트 치환율을 갖는다.Preferably, and as a non-limiting example, the molecular weight of the glycol chitosan derivative is 1,000 Da to 1,000,000 Da, and the glycol chitosan derivative has a methyl acrylate substitution rate of 10% to 100%.

또한, 본 발명은 상기 애주번트 조성물 및 항원을 포함하는 백신 조성물을 제공한다. 본 발명에서 항원은, 예를 들어, 세균 항원, 바이러스 항원, 재조합 항원, 또는 이들의 조합이나, 이에 제한되는 것은 아니다. 본 발명에서 세균 항원은, 예를 들어, Mycoplasma hyopneumoniae , Mycoplasma galanacieum , Mycoplasma bovis , Haemophilus parasuis , Haemophilus somnus , Mycobaterium bovis , Bordetella bronchiseptica, Leptospira , Actinobacillus pleuropneumoniae , Pasteuella multocida , Erysipelothrix rhusiopathiae, Escherichia coli , Streptococcus suis , Streptococcus uberis , Staphylococcus aureus , Salmonella entericaserovars 로 구성된 군으로부터 선택된 하나 이상의 항원일 수 있다. 본 발명에서, 바이러스 항원은, 예를 들어, Bovine herpesviruses-1,3,6, Bovine viral diarrhea virus(BVDV) type 1,2, Bovine parainfluenza virus, Bovine respiratory syncytial virus, Bovine leukosis virus, Porcine epidemic diarrhea virus, Porcine reproductive and respiratory syndrome virus(PRRSV), Foot and mouth disease virus, Swine fever virus, Porcine parvovirus, Porcine circovirus, Swine influenza virus, Swine vesicular disease virus, Techen fever virus, Rabies virus, Canine coronavirus, Canine influenzavirus, Canine parvovirus, Feline panleukopenia virus, Feline calicivirus, Feline parvovirus, 및 Feline herpesvirus 로 구성된 군으로부터 선택된 하나 이상의 항원일 수 있다. 추가적인 항원에는 불활성화된 전체 또는 부분 세포 제제 형태, 또는 통상적인 단백질 정제, 유전 공학 기법 및 화학 합성에 의해 수득되는 항원 분자 형태의 재조합 항원으로 구성된 군으로부터 선택된 하나 이상의 항원일 수 있으나, 이에 제한되는 것은 아니다. In addition, the present invention provides a vaccine composition comprising the adjuvant composition and the antigen. In the present invention, the antigen is, for example, a bacterial antigen, a viral antigen, a recombinant antigen, or a combination thereof, but is not limited thereto. In the present invention, the bacterial antigen is, for example, Mycoplasma hyopneumoniae , Mycoplasma galanacieum , Mycoplasma bovis , Haemophilus parasuis , Haemophilus somnus , Mycobaterium bovis , Bordetella bronchiseptica , Leptospira , Actinobacillus pleuropneumoniae , Pasteuella multocida , Erysipelothrix rhusiopathiae, Escherichia coli , Streptococcus suis , Streptococcus uberis , Staphylococcus aureus , and Salmonella entericaserovars may be one or more antigens selected from the group consisting of. In the present invention, the viral antigen is, for example, Bovine herpesviruses-1,3,6, Bovine viral diarrhea virus (BVDV) type 1,2, Bovine parainfluenza virus, Bovine respiratory syncytial virus, Bovine leukosis virus, Porcine epidemic diarrhea virus , Porcine reproductive and respiratory syndrome virus (PRRSV), Foot and mouth disease virus, Swine fever virus, Porcine parvovirus, Porcine circovirus, Swine influenza virus, Swine vesicular disease virus, Techen fever virus, Rabies virus, Canine coronavirus, Canine influenzavirus, Canine It may be at least one antigen selected from the group consisting of parvovirus, Feline panleukopenia virus, Feline calicivirus, Feline parvovirus, and Feline herpesvirus. The additional antigen may include, but is not limited to, one or more antigens selected from the group consisting of inactivated whole or partial cell preparations, or in the form of antigen molecules obtained by conventional protein purification, genetic engineering techniques and chemical synthesis. it is not

또한, 본 발명은 메틸 아크릴레이트 수식된 글리콜 키토산 유도체의 제조방법을 제공한다. 본 발명의 일 실시예에서, 글리콜 키토산 (GC)과 메틸 아크릴레이트 (methyl acrylate) (MA)를 반응시켜 메틸 아크릴레이트 수식된 글리콜 키토산 유도체를 제조한 다음, 에스테르 가수분해하여 메틸 아크릴레이트 수식된 카르복실기를 갖는 글리콜 키토산 유도체를 제조하였다. 글리콜 키토산과 메틸 아크릴레이트는, 예를 들어, 1:50 ~ 1:200의 몰비로 반응시키며, 에스테르 가수분해는 예를 들어 NaOH를 사용하여 수행할 수 있으나, 이에 제한되는 것은 아니다. In addition, the present invention provides a method for preparing a methyl acrylate-modified glycol chitosan derivative. In an embodiment of the present invention, glycol chitosan (GC) and methyl acrylate (MA) are reacted to prepare a methyl acrylate-modified glycol chitosan derivative, and then ester hydrolyzed to methyl acrylate-modified carboxyl group A glycol chitosan derivative having a was prepared. Glycol chitosan and methyl acrylate are reacted, for example, in a molar ratio of 1:50 to 1:200, and ester hydrolysis may be performed using, for example, NaOH, but is not limited thereto.

본 발명의 메틸 아크릴레이트를 가수분해하여 카르복실기를 갖는 글리콜 키토산 유도체를 포함하는 애주번트 조성물은 세균, 바이러스, 및/또는 재조합 항원의 면역기능을 강화한다. 본 발명의 일 실시예에서, 두 가지의 세포주에 본 발명의 애주번트 조성물인 글리콜 키토산 유도체과 시중에서 사용되어지는 알룸 겔 등을 대조군으로하여 세포 생존률을 비교한 결과, 본 발명의 조성물을 사용한 시료가 90% 이상의 높은 생존율을 나타냈다. 이로부터 본 발명에서 제조된 글리콜 키토산 유도체가 세포 내로 전달되었을 때 면역반응을 일으키지 않고 세포 독성을 나타내지 않음을 나타내며, 생체 내로 투입하였을 경우 안전성 또한 뛰어난 애주번트 조성물임을 확인할 수 있었다. 또 다른 일 실시예에서, 세균 항원과 함께 본 발명의 글리콜 키토산 유도체를 포함하는 백신 조성물을 투여한 마우스의 생존률이 증가하였다. 또한, 다른 일 실시예에서, 바이러스 항원과 함께 본 발명의 글리콜 키토산을 포함하는 백신 조성물을 투여한 기니피그에서 항체가의 현저한 증가가 관찰되었다. 따라서, 본 발명의 글리콜 키토산은 애주번트로서 백신 조성물의 제조에 효과적으로 이용될 수 있을 것이다. The adjuvant composition comprising a glycol chitosan derivative having a carboxyl group by hydrolyzing methyl acrylate of the present invention enhances the immune function of bacteria, viruses, and/or recombinant antigens. In one embodiment of the present invention, as a result of comparing cell viability in two cell lines using glycol chitosan derivative, which is the adjuvant composition of the present invention, and commercially used alum gel, etc. as a control, the sample using the composition of the present invention was It showed a high survival rate of over 90%. From this, it was confirmed that the glycol chitosan derivative prepared in the present invention does not cause an immune response and does not exhibit cytotoxicity when delivered into cells, and it is an adjuvant composition with excellent safety when injected into a living body. In another embodiment, the survival rate of mice administered with a vaccine composition comprising a glycol chitosan derivative of the present invention together with a bacterial antigen increased. In addition, in another embodiment, a significant increase in antibody titer was observed in guinea pigs administered with a vaccine composition comprising glycol chitosan of the present invention together with a viral antigen. Therefore, the glycol chitosan of the present invention may be effectively used as an adjuvant in the preparation of a vaccine composition.

도 1의 (A) 글리콜 키토산 메틸 아크릴레이트의 합성과정을 개략적으로 나타낸 것이고, (B)는 글리콜 키토산 메틸 아크릴레이트 COOH 또는 COO-Na+의 염기-촉매 에스테르 가수분해 과정을 개략적으로 나타낸 것이다.
도 2은 글리콜 키토산 (GC, 검은색 선)의 1H NMR 스펙트럼 (위쪽), (B) 글리콜 키토산 메틸 아크릴레이트 (아래쪽)을 각각 나타낸다.
도 3은 글리콜 키토산의 ATR-FTIR 스펙트럼 (GC, 검은색 선), 글리콜 키토산 메틸 아크릴레이트 (GC-MA, 녹색 선) 및 글리콜 키토산 메틸 아크릴레이트 COOH/COO-Na+ (GC-MA-COOH/COO-Na+, 빨간색 선)을 각각 나타낸다.
도 4는 재조합 단백질 항원을 사용한 애주번트 효력 평가 결과를 나타낸 것이다.
도 5는 세균 항원을 사용한 애주번트 효력 평가 결과를 나타낸 것이다.
도 6은 바이러스 항원을 사용한 애주번트 효력 평가 결과를 나타낸 것이다.
도 7은 HEK 293 세포주를 사용한 독성 평가 결과를 나타낸 것으로 알룸 (Alum, 파란색 선), 글리콜 키토산 (GC, 빨간색 선), 글리콜 키토산 메틸 아크릴레이트 (GC-MA, 녹색 선) 및 글리콜 키토산 메틸 아크릴레이트 COOH/COO-Na+ (GC-MA-COOH/COO-Na+, 보라색 선)을 각각 나타낸다.
도 8은 HeLa 세포주를 사용한 독성 평가 결과를 나타낸 것으로 각각의 선들은 도 7과 동일하게 나타낸 것이다.
Figure 1 (A) schematically shows the synthesis process of glycol chitosan methyl acrylate, (B) is a base-catalyzed ester hydrolysis process of glycol chitosan methyl acrylate COOH or COO - Na + schematically shows.
Figure 2 shows the 1H NMR spectrum of glycol chitosan (GC, black line) (top), (B) glycol chitosan methyl acrylate (bottom), respectively.
3 is an ATR-FTIR spectrum of glycol chitosan (GC, black line), glycol chitosan methyl acrylate (GC-MA, green line) and glycol chitosan methyl acrylate COOH/COO - Na + (GC-MA-COOH/ COO - Na + , red line) respectively.
4 shows the results of evaluation of adjuvant efficacy using the recombinant protein antigen.
5 shows the results of evaluation of adjuvant efficacy using bacterial antigens.
6 shows the results of evaluation of adjuvant efficacy using a viral antigen.
7 shows the results of toxicity evaluation using the HEK 293 cell line. Alum (Alum, blue line), glycol chitosan (GC, red line), glycol chitosan methyl acrylate (GC-MA, green line) and glycol chitosan methyl acrylate COOH/COO - Na + (GC-MA-COOH/COO - Na + , purple line) respectively.
8 shows the results of toxicity evaluation using the HeLa cell line, and each line is the same as in FIG. 7 .

이하 실시예 및 도면에 의거하여 본 발명을 보다 상세히 설명한다. 하기 실시예 및 첨부된 도면은 본 발명의 이해를 돕기 위한 것이며, 본 발명의 권리범위가 이에 제한되는 것은 아니다. The present invention will be described in more detail below based on examples and drawings. The following examples and accompanying drawings are provided to help the understanding of the present invention, and the scope of the present invention is not limited thereto.

재료 및 방법Materials and Methods

글리콜 키토산 (GC, degree of deacetylation = 91.6%)은 와코 (Wako pure chemical industrials, Osaka, Japan)에서 구매하였다. 메틸 아크릴레이트 (99%), 소듐 하이드록사이드 (sodium hydroxide), 메탄올 (methanol) (anhydrous, 99.8%)은 시그마-알드리치 (Sigma-aldrich)에서 구매하였다. 투석 멤브레인 튜브 (dialysis membrane tubing)는 스펙트럼 랩스 (Spectrum Labs, USA)에서 구매하였다. Glycol chitosan (GC, degree of deacetylation = 91.6%) was purchased from Wako pure chemical industrials, Osaka, Japan. Methyl acrylate (99%), sodium hydroxide, and methanol (anhydrous, 99.8%) were purchased from Sigma-aldrich. Dialysis membrane tubing was purchased from Spectrum Labs, USA.

(1) 글리콜 키토산 메틸 아크릴레이트 (GC-MA) 합성(1) Synthesis of glycol chitosan methyl acrylate (GC-MA)

30 ㎎의 글리콜 키토산 (GC, 1 m㏖)과 1.305 ㎖의 메틸 아크릴레이트 (methyl acrylate) (MA, 100 m㏖)를 계량하였다. 계량한 글리콜 키토산을 3차 증류수에 녹이고 튜브에 옮겨 담았다. 준비한 250 ㎖의 둥근 바닥 플라스크와 마그네틱 바 (magnetic bar)를 메탄올로 세척하였다. 둥근 바닥 플라스크에 메틸 아크릴레이트를 넣고, 메탄올로 채운 후 10분 정도 교반하면서, 증류수에 미리 녹인 글리콜 키토산을 떨어 뜨렸다. 플라스크 내의 용매는 메탄올과 증류수의 비율을 9:1로 조정하였다. 둥근 플라스크 내부를 질소 기체로 채운 후 쉐이킹 인큐베이터 (shaking incubator)에서 4일간 37℃, 180 rpm에서 반응시켰다. 4일 후, 메탄올을 증발시켜 제거하고, 잔류한 생성물을 투석 멤브레인 (dialysis membrane) (MWCO 3.5 kDa)에 넣은 다음, 1일 동안 증류수에서 투석시켰다. 1일 후, 생성물을 다시 1일 동안 동결건조 (freeze dry) 하여 물을 제거하였다. 이 때 GC-MA의 결합 확인을 위해 1H Nuclear Magnetic Resonance spectroscopy (AVANCE, 600 FT-NMR, Bruker, Germany)을 측정하였다. GC: 1H-NMR (600 MHz, D2O, ppm) δ 2.0 - 2.1 (NHCOCH 3, acetyl group), 2.6 - 2.8 (H2 of deacetylated monomer), 3.4 - 3.9 (H2 to H8, multiplet, D-glucosamine unit and hydroxyl ethyl substituents), 4.3-4.5 (H1); GC-MA: 1H-NMR (600 MHz, D2O, ppm) δ 2.0 - 2.1 (NHCOCH 3, acetyl group), 2.5-2.7 (H2 of deacetylated monomer, OCCH, H10), 3.0 - 3.2 (HCCHN, H9), 3.5 - 3.8 (H2 to H8, multiplet, D-glucosamine unit and hydroxyl ethyl substituents), 4.4-4.5 (H1)30 mg of glycol chitosan (GC, 1 mmol) and 1.305 ml of methyl acrylate (MA, 100 mmol) were weighed. The measured glycol chitosan was dissolved in tertiary distilled water and transferred to a tube. The prepared 250 ml round bottom flask and magnetic bar were washed with methanol. Methyl acrylate was placed in a round-bottom flask, filled with methanol, and then, while stirring for about 10 minutes, glycol chitosan pre-dissolved in distilled water was dropped. The solvent in the flask was adjusted in a ratio of methanol and distilled water to 9:1. After filling the inside of the round flask with nitrogen gas, it was reacted at 37° C. and 180 rpm for 4 days in a shaking incubator. After 4 days, methanol was removed by evaporation, and the remaining product was placed on a dialysis membrane (MWCO 3.5 kDa) and then dialyzed against distilled water for 1 day. After 1 day, the product was freeze-dried for 1 day again to remove water. At this time, 1 H Nuclear Magnetic Resonance spectroscopy (AVANCE, 600 FT-NMR, Bruker, Germany) was measured to confirm the binding of GC-MA. GC: 1 H-NMR (600 MHz, D 2 O, ppm) δ 2.0 - 2.1 (NHCOC H 3 , acetyl group), 2.6 - 2.8 (H2 of deacetylated monomer), 3.4 - 3.9 (H2 to H8, multiplet, D -glucosamine unit and hydroxyl ethyl substituents), 4.3-4.5 (H1); GC-MA: 1 H-NMR (600 MHz, D 2 O, ppm) δ 2.0 - 2.1 (NHCOC H 3 , acetyl group), 2.5-2.7 (H2 of deacetylated monomer, OCC H , H10), 3.0 - 3.2 ( HCC H N, H9), 3.5 - 3.8 (H2 to H8, multiplet, D-glucosamine unit and hydroxyl ethyl substituents), 4.4-4.5 (H1)

(2) GC-MA-COOH 제조(2) GC-MA-COOH production

합성된 GC-MA를 5M의 소듐 하이드록사이드 (Sodium hydroxide) (NaOH)에 녹인 후 250 ㎖의 둥근 플라스크에 옮겼다. 물의 온도를 70 ~ 80℃으로 맞춘 후 중탕으로 둥근 플라스크를 교반하면서 3시간 동안 반응시켰다. 3시간 후에 둥근 플라스크 내부의 녹여진 GC-MA를 투석 멤브레인 (dialysis membrane) (MWCO 3.5 kDa)에 넣어 1일 동안 증류수에서 투석시켰다. 1일 후 생성물을 동결건조하여 물을 제거하였다. 합성된 GC-MA-COOH가 갖는 작용기를 확인하였다 (Nicolet iS5 Attenuated Total Reflectance-Fourier Transform Infrared spectroscopy (ATR-FTIR) spectroscopy (Thermo scientific, Madison, Wisconsin, USA).The synthesized GC-MA was dissolved in 5M sodium hydroxide (NaOH) and then transferred to a 250 ㎖ round flask. After adjusting the temperature of the water to 70 ~ 80 ℃, the reaction was carried out for 3 hours while stirring the round flask with a bath. After 3 hours, the GC-MA dissolved in the round flask was put into a dialysis membrane (MWCO 3.5 kDa) and dialyzed in distilled water for 1 day. After 1 day, the product was lyophilized to remove water. The functional group of the synthesized GC-MA-COOH was confirmed (Nicolet iS5 Attenuated Total Reflectance-Fourier Transform Infrared spectroscopy (ATR-FTIR) spectroscopy (Thermo scientific, Madison, Wisconsin, USA).

(3) GC-MA-COOH 합성 확인(3) Confirmation of GC-MA-COOH synthesis

글리콜 키토산을 백본으로 하여 메틸 아크릴레이트 (methyl acrylate)를 마이클 첨가 (michael addition) 방법으로 연결하였다. 합성 과정을 도 1(A)에 나타내었고, GC-MA 합성 후 NaOH를 이용하여 제조한 GC-MA-COOH의 과정은 도 1(B)에 나타내었다. 다음, GC와 MA가 결합된 것을 확인하기 위하여 합성된 물질을 D2O에 녹인 후, 600MHz 1H NMR 핵자기공명 스펙트럼으로 측정하였다. 그 결과 도 2에서 볼 수 있듯이 GC에 MA를 연결하였을 때 2.5 - 2.7 ppm 사이에 OCCH- 의 수소 (H10)가 존재하는 것을 확인할 수 있었고, 3.0 - 3.2 ppm 에서는 HCCHN- 의 수소 (H9)가 존재하는 것을 통해 GC-MA의 합성이 잘 이루어진 것을 확인할 수 있었다. 합성된 GC-MA를 5M NaOH로 에스테르 가수분해시킨 GC-MA-COOH는 ATR-FTIR 스펙트럼을 통해 합성 후 생성된 작용기를 확인하였다. 그 결과, 도 3에서 볼 수 있듯이 GC의 그래프 중 3500 cm-1은 하이드록실기 (hydroxyl group)이며, GC에 MA를 결합하였을 경우 1550 cm-1에 카르복실기가 나타나는 것을 볼 수 있었다. 이는 GC와 MA가 마이클 첨가 방법을 통해 NCH2CH2 COOCH3-가 형성되었음을 확인할 수 있었다. 특히 GC-MA를 5M NaOH로 가수분해시켰을 때는 1420, 1610 cm-1에 새로운 피크가 나타났는데, 이 피크는 5M NaOH가 GC-MA 말단의 OOCH2와 만나면서 물을 제거해 주었을 때 COOH의 염형태로써 말단에 Na+가 결합되어 나타났음을 알 수 있었다. Glycol chitosan was used as a backbone and methyl acrylate was connected by a Michael addition method. The synthesis process is shown in FIG. 1(A), and the process of GC-MA-COOH prepared using NaOH after GC-MA synthesis is shown in FIG. 1(B). Next, in order to confirm that GC and MA were combined, the synthesized material was dissolved in D 2 O, and then measured by 600 MHz 1 H NMR nuclear magnetic resonance spectrum. As a result, as shown in FIG. 2, when MA was connected to GC, it was confirmed that hydrogen (H10) of OCC H- was present between 2.5 and 2.7 ppm, and hydrogen of HCC H N- (H9) at 3.0 - 3.2 ppm. ), it was confirmed that the synthesis of GC-MA was well accomplished. GC-MA-COOH obtained by ester hydrolysis of the synthesized GC-MA with 5 M NaOH was confirmed through the ATR-FTIR spectrum to the functional group generated after the synthesis. As a result, as shown in FIG. 3 , 3500 cm −1 in the graph of GC is a hydroxyl group, and when MA is bound to GC, it can be seen that a carboxyl group appears at 1550 cm −1 . It could be confirmed that NCH 2 CH 2 COO CH 3 - was formed through the Michael addition method of GC and MA. In particular, when GC-MA was hydrolyzed with 5M NaOH , new peaks appeared at 1420 and 1610 cm -1 . This peak is a salt form of COOH when 5M NaOH meets OOCH 2 at the end of GC-MA and removes water. It was found that Na + was combined in the .

(4) GC-MA-COOH의 독성 평가 (4) Toxicity evaluation of GC-MA-COOH

합성된 GC-MA-COOH의 세포 내 독성 확인을 위하여 HeLa와 HEK 293 세포주를 사용하여 독성 평가를 진행하였다. 이때, WST 시약을 세포에 처리한 후 각각의 흡광도를 측정하여 세포 생존율을 도 7 및 도 8에 나타내었다. GC-MA-COOH와 비교를 위하여 알룸 겔 (Alum gel), 글리콜 키토산 (GC) 및 가수분해되지 않은 글리콜 키토산 메틸 아크릴레이트 (GC-MA)를 대조군으로 사용하였다. 사용된 샘플의 농도는 12.5, 25, 50, 100 및 200 ug/ml의 농도를 사용하여 세포에 처리하였다. 그 결과, 도 7은 HEK 293 세포주로서 모든 샘플에서 생존율이 90% 이상을 나타내는 것을 확인할 수 있었다. 도 8은 HeLa 세포주로서 도 7과 마찬가지로 세포 생존율이 90% 이상을 나타내었다. 이는 글리콜 키토산을 기반으로 합성된 글리콜 키토산 메틸아크릴레이트 COOH가 애주번트로서 독성이 없고 무해하며 안전성이 높아 생체 적합함을 입증해주는 결과이다. To confirm the intracellular toxicity of the synthesized GC-MA-COOH, toxicity evaluation was performed using HeLa and HEK 293 cell lines. At this time, the cell viability was shown in FIGS. 7 and 8 by measuring each absorbance after treatment with the WST reagent. For comparison with GC-MA-COOH, alum gel, glycol chitosan (GC) and non-hydrolyzed glycol chitosan methyl acrylate (GC-MA) were used as controls. The concentrations of the samples used were 12.5, 25, 50, 100 and 200 ug/ml to the cells using concentrations. As a result, FIG. 7 shows that the HEK 293 cell line showed a survival rate of 90% or more in all samples. 8 is a HeLa cell line, and the cell viability was 90% or more as in FIG. 7 . This is a result that proves that glycol chitosan methyl acrylate COOH synthesized based on glycol chitosan is biocompatible as it is nontoxic, harmless, and has high safety as an adjuvant.

실시예Example

재조합 단백질 항원을 이용한 애주번트 효능평가Evaluation of adjuvant efficacy using recombinant protein antigen

재조합단백질 항원을 이용한 효능평가를 수행하였다. 먼저 5종의 시험백신을 아래 표 1과 같은 조성으로 제조하였다. 상기 제조예에서 제조한 글리콜 키토산 중합체 (GC-MA-COOH)를 사용하였다.Efficacy evaluation using recombinant protein antigen was performed. First, five types of test vaccines were prepared with the composition shown in Table 1 below. The glycol chitosan polymer (GC-MA-COOH) prepared in Preparation Example was used.

시험백신test vaccine Vac1Vac1 Vac2Vac2 Vac3Vac3 Vac4Vac4 Vac5Vac5 항원 (Antigen)Antigen PPV VP2
HA 211
PPV VP2
HA 2 11
PPV VP2
HA 211
PPV VP2
HA 2 11
PPV VP2
HA 211
PPV VP2
HA 2 11
PPV VP2
HA 211
PPV VP2
HA 2 11
--
폴리머 (Polymer)Polymer GC
0.1 ㎎/dose
GC
0.1 mg/dose
GC-MA
0.1 ㎎/dose
GC-MA
0.1 mg/dose
GC-MA-COOH
0.1 ㎎/dose
GC-MA-COOH
0.1 mg/dose
-- --
비고note Non adjuvantNon adjuvant 무접종군unvaccinated group

항원 (antigen)으로서 돼지 파보바이러스 VP2 단백질 (Recombinant Baculovirus VP2-BV주) (Seed 입수처: 국립수의과학검역원)을 사용하고 백신조성물에 HA 211/㎖이 포함되도록 하였다. 모든 시험백신은 pH7이 되도록 하였다. 실험동물로서 기니피그 (수컷, 300 ~ 350 g)를 사용하였다. 시험백신 그룹 당 5마리 기니피그 (대조군의 경우 3마리)에 상기 제조한 백신의 1/2 (1 ㎖/두)씩 피하접종하고, 4주 후에 대조군과 함께 채혈하여 혈구응집억제 항체가를 측정하였다. 아래 표 2 및 도 4는 그 결과를 나타낸 것이다.Porcine parvovirus VP2 protein (Recombinant Baculovirus VP2-BV strain) (seed obtained from: National Veterinary Science and Quarantine Service) was used as an antigen, and HA 2 11 /ml was included in the vaccine composition. All test vaccines were adjusted to have a pH of 7. As an experimental animal, a guinea pig (male, 300-350 g) was used. Five guinea pigs per test vaccine group (3 in the control group) were subcutaneously inoculated by 1/2 (1 ml/two) of the prepared vaccine, and after 4 weeks, blood was collected together with the control group to measure the hemagglutination inhibitory antibody titer. . Table 2 and Figure 4 below show the results.

백신그룹vaccine group Vac1Vac1 Vac2Vac2 Vac3Vac3 Vac4Vac4 Vac5Vac5 샘플Sample GCGC GC-MAGC-MA GC-MA-COOHGC-MA-COOH Non adjuvantNon adjuvant 무접종군unvaccinated group 접종군inoculation group 320320 160160 640640 8080 1One 160160 160160 640640 8080 1One 320320 160160 320320 160160 1One 160160 8080 320320 4040 -- 160160 8080 8080 8080 -- 기하평균geometric mean 211.1211.1 121.3121.3 320320 8080 1One 표준편차Standard Deviation 87.687.6 43.843.8 240240 43.843.8 00

상기 표 2 및 도 4에서 확인되는 것과 같이, 이와 같은 혈구응집억제 항체가 결과에 따르면, 본 발명의 Vac3 (GC-MA-COOH)이 가장 높은 혈구응집억제 항체가를 나타냈으며, 글리콜 키토산 중합체 (GC-MA-COOH)의 전구물질들 (Vac1, Vac2)도 애주번트 비처리군 (Non adjuvant) 및 무접종군과 대비하여 보다 더 높은 혈구응집억제 항체가을 나타냈으며, 이는 애주번트 효과에 의한 것이다. As shown in Table 2 and FIG. 4, according to the results of the hemagglutination inhibitory antibody, Vac3 (GC-MA-COOH) of the present invention exhibited the highest hemagglutination inhibitory antibody titer, and glycol chitosan polymer ( GC-MA-COOH) precursors (Vac1, Vac2) also exhibited higher hemagglutination inhibitory antibody titers compared to the non-adjuvant and unvaccinated groups, which is due to the adjuvant effect. .

세균 항원을 이용한 애주번트 효능평가Evaluation of adjuvant efficacy using bacterial antigens

세균 항원을 이용한 효능평가를 수행하였다. 먼저 4종의 시험백신을 아래 표 3과 같은 조성으로 제조하였다. 상기 제조예에서 제조한 글리콜 키토산 중합체 (GC-MA-COOH)를 사용하였다.Efficacy evaluation using bacterial antigens was performed. First, four types of test vaccines were prepared with the composition shown in Table 3 below. The glycol chitosan polymer (GC-MA-COOH) prepared in Preparation Example was used.

시험백신test vaccine Vac1Vac1 Vac2Vac2 Vac3Vac3 Vac4Vac4 항원 (Antigen)Antigen SE bacterin
0.2 X 1010CFU/㎖
SE bacterin
0.2 X 10 10 CFU/ml
SE bacterin
0.2 X 1010CFU/㎖
SE bacterin
0.2 X 10 10 CFU/ml
SE bacterin
0.2 X 1010CFU/㎖
SE bacterin
0.2 X 10 10 CFU/ml
--
폴리머 (Polymer)Polymer GC-MA-COOH
0.4 ㎎/dose
GC-MA-COOH
0.4 mg/dose
-- -- --
알룸 (Alum)Alum -- Alum 20% Alum 20% -- -- 비고note 양성대조군positive control Non adjuvantNon adjuvant 무접종군unvaccinated group

항원 (antigen)으로서 SE bacterin (Erysipelothrix . rhusiopathiae) (Seed 입수처: 국립수의과학검역원, 항원 입수처: 중앙백신연구소)을 사용하고 백신조성물에 0.2 X 1010CFU/㎖이 포함되도록 하였다. 양성대조군으로서 일반적으로 많이 사용되는 백신보조제인 알룸 (Alum, Aluminum hydroxide gel)을 사용하고, 백신조성물에 20 % (v/v) 포함되도록 하였다. 모든 시험백신은 pH7이 되도록 하였다. 시험백신 그룹 당 마우스 (ICR 마우스, 수컷, 4 ~ 6 주령, 15 ~ 20 g) 8 마리에 상기 제조한 백신의 1/10 (0.2 ㎖) 두분을 1회 피하 접종하고, 5마리의 마우스는 대조군 (무접종군)으로 두었다. 1차 접종 2주 후에 대조군과 함께 돼지 단독균 (E. rhusiopathiae) 100 LD50/0.2㎖을 피하에 공격접종한 후 10일간 생존여부를 관찰하였다. 아래 표 4 및 도 5는 그 결과를 나타낸 것이다. SE bacterin ( Erysipelothrix . rhusiopathiae ) (Seed source: National Veterinary Science and Quarantine Service, antigen source: Central Vaccine Research Institute) was used as an antigen (antigen), and 0.2 X 10 10 CFU/ml was included in the vaccine composition. As a positive control, alum (aluminum hydroxide gel), a commonly used vaccine adjuvant, was used, and 20% (v/v) was included in the vaccine composition. All test vaccines were adjusted to have a pH of 7. Eight mice (ICR mice, males, 4 to 6 weeks old, 15 to 20 g) per test vaccine group were inoculated with 1/10 (0.2 ml) of the prepared vaccine once subcutaneously, and 5 mice were treated as a control group. (uninoculated group). Pig single bacteria ( E. rhusiopathiae ) together with the control group 2 weeks after the first inoculation After subcutaneous challenge inoculation with 100 LD 50 /0.2ml, survival was observed for 10 days. Tables 4 and 5 below show the results.

백신그룹vaccine group 샘플Sample 마리수Marisu 시험결과Test result 생존율(%)Survival rate (%) Vac1Vac1 GC-MA-COOHGC-MA-COOH 1010 8/108/10 8080 Vac2Vac2 AlumAlum 1010 7/107/10 7070 Vac3Vac3 Non adjuvantNon adjuvant 1010 6/106/10 6060 Vac4Vac4 무접종군unvaccinated group 55 0/50/5 00

상기 표 4 및 도 5에서 확인되는 것과 같이, 이와 같은 생존율 결과에 따르면, 양성대조군인 Vac2 (Alum)과 본 발명의 Vac1 (GC-MA-COOH)이 Vac4 (무접종군)와 대비하여 보다 더 높은 생존율을 나타냈으며, 이는 애주번트 효과에 의한 것이다. 특히, 본 발명의 Vac1 (GC-MA-COOH)이 Vac2 (Alum) 보다 더 우수한 효과를 나타냈다. As confirmed in Table 4 and FIG. 5, according to the survival rate results, the positive control group Vac2 (Alum) and the Vac1 (GC-MA-COOH) of the present invention were more effective than those of Vac4 (uninoculated group). It showed a high survival rate, which is due to the adjuvant effect. In particular, Vac1 (GC-MA-COOH) of the present invention showed more excellent effects than Vac2 (Alum).

바이러스 항원을 이용한 애주번트 효능평가Evaluation of adjuvant efficacy using viral antigens

바이러스 항원을 이용한 효능평가를 수행하였다. 먼저 4종의 시험백신을 아래 표 5과 같은 조성으로 제조하였다.Efficacy evaluations using viral antigens were performed. First, four types of test vaccines were prepared with the composition shown in Table 5 below.

그룹group Vac1Vac1 Vac2Vac2 Vac3Vac3 Vac4Vac4 항원(Antigen)Antigen CCV
105.5TCID50/dose
CCV
10 5.5 TCID 50 /dose
CCV
105.5TCID50/dose
CCV
10 5.5 TCID 50 /dose
CCV
105.5TCID50/dose
CCV
10 5.5 TCID 50 /dose
--
폴리머 (Polymer)Polymer GC-MA-COOH
0.4mg/dose
GC-MA-COOH
0.4mg/dose
-- -- --
알룸 (Alum)Alum -- Alum 3%Alum 3% -- -- 비고note -- 양성대조군positive control Non adjuvantNon adjuvant 무접종군unvaccinated group

항원 (antigen)으로써 개코로나바이러스 (CCV, Canine Corona virus) (Seed 입수처: Cornell university, 또는 항원 입수처: 중앙백신연구소)를 사용하고 백신조성물에 105.5 TCID50/㎖이 포함되도록 하였다. 양성대조군으로서 일반적으로 많이 사용되는 백신보조제인 알룸 (Aluminum hydroxide gel)을 사용하고, 백신조성물에 3% (v/v) 포함되도록 하였다. 모든 시험백신은 pH7이 되도록 하였다. 실험동물로서 기니피그 (수컷, 300 ~ 350g)를 사용하였다. 시험백신 그룹 당 5마리 기니피그 (대조군의 경우 3마리)에 상기 제조한 백신의 1/2 (1 ㎖/두)씩 2주 간격으로 2회 근육 접종하고, 2주 후에 대조군과 함께 채혈하여 개코로나바이러스에 대한 중화항체가 (NPLA)를 측정하였다. 아래 표 6 및 도 6는 그 결과를 나타낸 것이다.As an antigen (antigen), canine corona virus (CCV, Canine Corona virus) (seed: Cornell university, or antigen: Central Vaccine Research Institute) was used, and 10 5.5 TCID 50 /ml was included in the vaccine composition. As a positive control, aluminum hydroxide gel, a commonly used vaccine adjuvant, was used, and 3% (v/v) was included in the vaccine composition. All test vaccines were adjusted to have a pH of 7. A guinea pig (male, 300 ~ 350g) was used as an experimental animal. Five guinea pigs per test vaccine group (3 in control group) were intramuscularly inoculated twice (1 ml/two) of the prepared vaccine twice at an interval of 2 weeks, and after 2 weeks, blood was collected with the control group and canine corona Neutralizing antibody against virus (NPLA) was measured. Table 6 and Figure 6 below show the results.

백신그룹vaccine group Vac1Vac1 Vac2Vac2 Vac3Vac3 Vac4Vac4 샘플Sample GC-MA-COOHGC-MA-COOH AlumAlum Non adjuvantNon adjuvant 무접종군unvaccinated group 접종군inoculation group 3232 3232 1One 1One 1616 22 1One 1One 3232 1616 22 1One 3232 1616 1One -- 1616 88 22 -- 기하평균geometric mean 24.2524.25 10.5610.56 1.321.32 1One 표준편차Standard Deviation 8.768.76 11.2711.27 0.540.54 00

개코로나바이러스의 동물용 의약품 국가검정 기준은 접종 동물의 80% 이상이 8배 이상을 만족해야 한다. 중화항체가 시험결과 Vac2 (2차)와 비교하여 본 발명 Vac1 (GC-MA-COOH) 그룹의 항체가가 높게 형성됨을 확인하였다. 중화항체가 시험결과 Vac1 (GC-MA-COOH) 그룹의 항체가가 가장 높게 형성됨을 확인하였다. 기존 CCV 백신의 항원함량 대비 함량을 1/2로 낮추어 시험백신을 제작하였음에도 불구하고 Vac1 (GC-MA-COOH)그룹의 모든 접종 동물에서 동물용 의약품 국가검정 기준인 8배 이상의 항체가를 보였다. 이러한 결과는 본 발명의 애주번트 (GC-MA-COOH)가 현재 사용 중인 알룸 백신보조제와 비교하여 매우 우수한 효과가 있음을 제시한다.According to the national examination standard for veterinary medicines for canine coronavirus, 80% or more of inoculated animals must satisfy 8 times or more. As a result of the neutralizing antibody test, it was confirmed that the antibody titer of the Vac1 (GC-MA-COOH) group of the present invention was higher than that of Vac2 (secondary). As a result of the neutralizing antibody test, it was confirmed that the antibody titer of the Vac1 (GC-MA-COOH) group was formed the highest. Despite the fact that the test vaccine was prepared by reducing the antigen content of the existing CCV vaccine by half, all inoculated animals of the Vac1 (GC-MA-COOH) group showed an antibody titer more than 8 times the national standard for veterinary drugs. These results suggest that the adjuvant (GC-MA-COOH) of the present invention has a very good effect compared to the currently used alum vaccine adjuvant.

본 발명에 따른 애주번트 조성물과 항원을 포함하는 백신 조성물을 동물에 투여한 결과 증가된 생존력 및 항체가를 나타내는 것을 확인하였다. 따라서, 본 발명은 사람 또는 동물의 백신 조성물 제조에 있어서 면역원성 강화를 위해 널리 이용될 수 있을 것이다.As a result of administering the vaccine composition comprising the adjuvant composition and the antigen according to the present invention to animals, it was confirmed that increased viability and antibody titer were exhibited. Accordingly, the present invention can be widely used for enhancing immunogenicity in the preparation of vaccine compositions for humans or animals.

Claims (16)

하기 화학식 1의 구조식을 갖는 메틸 아크릴레이트 수식된 글리콜 키토산 유도체:
화학식 1
Figure 112020104341784-pat00002

(상기 식에서, n은 1 내지 5,000 이하의 정수이고, R1 및 R2는 각각 독립적으로, 수소 또는 나트륨염이다).
A methyl acrylate-modified glycol chitosan derivative having the structural formula of Formula 1 below:
Formula 1
Figure 112020104341784-pat00002

(Wherein, n is an integer of 1 to 5,000 or less, and R 1 and R 2 are each independently hydrogen or a sodium salt).
삭제delete 제 1항의 글리콜 키토산 유도체를 포함하는 애주번트 조성물로서, 상기 글리콜 키토산 유도체의 분자량은 1,000 Da 내지 1,000,000 Da인 것인, 애주번트 조성물.As an adjuvant composition comprising the glycol chitosan derivative of claim 1, the molecular weight of the glycol chitosan derivative is 1,000 Da to 1,000,000 Da, the adjuvant composition. 제 3항에 있어서, 상기 글리콜 키토산 유도체는 10% 내지 100%의 메틸 아크릴레이트 치환율을 갖는 것을 특징으로 하는, 애주번트 조성물.The adjuvant composition according to claim 3, wherein the glycol chitosan derivative has a methyl acrylate substitution rate of 10% to 100%. 제 1항의 글리콜 키토산 유도체 또는 제 3항의 애주번트 조성물 및 항원을 포함하는 백신 조성물. A vaccine composition comprising the glycol chitosan derivative of claim 1 or the adjuvant composition of claim 3 and an antigen. 제 4항의 애주번트 조성물 및 항원을 포함하는 백신 조성물.A vaccine composition comprising the adjuvant composition of claim 4 and an antigen. 제 5항에 있어서, 항원이 세균 항원, 바이러스 항원, 또는 재조합 항원인 것인, 백신 조성물.6. The vaccine composition of claim 5, wherein the antigen is a bacterial antigen, a viral antigen, or a recombinant antigen. 제 6항에 있어서, 항원이 세균 항원, 바이러스 항원, 또는 재조합 항원인 것인, 백신 조성물.7. The vaccine composition of claim 6, wherein the antigen is a bacterial antigen, a viral antigen, or a recombinant antigen. 제 5항에 있어서, 세균 항원은 Mycoplasma hyopneumoniae , Mycoplasma galanacieum , Mycoplasma bovis, Haemophilus parasuis , Haemophilus somnus , Mycobaterium bovis , Bordetella bronchiseptica , Leptospira, Actinobacillus pleuropneumoniae , Pasteuella multocida , Erysipelothrix rhusiopathiae , Escherichia coli , Streptococcus suis , Streptococcus uberis , Staphylococcus aureus ,Salmonella entericaserovars 로 구성된 군으로부터 선택된 것인, 백신 조성물.6. The method of claim 5, wherein the bacterial antigen is Mycoplasma hyopneumoniae , Mycoplasma galanacieum , Mycoplasma bovis, Haemophilus parasuis , Haemophilus somnus , Mycobaterium bovis , Bordetella bronchiseptica , Leptospira, Actinobacillus pleuropneumoniae , Pasteuella multocida , Erysipelothrix rhusiopathiae , Escherichia coli , Streptococcus suis , Streptococcus uberis , Staphylococcus aureus , and Salmonella entericaserovars . 제 5항에 있어서, 바이러스 항원은 Bovine herpesviruses-1,3,6, Bovine viral diarrhea virus(BVDV) type 1,2, Bovine parainfluenza virus, Bovine respiratory syncytial virus, Bovine leukosis virus, Porcine epidemic diarrhea virus, Porcine reproductive and respiratory syndrome virus(PRRSV), Foot and mouth disease virus, Swine fever virus, Porcine parvovirus, Porcine circovirus, Swine influenza virus, Swine vesicular disease virus, Techen fever virus, Rabies virus, Canine coronavirus, Canine influenzavirus, Canine parvovirus, Feline panleukopenia virus, Feline calicivirus, Feline parvovirus, 및 Feline herpesvirus 로 구성된 군으로부터 선택된 것인, 백신 조성물.According to claim 5, wherein the viral antigen is Bovine herpesviruses-1,3,6, Bovine viral diarrhea virus (BVDV) type 1,2, Bovine parainfluenza virus, Bovine respiratory syncytial virus, Bovine leukosis virus, Porcine epidemic diarrhea virus, Porcine reproductive and respiratory syndrome virus (PRRSV), Foot and mouth disease virus, Swine fever virus, Porcine parvovirus, Porcine circovirus, Swine influenza virus, Swine vesicular disease virus, Techen fever virus, Rabies virus, Canine coronavirus, Canine influenzavirus, Canine parvovirus, Feline A vaccine composition, wherein the vaccine composition is selected from the group consisting of panleukopenia virus, Feline calicivirus, Feline parvovirus, and Feline herpesvirus. 제 9항에 있어서, 상기 세균 항원은 돼지단독균 (Erysipelothrix . rhusiopathiae)인 것인, 백신 조성물.The vaccine composition of claim 9, wherein the bacterial antigen is Erysipelothrix . rhusiopathiae. 제 10항에 있어서, 상기 바이러스 항원은 개코로나바이러스 (Canine Corona virus)인 것인 백신 조성물.The vaccine composition of claim 10, wherein the viral antigen is Canine Corona virus. i) 글리콜 키토산과 메틸 아크릴레이트를 마이클 첨가에 의해 반응시켜 메틸 아크릴레이트 수식된 글리콜 키토산을 생성하고;
ii) 상기 i)에서 수득한 메틸 아크릴레이트 수식된 글리콜 키토산을 에스테르 가수분해 하여, 하기 화학식 1의 구조를 갖는 글리콜 키토산 유도체를 제조하는 방법:
화학식 1
Figure 112020104341784-pat00003

(상기 식에서, n은 1 내지 5,000 이하의 정수이고, R1 및 R2는 각각 독립적으로, 수소 또는 나트륨염이다).
i) reacting glycol chitosan with methyl acrylate by Michael addition to produce methyl acrylate modified glycol chitosan;
ii) ester hydrolysis of the methyl acrylate-modified glycol chitosan obtained in i) to prepare a glycol chitosan derivative having the structure of the following formula (1):
Formula 1
Figure 112020104341784-pat00003

(Wherein, n is an integer of 1 to 5,000 or less, and R 1 and R 2 are each independently hydrogen or a sodium salt).
제 13항에 있어서, 상기 i)에서 글리콜 키토산과 메틸 아크릴레이트는 1:50 내지 1:200의 몰 비로 반응시키고, 상기 ii)의 에스테르 가수분해가 NaOH에 수행되는 것인, 글리콜 키토산 유도체를 제조하는 방법.The method according to claim 13, wherein in i) glycol chitosan and methyl acrylate are reacted in a molar ratio of 1:50 to 1:200, and the ester hydrolysis of ii) is performed in NaOH, to prepare a glycol chitosan derivative How to. 삭제delete 삭제delete
KR1020180137788A 2018-11-12 2018-11-12 An adjuvant composition comprising glycol chitosan derivatives KR102355774B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180137788A KR102355774B1 (en) 2018-11-12 2018-11-12 An adjuvant composition comprising glycol chitosan derivatives

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180137788A KR102355774B1 (en) 2018-11-12 2018-11-12 An adjuvant composition comprising glycol chitosan derivatives

Publications (2)

Publication Number Publication Date
KR20200054485A KR20200054485A (en) 2020-05-20
KR102355774B1 true KR102355774B1 (en) 2022-01-27

Family

ID=70919591

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180137788A KR102355774B1 (en) 2018-11-12 2018-11-12 An adjuvant composition comprising glycol chitosan derivatives

Country Status (1)

Country Link
KR (1) KR102355774B1 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL9500590A (en) 1995-03-28 1996-11-01 Hollandse Signaalapparaten Bv Device for detecting targets.

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Carbohydrate Polymers, Vol. 137, pages 669-677 (2016)*
Drug Deliv, Vol. 23(1), pages 185-194(2016)*

Also Published As

Publication number Publication date
KR20200054485A (en) 2020-05-20

Similar Documents

Publication Publication Date Title
US20120014991A1 (en) Novel, non-antigenic, mucosal adjuvant formulation which modulates the effects of substances, including vaccine antigens, in contact with mucosal body surfaces
US10576138B2 (en) Vaccines and compositions for the prevention of Salmonella infections
US8088395B2 (en) Phytol derived immunoadjuvants and their use in vaccine formulations
WO2010050578A1 (en) Mucosal vaccine using cationic nanogel
AU2014313699A1 (en) A bacterial vaccine and methods for manufacture thereof
Yu et al. Quaternized chitosan nanoparticles in vaccine applications
EP3471706B1 (en) Oral pharmaceutical composition comprising a pharmaceutically active agent, at least one cationic bioadhesive polymer and at least two anionic polymers
ES2676833T3 (en) Vaccine to protect a ruminant against pneumonia caused by Pasteurella multocida
KR102355774B1 (en) An adjuvant composition comprising glycol chitosan derivatives
JP6165182B2 (en) Use of tetrafunctional nonionic amphiphilic block copolymers modified by glycosylation as immune adjuvants
EP2387417B1 (en) Broad spectrum vaccine against non-typhoidal salmonella
EP3392291B1 (en) Vaccine adjuvant composition based on amphiphilic polyamino acid polymer, containing squalene
JP4842430B2 (en) Use of novel vaccine compositions and surfactants as adjuvants for immunization
US9821055B2 (en) Vaccine adjuvants
JP7116428B2 (en) Infectious disease drug
CN112789056A (en) Mucosal adjuvants
JP6975132B2 (en) Liposomal adjuvant composition
KR100904226B1 (en) Adjuvant of Nanosome Form Comprising Pseudo Lecithin Emulsifier and Vaccine Composition Comprising same
JP2021502957A (en) vaccine
RU2021817C1 (en) Method of preparing of vaccine against cholera
CN113730596B (en) Micro-environment self-adaptive nano-drug delivery system for severe lower respiratory tract infection and preparation method thereof
KR20130056273A (en) Trisaccharide derivates, and their use as adjuvants
US20210402006A1 (en) Nanoparticles and uses thereof
Kumar et al. Exploration of chitosan and its modified derivatives as vaccine adjuvant: A Review
CN111494621A (en) Newcastle disease live vaccine adjuvant and preparation method thereof

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right