KR102353156B1 - Compound and organic light emitting device comprising the same - Google Patents

Compound and organic light emitting device comprising the same Download PDF

Info

Publication number
KR102353156B1
KR102353156B1 KR1020200012735A KR20200012735A KR102353156B1 KR 102353156 B1 KR102353156 B1 KR 102353156B1 KR 1020200012735 A KR1020200012735 A KR 1020200012735A KR 20200012735 A KR20200012735 A KR 20200012735A KR 102353156 B1 KR102353156 B1 KR 102353156B1
Authority
KR
South Korea
Prior art keywords
formula
compound
group
mmol
layer
Prior art date
Application number
KR1020200012735A
Other languages
Korean (ko)
Other versions
KR20200096174A (en
Inventor
김민준
이동훈
김동희
김서연
이다정
최승원
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Publication of KR20200096174A publication Critical patent/KR20200096174A/en
Application granted granted Critical
Publication of KR102353156B1 publication Critical patent/KR102353156B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/14Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing three or more hetero rings
    • H01L51/0072
    • H01L51/0073
    • H01L51/0074
    • H01L51/5012
    • H01L51/5048
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers

Abstract

본 명세서는 화학식 1의 화합물 및 이를 포함한 유기 발광 소자를 제공한다.The present specification provides a compound of Formula 1 and an organic light emitting device including the same.

Description

화합물 및 이를 포함하는 유기 발광 소자{COMPOUND AND ORGANIC LIGHT EMITTING DEVICE COMPRISING THE SAME}Compound and organic light emitting device including the same

본 명세서는 2019년 02월 01일 한국특허청에 제출된 한국 특허 출원 제10-2019-0013534호의 출원일의 이익을 주장하며, 그 내용 전부는 본 명세서에 포함된다.This specification claims the benefit of the filing date of Korean Patent Application No. 10-2019-0013534 filed with the Korean Intellectual Property Office on February 01, 2019, the entire contents of which are incorporated herein by reference.

본 출원은 화합물 및 이를 포함하는 유기 발광 소자에 관한 것이다.The present application relates to a compound and an organic light emitting device including the same.

일반적으로 유기 발광 현상이란 유기 물질을 이용하여 전기에너지를 빛에너지로 전환시켜주는 현상을 말한다. 유기 발광 현상을 이용하는 유기 발광 소자는 통상 제1 전극과 제2 전극 및 이 사이에 유기물층을 포함하는 구조를 가진다. 여기서 유기물층은 유기 발광 소자의 효율과 안정성을 높이기 위하여 각기 다른 물질로 구성된 다층의 구조로 이루어진 경우가 많으며, 예컨대 정공주입층, 정공수송층, 발광층, 전자수송층, 전자주입층 등으로 이루어 질 수 있다. 이러한 유기 발광 소자의 구조에서 두 전극 사이에 전압을 걸어주게 되면 제1 전극에서는 정공이, 제2 전극에서는 전자가 유기물층에 주입되게 되고, 주입된 정공과 전자가 만났을 때 엑시톤(exciton)이 형성되며, 이 엑시톤이 다시 바닥상태로 떨어질 때 빛이 나게 된다. In general, the organic light emitting phenomenon refers to a phenomenon in which electric energy is converted into light energy using an organic material. An organic light emitting device using an organic light emitting phenomenon generally has a structure including a first electrode and a second electrode and an organic material layer therebetween. Here, the organic material layer is often formed of a multi-layered structure composed of different materials in order to increase the efficiency and stability of the organic light-emitting device, for example, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, and the like. In the structure of the organic light emitting device, when a voltage is applied between the two electrodes, holes are injected into the organic material layer at the first electrode and electrons are injected into the organic material layer at the second electrode, and excitons are formed when the injected holes and electrons meet. , when this exciton falls back to the ground state, it glows.

상기와 같은 유기 발광 소자를 위한 새로운 재료의 개발이 계속 요구되고 있다.The development of new materials for the organic light emitting device as described above is continuously required.

한국 공개특허문헌 제10-2011-0107681호Korean Patent Publication No. 10-2011-0107681

본 출원 화합물 및 이를 포함하는 유기 발광 소자를 제공하는 것이다.An object of the present application is to provide a compound and an organic light emitting device including the same.

본 출원은 하기 화학식 1로 표시되는 화합물을 제공한다.The present application provides a compound represented by the following formula (1).

[화학식 1][Formula 1]

Figure 112020011233657-pat00001
Figure 112020011233657-pat00001

상기 화학식 1에 있어서,In Formula 1,

R1 내지 R4는 각각 독립적으로, 수소; 또는 중수소이고,R1 to R4 are each independently hydrogen; or deuterium,

R5 및 R6은 각각 독립적으로, 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로고리기이며,R5 and R6 are each independently a substituted or unsubstituted aryl group; Or a substituted or unsubstituted heterocyclic group,

a는 0 내지 6의 정수이고,a is an integer from 0 to 6,

b 및 d는 각각 독립적으로, 0 내지 4의 정수이며,b and d are each independently an integer of 0 to 4,

c는 0 내지 2의 정수이고,c is an integer from 0 to 2,

a 내지 d가 각각 독립적으로, 2 이상인 경우에는 괄호 내의 치환기는 서로 같거나 상이하고, a to d are each independently, when 2 or more, the substituents in parentheses are the same as or different from each other,

b 내지 d가 각각 독립적으로, 2 이상인 경우에는 2 이상의 R2 내지 R4는 각각 독립적으로 인접한 치환기와 서로 결합하여 고리를 형성할 수 있다.b to d are each independently, when two or more, two or more R2 to R4 may each independently combine with an adjacent substituent to form a ring.

또한, 본 출원은 제1 전극; 상기 제1 전극과 대향하여 구비된 제2 전극; 및 상기 제1 전극과 상기 제2 전극 사이에 구비된 1층 이상의 유기물층을 포함하고, 상기 유기물층 중 1 층 이상은 전술한 화합물을 포함하는 것인 유기 발광 소자를 제공한다.In addition, the present application is a first electrode; a second electrode provided to face the first electrode; and at least one organic material layer provided between the first electrode and the second electrode, wherein at least one of the organic material layers includes the compound described above.

본 출원의 일 실시상태에 따른 화합물을 사용하는 유기 발광 소자는 낮은 구동전압, 높은 발광효율 또는 장수명이 가능하다.The organic light emitting device using the compound according to the exemplary embodiment of the present application can have a low driving voltage, high luminous efficiency, or a long lifespan.

도 1은 기판(1), 제1 전극(2), 발광층(3), 제2 전극(4)이 순차적으로 적층된 유기 발광 소자의 예를 도시한 것이다.
도 2는 기판 (1), 제1 전극(2), 정공주입층(5), 정공수송층(6), 전자저지층(7), 발광층(3), 정공저지층(8), 전자 주입 및 수송층(9) 및 제2 전극(4)이 순차적으로 적층된 유기 발광 소자의 예를 도시한 것이다.
1 illustrates an example of an organic light emitting device in which a substrate 1, a first electrode 2, a light emitting layer 3, and a second electrode 4 are sequentially stacked.
2 is a substrate (1), a first electrode (2), a hole injection layer (5), a hole transport layer (6), an electron blocking layer (7), a light emitting layer (3), a hole blocking layer (8), electron injection and An example of an organic light emitting device in which the transport layer 9 and the second electrode 4 are sequentially stacked is shown.

이하, 본 명세서에 대하여 더욱 상세하게 설명한다.Hereinafter, the present specification will be described in more detail.

본 명세서는 상기 화학식 1로 표시되는 화합물을 제공한다.The present specification provides a compound represented by Formula 1 above.

본 출원의 일 실시상태에 따르면, 상기 화학식 1로 표시되는 화합물은 상기와 같은 코어 구조를 가짐으로써, 삼중항 에너지를 조절할 수 있는 장점이 있고, 장수명 및 고효율의 특성을 나타낼 수 있다.According to an exemplary embodiment of the present application, the compound represented by Formula 1 has the advantage of controlling triplet energy by having the core structure as described above, and can exhibit long life and high efficiency characteristics.

본 명세서에서 치환기의 예시들은 아래에서 설명하나, 이에 한정되는 것은 아니다. Examples of substituents in the present specification are described below, but are not limited thereto.

상기 "치환"이라는 용어는 화합물의 탄소 원자에 결합된 수소 원자가 다른 치환기로 바뀌는 것을 의미하며, 치환되는 위치는 수소 원자가 치환되는 위치 즉, 치환기가 치환 가능한 위치라면 한정하지 않으며, 2 이상 치환되는 경우, 2 이상의 치환기는 서로 동일하거나 상이할 수 있다.The term "substitution" means that a hydrogen atom bonded to a carbon atom of a compound is replaced with another substituent, and the position to be substituted is not limited as long as the position at which the hydrogen atom is substituted, that is, a position where the substituent is substitutable, is substituted. , two or more substituents may be the same as or different from each other.

본 명세서에서 "치환 또는 비치환된" 이라는 용어는 수소; 할로겐기; 니트릴기; 니트로기; 히드록시기; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 시클로알킬기; 치환 또는 비치환된 알케닐기; 치환 또는 비치환된 아민기; 치환 또는 비치환된 아릴기; 및 치환 또는 비치환된 헤테로고리기로 이루어진 군에서 선택된 1 또는 2 이상의 치환기로 치환되었거나 상기 예시된 치환기 중 2 이상의 치환기가 연결된 치환기로 치환되거나, 또는 어떠한 치환기도 갖지 않는 것을 의미한다. 예컨대, "2 이상의 치환기가 연결된 치환기"는 비페닐기일 수 있다. 즉, 비페닐기는 아릴기일 수도 있고, 2개의 페닐기가 연결된 치환기로 해석될 수 있다. As used herein, the term "substituted or unsubstituted" includes hydrogen; halogen group; nitrile group; nitro group; hydroxyl group; a substituted or unsubstituted alkyl group; a substituted or unsubstituted cycloalkyl group; a substituted or unsubstituted alkenyl group; a substituted or unsubstituted amine group; a substituted or unsubstituted aryl group; And it means that it is substituted with one or two or more substituents selected from the group consisting of a substituted or unsubstituted heterocyclic group, is substituted with a substituent to which two or more of the above exemplified substituents are connected, or does not have any substituents. For example, "a substituent in which two or more substituents are connected" may be a biphenyl group. That is, the biphenyl group may be an aryl group, and may be interpreted as a substituent in which two phenyl groups are connected.

본 명세서에 있어서, 할로겐기의 예로는 불소, 염소, 브롬 또는 요오드가 있다. In the present specification, examples of the halogen group include fluorine, chlorine, bromine or iodine.

본 명세서에 있어서, 상기 알킬기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나 1 내지 50인 것이 바람직하다. 구체적인 예로는 메틸, 에틸, 프로필, n-프로필, 이소프로필, 부틸, n-부틸, 이소부틸, tert-부틸, sec-부틸, 1-메틸-부틸, 1-에틸-부틸, 펜틸, n-펜틸, 이소펜틸, 네오펜틸, tert-펜틸, 헥실, n-헥실, 1-메틸펜틸, 2-메틸펜틸, 4-메틸-2-펜틸, 3,3-디메틸부틸, 2-에틸부틸, 헵틸, n-헵틸, 1-메틸헥실, 시클로펜틸메틸, 시클로헥실메틸, 옥틸, n-옥틸, tert-옥틸, 1-메틸헵틸, 2-에틸헥실, 2-프로필펜틸, n-노닐, 2,2-디메틸헵틸, 1-에틸-프로필, 1,1-디메틸-프로필, 이소헥실, 2-메틸펜틸, 4-메틸헥실, 5-메틸헥실 등이 있으나, 이들에 한정되지 않는다.In the present specification, the alkyl group may be linear or branched, and the number of carbon atoms is not particularly limited, but is preferably 1 to 50. Specific examples include methyl, ethyl, propyl, n-propyl, isopropyl, butyl, n-butyl, isobutyl, tert-butyl, sec-butyl, 1-methyl-butyl, 1-ethyl-butyl, pentyl, n-pentyl , isopentyl, neopentyl, tert-pentyl, hexyl, n-hexyl, 1-methylpentyl, 2-methylpentyl, 4-methyl-2-pentyl, 3,3-dimethylbutyl, 2-ethylbutyl, heptyl, n -Heptyl, 1-methylhexyl, cyclopentylmethyl, cyclohexylmethyl, octyl, n-octyl, tert-octyl, 1-methylheptyl, 2-ethylhexyl, 2-propylpentyl, n-nonyl, 2,2-dimethyl heptyl, 1-ethyl-propyl, 1,1-dimethyl-propyl, isohexyl, 2-methylpentyl, 4-methylhexyl, 5-methylhexyl, and the like.

본 명세서에 있어서, 시클로알킬기는 특별히 한정되지 않으나, 탄소수 3 내지 60인 것이 바람직하며, 구체적으로 시클로프로필, 시클로부틸, 시클로펜틸, 3-메틸시클로펜틸, 2,3-디메틸시클로펜틸, 시클로헥실, 3-메틸시클로헥실, 4-메틸시클로헥실, 2,3-디메틸시클로헥실, 3,4,5-트리메틸시클로헥실, 4-tert-부틸시클로헥실, 시클로헵틸, 시클로옥틸 등이 있으나, 이에 한정되지 않는다. In the present specification, the cycloalkyl group is not particularly limited, but preferably has 3 to 60 carbon atoms, and specifically, cyclopropyl, cyclobutyl, cyclopentyl, 3-methylcyclopentyl, 2,3-dimethylcyclopentyl, cyclohexyl, 3-methylcyclohexyl, 4-methylcyclohexyl, 2,3-dimethylcyclohexyl, 3,4,5-trimethylcyclohexyl, 4-tert-butylcyclohexyl, cycloheptyl, cyclooctyl, etc., but are not limited thereto. does not

본 명세서에 있어서, 상기 알케닐기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나, 2 내지 40인 것이 바람직하다. 구체적인 예로는 비닐, 1-프로페닐, 이소프로페닐, 1-부테닐, 2-부테닐, 3-부테닐, 1-펜테닐, 2-펜테닐, 3-펜테닐, 3-메틸-1-부테닐, 1,3-부타디에닐, 알릴, 1-페닐비닐-1-일, 2-페닐비닐-1-일, 2,2-디페닐비닐-1-일, 2-페닐-2-(나프틸-1-일)비닐-1-일, 2,2-비스(디페닐-1-일)비닐-1-일, 스틸베닐기, 스티레닐기 등이 있으나 이들에 한정되지 않는다.In the present specification, the alkenyl group may be linear or branched, and the number of carbon atoms is not particularly limited, but is preferably 2 to 40. Specific examples include vinyl, 1-propenyl, isopropenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 3-methyl-1- Butenyl, 1,3-butadienyl, allyl, 1-phenylvinyl-1-yl, 2-phenylvinyl-1-yl, 2,2-diphenylvinyl-1-yl, 2-phenyl-2-( Naphthyl-1-yl)vinyl-1-yl, 2,2-bis(diphenyl-1-yl)vinyl-1-yl, stilbenyl group, styrenyl group, and the like, but are not limited thereto.

본 명세서에서 상기 아릴기가 단환식 아릴기인 경우 탄소수는 특별히 한정되지 않으나, 탄소수 6 내지 25인 것이 바람직하다. 구체적으로 단환식 아릴기로는 페닐기, 비페닐기, 터페닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다. In the present specification, when the aryl group is a monocyclic aryl group, the number of carbon atoms is not particularly limited, but preferably 6 to 25 carbon atoms. Specifically, the monocyclic aryl group may be a phenyl group, a biphenyl group, a terphenyl group, and the like, but is not limited thereto.

상기 아릴기가 다환식 아릴기인 경우 탄소수는 특별히 한정되지 않으나. 탄소수 10 내지 24인 것이 바람직하다. 구체적으로 다환식 아릴기로는 나프틸기, 안트라세닐기, 페난트릴기, 파이레닐기, 페릴레닐기, 크라이세닐기, 플루오레닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다.When the aryl group is a polycyclic aryl group, the number of carbon atoms is not particularly limited. It is preferable that it has 10-C24. Specifically, the polycyclic aryl group may be a naphthyl group, an anthracenyl group, a phenanthryl group, a pyrenyl group, a perylenyl group, a chrysenyl group, a fluorenyl group, and the like, but is not limited thereto.

본 명세서에 있어서, 상기 플루오레닐기는 치환될 수 있으며, 인접한 치환기들이 서로 결합하여 고리를 형성할 수 있다. In the present specification, the fluorenyl group may be substituted, and adjacent substituents may combine with each other to form a ring.

상기 플루오레닐기가 치환되는 경우,

Figure 112020011233657-pat00002
,
Figure 112020011233657-pat00003
,
Figure 112020011233657-pat00004
Figure 112020011233657-pat00005
등이 될 수 있으나, 이에 한정되는 것은 아니다.When the fluorenyl group is substituted,
Figure 112020011233657-pat00002
,
Figure 112020011233657-pat00003
,
Figure 112020011233657-pat00004
and
Figure 112020011233657-pat00005
and the like, but is not limited thereto.

본 명세서에 있어서, 헤테로고리기는 탄소가 아닌 원자, 이종원자를 1 이상 포함하는 것으로서, 구체적으로 상기 이종 원자는 O, N, Se 및 S 등으로 이루어진 군에서 선택되는 원자를 1 이상 포함할 수 있다. 헤테로고리기의 탄소수는 특별히 한정되지 않으나, 탄소수 2 내지 60인 것이 바람직하다. 헤테로고리기의 예로는 티오펜기, 퓨란기, 피롤기, 이미다졸기, 티아졸기, 옥사졸기, 옥사디아졸기, 트리아졸기, 피리딜기, 비피리딜기, 피리미딜기, 트리아진기, 트리아졸기, 아크리딜기, 피리다진기, 피라지닐기, 퀴놀리닐기, 퀴나졸린기, 퀴녹살리닐기, 프탈라지닐기, 피리도 피리미디닐기, 피리도 피라지닐기, 피라지노 피라지닐기, 이소퀴놀린기, 인돌기, 카바졸기, 벤즈옥사졸기, 벤즈이미다졸기, 벤조티아졸기, 벤조카바졸기, 벤조티오펜기, 디벤조티오펜기, 벤조퓨라닐기, 페난쓰롤린기(phenanthroline), 티아졸릴기, 이소옥사졸릴기, 옥사디아졸릴기, 티아디아졸릴기, 벤조티아졸릴기, 페노티아지닐기 및 디벤조퓨라닐기 등이 있으나, 이들에만 한정되는 것은 아니다.In the present specification, the heterocyclic group includes one or more atoms other than carbon and one or more heteroatoms, and specifically, the heterocyclic group may include one or more atoms selected from the group consisting of O, N, Se and S, and the like. Although the number of carbon atoms of the heterocyclic group is not particularly limited, it is preferably from 2 to 60 carbon atoms. Examples of the heterocyclic group include a thiophene group, a furan group, a pyrrole group, an imidazole group, a thiazole group, an oxazole group, an oxadiazole group, a triazole group, a pyridyl group, a bipyridyl group, a pyrimidyl group, a triazine group, a triazole group, Acridyl group, pyridazine group, pyrazinyl group, quinolinyl group, quinazoline group, quinoxalinyl group, phthalazinyl group, pyrido pyrimidinyl group, pyrido pyrazinyl group, pyrazino pyrazinyl group, isoquinoline group , indole group, carbazole group, benzoxazole group, benzimidazole group, benzothiazole group, benzocarbazole group, benzothiophene group, dibenzothiophene group, benzofuranyl group, phenanthroline group, thiazolyl group, an isoxazolyl group, an oxadiazolyl group, a thiadiazolyl group, a benzothiazolyl group, a phenothiazinyl group, and a dibenzofuranyl group, but are not limited thereto.

본 명세서에 있어서, 방향족 탄화수소고리는 2가기인 것을 제외하고는 전술한 아릴기에 관한 설명이 적용될 수 있다.In the present specification, the description of the aryl group described above may be applied, except that the aromatic hydrocarbon ring is a divalent group.

본 명세서에 있어서, 헤테로고리는 2가기인 것을 제외하고는 전술한 헤테로고리기에 관한 설명이 적용될 수 있다. In the present specification, the description of the above-mentioned heterocyclic group may be applied, except that the heterocyclic group is a divalent group.

본 명세서에 있어서, 아민기는 -NH2; 알킬아민기; N-알킬아릴아민기; 아릴아민기; N-아릴헤테로아릴아민기; N-알킬헤테로아릴아민기 및 헤테로아릴아민기로 이루어진 군으로부터 선택될 수 있으며, 탄소수는 특별히 한정되지 않으나, 1 내지 30인 것이 바람직하다. 아민기의 구체적인 예로는 메틸아민기, 디메틸아민기, 에틸아민기, 디에틸아민기, 페닐아민기, 나프틸아민기, 바이페닐아민기, 안트라세닐아민기, 9-메틸-안트라세닐아민기, 디페닐아민기, N-페닐나프틸아민기, 디톨릴아민기, N-페닐톨릴아민기, 트리페닐아민기, N-페닐바이페닐아민기, N-페닐나프틸아민기, N-바이페닐나프틸아민기, N-나프틸플루오레닐아민기, N-페닐페난트레닐아민기, N-바이페닐페난트레닐아민기, N-페닐플루오레닐아민기, N-페닐터페닐아민기, N-페난트레닐플루오레닐아민기, N-바이페닐플루오레닐아민기 등이 있으나, 이에 한정되는 것은 아니다.In the present specification, the amine group is -NH 2 ; an alkylamine group; N-alkylarylamine group; arylamine group; N-aryl heteroarylamine group; It may be selected from the group consisting of an N-alkylheteroarylamine group and a heteroarylamine group, and the number of carbon atoms is not particularly limited, but is preferably 1 to 30. Specific examples of the amine group include a methylamine group, a dimethylamine group, an ethylamine group, a diethylamine group, a phenylamine group, a naphthylamine group, a biphenylamine group, an anthracenylamine group, and a 9-methyl-anthracenylamine group. , diphenylamine group, N-phenylnaphthylamine group, ditolylamine group, N-phenyltolylamine group, triphenylamine group, N-phenylbiphenylamine group, N-phenylnaphthylamine group, N-bi Phenylnaphthylamine group, N-naphthylfluorenylamine group, N-phenylphenanthrenylamine group, N-biphenylphenanthrenylamine group, N-phenylfluorenylamine group, N-phenylterphenylamine group, N-phenanthrenylfluorenylamine group, N-biphenylfluorenylamine group, and the like, but is not limited thereto.

본 명세서에 있어서, N-알킬아릴아민기는 아민기의 N에 알킬기 및 아릴기가 치환된 아민기를 의미한다.In the present specification, the N-alkylarylamine group refers to an amine group in which an alkyl group and an aryl group are substituted with N of the amine group.

본 명세서에 있어서, N-아릴헤테로아릴아민기는 아민기의 N에 아릴기 및 헤테로아릴기가 치환된 아민기를 의미한다.In the present specification, the N-arylheteroarylamine group refers to an amine group in which an aryl group and a heteroaryl group are substituted with N of the amine group.

본 명세서에 있어서, N-알킬헤테로아릴아민기는 아민기의 N에 알킬기 및 헤테로아릴기가 치환된 아민기를 의미한다.In the present specification, the N-alkylheteroarylamine group refers to an amine group in which an alkyl group and a heteroaryl group are substituted with N of the amine group.

본 명세서에 있어서, 알킬아민기; N-알킬아릴아민기; 아릴아민기; N-아릴헤테로아릴아민기; N-알킬헤테로아릴아민기 및 헤테로아릴아민기 중의 알킬기, 아릴기 및 헤테로아릴기는 각각 전술한 알킬기, 아릴기 및 헤테로아릴기의 설명이 적용될 수 있다.In the present specification, an alkylamine group; N-alkylarylamine group; arylamine group; N-aryl heteroarylamine group; In the N-alkylheteroarylamine group and the heteroarylamine group, the description of the alkyl group, the aryl group and the heteroaryl group described above may be applied to the alkyl group, the aryl group and the heteroaryl group, respectively.

본 명세서에 있어서, "인접한" 기는 해당 치환기가 치환된 원자와 직접 연결된 원자에 치환된 치환기, 해당 치환기와 입체구조적으로 가장 가깝게 위치한 치환기, 또는 해당 치환기가 치환된 원자에 치환된 다른 치환기를 의미할 수 있다. 예컨대, 벤젠고리에서 오쏘(ortho)위치로 치환된 2개의 치환기 및 지방족 고리에서 동일 탄소에 치환된 2개의 치환기는 서로 "인접한" 기로 해석될 수 있다.As used herein, the "adjacent" group means a substituent substituted on an atom directly connected to the atom in which the substituent is substituted, a substituent sterically closest to the substituent, or another substituent substituted on the atom in which the substituent is substituted. can For example, two substituents substituted at an ortho position in a benzene ring and two substituents substituted at the same carbon in an aliphatic ring may be interpreted as "adjacent" groups.

본 명세서에 있어서, 인접한 기가 서로 결합하여 고리를 형성하는 것의 의미는 전술한 바와 같이 인접한 기가 서로 결합하여, 치환 또는 비치환된 탄화수소고리 또는 치환 또는 비치환된 헤테로고리를 형성하는 것을 의미하며, 단환 또는 다환을 형성할 수 있으며, 지방족, 방향족 또는 이들의 축합된 형태일 수 있으며 이를 한정하지 않는다.In the present specification, the meaning of adjacent groups combining with each other to form a ring means that adjacent groups are combined with each other as described above to form a substituted or unsubstituted hydrocarbon ring or a substituted or unsubstituted heterocycle, and monocyclic Or it may form a polycyclic ring, and may be in an aliphatic, aromatic or condensed form thereof, but is not limited thereto.

본 명세서에 있어서, 인접하는 기와 서로 결합하여 고리를 형성한다는 의미는 인접하는 기와 서로 결합하여 치환 또는 비치환된 지방족 탄화수소고리; 치환 또는 비치환된 방향족 탄화수소고리; 치환 또는 비치환된 지방족 헤테로고리; 치환 또는 비치환된 방향족 헤테로고리; 또는 이들이 조합된 형태를 형성하는 것을 의미한다.In the present specification, the meaning of forming a ring by bonding with adjacent groups means a substituted or unsubstituted aliphatic hydrocarbon ring by bonding with adjacent groups; A substituted or unsubstituted aromatic hydrocarbon ring; substituted or unsubstituted aliphatic heterocycle; substituted or unsubstituted aromatic heterocycle; Or it means that they form a combined form.

본 명세서에 있어서, 지방족 탄화수소고리란 방향족이 아닌 고리로서 탄소와 수소 원자로만 이루어진 고리를 의미한다.In the present specification, the aliphatic hydrocarbon ring is a non-aromatic ring and refers to a ring consisting only of carbon and hydrogen atoms.

본 명세서에 있어서, 방향족 탄화수소고리의 예로는 페닐기, 나프틸기, 안트라세닐기 등이 있으나 이들에만 한정되는 것은 아니다.In the present specification, examples of the aromatic hydrocarbon ring include, but are not limited to, a phenyl group, a naphthyl group, an anthracenyl group, and the like.

본 명세서에 있어서, 지방족 헤테로고리란 헤테로원자 중 1개 이상을 포함하는 지방족고리를 의미한다.In the present specification, the aliphatic heterocycle refers to an aliphatic ring including one or more heteroatoms.

본 명세서에 있어서, 방향족 헤테로고리란 헤테로원자 중 1개 이상을 포함하는 방향족고리를 의미한다.In the present specification, the aromatic heterocycle refers to an aromatic ring including one or more heteroatoms.

상기 화학식 1로 표시되는 화합물은 하기 화학식 2 내지 4 중 어느 하나로 선택된다.The compound represented by Formula 1 is selected from any one of Formulas 2 to 4 below.

[화학식 2][Formula 2]

Figure 112020011233657-pat00006
Figure 112020011233657-pat00006

[화학식 3][Formula 3]

Figure 112020011233657-pat00007
Figure 112020011233657-pat00007

[화학식 4][Formula 4]

Figure 112020011233657-pat00008
Figure 112020011233657-pat00008

상기 화학식 2 내지 4에서, R1 내지 R6 및 a 내지 d는 화학식 1에서 정의된 바와 같다.In Formulas 2 to 4, R1 to R6 and a to d are as defined in Formula 1.

본 출원의 일 실시상태에 따르면, R1 내지 R4는 각각 독립적으로, 수소; 또는 중수소이거나, 또는 인접한 기와 서로 결합하여 고리를 형성할 수 있다.According to an exemplary embodiment of the present application, R1 to R4 are each independently hydrogen; or deuterium, or may combine with adjacent groups to form a ring.

본 출원의 일 실시상태에 따르면, R1 내지 R4는 수소이다.According to an exemplary embodiment of the present application, R1 to R4 are hydrogen.

본 출원의 일 실시상태에 따르면, R1 내지 R4는 인접한 기와 서로 결합하여 치환 또는 비치환된 탄화수소고리를 형성할 수 있다.According to an exemplary embodiment of the present application, R1 to R4 may combine with an adjacent group to form a substituted or unsubstituted hydrocarbon ring.

본 출원의 일 실시상태에 따르면, b 내지 d가 각각 독립적으로 2 이상인 경우, 2 이상의 R2 내지 R4는 각각 독립적으로 서로 인접한 기끼리 결합하여 고리를 형성할 수 있다.According to an exemplary embodiment of the present application, when b to d are each independently 2 or more, two or more R2 to R4 may each independently combine adjacent groups to form a ring.

본 출원의 일 실시상태에 따르면, b 가 2 이상인 경우, 2 이상의 R2는 서로 인접한 기끼리 결합하여 고리를 형성할 수 있다.According to an exemplary embodiment of the present application, when b is 2 or more, two or more R 2 may combine adjacent groups to form a ring.

본 출원의 일 실시상태에 따르면, b 가 2 이상인 경우, 2 이상의 R2는 서로 인접한 기끼리 결합하여 치환 또는 비치환된 벤젠고리를 형성할 수 있다.According to an exemplary embodiment of the present application, when b is 2 or more, two or more R 2 may combine adjacent groups to form a substituted or unsubstituted benzene ring.

본 출원의 일 실시상태에 따르면, b 가 2 이상인 경우, 2 이상의 R2는 서로 인접한 기끼리 결합하여 벤젠고리를 형성할 수 있다.According to an exemplary embodiment of the present application, when b is 2 or more, two or more R 2 may combine adjacent groups to form a benzene ring.

본 출원의 일 실시상태에 따르면, c가 2 이상인 경우, 2 이상의 R3은 서로 인접한 기끼리 결합하여 고리를 형성할 수 있다.According to an exemplary embodiment of the present application, when c is 2 or more, two or more R 3 may combine adjacent groups to form a ring.

본 출원의 일 실시상태에 따르면, c가 2 이상인 경우, 2 이상의 R3은 서로 인접한 기끼리 결합하여 벤젠고리를 형성할 수 있다.According to an exemplary embodiment of the present application, when c is 2 or more, two or more R 3 may combine adjacent groups to form a benzene ring.

본 출원의 일 실시상태에 따르면, d가 2 이상인 경우, 2 이상의 R4는 서로 인접한 기끼리 결합하여 고리를 형성할 수 있다.According to an exemplary embodiment of the present application, when d is 2 or more, two or more R 4 may combine adjacent groups to form a ring.

본 출원의 일 실시상태에 따르면, d가 2 이상인 경우, 2 이상의 R4는 서로 인접한 기끼리 결합하여 벤젠고리를 형성할 수 있다.According to an exemplary embodiment of the present application, when d is 2 or more, two or more R 4 may combine adjacent groups to form a benzene ring.

상기 화학식 1로 표시되는 화합물은 하기 화학식 2-1 내지 2-8, 3-1 내지 3-8 및 4-1 내지 4-8 중 어느 하나로 선택된다.The compound represented by Formula 1 is selected from any one of Formulas 2-1 to 2-8, 3-1 to 3-8, and 4-1 to 4-8.

[화학식 2-1][Formula 2-1]

Figure 112020011233657-pat00009
Figure 112020011233657-pat00009

[화학식 2-2][Formula 2-2]

Figure 112020011233657-pat00010
Figure 112020011233657-pat00010

[화학식 2-3][Formula 2-3]

Figure 112020011233657-pat00011
Figure 112020011233657-pat00011

[화학식 2-4][Formula 2-4]

Figure 112020011233657-pat00012
Figure 112020011233657-pat00012

[화학식 2-5][Formula 2-5]

Figure 112020011233657-pat00013
Figure 112020011233657-pat00013

[화학식 2-6][Formula 2-6]

Figure 112020011233657-pat00014
Figure 112020011233657-pat00014

[화학식 2-7][Formula 2-7]

Figure 112020011233657-pat00015
Figure 112020011233657-pat00015

[화학식 2-8][Formula 2-8]

Figure 112020011233657-pat00016
Figure 112020011233657-pat00016

[화학식 3-1][Formula 3-1]

Figure 112020011233657-pat00017
Figure 112020011233657-pat00017

[화학식 3-2][Formula 3-2]

Figure 112020011233657-pat00018
Figure 112020011233657-pat00018

[화학식 3-3][Formula 3-3]

Figure 112020011233657-pat00019
Figure 112020011233657-pat00019

[화학식 3-4][Formula 3-4]

Figure 112020011233657-pat00020
Figure 112020011233657-pat00020

[화학식 3-5][Formula 3-5]

Figure 112020011233657-pat00021
Figure 112020011233657-pat00021

[화학식 3-6][Formula 3-6]

Figure 112020011233657-pat00022
Figure 112020011233657-pat00022

[화학식 3-7][Formula 3-7]

Figure 112020011233657-pat00023
Figure 112020011233657-pat00023

[화학식 3-8][Formula 3-8]

Figure 112020011233657-pat00024
Figure 112020011233657-pat00024

[화학식 4-1][Formula 4-1]

Figure 112020011233657-pat00025
Figure 112020011233657-pat00025

[화학식 4-2][Formula 4-2]

Figure 112020011233657-pat00026
Figure 112020011233657-pat00026

[화학식 4-3][Formula 4-3]

Figure 112020011233657-pat00027
Figure 112020011233657-pat00027

[화학식 4-4][Formula 4-4]

Figure 112020011233657-pat00028
Figure 112020011233657-pat00028

[화학식 4-5][Formula 4-5]

Figure 112020011233657-pat00029
Figure 112020011233657-pat00029

[화학식 4-6][Formula 4-6]

Figure 112020011233657-pat00030
Figure 112020011233657-pat00030

[화학식 4-7][Formula 4-7]

Figure 112020011233657-pat00031
Figure 112020011233657-pat00031

[화학식 4-8][Formula 4-8]

Figure 112020011233657-pat00032
Figure 112020011233657-pat00032

상기 화학식 2-1 내지 2-8, 3-1 내지 3-8 및 4-1 내지 4-8에서, R4 내지 R6 및 d는 화학식 1에서 정의된 바와 같고,In Formulas 2-1 to 2-8, 3-1 to 3-8, and 4-1 to 4-8, R4 to R6 and d are as defined in Formula 1,

R7 및 R8은 각각 독립적으로 수소; 또는 중수소이며,R7 and R8 are each independently hydrogen; or deuterium,

e1 및 e2는 각각 0 또는 1이고, e1과 e2의 합은 1 내지 2이며,e1 and e2 are each 0 or 1, the sum of e1 and e2 is 1 to 2,

e는 0 내지 10의 정수이고, f는 0 내지 8의 정수이며,e is an integer from 0 to 10, f is an integer from 0 to 8,

e가 2 이상인 경우에는 복수의 R7는 서로 같거나 상이하고,When e is 2 or more, a plurality of R7 are the same as or different from each other,

f가 2 이상인 경우에는 복수의 R8은 서로 같거나 상이하다.When f is 2 or more, a plurality of R8s are the same as or different from each other.

상기 화학식 2-1 내지 2-4, 3-1 내지 3-4 및 4-1 내지 4-4에서, R4 내지 R6 및 d는 화학식 1에서 정의된 바와 같다.In Formulas 2-1 to 2-4, 3-1 to 3-4, and 4-1 to 4-4, R4 to R6 and d are as defined in Formula 1.

본 출원의 일 실시상태에 따르면, R5 및 R6은 각각 독립적으로, 치환 또는 비치환된 탄소수 6 내지 60의 아릴기; 또는 치환 또는 비치환된 탄소수 2 내지 60의 헤테로고리기이다.According to an exemplary embodiment of the present application, R5 and R6 are each independently, a substituted or unsubstituted C6-C60 aryl group; Or a substituted or unsubstituted heterocyclic group having 2 to 60 carbon atoms.

본 출원의 일 실시상태에 따르면, R5 및 R6은 각각 독립적으로, 치환 또는 비치환된 탄소수 6 내지 30의 아릴기; 또는 치환 또는 비치환된 탄소수 2 내지 30의 헤테로고리기이다.According to an exemplary embodiment of the present application, R5 and R6 are each independently, a substituted or unsubstituted C6-C30 aryl group; Or a substituted or unsubstituted heterocyclic group having 2 to 30 carbon atoms.

본 출원의 일 실시상태에 따르면, R5 및 R6은 각각 독립적으로, 치환 또는 비치환된 탄소수 6 내지 15의 아릴기; 또는 치환 또는 비치환된 탄소수 2 내지 15의 헤테로고리기이다.According to an exemplary embodiment of the present application, R5 and R6 are each independently a substituted or unsubstituted C6-C15 aryl group; Or a substituted or unsubstituted heterocyclic group having 2 to 15 carbon atoms.

본 출원의 일 실시상태에 따르면, R5 및 R6은 각각 독립적으로, 치환 또는 비치환된 페닐기; 치환 또는 비치환된 나프틸기; 치환 또는 비치환된 비페닐기; 치환 또는 비치환된 페난트렌기; 치환 또는 비치환된 카바졸기; 치환 또는 비치환된 디벤조티오펜기; 또는 치환 또는 비치환된 디벤조퓨란기이다.According to an exemplary embodiment of the present application, R5 and R6 are each independently a substituted or unsubstituted phenyl group; a substituted or unsubstituted naphthyl group; a substituted or unsubstituted biphenyl group; a substituted or unsubstituted phenanthrene group; a substituted or unsubstituted carbazole group; a substituted or unsubstituted dibenzothiophene group; Or a substituted or unsubstituted dibenzofuran group.

본 출원의 일 실시상태에 따르면, R5 및 R6은 각각 독립적으로, 페닐기; 나프틸기; 비페닐기; 페난트렌기; 페닐기로 치환 또는 비치환된 카바졸기; 디벤조티오펜기; 또는 디벤조퓨란기이다.According to an exemplary embodiment of the present application, R5 and R6 are each independently a phenyl group; naphthyl group; biphenyl group; phenanthrene group; a carbazole group unsubstituted or substituted with a phenyl group; dibenzothiophene group; or a dibenzofuran group.

또한, 본 명세서의 일 실시상태에 따르면, 상기 화학식 1로 표시되는 화합물은 하기 구조식들 중에서 선택되는 어느 하나이다.In addition, according to an exemplary embodiment of the present specification, the compound represented by Formula 1 is any one selected from the following structural formulas.

Figure 112020011233657-pat00033
Figure 112020011233657-pat00033

Figure 112020011233657-pat00034
Figure 112020011233657-pat00034

Figure 112020011233657-pat00035
Figure 112020011233657-pat00035

Figure 112020011233657-pat00036
Figure 112020011233657-pat00036

Figure 112020011233657-pat00037
Figure 112020011233657-pat00037

Figure 112020011233657-pat00038
Figure 112020011233657-pat00038

Figure 112020011233657-pat00039
Figure 112020011233657-pat00039

Figure 112020011233657-pat00040
Figure 112020011233657-pat00040

Figure 112020011233657-pat00041
Figure 112020011233657-pat00041

Figure 112020011233657-pat00042
Figure 112020011233657-pat00042

Figure 112020011233657-pat00043
Figure 112020011233657-pat00043

Figure 112020011233657-pat00044
Figure 112020011233657-pat00044

Figure 112020011233657-pat00045
Figure 112020011233657-pat00045

Figure 112020011233657-pat00046
Figure 112020011233657-pat00046

Figure 112020011233657-pat00047
Figure 112020011233657-pat00047

Figure 112020011233657-pat00048
Figure 112020011233657-pat00048

Figure 112020011233657-pat00049
Figure 112020011233657-pat00049

Figure 112020011233657-pat00050
Figure 112020011233657-pat00050

Figure 112020011233657-pat00051
Figure 112020011233657-pat00051

Figure 112020011233657-pat00052
Figure 112020011233657-pat00052

Figure 112020011233657-pat00053
Figure 112020011233657-pat00053

Figure 112020011233657-pat00054
Figure 112020011233657-pat00054

Figure 112020011233657-pat00055
Figure 112020011233657-pat00055

Figure 112020011233657-pat00056
Figure 112020011233657-pat00056

Figure 112020011233657-pat00057
Figure 112020011233657-pat00057

Figure 112020011233657-pat00058
Figure 112020011233657-pat00058

Figure 112020011233657-pat00059
Figure 112020011233657-pat00059

Figure 112020011233657-pat00060
Figure 112020011233657-pat00060

Figure 112020011233657-pat00061
Figure 112020011233657-pat00061

Figure 112020011233657-pat00062
Figure 112020011233657-pat00062

Figure 112020011233657-pat00063
Figure 112020011233657-pat00063

Figure 112020011233657-pat00064
Figure 112020011233657-pat00064

Figure 112020011233657-pat00065
Figure 112020011233657-pat00065

Figure 112020011233657-pat00066
Figure 112020011233657-pat00066

Figure 112020011233657-pat00067
Figure 112020011233657-pat00067

Figure 112020011233657-pat00068
Figure 112020011233657-pat00068

Figure 112020011233657-pat00069
Figure 112020011233657-pat00069

Figure 112020011233657-pat00070
Figure 112020011233657-pat00070

Figure 112020011233657-pat00071
Figure 112020011233657-pat00071

Figure 112020011233657-pat00072
Figure 112020011233657-pat00072

Figure 112020011233657-pat00073
Figure 112020011233657-pat00073

Figure 112020011233657-pat00074
Figure 112020011233657-pat00074

Figure 112020011233657-pat00075
Figure 112020011233657-pat00075

Figure 112020011233657-pat00076
Figure 112020011233657-pat00076

Figure 112020011233657-pat00077
Figure 112020011233657-pat00077

Figure 112020011233657-pat00078
Figure 112020011233657-pat00078

Figure 112020011233657-pat00079
Figure 112020011233657-pat00079

Figure 112020011233657-pat00080
Figure 112020011233657-pat00080

Figure 112020011233657-pat00081
Figure 112020011233657-pat00081

Figure 112020011233657-pat00082
Figure 112020011233657-pat00082

Figure 112020011233657-pat00083
Figure 112020011233657-pat00083

Figure 112020011233657-pat00084
Figure 112020011233657-pat00084

Figure 112020011233657-pat00085
Figure 112020011233657-pat00085

Figure 112020011233657-pat00086
Figure 112020011233657-pat00086

또한, 본 명세서는 상기 전술한 화합물을 포함하는 유기 발광 소자를 제공한다. In addition, the present specification provides an organic light emitting device including the above-described compound.

본 명세서의 일 실시상태에 있어서, 제1 전극; 상기 제1 전극과 대향하여 구비된 제2 전극; 및 상기 제1 전극과 상기 제2 전극 사이에 구비된 1층 이상의 유기물층을 포함하고, 상기 유기물층 중 1 층 이상은 상기 화합물을 포함하는 것인 유기 발광 소자를 제공한다. In one embodiment of the present specification, the first electrode; a second electrode provided to face the first electrode; and at least one organic material layer provided between the first electrode and the second electrode, wherein at least one of the organic material layers includes the compound.

본 명세서에서 어떤 부재가 다른 부재 "상에" 위치하고 있다고 할 때, 이는 어떤 부재가 다른 부재에 접해 있는 경우뿐 아니라 두 부재 사이에 또 다른 부재가 존재하는 경우도 포함한다.In the present specification, when a member is said to be located “on” another member, this includes not only a case in which a member is in contact with another member but also a case in which another member is present between the two members.

본 명세서에서 어떤 부분이 어떤 구성요소를 "포함" 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다. In the present specification, when a part "includes" a certain component, this means that other components may be further included, rather than excluding other components, unless otherwise stated.

본 명세서의 유기 발광 소자의 유기물층은 단층 구조로 이루어질 수도 있으나, 2층 이상의 유기물층이 적층된 다층 구조로 이루어질 수 있다. 예컨대, 본 발명의 유기 발광 소자는 유기물층으로서 정공주입층, 정공수송층, 발광층, 전자수송층, 전자주입층 등을 포함하는 구조를 가질 수 있다. 그러나 유기 발광 소자의 구조는 이에 한정되지 않고 더 적은 수의 유기층을 포함할 수 있다.The organic material layer of the organic light emitting device of the present specification may have a single-layer structure, but may have a multi-layer structure in which two or more organic material layers are stacked. For example, the organic light emitting device of the present invention may have a structure including a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, etc. as an organic material layer. However, the structure of the organic light emitting device is not limited thereto and may include a smaller number of organic layers.

본 명세서의 일 실시상태에 있어서, 상기 유기물층은 정공주입층 또는 정공수송층을 포함하고, 상기 정공주입층 또는 정공수송층은 상기 화합물을 포함한다. In an exemplary embodiment of the present specification, the organic material layer includes a hole injection layer or a hole transport layer, and the hole injection layer or the hole transport layer includes the compound.

본 명세서의 일 실시상태에 있어서, 상기 유기물층은 발광층을 포함하고, 상기 발광층은 상기 화합물을 포함한다. In the exemplary embodiment of the present specification, the organic material layer includes an emission layer, and the emission layer includes the compound.

본 명세서의 일 실시상태에 있어서, 상기 유기물층은 발광층을 포함하고, 상기 발광층은 상기 화합물을 호스트로서 포함한다.In an exemplary embodiment of the present specification, the organic material layer includes an emission layer, and the emission layer includes the compound as a host.

본 명세서의 일 실시상태에 있어서, 상기 유기물층은 발광층을 포함하고, 상기 발광층은 상기 화학식 1의 화합물을 제1 호스트로서 포함하고, 하기 화학식 H로 표시되는 제2 호스트를 더 포함한다.In an exemplary embodiment of the present specification, the organic material layer includes an emission layer, the emission layer includes the compound of Formula 1 as a first host, and further includes a second host represented by Formula H below.

[화학식 H][Formula H]

Figure 112020011233657-pat00087
Figure 112020011233657-pat00087

상기 화학식 H에서,In the above formula (H),

A는 치환 또는 비치환된 나프탈렌 고리이고,A is a substituted or unsubstituted naphthalene ring,

Ar1은 치환 또는 비치환된 탄소수 6 내지 60의 아릴기이며,Ar1 is a substituted or unsubstituted aryl group having 6 to 60 carbon atoms,

L1 내지 L3은 각각 독립적으로, 단일결합; 또는 치환 또는 비치환된 탄소수 6 내지 60의 아릴렌기이고,L1 to L3 are each independently, a single bond; Or a substituted or unsubstituted arylene group having 6 to 60 carbon atoms,

Ar2 및 Ar3는 각각 독립적으로, 치환 또는 비치환된 탄소수 6 내지 60의 아릴기; 또는 치환 또는 비치환된 N, O 및 S 중 1개 이상의 헤테로원자를 포함하는 탄소수 2 내지 60의 헤테로아릴기이며,Ar2 and Ar3 are each independently, a substituted or unsubstituted C6-C60 aryl group; Or a C 2 to C 60 heteroaryl group containing at least one heteroatom among substituted or unsubstituted N, O and S,

p는 0 내지 9인 정수이다.p is an integer from 0 to 9;

본 명세서의 일 실시상태에 있어서, A는 치환 또는 비치환된 나프탈렌 고리이다. In an exemplary embodiment of the present specification, A is a substituted or unsubstituted naphthalene ring.

본 명세서의 일 실시상태에 있어서, A는 중수소로 치환 또는 비치환된 나프탈렌 고리이다.In an exemplary embodiment of the present specification, A is a naphthalene ring unsubstituted or substituted with deuterium.

본 명세서의 일 실시상태에 있어서, A는 나프탈렌 고리이다.In one embodiment of the present specification, A is a naphthalene ring.

본 명세서의 일 실시상태에 있어서, p는 중수소의 치환개수를 의미하며, p가 0인 경우는 모두 수소로 치환되어 있는 상태를 의미한다. In the exemplary embodiment of the present specification, p means the number of substitutions of deuterium, and when p is 0, it means a state in which all of them are substituted with hydrogen.

본 명세서의 일 실시상태에 있어서, L1 내지 L3는 각각 독립적으로, 단일결합; 또는 치환 또는 비치환된 탄소수 6 내지 30의 아릴렌기이다.In one embodiment of the present specification, L1 to L3 are each independently, a single bond; or a substituted or unsubstituted arylene group having 6 to 30 carbon atoms.

본 명세서의 일 실시상태에 있어서, L1 내지 L3는 각각 독립적으로, 단일결합; 치환 또는 비치환된 페닐렌기; 또는 치환 또는 비치환된 나프탈렌기이다. In one embodiment of the present specification, L1 to L3 are each independently, a single bond; a substituted or unsubstituted phenylene group; Or a substituted or unsubstituted naphthalene group.

본 명세서의 일 실시상태에 있어서, L1 내지 L3는 각각 독립적으로, 단일결합; 중수소로 치환 또는 비치환된 페닐렌기; 또는 중수소로 치환 또는 비치환된 나프탈렌기이다.In one embodiment of the present specification, L1 to L3 are each independently, a single bond; a phenylene group unsubstituted or substituted with deuterium; Or a naphthalene group unsubstituted or substituted with deuterium.

본 명세서의 일 실시상태에 있어서, L1 내지 L3는 각각 독립적으로, 단일결합; 페닐렌기; 또는 나프탈렌기이다.In one embodiment of the present specification, L1 to L3 are each independently, a single bond; phenylene group; or a naphthalene group.

본 명세서의 일 실시상태에 있어서, Ar1은 치환 또는 비치환된 탄소수 6 내지 30의 아릴기이다.In an exemplary embodiment of the present specification, Ar1 is a substituted or unsubstituted C6-C30 aryl group.

본 명세서의 일 실시상태에 있어서, Ar1은 치환 또는 비치환된 페닐기; 치환 또는 비치환된 비페닐기; 치환 또는 비치환된 터페닐기; 또는 치환 또는 비치환된 나프틸기이다.In an exemplary embodiment of the present specification, Ar1 is a substituted or unsubstituted phenyl group; a substituted or unsubstituted biphenyl group; a substituted or unsubstituted terphenyl group; or a substituted or unsubstituted naphthyl group.

본 명세서의 일 실시상태에 있어서, Ar1은 중수소, 알킬기, 시클로알킬기, 및 아릴기로 이루어진 군으로부터 선택된 기로 치환 또는 비치환된 페닐기; 중수소, 알킬기, 시클로알킬기, 및 아릴기로 이루어진 군으로부터 선택된 기로 치환 또는 비치환된 비페닐기; 중수소, 알킬기, 시클로알킬기, 및 아릴기로 이루어진 군으로부터 선택된 기로 치환 또는 비치환된 터페닐기; 또는 중수소, 알킬기, 시클로알킬기, 및 아릴기로 이루어진 군으로부터 선택된 기로 치환 또는 비치환된 나프틸기이다.In an exemplary embodiment of the present specification, Ar1 is a phenyl group unsubstituted or substituted with a group selected from the group consisting of deuterium, an alkyl group, a cycloalkyl group, and an aryl group; a biphenyl group unsubstituted or substituted with a group selected from the group consisting of deuterium, an alkyl group, a cycloalkyl group, and an aryl group; a terphenyl group unsubstituted or substituted with a group selected from the group consisting of deuterium, an alkyl group, a cycloalkyl group, and an aryl group; or a naphthyl group unsubstituted or substituted with a group selected from the group consisting of deuterium, an alkyl group, a cycloalkyl group, and an aryl group.

본 명세서의 일 실시상태에 있어서, Ar1은 중수소, 알킬기, 시클로알킬기, 및 아릴기로 이루어진 군으로부터 선택된 기로 치환 또는 비치환된 페닐기; 비페닐기; 터페닐기; 또는 나프틸기이다.In an exemplary embodiment of the present specification, Ar1 is a phenyl group unsubstituted or substituted with a group selected from the group consisting of deuterium, an alkyl group, a cycloalkyl group, and an aryl group; biphenyl group; terphenyl group; or a naphthyl group.

본 명세서의 일 실시상태에 있어서, Ar1은 중수소, 터트부틸기, 아다만틸기, 페닐기 및 나프틸기로 이루어진 군으로부터 선택된 기로 치환 또는 비치환된 페닐기; 비페닐기; 터페닐기; 또는 나프틸기이다.In an exemplary embodiment of the present specification, Ar1 is a phenyl group unsubstituted or substituted with a group selected from the group consisting of deuterium, a tertbutyl group, an adamantyl group, a phenyl group and a naphthyl group; biphenyl group; terphenyl group; or a naphthyl group.

본 명세서의 일 실시상태에 있어서, Ar2 및 Ar3는 각각 독립적으로, 치환 또는 비치환된 탄소수 6 내지 30의 아릴기; 또는 치환 또는 비치환된 N, O 및 S 중 1개 이상의 헤테로원자를 포함하는 탄소수 2 내지 30의 헤테로아릴기이다.In an exemplary embodiment of the present specification, Ar2 and Ar3 are each independently a substituted or unsubstituted C6-C30 aryl group; or a heteroaryl group having 2 to 30 carbon atoms including at least one heteroatom among substituted or unsubstituted N, O and S.

본 명세서의 일 실시상태에 있어서, Ar2 및 Ar3는 각각 독립적으로, 치환 또는 비치환된 페닐기; 치환 또는 비치환된 비페닐기; 치환 또는 비치환된 터페닐기; 치환 또는 비치환된 나프틸기; 치환 또는 비치환된 플루오레닐기; 치환 또는 비치환된 디벤조퓨라닐기; 또는 치환 또는 비치환된 디벤조티오페닐기이다.In an exemplary embodiment of the present specification, Ar2 and Ar3 are each independently a substituted or unsubstituted phenyl group; a substituted or unsubstituted biphenyl group; a substituted or unsubstituted terphenyl group; a substituted or unsubstituted naphthyl group; a substituted or unsubstituted fluorenyl group; a substituted or unsubstituted dibenzofuranyl group; Or a substituted or unsubstituted dibenzothiophenyl group.

본 명세서의 일 실시상태에 있어서, Ar2 및 Ar3는 각각 독립적으로, 중수소, 알킬기, 시클로알킬기, 및 아릴기로 이루어진 군으로부터 선택된 기로 치환 또는 비치환된 페닐기; 중수소로 치환 또는 비치환된 비페닐기; 중수소로 치환 또는 비치환된 터페닐기; 중수소로 치환 또는 비치환된 나프틸기; 알킬기로 치환 또는 비치환된 플루오레닐기; 중수소로 치환 또는 비치환된 디벤조퓨라닐기; 또는 중수소로 치환 또는 비치환된 디벤조티오페닐기이다.In an exemplary embodiment of the present specification, Ar2 and Ar3 are each independently a phenyl group unsubstituted or substituted with a group selected from the group consisting of deuterium, an alkyl group, a cycloalkyl group, and an aryl group; a biphenyl group unsubstituted or substituted with deuterium; a terphenyl group unsubstituted or substituted with deuterium; a naphthyl group unsubstituted or substituted with deuterium; a fluorenyl group unsubstituted or substituted with an alkyl group; a dibenzofuranyl group unsubstituted or substituted with deuterium; Or a dibenzothiophenyl group unsubstituted or substituted with deuterium.

본 명세서의 일 실시상태에 있어서, Ar2 및 Ar3는 각각 독립적으로, 중수소, 터트부틸기, 아마만틸기, 및 페닐기로 이루어진 군으로부터 선택된 기로 치환 또는 비치환된 페닐기; 비페닐기; 터페닐기; 나프틸기; 디메틸플루오레닐기; 디벤조퓨라닐기; 또는 디벤조티오페닐기이다.In an exemplary embodiment of the present specification, Ar2 and Ar3 are each independently a phenyl group unsubstituted or substituted with a group selected from the group consisting of deuterium, a tertbutyl group, an ammantyl group, and a phenyl group; biphenyl group; terphenyl group; naphthyl group; dimethyl fluorenyl group; dibenzofuranyl group; or a dibenzothiophenyl group.

본 명세서의 일 실시상태에 있어서, 상기 화학식 H로 표시되는 제2 호스트는 하기 구조 중 어느 하나로 표시될 수 있으며, 이에 한정되지 않는다.In an exemplary embodiment of the present specification, the second host represented by Formula H may be represented by any one of the following structures, but is not limited thereto.

Figure 112020011233657-pat00088
Figure 112020011233657-pat00088

Figure 112020011233657-pat00089
Figure 112020011233657-pat00089

Figure 112020011233657-pat00090
Figure 112020011233657-pat00090

Figure 112020011233657-pat00091
Figure 112020011233657-pat00091

Figure 112020011233657-pat00092
Figure 112020011233657-pat00092

Figure 112020011233657-pat00093
Figure 112020011233657-pat00093

Figure 112020011233657-pat00094
Figure 112020011233657-pat00094

Figure 112020011233657-pat00095
Figure 112020011233657-pat00095

Figure 112020011233657-pat00096
Figure 112020011233657-pat00096

Figure 112020011233657-pat00097
Figure 112020011233657-pat00097

Figure 112020011233657-pat00098
Figure 112020011233657-pat00098

Figure 112020011233657-pat00099
Figure 112020011233657-pat00099

Figure 112020011233657-pat00100
Figure 112020011233657-pat00100

Figure 112020011233657-pat00101
Figure 112020011233657-pat00101

Figure 112020011233657-pat00102
Figure 112020011233657-pat00102

Figure 112020011233657-pat00103
.
Figure 112020011233657-pat00103
.

Figure 112020011233657-pat00104
Figure 112020011233657-pat00104

본 명세서의 일 실시상태에 있어서, 상기 유기물층은 전자수송층 또는 전자주입층을 포함하고, 상기 전자수송층 또는 전자주입층은 상기 화합물을 포함한다. In the exemplary embodiment of the present specification, the organic material layer includes an electron transport layer or an electron injection layer, and the electron transport layer or the electron injection layer includes the compound.

본 명세서의 일 실시상태에 있어서, 상기 유기 발광 소자는 정공주입층, 정공수송층. 전자수송층, 전자주입층, 전자저지층 및 정공저지층으로 이루어진 군에서 선택되는 1층 또는 2층 이상을 더 포함한다. In an exemplary embodiment of the present specification, the organic light emitting device includes a hole injection layer and a hole transport layer. It further includes one or more layers selected from the group consisting of an electron transport layer, an electron injection layer, an electron blocking layer, and a hole blocking layer.

본 출원의 일 실시상태에 있어서, 상기 유기 발광 소자는 제1 전극; 상기 제1 전극과 대향하여 구비된 제2 전극; 및 상기 제1 전극과 상기 제2 전극 사이에 구비된 발광층; 상기 발광층과 상기 제1 전극 사이, 또는 상기 발광층과 상기 제2 전극 사이에 구비된 2층 이상의 유기물층을 포함하고, 상기 2층 이상의 유기물층 중 적어도 하나는 상기 화합물을 포함한다. 본 출원의 일 실시상태에 있어서, 상기 2층 이상의 유기물층은 전자수송층, 전자주입층, 전자 수송과 전자주입을 동시에 하는 층 및 정공저지층으로 이루어진 군에서 2 이상이 선택될 수 있다.In an exemplary embodiment of the present application, the organic light emitting device includes a first electrode; a second electrode provided to face the first electrode; and a light emitting layer provided between the first electrode and the second electrode. and two or more organic material layers provided between the light emitting layer and the first electrode or between the light emitting layer and the second electrode, and at least one of the two or more organic material layers includes the compound. In an exemplary embodiment of the present application, two or more organic material layers may be selected from the group consisting of an electron transport layer, an electron injection layer, a layer for simultaneously transporting electrons and electron injection, and a hole blocking layer.

또 하나의 실시상태에 있어서, 유기 발광 소자는 기판 상에 제1 전극, 1층 이상의 유기물층 및 제2 전극이 순차적으로 적층된 구조(normal type)의 유기 발광 소자일 수 있다. In another exemplary embodiment, the organic light emitting device may be a normal type organic light emitting device in which a first electrode, one or more organic material layers, and a second electrode are sequentially stacked on a substrate.

또 하나의 실시상태에 있어서, 유기 발광 소자는 기판 상에 제2 전극, 1층 이상의 유기물층 및 제1 전극이 순차적으로 적층된 역방향 구조(inverted type)의 유기 발광 소자일 수 있다. In another exemplary embodiment, the organic light emitting device may be an inverted type organic light emitting device in which a second electrode, one or more organic material layers, and a first electrode are sequentially stacked on a substrate.

상기 유기발광소자는 예컨대 하기와 같은 적층 구조를 가질 수 있으나, 이에만 한정되는 것은 아니다.The organic light emitting device may have, for example, a stacked structure as follows, but is not limited thereto.

(1) 양극/정공수송층/발광층/음극(1) anode/hole transport layer/light emitting layer/cathode

(2) 양극/정공주입층/정공수송층/발광층/음극(2) anode / hole injection layer / hole transport layer / light emitting layer / cathode

(3) 양극/정공수송층/발광층/전자수송층/음극(3) anode/hole transport layer/light emitting layer/electron transport layer/cathode

(4) 양극/정공수송층/발광층/전자수송층/전자주입층/음극(4) anode / hole transport layer / light emitting layer / electron transport layer / electron injection layer / cathode

(5) 양극/정공주입층/정공수송층/발광층/전자수송층/음극(5) anode / hole injection layer / hole transport layer / light emitting layer / electron transport layer / cathode

(6) 양극/정공주입층/정공수송층/발광층/전자수송층/전자주입층/음극(6) anode / hole injection layer / hole transport layer / light emitting layer / electron transport layer / electron injection layer / cathode

(7) 양극/정공수송층/전자저지층/발광층/전자수송층/음극(7) anode / hole transport layer / electron blocking layer / light emitting layer / electron transport layer / cathode

(8) 양극/ 정공수송층/전자저지층/발광층/전자수송층/전자주입층/음극(8) anode / hole transport layer / electron blocking layer / light emitting layer / electron transport layer / electron injection layer / cathode

(9) 양극/정공주입층/정공수송층/전자저지층/발광층/전자수송층/음극(9) anode / hole injection layer / hole transport layer / electron blocking layer / light emitting layer / electron transport layer / cathode

(10) 양극/정공주입층/정공수송층/전자저지층/발광층/전자수송층/전자주입 층/음극(10) anode / hole injection layer / hole transport layer / electron blocking layer / light emitting layer / electron transport layer / electron injection layer / cathode

(11) 양극/정공수송층/발광층/정공저지층/전자수송층/음극(11) anode / hole transport layer / light emitting layer / hole blocking layer / electron transport layer / cathode

(12) 양극/정공수송층/발광층/정공저지층/전자수송층/전자주입층/음극(12) anode / hole transport layer / light emitting layer / hole blocking layer / electron transport layer / electron injection layer / cathode

(13) 양극/정공주입층/정공수송층/발광층/정공저지층/전자수송층/음극(13) anode / hole injection layer / hole transport layer / light emitting layer / hole blocking layer / electron transport layer / cathode

(14) 양극/정공주입층/정공수송층/발광층/정공저지층/전자수송층/전자주입 층/음극(14) anode / hole injection layer / hole transport layer / light emitting layer / hole blocking layer / electron transport layer / electron injection layer / cathode

(15) 양극/ 정공주입층/정공수송층/전자저지층/발광층/정공저지층/전자수송층/전자주입 층/음극(15) anode / hole injection layer / hole transport layer / electron blocking layer / light emitting layer / hole blocking layer / electron transport layer / electron injection layer / cathode

(16) 양극/ 정공주입층/정공수송층/전자저지층/발광층/정공저지층/전자수송 및 주입층/음극(16) anode / hole injection layer / hole transport layer / electron blocking layer / light emitting layer / hole blocking layer / electron transport and injection layer / cathode

예컨대, 본 명세서의 일 실시상태에 따른 유기 발광 소자의 구조는 도 1 및 2에 예시되어 있다. For example, the structure of the organic light emitting device according to an exemplary embodiment of the present specification is illustrated in FIGS. 1 and 2 .

도 1은 기판(1), 제1 전극(2), 발광층(3), 제2 전극(4)이 순차적으로 적층된 유기 발광 소자의 구조가 예시되어 있다. 이와 같은 구조에 있어서, 상기 화합물은 상기 발광층(3)에 포함될 수 있다. 1 illustrates a structure of an organic light emitting device in which a substrate 1, a first electrode 2, a light emitting layer 3, and a second electrode 4 are sequentially stacked. In such a structure, the compound may be included in the light emitting layer 3 .

도 2는 기판 (1), 제1 전극(2), 정공주입층(5), 정공수송층(6), 전자저지층(7), 발광층(3), 정공저지층(8), 전자 주입 및 수송층(9) 및 제2 전극(4)이 순차적으로 적층된 유기 발광 소자의 구조가 예시되어 있다. 이와 같은 구조에 있어서 상기 화합물은 상기 정공주입층(5), 정공수송층(6), 전자저지층(7), 발광층(3), 정공저지층(8), 및 전자 주입 및 수송층(9) 중 1층 이상에 포함될 수 있다. 이와 같은 구조에 있어서, 상기 화합물은 상기 발광층(3)에 포함될 수 있다.2 is a substrate (1), a first electrode (2), a hole injection layer (5), a hole transport layer (6), an electron blocking layer (7), a light emitting layer (3), a hole blocking layer (8), electron injection and The structure of the organic light emitting device in which the transport layer 9 and the second electrode 4 are sequentially stacked is illustrated. In this structure, the compound is the hole injection layer (5), the hole transport layer (6), the electron blocking layer (7), the light emitting layer (3), the hole blocking layer (8), and the electron injection and transport layer (9) It can be included on the first floor or more. In such a structure, the compound may be included in the light emitting layer 3 .

본 명세서의 유기 발광 소자는 유기물층 중 1층 이상이 본 명세서의 화합물, 즉 상기 화합물을 포함하는 것을 제외하고는 당 기술분야에 알려져 있는 재료와 방법으로 제조될 수 있다.The organic light emitting device of the present specification may be manufactured using materials and methods known in the art, except that at least one layer of the organic material layer includes the compound of the present specification, that is, the compound.

상기 유기 발광 소자가 복수개의 유기물층을 포함하는 경우, 상기 유기물층은 동일한 물질 또는 다른 물질로 형성될 수 있다. When the organic light emitting device includes a plurality of organic material layers, the organic material layers may be formed of the same material or different materials.

본 명세서의 유기 발광 소자는 유기물층 중 1층 이상이 상기 화합물, 즉 상기 화학식 1로 표시되는 화합물을 포함하는 것을 제외하고는 당 기술분야에 알려져 있는 재료와 방법으로 제조될 수 있다. The organic light emitting device of the present specification may be manufactured using materials and methods known in the art, except that at least one layer of the organic material layer includes the compound, that is, the compound represented by Formula 1 above.

예컨대, 본 명세서의 유기 발광 소자는 기판 상에 제1 전극, 유기물층 및 제2 전극을 순차적으로 적층시킴으로써 제조할 수 있다. 이 때 스퍼터링법(sputtering)이나 전자빔 증발법(e-beam evaporation)과 같은 PVD(physical Vapor Deposition)방법을 이용하여, 기판 상에 금속 또는 전도성을 가지는 금속 산화물 또는 이들의 합금을 증착시켜 제1 전극을 형성하고, 그 위에 정공 주입층, 정공 수송층, 발광층 및 전자 수송층을 포함하는 유기물층을 형성한 후, 그 위에 제2 전극으로 사용할 수 있는 물질을 증착시킴으로써 제조될 수 있다. 이와 같은 방법 외에도, 기판 상에 제2 전극 물질부터 유기물층, 제1 전극 물질을 차례로 증착시켜 유기 발광 소자를 만들 수 있다. For example, the organic light emitting device of the present specification may be manufactured by sequentially stacking a first electrode, an organic material layer, and a second electrode on a substrate. In this case, by using a PVD (physical vapor deposition) method such as sputtering or e-beam evaporation, a metal or a conductive metal oxide or an alloy thereof is deposited on a substrate to deposit the first electrode After forming an organic material layer including a hole injection layer, a hole transport layer, a light emitting layer and an electron transport layer thereon, it can be prepared by depositing a material that can be used as a second electrode thereon. In addition to this method, an organic light emitting device may be manufactured by sequentially depositing the second electrode material, the organic material layer, and the first electrode material on the substrate.

또한, 상기 화학식 1의 화합물은 유기 발광 소자의 제조시 진공 증착법 뿐만 아니라 용액 도포법에 의하여 유기물층으로 형성될 수 있다. 여기서, 용액 도포법이라 함은 스핀 코팅, 딥코팅, 닥터 블레이딩, 잉크젯프린팅, 스크린 프린팅, 스프레이법, 롤 코팅 등을 의미하지만, 이들만으로 한정되는 것은 아니다.In addition, the compound of Formula 1 may be formed into an organic material layer by a solution coating method as well as a vacuum deposition method when manufacturing an organic light emitting device. Here, the solution application method refers to spin coating, dip coating, doctor blading, inkjet printing, screen printing, spray method, roll coating, and the like, but is not limited thereto.

이와 같은 방법 외에도, 기판 상에 제2 전극 물질로부터 유기물층, 제1 전극 물질을 차례로 증착시켜 유기 발광 소자를 만들 수도 있다 (국제 특허 출원 공개 제 2003/012890호). 다만, 제조 방법이 이에 한정되는 것은 아니다. In addition to this method, an organic light emitting device may be manufactured by sequentially depositing an organic material layer and a first electrode material on a substrate from the second electrode material (International Patent Application Laid-Open No. 2003/012890). However, the manufacturing method is not limited thereto.

본 명세서의 일 실시상태에 있어서, 상기 제1 전극은 양극이고, 상기 제2 전극은 음극이다. In the exemplary embodiment of the present specification, the first electrode is an anode, and the second electrode is a cathode.

또 하나의 실시상태에 있어서, 상기 제1 전극은 음극이고, 상기 제2 전극은 양극이다. In another exemplary embodiment, the first electrode is a cathode, and the second electrode is an anode.

상기 제1 전극 물질로는 통상 유기물층으로 정공 주입이 원활할 수 있도록 일함수가 큰 물질이 바람직하다. 본 발명에서 사용될 수 있는 제1 전극 물질의 구체적인 예로는 바나듐, 크롬, 구리, 아연, 금과 같은 금속 또는 이들의 합금; 아연 산화물, 인듐 산화물, 인듐주석 산화물(ITO), 인듐아연 산화물(IZO)과 같은 금속 산화물; ZnO:Al 또는 SnO2 : Sb와 같은 금속과 산화물의 조합; 폴리(3-메틸티오펜), 폴리[3,4-(에틸렌-1,2-디옥시)티오펜](PEDOT), 폴리피롤 및 폴리아닐린과 같은 전도성 고분자 등이 있으나, 이들에만 한정되는 것은 아니다. As the material for the first electrode, a material having a large work function is generally preferred so that holes can be smoothly injected into the organic material layer. Specific examples of the first electrode material that can be used in the present invention include metals such as vanadium, chromium, copper, zinc, gold, or alloys thereof; metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO), and indium zinc oxide (IZO); ZnO:Al or SnO 2 : a combination of a metal such as Sb and an oxide; conductive polymers such as poly(3-methylthiophene), poly[3,4-(ethylene-1,2-dioxy)thiophene](PEDOT), polypyrrole, and polyaniline, but are not limited thereto.

상기 제2 전극 물질로는 통상 유기물층으로 전자 주입이 용이하도록 일함수가 작은 물질인 것이 바람직하다. 제2 전극 물질의 구체적인 예로는 마그네슘, 칼슘, 나트륨, 칼륨, 티타늄, 인듐, 이트륨, 리튬, 가돌리늄, 알루미늄, 은, 주석 및 납과 같은 금속 또는 이들의 합금; LiF/Al 또는 LiO2/Al과 같은 다층 구조 물질 등이 있으나, 이들에만 한정되는 것은 아니다. The second electrode material is preferably a material having a small work function to facilitate electron injection into the organic material layer. Specific examples of the second electrode material include metals such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin and lead, or alloys thereof; and a multi-layered material such as LiF/Al or LiO 2 /Al, but is not limited thereto.

상기 정공 주입층은 전극으로부터 정공을 주입하는 층으로, 정공 주입 물질로는 정공을 수송하는 능력을 가져 제1 전극에서의 정공 주입효과, 발광층 또는 발광재료에 대하여 우수한 정공 주입 효과를 갖고, 발광층에서 생성된 여기자의 전자주입층 또는 전자주입재료에의 이동을 방지하며, 또한, 박막 형성 능력이 우수한 화합물이 바람직하다. 정공 주입 물질의 HOMO(highest occupied molecular orbital)가 제1 전극 물질의 일함수와 주변 유기물층의 HOMO 사이인 것이 바람직하다. 정공 주입 물질의 구체적인 예로는 금속 포피린(porphyrin), 올리고티오펜, 아릴아민 계열의 유기물, 헥사니트릴헥사아자트리페닐렌 계열의 유기물, 퀴나크리돈(quinacridone)계열의 유기물, 페릴렌(perylene) 계열의 유기물, 안트라퀴논 및 폴리아닐린과 폴리티오펜 계열의 전도성 고분자 등이 있으나, 이들에만 한정 되는 것은 아니다. The hole injection layer is a layer for injecting holes from the electrode, and as a hole injection material, it has the ability to transport holes and has a hole injection effect in the first electrode, an excellent hole injection effect for the light emitting layer or the light emitting material, and in the light emitting layer A compound which prevents the generated exciton from moving to the electron injection layer or the electron injection material and is excellent in the ability to form a thin film is preferable. It is preferable that the highest occupied molecular orbital (HOMO) of the hole injection material is between the work function of the first electrode material and the HOMO of the surrounding organic material layer. Specific examples of the hole injection material include metal porphyrin, oligothiophene, arylamine-based organic material, hexanitrile hexaazatriphenylene-based organic material, quinacridone-based organic material, and perylene-based organic material. of organic substances, anthraquinones, and conductive polymers of polyaniline and polythiophene series, but are not limited thereto.

상기 정공수송층은 정공주입층으로부터 정공을 수취하여 발광층까지 정공을 수송하는 층으로, 정공 수송 물질로는 제1 전극이나 정공 주입층으로부터 정공을 수송받아 발광층으로 옮겨줄 수 있는 물질로 정공에 대한 이동성이 큰 물질이 적합하다. 구체적인 예로는 아릴아민 계열의 유기물, 전도성 고분자, 및 공액 부분과 비공액 부분이 함께 있는 블록 공중합체 등이 있으나, 이들에만 한정되는 것은 아니다. The hole transport layer is a layer that receives holes from the hole injection layer and transports them to the light emitting layer. The hole transport material is a material that can transport holes from the first electrode or the hole injection layer to the light emitting layer and transfer them to the light emitting layer. Mobility for holes This large material is suitable. Specific examples include, but are not limited to, an arylamine-based organic material, a conductive polymer, and a block copolymer having a conjugated portion and a non-conjugated portion together.

상기 정공수송층과 발광층 사이에 전자저지층이 구비될 수 있다. 상기 전자저지층은 당 기술분야에 알려져 있는 재료가 사용될 수 있다.An electron blocking layer may be provided between the hole transport layer and the light emitting layer. The electronic blocking layer may be a material known in the art.

상기 발광층은 호스트 재료 및 도펀트 재료를 포함할 수 있다. 호스트 재료는 본원 화학식 1의 화합물을 포함하며, 그외 축합 방향족환 유도체 또는 헤테로환 함유 화합물 등을 더 포함할 수 있다. 구체적으로 축합 방향족환 유도체로는 안트라센 유도체, 피렌 유도체, 나프탈렌 유도체, 펜타센 유도체, 페난트렌 화합물, 플루오란텐 화합물 등이 있고, 헤테로환 함유 화합물로는 카바졸 유도체, 디벤조퓨란, 디벤조퓨란 유도체, 디벤조티오펜, 디벤조티오펜 유도체, 래더형 퓨란 화합물, 피리미딘 유도체 등이 있으나, 이에 한정되지 않는다. The emission layer may include a host material and a dopant material. The host material includes the compound of Formula 1 herein, and may further include a condensed aromatic ring derivative or a hetero ring-containing compound. Specifically, condensed aromatic ring derivatives include anthracene derivatives, pyrene derivatives, naphthalene derivatives, pentacene derivatives, phenanthrene compounds, fluoranthene compounds, and the like, and heterocyclic-containing compounds include carbazole derivatives, dibenzofuran, dibenzofuran. derivatives, dibenzothiophene, dibenzothiophene derivatives, ladder-type furan compounds, pyrimidine derivatives, and the like, but are not limited thereto.

상기 도펀트 재료로는 하기와 같은 화합물 등이 있으나, 이에 한정되지 않는다.The dopant material includes, but is not limited to, the following compounds.

Figure 112020011233657-pat00105
Figure 112020011233657-pat00105

Figure 112020011233657-pat00106
Figure 112020011233657-pat00106

Figure 112020011233657-pat00107
Figure 112020011233657-pat00107

Figure 112020011233657-pat00108
Figure 112020011233657-pat00108

상기 전자수송층은 전자주입층으로부터 전자를 수취하여 발광층까지 전자를 수송하는 층으로 전자 수송 물질로는 제2 전극으로부터 전자를 잘 주입 받아 발광층으로 옮겨줄 수 있는 물질로서, 전자에 대한 이동성이 큰 물질이 적합하다. 구체적인 예로는 8-히드록시퀴놀린의 Al착물; Alq3를 포함한 착물; 유기 라디칼 화합물; 히드록시플라본-금속 착물 등이 있으나, 이들에만 한정되는 것은 아니다. 전자 수송층은 종래기술에 따라 사용된 바와 같이 임의의 원하는 캐소드 물질과 함께 사용할 수 있다. 특히, 적절한 캐소드 물질의 예는 낮은 일함수를 가지고 알루미늄층 또는 실버층이 뒤따르는 통상적인 물질이다. 구체적으로 세슘, 바륨, 칼슘, 이테르븀 및 사마륨이고, 각 경우 알루미늄 층 또는 실버층이 뒤따른다.The electron transport layer is a layer that receives electrons from the electron injection layer and transports them to the light emitting layer. This is suitable. Specific examples include Al complex of 8-hydroxyquinoline; complexes comprising Alq3; organic radical compounds; hydroxyflavone-metal complexes, and the like, but are not limited thereto. The electron transport layer may be used with any desired cathode material as used in accordance with the prior art. In particular, examples of suitable cathode materials are conventional materials having a low work function and followed by a layer of aluminum or silver. Specifically cesium, barium, calcium, ytterbium and samarium, followed in each case by an aluminum layer or a silver layer.

상기 전자주입층은 전극으로부터 전자를 주입하는 층으로, 전자를 수송하는 능력을 갖고, 제2 전극으로부터의 전자주입 효과, 발광층 또는 발광 재료에 대하여 우수한 전자주입 효과를 가지며, 발광층에서 생성된 여기자의 정공 주입층에의 이동을 방지하고, 또한, 박막형성능력이 우수한 화합물이 바람직하다. 구체적으로는 플루오레논, 안트라퀴노다이메탄, 다이페노퀴논, 티오피란 다이옥사이드, 옥사졸, 옥사다이아졸, 트리아졸, 이미다졸, 페릴렌테트라카복실산, 플루오레닐리덴 메탄, 안트론 등과 그들의 유도체, 금속 착체 화합물 및 함질소 5원환 유도체 등이 있으나, 이에 한정되지 않는다. The electron injection layer is a layer that injects electrons from the electrode, has the ability to transport electrons, has an electron injection effect from the second electrode, an excellent electron injection effect on the light emitting layer or the light emitting material, and A compound which prevents migration to the hole injection layer and is excellent in the ability to form a thin film is preferable. Specifically, fluorenone, anthraquinodimethane, diphenoquinone, thiopyran dioxide, oxazole, oxadiazole, triazole, imidazole, perylenetetracarboxylic acid, fluorenylidene methane, anthrone, etc., derivatives thereof, metals complex compounds and nitrogen-containing 5-membered ring derivatives, but are not limited thereto.

상기 금속 착체 화합물로서는 8-하이드록시퀴놀리나토 리튬, 비스(8-하이드록시퀴놀리나토)아연, 비스(8-하이드록시퀴놀리나토)구리, 비스(8-하이드록시퀴놀리나토)망간, 트리스(8-하이드록시퀴놀리나토)알루미늄, 트리스(2-메틸-8-하이드록시퀴놀리나토)알루미늄, 트리스(8-하이드록시퀴놀리나토)갈륨, 비스(10-하이드록시벤조[h]퀴놀리나토)베릴륨, 비스(10-하이드록시벤조[h]퀴놀리나토)아연, 비스(2-메틸-8-퀴놀리나토)클로로갈륨, 비스(2-메틸-8-퀴놀리나토)(o-크레졸라토)갈륨, 비스(2-메틸-8-퀴놀리나토)(1-나프톨라토)알루미늄, 비스(2-메틸-8-퀴놀리나토)(2-나프톨라토)갈륨 등이 있으나, 이에 한정되지 않는다.Examples of the metal complex compound include 8-hydroxyquinolinato lithium, bis(8-hydroxyquinolinato)zinc, bis(8-hydroxyquinolinato)copper, bis(8-hydroxyquinolinato)manganese, Tris(8-hydroxyquinolinato)aluminum, tris(2-methyl-8-hydroxyquinolinato)aluminum, tris(8-hydroxyquinolinato)gallium, bis(10-hydroxybenzo[h] Quinolinato) beryllium, bis (10-hydroxybenzo [h] quinolinato) zinc, bis (2-methyl-8-quinolinato) chlorogallium, bis (2-methyl-8-quinolinato) ( o-crezolato)gallium, bis(2-methyl-8-quinolinato)(1-naphtolato)aluminum, bis(2-methyl-8-quinolinato)(2-naphtolato)gallium, etc. However, the present invention is not limited thereto.

상기 정공저지층은 정공의 제2 전극 도달을 저지하는 층으로, 일반적으로 정공주입층과 동일한 조건으로 형성될 수 있다. 구체적으로 옥사디아졸 유도체나 트리아졸 유도체, 페난트롤린 유도체, BCP, 알루미늄 착물 (aluminum complex) 등이 있으나, 이에 한정되지 않는다. The hole blocking layer is a layer that blocks holes from reaching the second electrode, and may be generally formed under the same conditions as the hole injection layer. Specifically, there are oxadiazole derivatives, triazole derivatives, phenanthroline derivatives, BCP, aluminum complex, and the like, but is not limited thereto.

본 명세서에 따른 유기 발광 소자는 사용되는 재료에 따라 전면 발광형, 후면 발광형 또는 양면 발광형일 수 있다.The organic light emitting device according to the present specification may be a top emission type, a back emission type, or a double side emission type depending on the material used.

이하에서, 실시예를 통하여 본 명세서를 더욱 상세하게 설명한다. 그러나, 이하의 실시예는 본 명세서를 예시하기 위한 것일 뿐, 본 명세서를 한정하기 위한 것은 아니다.Hereinafter, the present specification will be described in more detail through examples. However, the following examples are only for illustrating the present specification, and not for limiting the present specification.

본 명세서에 따른 화합물은 대표적인 반응으로 Buchwald-Hartwig coupling reaction, Heck coupling reaction, Suzuki coupling reaction 등을 이용하여 제조되었다.The compound according to the present specification was prepared using the Buchwald-Hartwig coupling reaction, the Heck coupling reaction, the Suzuki coupling reaction, etc. as representative reactions.

[제조예 1] 화학식 a(5H-benzo[b]carbazole)의 제조[Preparation Example 1] Preparation of formula a (5H-benzo [b] carbazole)

Figure 112020011233657-pat00109
Figure 112020011233657-pat00109

1) 화학식 a-1의 제조1) Preparation of Formula a-1

나프탈렌-2-아민(naphthalen-2-amine) 300.0 g (1.0 eq), 1-브로모-2-아이도벤젠 (1-bromo-2-iodobenzene) 592.7 g (1.0 eq), NaOtBu 302.0 g (1.5 eq), 팔라듐아세테이트(Pd(OAc)2) 4.70 g (0.01 eq), 4,5-비스(디페닐포스피노)-9,9-디메틸잔텐 (4,5-Bis(diphenylphosphino)-9,9-dimethylxanthene, Xantphos) 12.12 g (0.01 eq) 및 1,4-디옥산 (1,4-dioxane) 5L 에 녹여 환류하여 교반했다. 3 시간 후 반응이 종료되면 감압하여 용매를 제거했다. 이 후 에틸아세테이트(Ethylacetate)에 완전히 녹여서 물로 씻어주고 다시 감압하여 용매를 70% 정도 제거했다. 다시 환류 상태에서 헥산(Hexane)을 넣어주며 결정을 떨어트려 식힌 후 여과했다. 이를 컬럼크로마토그래피하여 화합물 a-1 443.5 g (수율 71 %)를 얻었다. [M+H]+=299Naphthalen-2-amine 300.0 g (1.0 eq), 1-bromo-2-iodobenzene 592.7 g (1.0 eq), NaOtBu 302.0 g (1.5 eq), palladium acetate (Pd(OAc) 2 ) 4.70 g (0.01 eq), 4,5-bis(diphenylphosphino)-9,9-dimethylxanthene (4,5-Bis(diphenylphosphino)-9,9 -dimethylxanthene, Xantphos) 12.12 g (0.01 eq) and 1,4-dioxane (1,4-dioxane) were dissolved in 5L and stirred under reflux. When the reaction was completed after 3 hours, the solvent was removed under reduced pressure. After that, it was completely dissolved in ethyl acetate (Ethylacetate), washed with water, and again under reduced pressure to remove about 70% of the solvent. Hexane was added again under reflux, and the crystals were dropped, cooled, and filtered. This was subjected to column chromatography to obtain 443.5 g of compound a-1 (yield 71%). [M+H]+=299

2) 화학식 a(5H-benzo[b]carbazole)의 제조2) Preparation of formula a (5H-benzo[b]carbazole)

화학식 a-1 443.5 g (1.0 eq), Pd(t-Bu3P)2 8.56 g (0.01 eq) 및 K2CO3 463.2g (2.00 eq) 을 다이에틸아세트아마이드 (Dimethylacetamide, DMAC) 4L에 넣고 환류하여 교반했다. 3시간 후 반응물을 물에 부어서 결정을 떨어트리고 여과했다. 여과한 고체를 1,2-디클로로벤젠 (1,2-dichlorobenzene)에 완전히 녹인 후 물로 씻어주고 생성물이 녹아있는 용액을 감압 농축하여 결정을 떨어트려 식힌 후 여과했다. 이를 컬럼크로마토그래피로 정제하여 화학식 a(5H-benzo[b]carbazole )174.8 g (수율 48 %)을 얻었다. [M+H]+=218Formula a-1 443.5 g (1.0 eq), Pd(t-Bu 3 P) 2 8.56 g (0.01 eq) and K 2 CO 3 463.2 g (2.00 eq) into 4L of diethylacetamide (Dimethylacetamide, DMAC) The mixture was refluxed and stirred. After 3 hours, the reaction product was poured into water to drop crystals and filtered. The filtered solid was completely dissolved in 1,2-dichlorobenzene, washed with water, and the solution in which the product was dissolved was concentrated under reduced pressure to drop crystals, cooled, and filtered. This was purified by column chromatography to obtain 174.8 g of formula a (5H-benzo[b]carbazole) (yield 48%). [M+H]+=218

여기서, tBu은 터트부틸을 의미한다.Here, tBu means tertbutyl.

[제조예 2] 화학식 b(7H-dibenzo[b,g]carbazole)의 제조[Preparation Example 2] Preparation of formula b (7H-dibenzo[b,g]carbazole)

1-브로모-2-아이도벤젠 대신 1-브로모-2-아이도나프탈렌(1-bromo-2-iodonaphthalene)을 사용하여 화학식 a의 제조 방법과 같은 방법으로 화학식 b(7H-dibenzo[b,g]carbazole)를 합성했다. [M+H]+=268Using 1-bromo-2-iodonaphthalene instead of 1-bromo-2-idobenzene, formula b (7H-dibenzo[b ,g]carbazole) was synthesized. [M+H]+=268

Figure 112020011233657-pat00110
Figure 112020011233657-pat00110

[제조예 3] 화학식 c(6H-dibenzo[b,h]carbazole) 의 제조[Preparation Example 3] Preparation of formula c(6H-dibenzo[b,h]carbazole)

1-브로모-2-아이도벤젠 대신 2,3-디브로모나프탈렌(2,3-dibromonaphthalene)을 사용하여 화학식 a의 제조 방법과 같은 방법으로 화학식 c(6H-dibenzo[b,h]carbazole)를 합성했다. [M+H]+=268Using 2,3-dibromonaphthalene instead of 1-bromo-2-idobenzene, formula c (6H-dibenzo[b,h]carbazole ) was synthesized. [M+H]+=268

Figure 112020011233657-pat00111
Figure 112020011233657-pat00111

[제조예 4] 화학식 d(13H-dibenzo[a,h]carbazole)의 제조[Preparation Example 4] Preparation of formula d (13H-dibenzo[a,h]carbazole)

1-브로모-2-아이도벤젠 대신 2-브로모-1-아이도나프탈렌(2-bromo-1-iodonaphthalene)을 사용하여 화학식 a의 제조 방법과 같은 방법으로 화학식 d(13H-dibenzo[a,h]carbazole)를 합성했다. [M+H]+=268Using 2-bromo-1-iodonaphthalene instead of 1-bromo-2-idobenzene, formula d (13H-dibenzo[a ,h]carbazole) was synthesized. [M+H]+=268

Figure 112020011233657-pat00112
Figure 112020011233657-pat00112

[제조예 5] 화학식 e의 제조[Preparation Example 5] Preparation of formula e

Figure 112020011233657-pat00113
Figure 112020011233657-pat00113

1) 화학식 e-3의 제조1) Preparation of Formula e-3

4-bromo-1-chloro-2-iodobenzene 200.0 g (1.0 eq), (2-(methylthio)phenyl)boronic acid 105.9 g (1.0 eq), K2CO3 173.9 g (2.0 eq), Pd(PPh3)4 (Tetrakis(triphenylphosphine)palladium(0)) 14.55 g (0.02 eq)를 테트라하이드로퓨란(THF) 3L 에 녹여 환류하여 교반했다. 2 시간 후 반응이 종료되면 감압하여 용매를 제거했다. 이 후 Ethylacetate에 완전히 녹여서 물로 씻어주고 다시 감압하여 용매를 80% 정도 제거했다. 다시 환류 상태에서 Hexane을 넣어주며 결정을 떨어트려 식힌 후 여과했다. 이를 컬럼크로마토그래피하여 화합물 e-3 138.36 g (수율 70 %)를 얻었다. [M+H]+=3124-bromo-1-chloro-2-iodobenzene 200.0 g (1.0 eq), (2-(methylthio)phenyl)boronic acid 105.9 g (1.0 eq), K 2 CO 3 173.9 g (2.0 eq), Pd(PPh 3 ) 4 (Tetrakis(triphenylphosphine)palladium(0)) 14.55 g (0.02 eq) was dissolved in 3L of tetrahydrofuran (THF), refluxed and stirred. When the reaction was completed after 2 hours, the solvent was removed under reduced pressure. After that, it was completely dissolved in ethylacetate, washed with water, and again under reduced pressure to remove about 80% of the solvent. Hexane was added under reflux again, crystals were dropped, cooled, and filtered. This was subjected to column chromatography to obtain 138.36 g of compound e-3 (yield 70%). [M+H]+=312

2) 화학식 e-2의 제조 2) Preparation of Formula e-2

화학식 e-3 138.36 g (1.0 eq) 에 H2O2 22.5g (2.00 eq) 을 아세트산(AcOH) 1L에 넣고 환류하여 교반했다. 1시간 후 반응물을 물에 부어서 결정을 떨어트리고 여과했다. 여과한 고체를 Ethylacetate에 완전히 녹여서 물로 씻어주고 다시 감압하여 용매를 80% 정도 제거했다. 다시 환류 상태에서 Hexane을 넣어주며 결정을 떨어트려 식힌 후 여과했다. 이를 컬럼 크로마토그래피를 진행해서 화합물 e-2 91.61 g (수율 63 %)를 얻었다. [M+H]+=328To 138.36 g (1.0 eq) of Formula e-3, 22.5 g (2.00 eq) of H 2 O 2 was added to 1 L of acetic acid (AcOH), and the mixture was refluxed and stirred. After 1 hour, the reaction product was poured into water to drop crystals and filtered. The filtered solid was completely dissolved in Ethylacetate, washed with water, and again under reduced pressure to remove about 80% of the solvent. Hexane was added under reflux again, crystals were dropped, cooled, and filtered. This was subjected to column chromatography to obtain 91.61 g of compound e-2 (yield 63%). [M+H]+=328

3) 화학식 e-1의 제조 3) Preparation of Formula e-1

화학식 e-2 91.61 g (1.0 eq), H2SO4 500ml 넣고 환류하여 녹이면서 교반했다. 2 시간 후 반응이 종료되면 반응물을 물에 부어서 결정을 떨어 트리고 여과 했다. 여과한 고체를 CHCl3에 완전히 녹인 후 물로 씻어주고 생성물이 녹아있는 용액을 감압 농축하여 용매를 80% 정도 제거했다. 이를 다시 환류 상태에서 Hexane을 넣어주며 결정을 떨어트리고 식힌 후 컬럼 크로마토그래피를 진행해서 화학식 e-1 50.45 g (수율 61 %)을 얻었다. [M+H]+=296Formula e-2 91.61 g (1.0 eq), H 2 SO 4 500ml into 500ml, refluxed and stirred while dissolving. When the reaction was completed after 2 hours, the reaction product was poured into water to drop crystals and filtered. The filtered solid was completely dissolved in CHCl 3 , washed with water, and the solution in which the product was dissolved was concentrated under reduced pressure to remove about 80% of the solvent. Hexane was added again under reflux, crystals were dropped, and after cooling, column chromatography was performed to obtain 50.45 g of formula e-1 (yield 61%). [M+H]+=296

3) 화학식 e의 제조 3) Preparation of formula e

화학식 e-1 50.45 g (1.0 eq), 비스(피나콜라토)디보론 (Bis(pinacolato)diboron) 55.96 g (1.3 eq), Pd(dppf)Cl2 ((1,1'-Bis(diphenylphosphino)ferrocene)palladium dichloride) 2.48g (0.02 eq) 및 KOAc (potassium acetate) 18.98 g (2.00 eq) 을 dioxnae 800 mL에 넣고 환류하여 교반했다. 3 시간 후 반응이 종료되면 감압하여 용매를 제거했다. 여과한 고체를 CHCl3에 완전히 녹인 후 물로 씻어주고 생성물이 녹아있는 용액을 감압 농축하여 용매를 90% 정도 제거했다. 이를 다시 환류 상태에서 에탄올을 넣어주며 결정을 떨어트리고 식힌 후 여과 해서 화학식 e 49.66 g (수율 84 %)을 얻었다. [M+H]+=345Formula e-1 50.45 g (1.0 eq), Bis(pinacolato)diboron (Bis(pinacolato)diboron) 55.96 g (1.3 eq), Pd(dppf)Cl 2 ((1,1'-Bis(diphenylphosphino) ferrocene)palladium dichloride) 2.48 g (0.02 eq) and 18.98 g (2.00 eq) of KOAc (potassium acetate) were added to 800 mL of dioxnae, and the mixture was refluxed and stirred. When the reaction was completed after 3 hours, the solvent was removed under reduced pressure. The filtered solid was completely dissolved in CHCl 3 , washed with water, and the solution in which the product was dissolved was concentrated under reduced pressure to remove about 90% of the solvent. Ethanol was added thereto under reflux, crystals were dropped, cooled, and filtered to obtain 49.66 g of formula e (yield 84%). [M+H]+=345

[제조예 6] 화학식 f의 제조[Preparation Example 6] Preparation of Formula f

4-bromo-1-chloro-2-iodobenzene 대신 1-bromo-3-chloro-5-iodobenzene 을 사용하여 화학식 e의 제조 방법과 같은 방법으로 화학식 f를 합성했다. [M+H]+=345Formula f was synthesized in the same manner as in the preparation method of Formula e using 1-bromo-3-chloro-5-iodobenzene instead of 4-bromo-1-chloro-2-iodobenzene. [M+H]+=345

Figure 112020011233657-pat00114
Figure 112020011233657-pat00114

[제조예 7] 화학식 g의 제조[Preparation Example 7] Preparation of formula g

4-bromo-1-chloro-2-iodobenzene 대신 2-bromo-1-chloro-4-iodobenzene 을 사용하여 화학식 e의 제조 방법과 같은 방법으로 화학식 g를 합성했다. [M+H]+=345Formula g was synthesized in the same manner as in the preparation method of Formula e using 2-bromo-1-chloro-4-iodobenzene instead of 4-bromo-1-chloro-2-iodobenzene. [M+H]+=345

Figure 112020011233657-pat00115
Figure 112020011233657-pat00115

[제조예 8] 화학식 h의 제조[Preparation Example 8] Preparation of formula h

(2-(methylthio)phenyl)boronic acid 대신 (3-(methylthio)naphthalen-2-yl)boronic acid 을 사용하여 화학식 e의 제조 방법과 같은 방법으로 화학식 h를 합성했다. [M+H]+=395Chemical formula h was synthesized in the same manner as in the preparation method of Chemical Formula e using (3-(methylthio)naphthalen-2-yl)boronic acid instead of (2-(methylthio)phenyl)boronic acid. [M+H]+=395

Figure 112020011233657-pat00116
Figure 112020011233657-pat00116

[제조예 9] 화학식 i의 제조[Preparation Example 9] Preparation of Formula i

(2-(methylthio)phenyl)boronic acid 대신 (3-(methylthio)naphthalen-2-yl)boronic acid 을 사용하여 화학식 f의 제조 방법과 같은 방법으로 화학식 i를 합성했다. [M+H]+=395Formula i was synthesized in the same manner as in the preparation method of Formula f using (3-(methylthio)naphthalen-2-yl)boronic acid instead of (2-(methylthio)phenyl)boronic acid. [M+H]+=395

Figure 112020011233657-pat00117
Figure 112020011233657-pat00117

[제조예 10] 화학식 j의 제조[Preparation Example 10] Preparation of Formula j

(2-(methylthio)phenyl)boronic acid 대신 (3-(methylthio)naphthalen-2-yl)boronic acid 을 사용하여 화학식 g의 제조 방법과 같은 방법으로 화학식 j를 합성했다. [M+H]+=395Formula j was synthesized in the same manner as in the preparation method of Formula g using (3-(methylthio)naphthalen-2-yl)boronic acid instead of (2-(methylthio)phenyl)boronic acid. [M+H]+=395

Figure 112020011233657-pat00118
Figure 112020011233657-pat00118

[제조예 11] 화학식 k의 제조[Preparation Example 11] Preparation of formula k

(2-(methylthio)phenyl)boronic acid 대신 (1-(methylthio)naphthalen-2-yl)boronic acid 을 사용하여 화학식 e의 제조 방법과 같은 방법으로 화학식k를 합성했다. [M+H]+=395Chemical formula k was synthesized in the same manner as in the preparation method of Chemical Formula e using (1-(methylthio)naphthalen-2-yl)boronic acid instead of (2-(methylthio)phenyl)boronic acid. [M+H]+=395

Figure 112020011233657-pat00119
Figure 112020011233657-pat00119

[제조예 12] 화학식 l제조[Preparation Example 12] Preparation of Formula 1

(2-(methylthio)phenyl)boronic acid d대신 (1-(methylthio)naphthalen-2-yl)boronic acid 을 사용하여 화학식 f의 제조 방법과 같은 방법으로 화학식 l를 합성했다. [M+H]+=395(2-(methylthio)phenyl)boronic acid (1-(methylthio)naphthalen-2-yl)boronic acid was used instead of d to synthesize Chemical Formula 1 in the same manner as in the preparation method of Chemical Formula f. [M+H]+=395

Figure 112020011233657-pat00120
Figure 112020011233657-pat00120

[제조예 13] 화학식 m의 제조[Preparation Example 13] Preparation of formula m

(2-(methylthio)phenyl)boronic acid 대신 (1-(methylthio)naphthalen-2-yl)boronic acid 을 사용하여 화학식 g의 제조 방법과 같은 방법으로 화학식 m을 합성했다. [M+H]+=395Formula m was synthesized in the same manner as in the preparation method of Formula g using (1-(methylthio)naphthalen-2-yl)boronic acid instead of (2-(methylthio)phenyl)boronic acid. [M+H]+=395

Figure 112020011233657-pat00121
Figure 112020011233657-pat00121

[제조예 14] 화학식 n의제조[Preparation Example 14] Preparation of Formula n

(2-(methylthio)phenyl)boronic acid 대신 (2-(methylthio)naphthalen-1-yl)boronic acid 을 사용하여 화학식 f의 제조 방법과 같은 방법으로 화학식 n을 합성했다. [M+H]+=395Formula n was synthesized in the same manner as in the preparation method of Formula f using (2-(methylthio)naphthalen-1-yl)boronic acid instead of (2-(methylthio)phenyl)boronic acid. [M+H]+=395

Figure 112020011233657-pat00122
Figure 112020011233657-pat00122

[제조예 15] 화학식 o의 제조[Preparation Example 15] Preparation of Formula o

(2-(methylthio)phenyl)boronic acid 대신 (2-(methylthio)naphthalen-1-yl)boronic acid 을 사용하여 화학식 g의 제조 방법과 같은 방법으로 화학식 o를 합성했다. [M+H]+=395Formula o was synthesized in the same manner as in the preparation method of Formula g, using (2-(methylthio)naphthalen-1-yl)boronic acid instead of (2-(methylthio)phenyl)boronic acid. [M+H]+=395

Figure 112020011233657-pat00123
Figure 112020011233657-pat00123

[제조예 16] 화학식 p의 제조[Preparation Example 16] Preparation of formula p

4-bromo-1-chloro-2-iodobenzene 대신 2-bromo-1-chloro-4-iodonaphthalene을 사용하여 화학식 e의 제조 방법과 같은 방법으로 화학식 p를 합성했다. [M+H]+=395Formula p was synthesized in the same manner as in the preparation method of Formula e using 2-bromo-1-chloro-4-iodonaphthalene instead of 4-bromo-1-chloro-2-iodobenzene. [M+H]+=395

Figure 112020011233657-pat00124
Figure 112020011233657-pat00124

상기 제조예 1 내지 16에서 합성한 중간체를 활용하여 트리아진(Triazine)이 포함된 중간체를 Suzuki coupling reaction을 통해 진행하고 아래의 합성예들의 화합물을 합성했다.Using the intermediate synthesized in Preparation Examples 1 to 16, the intermediate containing triazine was processed through a Suzuki coupling reaction, and the compounds of the following synthesis examples were synthesized.

합성예 1Synthesis Example 1

Figure 112020011233657-pat00125
Figure 112020011233657-pat00125

질소 분위기에서 sub 1 (10 g, 22.2mmol), 화학식a (5.3g, 24.4 mmol), 및 sodium tert-butoxide (4.3 g, 44.4 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol)을 투입했다. 3시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물1 (7.3g)을 얻었다. (수율 52%, MS: [M+H]+= 631)In a nitrogen atmosphere, sub 1 (10 g, 22.2 mmol), formula a (5.3 g, 24.4 mmol), and sodium tert-butoxide (4.3 g, 44.4 mmol) were added to 200 ml of Xylene, and stirred and refluxed. After that, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol) was added. After 3 hours, the reaction was completed, the mixture was cooled to room temperature, and the solvent was removed under reduced pressure. After that, the compound was completely dissolved in chloroform again, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain compound 1 (7.3 g). (Yield 52%, MS: [M+H]+= 631)

합성예 2Synthesis Example 2

Figure 112020011233657-pat00126
Figure 112020011233657-pat00126

질소 분위기에서 sub 2 (10 g, 16mmol), 화학식a (3.8g, 17.6 mmol) 및 sodium tert-butoxide (3.1 g, 31.9 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol)을 투입했다. 3시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물2 (7.5g)을 얻었다. (수율 58%, MS: [M+H]+= 807)In a nitrogen atmosphere, sub 2 (10 g, 16 mmol), formula a (3.8 g, 17.6 mmol) and sodium tert-butoxide (3.1 g, 31.9 mmol) were added to 200 ml of Xylene, and stirred and refluxed. Thereafter, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added thereto. After 3 hours, the reaction was completed, the mixture was cooled to room temperature, and the solvent was removed under reduced pressure. After that, the compound was completely dissolved in chloroform again, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain compound 2 (7.5 g). (Yield 58%, MS: [M+H]+= 807)

합성예 3Synthesis Example 3

Figure 112020011233657-pat00127
Figure 112020011233657-pat00127

질소 분위기에서 sub 3 (10 g, 16.5mmol), 화학식a (3.9g, 18.1 mmol) 및 sodium tert-butoxide (3.2 g, 33 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol)을 투입했다. 3시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물3 (6.7g)을 얻었다. (수율 52%, MS: [M+H]+= 787)In a nitrogen atmosphere, sub 3 (10 g, 16.5 mmol), formula a (3.9 g, 18.1 mmol) and sodium tert-butoxide (3.2 g, 33 mmol) were added to 200 ml of Xylene, and stirred and refluxed. Thereafter, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added thereto. After 3 hours, the reaction was completed, the mixture was cooled to room temperature, and the solvent was removed under reduced pressure. After that, the compound was completely dissolved in chloroform again, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain compound 3 (6.7 g). (Yield 52%, MS: [M+H]+=787)

합성예 4Synthesis Example 4

Figure 112020011233657-pat00128
Figure 112020011233657-pat00128

질소 분위기에서 sub 4 (10 g, 13.9mmol), 화학식a (3.3g, 15.3 mmol) 및 sodium tert-butoxide (2.7 g, 27.7 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.3 mmol)을 투입했다. 3시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물4 (6.2g)을 얻었다. (수율 50%, MS: [M+H]+= 902)In a nitrogen atmosphere, sub 4 (10 g, 13.9 mmol), formula a (3.3 g, 15.3 mmol) and sodium tert-butoxide (2.7 g, 27.7 mmol) were added to 200 ml of Xylene, and stirred and refluxed. After that, bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.3 mmol) was added. After 3 hours, the reaction was completed, the mixture was cooled to room temperature, and the solvent was removed under reduced pressure. After that, the compound was completely dissolved in chloroform again, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain compound 4 (6.2 g). (Yield 50%, MS: [M+H]+= 902)

합성예 5Synthesis Example 5

Figure 112020011233657-pat00129
Figure 112020011233657-pat00129

질소 분위기에서 sub 5 (10 g, 14.5mmol), 화학식a (3.5g, 15.9 mmol) 및 sodium tert-butoxide (2.8 g, 28.9 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.3 mmol)을 투입했다. 2시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물5 (6.7g)을 얻었다. (수율 53%, MS: [M+H]+= 872)In a nitrogen atmosphere, sub 5 (10 g, 14.5 mmol), formula a (3.5 g, 15.9 mmol) and sodium tert-butoxide (2.8 g, 28.9 mmol) were added to 200 ml of Xylene, and stirred and refluxed. After that, bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.3 mmol) was added. After 2 hours, the reaction was completed, and the solvent was removed under reduced pressure after cooling to room temperature. After that, the compound was completely dissolved in chloroform again, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain compound 5 (6.7 g). (Yield 53%, MS: [M+H]+= 872)

합성예 6Synthesis Example 6

Figure 112020011233657-pat00130
Figure 112020011233657-pat00130

질소 분위기에서 sub 6 (10 g, 20mmol), 화학식a (4.8g, 22 mmol) 및 sodium tert-butoxide (3.8 g, 40 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol)을 투입했다. 3시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물6 (6.9g)을 얻었다. (수율 51%, MS: [M+H]+= 681)In a nitrogen atmosphere, sub 6 (10 g, 20 mmol), formula a (4.8 g, 22 mmol) and sodium tert-butoxide (3.8 g, 40 mmol) were added to 200 ml of Xylene, and stirred and refluxed. After that, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol) was added. After 3 hours, the reaction was completed, the mixture was cooled to room temperature, and the solvent was removed under reduced pressure. After that, the compound was completely dissolved in chloroform again, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain compound 6 (6.9 g). (Yield 51%, MS: [M+H] + = 681)

합성예 7Synthesis Example 7

Figure 112020011233657-pat00131
Figure 112020011233657-pat00131

질소 분위기에서 sub 7 (10 g, 16.2mmol), 화학식a (3.9g, 17.9 mmol) 및 sodium tert-butoxide (3.1 g, 32.5 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol)을 투입했다. 3시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물7 (7.8g)을 얻었다. (수율 60%, MS: [M+H]+= 797)In a nitrogen atmosphere, sub 7 (10 g, 16.2 mmol), formula a (3.9 g, 17.9 mmol) and sodium tert-butoxide (3.1 g, 32.5 mmol) were added to 200 ml of Xylene, and stirred and refluxed. Thereafter, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added thereto. After 3 hours, the reaction was completed, the mixture was cooled to room temperature, and the solvent was removed under reduced pressure. After that, the compound was completely dissolved in chloroform again, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain compound 7 (7.8 g). (Yield 60%, MS: [M+H]+= 797)

합성예 8Synthesis Example 8

Figure 112020011233657-pat00132
Figure 112020011233657-pat00132

질소 분위기에서 sub 8 (10 g, 18.6mmol), 화학식a (4.4g, 20.4 mmol) 및 sodium tert-butoxide (3.6 g, 37.1 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol)을 투입했다. 3시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물8 (7.1g)을 얻었다. (수율 53%, MS: [M+H]+= 720)In a nitrogen atmosphere, sub 8 (10 g, 18.6 mmol), formula a (4.4 g, 20.4 mmol) and sodium tert-butoxide (3.6 g, 37.1 mmol) were added to 200 ml of Xylene, and stirred and refluxed. After that, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol) was added. After 3 hours, the reaction was completed, the mixture was cooled to room temperature, and the solvent was removed under reduced pressure. After that, the compound was completely dissolved in chloroform again, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain compound 8 (7.1 g). (Yield 53%, MS: [M+H]+= 720)

합성예 9Synthesis Example 9

Figure 112020011233657-pat00133
Figure 112020011233657-pat00133

질소 분위기에서 sub 9 (10 g, 15.5mmol), 화학식a (3.7g, 17 mmol) 및 sodium tert-butoxide (3 g, 31 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol)을 투입했다. 3시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물9 (7.9g)을 얻었다. (수율 62%, MS: [M+H]+= 827)In a nitrogen atmosphere, sub 9 (10 g, 15.5 mmol), formula a (3.7 g, 17 mmol) and sodium tert-butoxide (3 g, 31 mmol) were added to 200 ml of Xylene, and stirred and refluxed. Thereafter, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added thereto. After 3 hours, the reaction was completed, the mixture was cooled to room temperature, and the solvent was removed under reduced pressure. After that, the compound was completely dissolved in chloroform again, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain compound 9 (7.9 g). (Yield 62%, MS: [M+H]+= 827)

합성예 10Synthesis Example 10

Figure 112020011233657-pat00134
Figure 112020011233657-pat00134

질소 분위기에서 sub 10 (10 g, 18.2mmol), 화학식a (4.3g, 20 mmol) 및 sodium tert-butoxide (3.5 g, 36.4 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol)을 투입했다. 3시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물10 (9.2g)을 얻었다. (수율 69%, MS: [M+H]+= 731)In a nitrogen atmosphere, sub 10 (10 g, 18.2 mmol), formula a (4.3 g, 20 mmol) and sodium tert-butoxide (3.5 g, 36.4 mmol) were added to 200 ml of Xylene, and stirred and refluxed. After that, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol) was added. After 3 hours, the reaction was completed, the mixture was cooled to room temperature, and the solvent was removed under reduced pressure. After that, the compound was completely dissolved in chloroform again, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain compound 10 (9.2 g). (yield 69%, MS: [M+H] += 731)

합성예 11Synthesis Example 11

Figure 112020011233657-pat00135
Figure 112020011233657-pat00135

질소 분위기에서 sub 11 (10 g, 16.7mmol), 화학식a (4g, 18.3 mmol) 및 sodium tert-butoxide (3.2 g, 33.3 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol)을 투입했다. 3시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물11 (7.2g)을 얻었다. (수율 55%, MS: [M+H]+= 781)In a nitrogen atmosphere, sub 11 (10 g, 16.7 mmol), formula a (4 g, 18.3 mmol) and sodium tert-butoxide (3.2 g, 33.3 mmol) were added to 200 ml of Xylene, and stirred and refluxed. Thereafter, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added thereto. After 3 hours, the reaction was completed, the mixture was cooled to room temperature, and the solvent was removed under reduced pressure. After that, the compound was completely dissolved in chloroform again, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain compound 11 (7.2 g). (Yield 55%, MS: [M+H]+= 781)

합성예 12Synthesis Example 12

Figure 112020011233657-pat00136
Figure 112020011233657-pat00136

질소 분위기에서 sub 12 (10 g, 16.3mmol), 화학식a (3.9g, 17.9 mmol) 및 sodium tert-butoxide (3.1 g, 32.5 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol)을 투입했다. 3시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물12 (8.9g)을 얻었다. (수율 69%, MS: [M+H]+= 796)In a nitrogen atmosphere, sub 12 (10 g, 16.3 mmol), formula a (3.9 g, 17.9 mmol) and sodium tert-butoxide (3.1 g, 32.5 mmol) were added to 200 ml of Xylene, and stirred and refluxed. Thereafter, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added thereto. After 3 hours, the reaction was completed, the mixture was cooled to room temperature, and the solvent was removed under reduced pressure. After that, the compound was completely dissolved in chloroform again, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain compound 12 (8.9 g). (yield 69%, MS: [M+H]+= 796)

합성예 13Synthesis Example 13

Figure 112020011233657-pat00137
Figure 112020011233657-pat00137

질소 분위기에서 sub 13 (10 g, 14.2mmol), 화학식a (3.4g, 15.6 mmol) 및 sodium tert-butoxide (2.7 g, 28.4 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.3 mmol)을 투입했다. 2시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물13 (8.2g)을 얻었다. (수율 65%, MS: [M+H]+= 886)In a nitrogen atmosphere, sub 13 (10 g, 14.2 mmol), formula a (3.4 g, 15.6 mmol) and sodium tert-butoxide (2.7 g, 28.4 mmol) were added to 200 ml of Xylene, and stirred and refluxed. After that, bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.3 mmol) was added. After 2 hours, the reaction was completed, and the solvent was removed under reduced pressure after cooling to room temperature. After that, the compound was completely dissolved in chloroform again, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain compound 13 (8.2 g). (Yield 65%, MS: [M+H]+= 886)

합성예 14Synthesis Example 14

Figure 112020011233657-pat00138
Figure 112020011233657-pat00138

질소 분위기에서 sub 14 (10 g, 17.1mmol), 화학식a (4.1g, 18.8 mmol) 및 sodium tert-butoxide (3.3 g, 34.2 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol)을 투입했다. 3시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물14 (7.1g)을 얻었다. (수율 54%, MS: [M+H]+= 765)In a nitrogen atmosphere, sub 14 (10 g, 17.1 mmol), formula a (4.1 g, 18.8 mmol) and sodium tert-butoxide (3.3 g, 34.2 mmol) were added to 200 ml of Xylene, and stirred and refluxed. Thereafter, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added thereto. After 3 hours, the reaction was completed, and the solvent was removed under reduced pressure after cooling to room temperature. After that, the compound was completely dissolved in chloroform again, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain compound 14 (7.1 g). (Yield 54%, MS: [M+H] + = 765)

합성예 15Synthesis Example 15

Figure 112020011233657-pat00139
Figure 112020011233657-pat00139

질소 분위기에서 sub 15 (10 g, 17.1mmol), 화학식a (4.1g, 18.8 mmol) 및 sodium tert-butoxide (3.3 g, 34.2 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol)을 투입했다. 2시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물15 (6.5g)을 얻었다. (수율 50%, MS: [M+H]+= 765)In a nitrogen atmosphere, sub 15 (10 g, 17.1 mmol), formula a (4.1 g, 18.8 mmol) and sodium tert-butoxide (3.3 g, 34.2 mmol) were added to 200 ml of Xylene, and stirred and refluxed. Thereafter, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added thereto. After 2 hours, the reaction was completed, and the solvent was removed under reduced pressure after cooling to room temperature. After that, the compound was completely dissolved in chloroform again, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain compound 15 (6.5 g). (Yield 50%, MS: [M+H]+= 765)

합성예 16Synthesis Example 16

Figure 112020011233657-pat00140
Figure 112020011233657-pat00140

질소 분위기에서 sub 16 (10 g, 16mmol), 화학식a (3.8g, 17.6 mmol 및 sodium tert-butoxide (3.1 g, 32 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol)을 투입했다. 2시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물16 (8.8g)을 얻었다. (수율 68%, MS: [M+H]+= 805)In a nitrogen atmosphere, sub 16 (10 g, 16 mmol), formula a (3.8 g, 17.6 mmol and sodium tert-butoxide (3.1 g, 32 mmol) were added to 200 ml of Xylene, stirred and refluxed. After that, bis(tri-tert) -Butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added.After 2 hours, the reaction was completed, cooled to room temperature and removed under reduced pressure.After that, the compound was completely dissolved in chloroform, washed twice with water, and then the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure.The concentrated compound was purified by silica gel column chromatography to obtain compound 16 (8.8g). (Yield 68%, MS: [M+H]+ = 805)

합성예 17Synthesis Example 17

Figure 112020011233657-pat00141
Figure 112020011233657-pat00141

질소 분위기에서 sub 17 (10 g, 20.7mmol), 화학식a (4.9g, 22.7 mmol) 및 sodium tert-butoxide (4 g, 41.3 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol)을 투입했다. 2시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물17 (7.8g)을 얻었다. (수율 57%, MS: [M+H]+= 665)In a nitrogen atmosphere, sub 17 (10 g, 20.7 mmol), formula a (4.9 g, 22.7 mmol) and sodium tert-butoxide (4 g, 41.3 mmol) were added to 200 ml of Xylene, and stirred and refluxed. After that, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol) was added. After 2 hours, the reaction was completed, and the solvent was removed under reduced pressure after cooling to room temperature. After that, the compound was completely dissolved in chloroform again, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain compound 17 (7.8 g). (Yield 57%, MS: [M+H]+= 665)

합성예 18Synthesis Example 18

Figure 112020011233657-pat00142
Figure 112020011233657-pat00142

질소 분위기에서 sub 18 (10 g, 15.1mmol), 화학식a (3.6g, 16.7 mmol) 및 sodium tert-butoxide (2.9 g, 30.3 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol)을 투입했다. 3시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물18 (7.3g)을 얻었다. (수율 57%, MS: [M+H]+= 841)In a nitrogen atmosphere, sub 18 (10 g, 15.1 mmol), formula a (3.6 g, 16.7 mmol) and sodium tert-butoxide (2.9 g, 30.3 mmol) were added to 200 ml of Xylene, and stirred and refluxed. Thereafter, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added thereto. After 3 hours, the reaction was completed, the mixture was cooled to room temperature, and the solvent was removed under reduced pressure. After that, the compound was completely dissolved in chloroform again, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain compound 18 (7.3 g). (Yield 57%, MS: [M+H] + = 841)

합성예 19Synthesis Example 19

Figure 112020011233657-pat00143
Figure 112020011233657-pat00143

질소 분위기에서 sub 19 (10 g, 15.7mmol), 화학식a (3.8g, 17.3 mmol) 및 sodium tert-butoxide (3 g, 31.4 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol)을 투입했다. 2시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물19 (7.7g)을 얻었다. (수율 60%, MS: [M+H]+= 817)In a nitrogen atmosphere, sub 19 (10 g, 15.7 mmol), formula a (3.8 g, 17.3 mmol) and sodium tert-butoxide (3 g, 31.4 mmol) were added to 200 ml of Xylene, and stirred and refluxed. Thereafter, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added thereto. After 2 hours, the reaction was completed, and the solvent was removed under reduced pressure after cooling to room temperature. After that, the compound was completely dissolved in chloroform again, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain compound 19 (7.7 g). (Yield 60%, MS: [M+H]+= 817)

합성예 20Synthesis Example 20

Figure 112020011233657-pat00144
Figure 112020011233657-pat00144

질소 분위기에서 sub 20 (10 g, 17.9mmol), 화학식a (4.3g, 19.6 mmol) 및 sodium tert-butoxide (3.4 g, 35.7 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol)을 투입했다. 3시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물20 (8.9g)을 얻었다. (수율 67%, MS: [M+H]+= 741)In a nitrogen atmosphere, sub 20 (10 g, 17.9 mmol), formula a (4.3 g, 19.6 mmol) and sodium tert-butoxide (3.4 g, 35.7 mmol) were added to 200 ml of Xylene, and stirred and refluxed. After that, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol) was added. After 3 hours, the reaction was completed, the mixture was cooled to room temperature, and the solvent was removed under reduced pressure. After that, the compound was completely dissolved in chloroform again, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain compound 20 (8.9 g). (Yield 67%, MS: [M+H] + = 741)

합성예 21Synthesis Example 21

Figure 112020011233657-pat00145
Figure 112020011233657-pat00145

질소 분위기에서 sub 21 (10 g, 16.4mmol), 화학식a (3.9g, 18 mmol) 및 sodium tert-butoxide (3.2 g, 32.8 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol)을 투입했다. 3시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물21 (7.6g)을 얻었다. (수율 59%, MS: [M+H]+= 791)In a nitrogen atmosphere, sub 21 (10 g, 16.4 mmol), formula a (3.9 g, 18 mmol) and sodium tert-butoxide (3.2 g, 32.8 mmol) were added to 200 ml of Xylene, and stirred and refluxed. Thereafter, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added thereto. After 3 hours, the reaction was completed, the mixture was cooled to room temperature, and the solvent was removed under reduced pressure. After that, the compound was completely dissolved in chloroform again, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain compound 21 (7.6 g). (yield 59%, MS: [M+H]+=791)

합성예 22Synthesis Example 22

Figure 112020011233657-pat00146
Figure 112020011233657-pat00146

질소 분위기에서 sub 22 (10 g, 15.8mmol), 화학식a (3.8g, 17.3 mmol) 및 sodium tert-butoxide (3 g, 31.5 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol)을 투입했다. 2시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물22 (7.7g)을 얻었다. (수율 60%, MS: [M+H]+= 815)In a nitrogen atmosphere, sub 22 (10 g, 15.8 mmol), formula a (3.8 g, 17.3 mmol) and sodium tert-butoxide (3 g, 31.5 mmol) were added to 200 ml of Xylene, and stirred and refluxed. Thereafter, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added thereto. After 2 hours, the reaction was completed, and the solvent was removed under reduced pressure after cooling to room temperature. After that, the compound was completely dissolved in chloroform again, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain compound 22 (7.7 g). (Yield 60%, MS: [M+H]+= 815)

합성예 23Synthesis Example 23

Figure 112020011233657-pat00147
Figure 112020011233657-pat00147

질소 분위기에서 sub 23 (10 g, 15.4mmol), 화학식a (3.7g, 16.9 mmol) 및 sodium tert-butoxide (3 g, 30.8 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol)을 투입했다. 2시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물23 (7.4g)을 얻었다. (수율 58%, MS: [M+H]+= 831)In a nitrogen atmosphere, sub 23 (10 g, 15.4 mmol), formula a (3.7 g, 16.9 mmol) and sodium tert-butoxide (3 g, 30.8 mmol) were added to 200 ml of Xylene, and stirred and refluxed. Thereafter, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added thereto. After 2 hours, the reaction was completed, and the solvent was removed under reduced pressure after cooling to room temperature. After that, the compound was completely dissolved in chloroform again, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain compound 23 (7.4 g). (Yield 58%, MS: [M+H]+= 831)

합성예 24Synthesis Example 24

Figure 112020011233657-pat00148
Figure 112020011233657-pat00148

질소 분위기에서 sub 24 (10 g, 16.4mmol), 화학식d (4.8g, 18 mmol) 및 sodium tert-butoxide (3.2 g, 32.8 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol)을 투입했다. 3시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물24 (7g)을 얻었다. (수율 51%, MS: [M+H]+= 841)In a nitrogen atmosphere, sub 24 (10 g, 16.4 mmol), formula d (4.8 g, 18 mmol) and sodium tert-butoxide (3.2 g, 32.8 mmol) were added to 200 ml of Xylene, stirred and refluxed. Thereafter, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added thereto. After 3 hours, the reaction was completed, the mixture was cooled to room temperature, and the solvent was removed under reduced pressure. After that, the compound was completely dissolved in chloroform again, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain compound 24 (7g). (Yield 51%, MS: [M+H] + = 841)

합성예 25Synthesis Example 25

Figure 112020011233657-pat00149
Figure 112020011233657-pat00149

질소 분위기에서 sub 25 (10 g, 19.1mmol), 화학식d (5.6g, 21 mmol) 및 sodium tert-butoxide (3.7 g, 38.2 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol)을 투입했다. 2시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물25 (8.9g)을 얻었다. (수율 62%, MS: [M+H]+= 755)In a nitrogen atmosphere, sub 25 (10 g, 19.1 mmol), formula d (5.6 g, 21 mmol) and sodium tert-butoxide (3.7 g, 38.2 mmol) were added to 200 ml of Xylene, and stirred and refluxed. After that, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol) was added. After 2 hours, the reaction was completed, and the solvent was removed under reduced pressure after cooling to room temperature. After that, the compound was completely dissolved in chloroform again, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain compound 25 (8.9 g). (Yield 62%, MS: [M+H]+= 755)

합성예 26Synthesis Example 26

Figure 112020011233657-pat00150
Figure 112020011233657-pat00150

질소 분위기에서 sub 26 (10 g, 14.4mmol), 화학식d (4.2g, 15.8 mmol) 및 sodium tert-butoxide (2.8 g, 28.7 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.3 mmol)을 투입했다. 3시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물26 (8.6g)을 얻었다. (수율 65%, MS: [M+H]+= 927)In a nitrogen atmosphere, sub 26 (10 g, 14.4 mmol), formula d (4.2 g, 15.8 mmol) and sodium tert-butoxide (2.8 g, 28.7 mmol) were added to 200 ml of Xylene, and stirred and refluxed. After that, bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.3 mmol) was added. After 3 hours, the reaction was completed, the mixture was cooled to room temperature, and the solvent was removed under reduced pressure. After that, the compound was completely dissolved in chloroform again, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain compound 26 (8.6 g). (Yield 65%, MS: [M+H]+= 927)

합성예 27Synthesis Example 27

Figure 112020011233657-pat00151
Figure 112020011233657-pat00151

질소 분위기에서 sub 27 (10 g, 19.6mmol), 화학식d (5.8g, 21.6 mmol) 및 sodium tert-butoxide (3.8 g, 39.2 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol)을 투입했다. 2시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물27 (9.6g)을 얻었다. (수율 66%, MS: [M+H]+= 741)In a nitrogen atmosphere, sub 27 (10 g, 19.6 mmol), formula d (5.8 g, 21.6 mmol) and sodium tert-butoxide (3.8 g, 39.2 mmol) were added to 200 ml of Xylene, stirred and refluxed. After that, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol) was added. After 2 hours, the reaction was completed, and the solvent was removed under reduced pressure after cooling to room temperature. After that, the compound was completely dissolved in chloroform again, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain compound 27 (9.6 g). (Yield 66%, MS: [M+H]+= 741)

합성예 28Synthesis Example 28

Figure 112020011233657-pat00152
Figure 112020011233657-pat00152

질소 분위기에서 sub 28 (10 g, 16mmol), 화학식d (4.7g, 17.6 mmol) 및 sodium tert-butoxide (3.1 g, 32 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol)을 투입했다. 3시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물28 (6.8g)을 얻었다. (수율 50%, MS: [M+H]+= 855)In a nitrogen atmosphere, sub 28 (10 g, 16 mmol), formula d (4.7 g, 17.6 mmol) and sodium tert-butoxide (3.1 g, 32 mmol) were added to 200 ml of Xylene, and stirred and refluxed. Thereafter, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added thereto. After 3 hours, the reaction was completed, the mixture was cooled to room temperature, and the solvent was removed under reduced pressure. After that, the compound was completely dissolved in chloroform again, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain compound 28 (6.8 g). (Yield 50%, MS: [M+H]+= 855)

합성예 29Synthesis Example 29

Figure 112020011233657-pat00153
Figure 112020011233657-pat00153

질소 분위기에서 sub 29 (10 g, 15.4mmol), 화학식d (4.5g, 16.9 mmol) 및 sodium tert-butoxide (3 g, 30.8 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol)을 투입했다. 2시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물29 (7.6g)을 얻었다. (수율 56%, MS: [M+H]+= 880)In a nitrogen atmosphere, sub 29 (10 g, 15.4 mmol), formula d (4.5 g, 16.9 mmol) and sodium tert-butoxide (3 g, 30.8 mmol) were added to 200 ml of Xylene, and stirred and refluxed. Thereafter, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added thereto. After 2 hours, the reaction was completed, and the solvent was removed under reduced pressure after cooling to room temperature. After that, the compound was completely dissolved in chloroform again, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain compound 29 (7.6 g). (Yield 56%, MS: [M+H] + = 880)

합성예 30Synthesis Example 30

Figure 112020011233657-pat00154
Figure 112020011233657-pat00154

질소 분위기에서 sub 30 (10 g, 17.5mmol), 화학식d (5.1g, 19.2 mmol) 및 sodium tert-butoxide (3.4 g, 34.9 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol)을 투입했다. 3시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물30 (7.4g)을 얻었다. (수율 53%, MS: [M+H]+= 804)In a nitrogen atmosphere, sub 30 (10 g, 17.5 mmol), formula d (5.1 g, 19.2 mmol) and sodium tert-butoxide (3.4 g, 34.9 mmol) were added to 200 ml of Xylene, and stirred and refluxed. Thereafter, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added thereto. After 3 hours, the reaction was completed, the mixture was cooled to room temperature, and the solvent was removed under reduced pressure. After that, the compound was completely dissolved in chloroform again, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain compound 30 (7.4 g). (Yield 53%, MS: [M+H]+= 804)

합성예 31Synthesis Example 31

Figure 112020011233657-pat00155
Figure 112020011233657-pat00155

질소 분위기에서 sub 31 (10 g, 17.1mmol), 화학식d (5g, 18.8 mmol) 및 sodium tert-butoxide (3.3 g, 34.2 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol)을 투입했다. 2시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물31 (9.5g)을 얻었다. (수율 68%, MS: [M+H]+= 815)In a nitrogen atmosphere, sub 31 (10 g, 17.1 mmol), formula d (5 g, 18.8 mmol) and sodium tert-butoxide (3.3 g, 34.2 mmol) were added to 200 ml of Xylene, and stirred and refluxed. Thereafter, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added thereto. After 2 hours, the reaction was completed, and the solvent was removed under reduced pressure after cooling to room temperature. After that, the compound was completely dissolved in chloroform again, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain compound 31 (9.5 g). (Yield 68%, MS: [M+H]+= 815)

합성예 32Synthesis Example 32

Figure 112020011233657-pat00156
Figure 112020011233657-pat00156

질소 분위기에서 sub 32 (10 g, 17.9mmol), 화학식d (5.3g, 19.6 mmol 및 sodium tert-butoxide (3.4 g, 35.7 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol)을 투입했다. 2시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물32 (7.5g)을 얻었다. (수율 53%, MS: [M+H]+= 791)In a nitrogen atmosphere, sub 32 (10 g, 17.9 mmol), formula d (5.3 g, 19.6 mmol and sodium tert-butoxide (3.4 g, 35.7 mmol) were added to 200 ml of Xylene, stirred and refluxed. After that, bis(tri- tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol) was added.After 2 hours, the reaction was completed, cooled to room temperature and removed under reduced pressure.After that, the compound was completely dissolved in chloroform and washed twice with water. The organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure.The concentrated compound was purified by silica gel column chromatography to obtain compound 32 (7.5g). (Yield 53%, MS: [M+H] += 791)

합성예 33Synthesis Example 33

Figure 112020011233657-pat00157
Figure 112020011233657-pat00157

질소 분위기에서 sub 33 (10 g, 15.4mmol), 화학식d (4.5g, 16.9 mmo 및 sodium tert-butoxide (3 g, 30.8 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol)을 투입했다. 3시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물33 (7.4g)을 얻었다. (수율 55%, MS: [M+H]+= 880)In a nitrogen atmosphere, sub 33 (10 g, 15.4 mmol), formula d (4.5 g, 16.9 mmol, and sodium tert-butoxide (3 g, 30.8 mmol) were added to 200 ml of Xylene, stirred and refluxed. After that, bis(tri- tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added.After 3 hours, the reaction was completed, cooled to room temperature and removed under reduced pressure.After that, the compound was completely dissolved in chloroform and washed twice with water. The organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure.The concentrated compound was purified by silica gel column chromatography to obtain compound 33 (7.4g). (Yield 55%, MS: [M+H] += 880)

합성예 34Synthesis Example 34

Figure 112020011233657-pat00158
Figure 112020011233657-pat00158

질소 분위기에서 sub 34 (10 g, 16.4mmol), 화학식c (4.8g, 18 mmol) 및 sodium tert-butoxide (3.2 g, 32.8 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol)을 투입했다. 3시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물34 (9.5g)을 얻었다. (수율 69%, MS: [M+H]+= 841)In a nitrogen atmosphere, sub 34 (10 g, 16.4 mmol), formula c (4.8 g, 18 mmol) and sodium tert-butoxide (3.2 g, 32.8 mmol) were added to 200 ml of Xylene, and stirred and refluxed. Thereafter, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added thereto. After 3 hours, the reaction was completed, the mixture was cooled to room temperature, and the solvent was removed under reduced pressure. After that, the compound was completely dissolved in chloroform again, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain compound 34 (9.5 g). (yield 69%, MS: [M+H] + = 841)

합성예 35Synthesis Example 35

Figure 112020011233657-pat00159
Figure 112020011233657-pat00159

질소 분위기에서 sub 35 (10 g, 14.6mmol), 화학식c (4.3g, 16.1 mmol) 및 sodium tert-butoxide (2.8 g, 29.2 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.3 mmol)을 투입했다. 2시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물35 (6.7g)을 얻었다. (수율 50%, MS: [M+H]+= 915)In a nitrogen atmosphere, sub 35 (10 g, 14.6 mmol), formula c (4.3 g, 16.1 mmol) and sodium tert-butoxide (2.8 g, 29.2 mmol) were added to 200 ml of Xylene, and stirred and refluxed. After that, bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.3 mmol) was added. After 2 hours, the reaction was completed, and the solvent was removed under reduced pressure after cooling to room temperature. After that, the compound was completely dissolved in chloroform again, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain compound 35 (6.7 g). (Yield 50%, MS: [M+H]+= 915)

합성예 36Synthesis Example 36

Figure 112020011233657-pat00160
Figure 112020011233657-pat00160

질소 분위기에서 sub 36 (10 g, 15.5mmol), 화학식c (4.6g, 17 mmol) 및 sodium tert-butoxide (3 g, 31 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol)을 투입했다. 3시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물36 (9.4g)을 얻었다. (수율 69%, MS: [M+H]+= 877)In a nitrogen atmosphere, sub 36 (10 g, 15.5 mmol), formula c (4.6 g, 17 mmol) and sodium tert-butoxide (3 g, 31 mmol) were added to 200 ml of Xylene, and stirred and refluxed. Thereafter, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added thereto. After 3 hours, the reaction was completed, the mixture was cooled to room temperature, and the solvent was removed under reduced pressure. After that, the compound was completely dissolved in chloroform again, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain compound 36 (9.4 g). (yield 69%, MS: [M+H] + = 877)

합성예 37Synthesis Example 37

Figure 112020011233657-pat00161
Figure 112020011233657-pat00161

질소 분위기에서 sub 37 (10 g, 16.4mmol), 화학식c (4.8g, 18 mmol) 및 sodium tert-butoxide (3.2 g, 32.8 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol)을 투입했다. 2시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물37 (7.2g)을 얻었다. (수율 52%, MS: [M+H]+= 841)In a nitrogen atmosphere, sub 37 (10 g, 16.4 mmol), formula c (4.8 g, 18 mmol) and sodium tert-butoxide (3.2 g, 32.8 mmol) were added to 200 ml of Xylene, and stirred and refluxed. Thereafter, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added thereto. After 2 hours, the reaction was completed, and the solvent was removed under reduced pressure after cooling to room temperature. After that, the compound was completely dissolved in chloroform again, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain compound 37 (7.2 g). (Yield 52%, MS: [M+H] + = 841)

합성예 38Synthesis Example 38

Figure 112020011233657-pat00162
Figure 112020011233657-pat00162

질소 분위기에서 sub 38 (10 g, 14.7mmol), 화학식c (4.3g, 16.2 mmol) 및 sodium tert-butoxide (2.8 g, 29.4 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol)을 투입했다. 3시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물38 (8.6g)을 얻었다. (수율 64%, MS: [M+H]+= 910)In a nitrogen atmosphere, sub 38 (10 g, 14.7 mmol), formula c (4.3 g, 16.2 mmol) and sodium tert-butoxide (2.8 g, 29.4 mmol) were added to 200 ml of Xylene, stirred and refluxed. Thereafter, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added thereto. After 3 hours, the reaction was completed, the mixture was cooled to room temperature, and the solvent was removed under reduced pressure. After that, the compound was completely dissolved in chloroform again, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain compound 38 (8.6 g). (Yield 64%, MS: [M+H]+= 910)

합성예 39Synthesis Example 39

Figure 112020011233657-pat00163
Figure 112020011233657-pat00163

질소 분위기에서 sub 39 (10 g, 16.9mmol), 화학식c (5g, 18.6 mmol) 및 sodium tert-butoxide (3.3 g, 33.9 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol)을 투입했다. 3시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물39 (8.1g)을 얻었다. (수율 58%, MS: [M+H]+= 821)In a nitrogen atmosphere, sub 39 (10 g, 16.9 mmol), formula c (5 g, 18.6 mmol) and sodium tert-butoxide (3.3 g, 33.9 mmol) were added to 200 ml of Xylene, and stirred and refluxed. Thereafter, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added thereto. After 3 hours, the reaction was completed, the mixture was cooled to room temperature, and the solvent was removed under reduced pressure. After that, the compound was completely dissolved in chloroform again, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain compound 39 (8.1 g). (Yield 58%, MS: [M+H]+= 821)

합성예 40Synthesis Example 40

Figure 112020011233657-pat00164
Figure 112020011233657-pat00164

질소 분위기에서 sub 40 (10 g, 14.4mmol), 화학식c (4.2g, 15.8 mmol) 및 sodium tert-butoxide (2.8 g, 28.7 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.3 mmol)을 투입했다. 3시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물40 (8.9g)을 얻었다. (수율 67%, MS: [M+H]+= 927)In a nitrogen atmosphere, sub 40 (10 g, 14.4 mmol), formula c (4.2 g, 15.8 mmol) and sodium tert-butoxide (2.8 g, 28.7 mmol) were added to 200 ml of Xylene, and stirred and refluxed. After that, bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.3 mmol) was added. After 3 hours, the reaction was completed, the mixture was cooled to room temperature, and the solvent was removed under reduced pressure. After that, the compound was completely dissolved in chloroform again, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain compound 40 (8.9 g). (Yield 67%, MS: [M+H]+= 927)

합성예 41Synthesis Example 41

Figure 112020011233657-pat00165
Figure 112020011233657-pat00165

질소 분위기에서 sub 41 (10 g, 16.4mmol), 화학식c (4.8g, 18 mmol) 및 sodium tert-butoxide (3.2 g, 32.8 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol)을 투입했다. 2시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물41 (6.9g)을 얻었다. (수율 50%, MS: [M+H]+= 841)In a nitrogen atmosphere, sub 41 (10 g, 16.4 mmol), formula c (4.8 g, 18 mmol) and sodium tert-butoxide (3.2 g, 32.8 mmol) were added to 200 ml of Xylene, and stirred and refluxed. Thereafter, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added thereto. After 2 hours, the reaction was completed, and the solvent was removed under reduced pressure after cooling to room temperature. After that, the compound was completely dissolved in chloroform again, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain compound 41 (6.9 g). (Yield 50%, MS: [M+H]+= 841)

합성예 42Synthesis Example 42

Figure 112020011233657-pat00166
Figure 112020011233657-pat00166

질소 분위기에서 sub 42 (10 g, 15.7mmol), 화학식c (4.6g, 17.3 mmol) 및 sodium tert-butoxide (3 g, 31.4 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol)을 투입했다. 2시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물42 (6.9g)을 얻었다. (수율 51%, MS: [M+H]+= 867)In a nitrogen atmosphere, sub 42 (10 g, 15.7 mmol), formula c (4.6 g, 17.3 mmol) and sodium tert-butoxide (3 g, 31.4 mmol) were added to 200 ml of Xylene, stirred and refluxed. Thereafter, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added thereto. After 2 hours, the reaction was completed, and the solvent was removed under reduced pressure after cooling to room temperature. After that, the compound was completely dissolved in chloroform again, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain compound 42 (6.9 g). (Yield 51%, MS: [M+H] + = 867)

합성예 43Synthesis Example 43

Figure 112020011233657-pat00167
Figure 112020011233657-pat00167

질소 분위기에서 sub 43 (10 g, 15.6mmol), 화학식c (4.6g, 17.2 mmol) 및 sodium tert-butoxide (3 g, 31.2 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol)을 투입했다. 2시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물43 (9.1g)을 얻었다. (수율 67%, MS: [M+H]+= 871)In a nitrogen atmosphere, sub 43 (10 g, 15.6 mmol), formula c (4.6 g, 17.2 mmol) and sodium tert-butoxide (3 g, 31.2 mmol) were added to 200 ml of Xylene, and stirred and refluxed. Thereafter, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added thereto. After 2 hours, the reaction was completed, and the solvent was removed under reduced pressure after cooling to room temperature. After that, the compound was completely dissolved in chloroform again, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain compound 43 (9.1 g). (Yield 67%, MS: [M+H] + = 871)

합성예 44Synthesis Example 44

Figure 112020011233657-pat00168
Figure 112020011233657-pat00168

질소 분위기에서 sub 44 (10 g, 16mmol), 화학식c (4.7g, 17.6 mmol) 및 sodium tert-butoxide (3.1 g, 32 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol)을 투입했다. 2시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물44 (6.8g)을 얻었다. (수율 50%, MS: [M+H]+= 855)In a nitrogen atmosphere, sub 44 (10 g, 16 mmol), formula c (4.7 g, 17.6 mmol) and sodium tert-butoxide (3.1 g, 32 mmol) were added to 200 ml of Xylene, and stirred and refluxed. Thereafter, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added thereto. After 2 hours, the reaction was completed, and the solvent was removed under reduced pressure after cooling to room temperature. After that, the compound was completely dissolved in chloroform again, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain compound 44 (6.8 g). (Yield 50%, MS: [M+H]+= 855)

합성예 45Synthesis Example 45

Figure 112020011233657-pat00169
Figure 112020011233657-pat00169

질소 분위기에서 sub 45 (10 g, 17.9mmol), 화학식b (5.3g, 19.6 mmo 및 sodium tert-butoxide (3.4 g, 35.7 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol)을 투입했다. 2시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물45 (8.6g)을 얻었다. (수율 61%, MS: [M+H]+= 791)In a nitrogen atmosphere, sub 45 (10 g, 17.9 mmol), formula b (5.3 g, 19.6 mmol, and sodium tert-butoxide (3.4 g, 35.7 mmol) were added to 200 ml of Xylene, stirred and refluxed. After that, bis(tri- tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol) was added.After 2 hours, the reaction was completed, cooled to room temperature and removed under reduced pressure.After that, the compound was completely dissolved in chloroform and washed twice with water. The organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure.The concentrated compound was purified by silica gel column chromatography to obtain compound 45 (8.6g). (Yield 61%, MS: [M+H] += 791)

합성예 46Synthesis Example 46

Figure 112020011233657-pat00170
Figure 112020011233657-pat00170

질소 분위기에서 sub 46 (10 g, 16.9mmol), 화학식b (5g, 18.6 mmol) 및 sodium tert-butoxide (3.3 g, 33.9 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol)을 투입했다. 3시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물46 (8.1g)을 얻었다. (수율 58%, MS: [M+H]+= 821)In a nitrogen atmosphere, sub 46 (10 g, 16.9 mmol), formula b (5 g, 18.6 mmol) and sodium tert-butoxide (3.3 g, 33.9 mmol) were added to 200 ml of Xylene, and stirred and refluxed. Thereafter, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added thereto. After 3 hours, the reaction was completed, the mixture was cooled to room temperature, and the solvent was removed under reduced pressure. After that, the compound was completely dissolved in chloroform again, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain compound 46 (8.1 g). (Yield 58%, MS: [M+H]+= 821)

합성예 47Synthesis Example 47

Figure 112020011233657-pat00171
Figure 112020011233657-pat00171

질소 분위기에서 sub 47 (10 g, 16.7mmol), 화학식b (4.9g, 18.4 mmol) 및 sodium tert-butoxide (3.2 g, 33.4 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol)을 투입했다. 3시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물47 (9.3g)을 얻었다. (수율 67%, MS: [M+H]+= 830)In a nitrogen atmosphere, sub 47 (10 g, 16.7 mmol), formula b (4.9 g, 18.4 mmol) and sodium tert-butoxide (3.2 g, 33.4 mmol) were added to 200 ml of Xylene, and stirred and refluxed. Thereafter, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added thereto. After 3 hours, the reaction was completed, the mixture was cooled to room temperature, and the solvent was removed under reduced pressure. After that, the compound was completely dissolved in chloroform again, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain compound 47 (9.3 g). (Yield 67%, MS: [M+H]+= 830)

합성예 48Synthesis Example 48

Figure 112020011233657-pat00172
Figure 112020011233657-pat00172

질소 분위기에서 sub 48 (10 g, 15.8mmol), 화학식b (4.6g, 17.3 mmol) 및 sodium tert-butoxide (3 g, 31.5 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol)을 투입했다. 2시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물48 (9g)을 얻었다. (수율 66%, MS: [M+H]+= 865)In a nitrogen atmosphere, sub 48 (10 g, 15.8 mmol), formula b (4.6 g, 17.3 mmol) and sodium tert-butoxide (3 g, 31.5 mmol) were added to 200 ml of Xylene, and stirred and refluxed. Thereafter, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added thereto. After 2 hours, the reaction was completed, and the solvent was removed under reduced pressure after cooling to room temperature. After that, the compound was completely dissolved in chloroform again, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain compound 48 (9g). (Yield 66%, MS: [M+H]+= 865)

합성예 49Synthesis Example 49

Figure 112020011233657-pat00173
Figure 112020011233657-pat00173

질소 분위기에서 sub 49 (10 g, 16.9mmol), 화학식b (5g, 18.6 mmol) 및 sodium tert-butoxide (3.3 g, 33.9 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol)을 투입했다. 2시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물49 (7.8g)을 얻었다. (수율 56%, MS: [M+H]+= 821)In a nitrogen atmosphere, sub 49 (10 g, 16.9 mmol), formula b (5 g, 18.6 mmol) and sodium tert-butoxide (3.3 g, 33.9 mmol) were added to 200 ml of Xylene, and stirred and refluxed. Thereafter, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added thereto. After 2 hours, the reaction was completed, and the solvent was removed under reduced pressure after cooling to room temperature. After that, the compound was completely dissolved in chloroform again, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain compound 49 (7.8 g). (Yield 56%, MS: [M+H]+= 821)

합성예 50Synthesis Example 50

Figure 112020011233657-pat00174
Figure 112020011233657-pat00174

질소 분위기에서 sub 50 (10 g, 17.4mmol), 화학식b (5.1g, 19.2 mmol) 및 sodium tert-butoxide (3.3 g, 34.8 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol)을 투입했다. 2시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물50 (8.8g)을 얻었다. (수율 63%, MS: [M+H]+= 805)In a nitrogen atmosphere, sub 50 (10 g, 17.4 mmol), formula b (5.1 g, 19.2 mmol) and sodium tert-butoxide (3.3 g, 34.8 mmol) were added to 200 ml of Xylene, and stirred and refluxed. Thereafter, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added thereto. After 2 hours, the reaction was completed, and the solvent was removed under reduced pressure after cooling to room temperature. After that, the compound was completely dissolved in chloroform again, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain compound 50 (8.8 g). (Yield 63%, MS: [M+H] + = 805)

합성예 51Synthesis Example 51

Figure 112020011233657-pat00175
Figure 112020011233657-pat00175

질소 분위기에서 sub 51 (10 g, 15.4mmol), 화학식b (4.5g, 16.9 mmol) 및 sodium tert-butoxide (3 g, 30.8 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol)을 투입했다. 3시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물51 (8.1g)을 얻었다. (수율 60%, MS: [M+H]+= 880)In a nitrogen atmosphere, sub 51 (10 g, 15.4 mmol), formula b (4.5 g, 16.9 mmol) and sodium tert-butoxide (3 g, 30.8 mmol) were added to 200 ml of Xylene, and stirred and refluxed. Thereafter, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added thereto. After 3 hours, the reaction was completed, the mixture was cooled to room temperature, and the solvent was removed under reduced pressure. After that, the compound was completely dissolved in chloroform again, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain compound 51 (8.1 g). (Yield 60%, MS: [M+H]+= 880)

합성예 52Synthesis Example 52

Figure 112020011233657-pat00176
Figure 112020011233657-pat00176

질소 분위기에서 sub 52 (10 g, 15.6mmol), 화학식b (4.6g, 17.2 mmol) 및 sodium tert-butoxide (3 g, 31.2 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol)을 투입했다. 2시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물52 (8.6g)을 얻었다. (수율 63%, MS: [M+H]+= 871)In a nitrogen atmosphere, sub 52 (10 g, 15.6 mmol), formula b (4.6 g, 17.2 mmol) and sodium tert-butoxide (3 g, 31.2 mmol) were added to 200 ml of Xylene, and stirred and refluxed. Thereafter, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added thereto. After 2 hours, the reaction was completed, and the solvent was removed under reduced pressure after cooling to room temperature. After that, the compound was completely dissolved in chloroform again, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain compound 52 (8.6 g). (Yield 63%, MS: [M+H] + = 871)

합성예 53Synthesis Example 53

Figure 112020011233657-pat00177
Figure 112020011233657-pat00177

질소 분위기에서 sub 53 (10 g, 19.1mmol), 화학식b (5.6g, 21 mmol) 및 sodium tert-butoxide (3.7 g, 38.2 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol)을 투입했다. 2시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물53 (8.6g)을 얻었다. (수율 60%, MS: [M+H]+= 754)In a nitrogen atmosphere, sub 53 (10 g, 19.1 mmol), formula b (5.6 g, 21 mmol) and sodium tert-butoxide (3.7 g, 38.2 mmol) were added to 200 ml of Xylene, and stirred and refluxed. After that, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol) was added. After 2 hours, the reaction was completed, and the solvent was removed under reduced pressure after cooling to room temperature. After that, the compound was completely dissolved in chloroform again, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain compound 53 (8.6 g). (yield 60%, MS: [M+H]+= 754)

비교예 1Comparative Example 1

ITO(indium tin oxide)가 1,000Å의 두께로 박막 코팅된 유리 기판을 세제를 녹인 증류수에 넣고 초음파로 세척했다. 이때, 세제로는 피셔사(Fischer Co.) 제품을 사용하였으며, 증류수로는 밀러포어사(Millipore Co.) 제품의 필터(Filter)로 2차로 걸러진 증류수를 사용했다. ITO를 30분간 세척한 후 증류수로 2회 반복하여 초음파 세척을 10분간 진행했다. 증류수 세척이 끝난 후, 이소프로필알콜, 아세톤, 메탄올의 용제로 초음파 세척을 하고 건조시킨 후 플라즈마 세정기로 수송시켰다. 또한, 산소 플라즈마를 이용하여 상기 기판을 5분간 세정한 후 진공 증착기로 기판을 수송시켰다.A glass substrate coated with indium tin oxide (ITO) to a thickness of 1,000 Å was placed in distilled water in which detergent was dissolved and washed with ultrasonic waves. In this case, a product manufactured by Fischer Co. was used as the detergent, and distilled water that was secondarily filtered with a filter manufactured by Millipore Co. was used as the distilled water. After washing ITO for 30 minutes, ultrasonic cleaning was performed for 10 minutes by repeating twice with distilled water. After washing with distilled water, ultrasonic washing was performed with a solvent of isopropyl alcohol, acetone, and methanol, and after drying, it was transported to a plasma cleaner. In addition, after cleaning the substrate for 5 minutes using oxygen plasma, the substrate was transported to a vacuum evaporator.

이렇게 준비된 ITO 투명 전극 위에 정공주입층으로 하기 HI-1 화합물을 1150Å의 두께로 형성하되 하기 A-1 화합물을 1.5% 농도로 p-도핑(p-doping)했다. 상기 정공주입층 위에 하기 HT-1 화합물을 진공 증착하여 막 두께 800Å 의 정공수송층을 형성했다. 이어서, 상기 정공수송층 위에 막 두께 150Å으로 하기 EB-1 화합물을 진공 증착하여 전자저지층을 형성했다. 이어서, 상기 EB-1 증착막 위에 하기 RH-1 화합물과 하기 Dp-7 화합물을 98:2의 중량비로 진공 증착하여 400Å 두께의 적색 발광층을 형성했다. 상기 발광층 위에 막 두께 30Å으로 하기 HB-1 화합물을 진공 증착하여 정공저지층을 형성했다. 이어서, 상기 정공저지층 위에 하기 ET-1 화합물과 하기 LiQ 화합물을 2:1의 중량비로 진공 증착하여 300Å의 두께로 전자 주입 및 수송층을 형성했다. 상기 전자 주입 및 수송층 위에 순차적으로 12Å 두께로 리튬플로라이드(LiF)와 1,000Å 두께로 알루미늄을 증착하여 음극을 형성했다. The following HI-1 compound was formed to a thickness of 1150 Å as a hole injection layer on the prepared ITO transparent electrode, but the following A-1 compound was p-doped at a concentration of 1.5%. The following HT-1 compound was vacuum-deposited on the hole injection layer to form a hole transport layer having a thickness of 800 Å. Then, the following EB-1 compound was vacuum-deposited to a thickness of 150 Å on the hole transport layer to form an electron blocking layer. Then, the following RH-1 compound and the following Dp-7 compound were vacuum-deposited in a weight ratio of 98:2 on the EB-1 deposited layer to form a red light emitting layer having a thickness of 400 Å. A hole blocking layer was formed by vacuum-depositing the following HB-1 compound to a thickness of 30 Å on the light emitting layer. Then, on the hole blocking layer, the following ET-1 compound and the following LiQ compound were vacuum-deposited at a weight ratio of 2:1 to form an electron injection and transport layer to a thickness of 300 Å. A cathode was formed by sequentially depositing lithium fluoride (LiF) to a thickness of 12 Å and aluminum to a thickness of 1,000 Å on the electron injection and transport layer.

Figure 112020011233657-pat00178
Figure 112020011233657-pat00178

Figure 112020011233657-pat00179
Figure 112020011233657-pat00179

Figure 112020011233657-pat00180
Figure 112020011233657-pat00180

상기의 과정에서 유기물의 증착속도는 0.4~0.7Å/sec를 유지하였고, 음극의 리튬플로라이드는 0.3Å/sec, 알루미늄은 2Å/sec의 증착 속도를 유지하였으며, 증착시 진공도는 2×10-7 ~ 5×10-6 torr를 유지하여, 유기 발광 소자를 제작했다.In the above process, the deposition rate of organic material was maintained at 0.4~0.7Å/sec, the deposition rate of lithium fluoride of the negative electrode was maintained at 0.3Å/sec, and the deposition rate of aluminum was maintained at 2Å/sec, and the vacuum degree during deposition was 2×10 - An organic light-emitting device was manufactured by maintaining 7 to 5×10 -6 torr.

실시예 1 내지 실시예 53Examples 1-53

비교예 1의 유기 발광 소자에서 RH-1 대신 하기 표 1에 기재된 화합물을 사용하는 것을 제외하고는, 상기 비교예 1과 동일한 방법으로 유기 발광 소자를 제조했다. An organic light emitting device was manufactured in the same manner as in Comparative Example 1, except that the compound shown in Table 1 was used instead of RH-1 in the organic light emitting device of Comparative Example 1.

비교예 2 내지 비교예 31Comparative Examples 2 to 31

비교예 1의 유기 발광 소자에서 RH-1 대신 하기 표 1에 기재된 화합물을 사용하는 것을 제외하고는, 상기 비교예 1과 동일한 방법으로 유기 발광 소자를 제조했다. An organic light emitting device was manufactured in the same manner as in Comparative Example 1, except that the compound shown in Table 1 was used instead of RH-1 in the organic light emitting device of Comparative Example 1.

상기 실시예 1 내지 실시예 53 및 비교예 1 내지 비교예 31에서 제조한 유기 발광 소자에 전류를 인가하였을 때, 전압, 효율, 수명을 측정(6000 nit 기준)하고 그 결과를 하기 표 1에 나타냈다. 수명 T95는 휘도가 초기 휘도(6000 nit)에서 95%로 감소되는데 소요되는 시간을 의미한다. When a current was applied to the organic light emitting diodes prepared in Examples 1 to 53 and Comparative Examples 1 to 31, voltage, efficiency, and lifetime were measured (based on 6000 nits), and the results are shown in Table 1 below. . The lifetime T95 means the time required for the luminance to decrease from the initial luminance (6000 nit) to 95%.

구분division 물질matter 구동전압(V)Driving voltage (V) 효율(cd/A)Efficiency (cd/A) 수명 T95(hr)Life T95 (hr) 발광색luminous color 비교예 1Comparative Example 1 RH-1RH-1 4.344.34 38.338.3 193193 적색Red 실시예 1Example 1 화합물 1compound 1 3.633.63 43.243.2 247247 적색Red 실시예 2Example 2 화합물 2compound 2 3.623.62 44.544.5 241241 적색Red 실시예 3Example 3 화합물 3compound 3 3.683.68 45.345.3 262262 적색Red 실시예 4Example 4 화합물 4compound 4 3.613.61 42.142.1 238238 적색Red 실시예 5Example 5 화합물 5compound 5 3.703.70 43.243.2 251251 적색Red 실시예 6Example 6 화합물 6compound 6 3.733.73 44.744.7 278278 적색Red 실시예 7Example 7 화합물 7compound 7 3.713.71 44.844.8 284284 적색Red 실시예 8Example 8 화합물 8compound 8 3.753.75 45.345.3 291291 적색Red 실시예 9Example 9 화합물 9compound 9 3.723.72 46.246.2 258258 적색Red 실시예 10Example 10 화합물 10compound 10 3.673.67 46.546.5 264264 적색Red 실시예 11Example 11 화합물 11compound 11 3.743.74 47.347.3 273273 적색Red 실시예 12Example 12 화합물 12compound 12 3.613.61 46.846.8 261261 적색Red 실시예 13Example 13 화합물 13compound 13 3.633.63 47.347.3 271271 적색Red 실시예 14Example 14 화합물 14compound 14 3.603.60 46.746.7 279279 적색Red 실시예 15Example 15 화합물 15compound 15 3.633.63 46.846.8 270270 적색Red 실시예 16Example 16 화합물 16compound 16 3.583.58 47.747.7 278278 적색Red 실시예 17Example 17 화합물 17compound 17 3.613.61 45.345.3 293293 적색Red 실시예 18Example 18 화합물 18compound 18 3.603.60 47.347.3 301301 적색Red 실시예 19Example 19 화합물 19compound 19 3.573.57 46.246.2 317317 적색Red 실시예 20Example 20 화합물 20compound 20 3.533.53 47.147.1 285285 적색Red 실시예 21Example 21 화합물 21compound 21 3.583.58 46.946.9 297297 적색Red 실시예 22Example 22 화합물 22compound 22 3.513.51 46.246.2 313313 적색Red 실시예 23Example 23 화합물 23compound 23 3.543.54 46.846.8 304304 적색Red 실시예 24Example 24 화합물 24compound 24 3.573.57 47.947.9 317317 적색Red 실시예 25Example 25 화합물 25compound 25 3.533.53 45.545.5 333333 적색Red 실시예 26Example 26 화합물 26compound 26 3.513.51 45.445.4 314314 적색Red 실시예 27Example 27 화합물 27compound 27 3.533.53 46.346.3 294294 적색Red 실시예 28Example 28 화합물 28compound 28 3.553.55 46.546.5 317317 적색Red 실시예 29Example 29 화합물 29compound 29 3.543.54 49.649.6 326326 적색Red 실시예 30Example 30 화합물 30compound 30 3.673.67 49.349.3 315315 적색Red 실시예 31Example 31 화합물 31compound 31 3.573.57 47.847.8 334334 적색Red 실시예 32Example 32 화합물 32compound 32 3.593.59 50.250.2 328328 적색Red 실시예 33Example 33 화합물 33compound 33 3.633.63 46.146.1 350350 적색Red 실시예 34Example 34 화합물 34compound 34 3.563.56 49.549.5 316316 적색Red 실시예 35Example 35 화합물 35compound 35 3.453.45 48.248.2 327327 적색Red 실시예 36Example 36 화합물 36compound 36 3.533.53 49.349.3 334334 적색Red 실시예 37Example 37 화합물 37compound 37 3.583.58 48.548.5 308308 적색Red 실시예 38Example 38 화합물 38compound 38 3.563.56 48.748.7 342342 적색Red 실시예 39Example 39 화합물 39compound 39 3.573.57 47.347.3 331331 적색Red 실시예 40Example 40 화합물 40compound 40 3.433.43 48.448.4 353353 적색Red 실시예 41Example 41 화합물 41compound 41 3.603.60 51.551.5 317317 적색Red 실시예 42Example 42 화합물 42compound 42 3.573.57 49.349.3 326326 적색Red 실시예 43Example 43 화합물 43compound 43 3.483.48 50.750.7 334334 적색Red 실시예 44Example 44 화합물 44compound 44 3.493.49 49.849.8 302302 적색Red 실시예 45Example 45 화합물 45compound 45 3.523.52 49.049.0 332332 적색Red 실시예 46Example 46 화합물 46compound 46 3.483.48 51.351.3 317317 적색Red 실시예 47Example 47 화합물 47compound 47 3.453.45 50.450.4 330330 적색Red 실시예 48Example 48 화합물 48compound 48 3.533.53 50.250.2 321321 적색Red 실시예 49Example 49 화합물 49compound 49 3.403.40 51.851.8 314314 적색Red 실시예 50Example 50 화합물 50compound 50 3.483.48 50.350.3 329329 적색Red 실시예 51Example 51 화합물 51compound 51 3.433.43 48.648.6 318318 적색Red 실시예 52Example 52 화합물 52compound 52 3.413.41 48.148.1 315315 적색Red 실시예 53Example 53 화합물 53compound 53 3.473.47 49.049.0 322322 적색Red 비교예 2Comparative Example 2 C-1C-1 4.134.13 37.237.2 131131 적색Red 비교예 3Comparative Example 3 C-2C-2 4.814.81 34.134.1 140140 적색Red 비교예 4Comparative Example 4 C-3C-3 4.304.30 35.135.1 167167 적색Red 비교예 5Comparative Example 5 C-4C-4 4.684.68 33.033.0 7979 적색Red 비교예 6Comparative Example 6 C-5C-5 4.414.41 32.432.4 9797 적색Red 비교예 7Comparative Example 7 C-6C-6 4.774.77 29.729.7 6161 적색Red 비교예 8Comparative Example 8 C-7C-7 4.214.21 34.034.0 103103 적색Red 비교예 9Comparative Example 9 C-8C-8 4.194.19 35.735.7 114114 적색Red 비교예 10Comparative Example 10 C-9C-9 4.714.71 31.331.3 7373 적색Red 비교예 11Comparative Example 11 C-10C-10 4.194.19 35.735.7 114114 적색Red 비교예 12Comparative Example 12 C-11C-11 4.714.71 31.331.3 7373 적색Red 비교예 13Comparative Example 13 C-12C-12 4.714.71 31.331.3 7373 적색Red 비교예 14Comparative Example 14 C-13C-13 4.464.46 34.334.3 108108 적색Red 비교예 15Comparative Example 15 C-14C-14 4.214.21 35.535.5 112112 적색Red 비교예 16Comparative Example 16 C-15C-15 3.953.95 36.136.1 9393 적색Red 비교예 17Comparative Example 17 C-16C-16 4.514.51 32.532.5 9191 적색Red 비교예 18Comparative Example 18 C-17C-17 4.334.33 36.836.8 107107 적색Red 비교예 19Comparative Example 19 C-18C-18 4.014.01 34.734.7 123123 적색Red 비교예 20Comparative Example 20 C-19C-19 3.913.91 36.536.5 152152 적색Red 비교예 21Comparative Example 21 C-20C-20 3.853.85 39.139.1 107107 적색Red 비교예 22Comparative Example 22 C-21C-21 4.034.03 37.537.5 152152 적색Red 비교예 23Comparative Example 23 C-22C-22 5.415.41 10.310.3 3131 적색Red 비교예 24Comparative Example 24 C-23C-23 5.515.51 8.78.7 2323 적색Red 비교예 25Comparative Example 25 C-24C-24 4.724.72 32.432.4 9292 적색Red 비교예 26Comparative Example 26 C-25C-25 4.374.37 36.836.8 176176 적색Red 비교예 27Comparative Example 27 C-26C-26 4.184.18 38.538.5 193193 적색Red 비교예 28Comparative Example 28 C-27C-27 3.813.81 39.139.1 227227 적색Red 비교예 29Comparative Example 29 C-28C-28 3.843.84 38.438.4 243243 적색Red 비교예 30Comparative Example 30 C-29C-29 4.184.18 38.238.2 183183 적색Red 비교예 31Comparative Example 31 C-30C-30 3.943.94 40.540.5 205205 적색Red

실시예 1 내지 53 및 비교예 1 내지 31에 의해 제작된 유기 발광 소자에 전류를 인가하였을 때, 상기 표 1의 결과를 얻었다. 상기 비교예 1의 적색 유기 발광 소자는 종래 널리 사용되고 있는 물질을 사용하였으며, 전자저지층으로 화합물 [EB-1], 적색 발광층으로 RH-1/Dp-7을 사용하는 구조이다. 비교예 2 내지 31은 RH-1 대신 C-1 내지 C-30을 사용하여 유기 발광 소자를 제조했다. 상기 표 1의 결과를 보면 본 발명의 화합물이 적색 발광층의 호스트로 사용했을 때 비교예 물질에 비해서 구동전압이 크게는 30% 가까이 낮아졌으며, 효율 측면에서는 25% 이상 상승을 한 것으로 보아 호스트에서 적색 도판트로의 에너지 전달이 잘 이뤄진다는 것을 알 수 있었다. 또한 높은 효율을 유지하면서도 수명 특성을 2배 이상 크게 개선시킬 수 있는 것을 알 수 있었다. 이것은 결국 비교예 화합물 보다 본 발명의 화합물이 전자와 정공에 대한 안정도가 높기 때문이라 판단할 수 있다.When a current was applied to the organic light emitting diodes fabricated in Examples 1 to 53 and Comparative Examples 1 to 31, the results shown in Table 1 were obtained. The red organic light emitting device of Comparative Example 1 used a conventionally widely used material, and had a structure using compound [EB-1] as an electron blocking layer and RH-1/Dp-7 as a red light emitting layer. In Comparative Examples 2 to 31, organic light emitting devices were manufactured using C-1 to C-30 instead of RH-1. Looking at the results of Table 1 above, when the compound of the present invention was used as a host of the red light emitting layer, the driving voltage was largely lowered by nearly 30% compared to the comparative example material, and in terms of efficiency, it was found that the red color in the host was increased by 25% or more. It was found that the energy transfer to the dopant was well performed. In addition, it was found that the lifespan characteristics could be greatly improved more than twice while maintaining high efficiency. It can be determined that this is because the compound of the present invention has higher stability to electrons and holes than the compound of Comparative Example.

실시예 54 내지 153Examples 54 to 153

비교예 1의 유기 발광 소자에서 RH-1 대신 하기 표 2에 기재된 제1 호스트와 제2 호스트를 1:1 중량비율로 진공 공증착을 진행했으며 이것을 제외하고는 상기 비교예 1과 동일한 방법으로 유기 발광 소자를 제조했다. In the organic light-emitting device of Comparative Example 1, vacuum co-deposition was performed on the first host and the second host shown in Table 2 below instead of RH-1 in a 1:1 weight ratio, and except for this, organic A light emitting device was manufactured.

구분division 제1호스트1st host 제2호스트2nd host 구동전압(V)Driving voltage (V) 효율(cd/A)Efficiency (cd/A) 수명 T95(hr)Life T95 (hr) 발광색luminous color 실시예 54Example 54 화합물1compound 1 Z-1Z-1 3.673.67 47.847.8 387387 적색Red 실시예 55Example 55 화합물1compound 1 Z-4Z-4 3.653.65 47.147.1 393393 적색Red 실시예 56Example 56 화합물1compound 1 Z-10Z-10 3.683.68 47.847.8 395395 적색Red 실시예 57Example 57 화합물1compound 1 Z-13Z-13 3.713.71 46.746.7 404404 적색Red 실시예 58Example 58 화합물1compound 1 Z-21Z-21 3.753.75 46.946.9 395395 적색Red 실시예 59Example 59 화합물1compound 1 Z-25Z-25 3.693.69 47.047.0 407407 적색Red 실시예 60Example 60 화합물1compound 1 Z-31Z-31 3.743.74 47.147.1 412412 적색Red 실시예 61Example 61 화합물1compound 1 Z-33Z-33 3.703.70 46.846.8 385385 적색Red 실시예 62Example 62 화합물7compound 7 Z-1Z-1 3.783.78 45.545.5 432432 적색Red 실시예 63Example 63 화합물7compound 7 Z-4Z-4 3.753.75 47.147.1 421421 적색Red 실시예 64Example 64 화합물7compound 7 Z-10Z-10 3.833.83 46.346.3 397397 적색Red 실시예 65Example 65 화합물7compound 7 Z-13Z-13 3.793.79 46.746.7 388388 적색Red 실시예 66Example 66 화합물7compound 7 Z-21Z-21 3.803.80 46.046.0 415415 적색Red 실시예 67Example 67 화합물7compound 7 Z-25Z-25 3.843.84 45.345.3 395395 적색Red 실시예 68Example 68 화합물7compound 7 Z-31Z-31 3.853.85 45.145.1 404404 적색Red 실시예 69Example 69 화합물7compound 7 Z-33Z-33 3.793.79 45.745.7 411411 적색Red 실시예 70Example 70 화합물12compound 12 Z-1Z-1 3.633.63 47.847.8 433433 적색Red 실시예 71Example 71 화합물12compound 12 Z-4Z-4 3.613.61 47.047.0 441441 적색Red 실시예 72Example 72 화합물12compound 12 Z-10Z-10 3.623.62 47.347.3 420420 적색Red 실시예 73Example 73 화합물12compound 12 Z-13Z-13 3.573.57 47.047.0 435435 적색Red 실시예 74Example 74 화합물12compound 12 Z-21Z-21 3.693.69 48.148.1 442442 적색Red 실시예 75Example 75 화합물12compound 12 Z-25Z-25 3.643.64 47.247.2 431431 적색Red 실시예 76Example 76 화합물12compound 12 Z-31Z-31 3.673.67 47.547.5 437437 적색Red 실시예 77Example 77 화합물12compound 12 Z-33Z-33 3.653.65 47.947.9 430430 적색Red 실시예 78Example 78 화합물17compound 17 Z-2Z-2 3.633.63 45.945.9 403403 적색Red 실시예 79Example 79 화합물17compound 17 Z-7Z-7 3.603.60 46.346.3 389389 적색Red 실시예 80Example 80 화합물17compound 17 Z-11Z-11 3.583.58 46.246.2 421421 적색Red 실시예 81Example 81 화합물17compound 17 Z-15Z-15 3.643.64 46.846.8 407407 적색Red 실시예 82Example 82 화합물17compound 17 Z-18Z-18 3.693.69 47.447.4 413413 적색Red 실시예 83Example 83 화합물17compound 17 Z-19Z-19 3.633.63 48.148.1 432432 적색Red 실시예 84Example 84 화합물17compound 17 Z-22Z-22 3.703.70 46.546.5 404404 적색Red 실시예 85Example 85 화합물17compound 17 Z-23Z-23 3.623.62 47.847.8 389389 적색Red 실시예 86Example 86 화합물17compound 17 Z-27Z-27 3.773.77 46.946.9 407407 적색Red 실시예 87Example 87 화합물17compound 17 Z-34Z-34 3.643.64 48.348.3 431431 적색Red 실시예 88Example 88 화합물23compound 23 Z-2Z-2 3.553.55 47.247.2 421421 적색Red 실시예 89Example 89 화합물23compound 23 Z-7Z-7 3.613.61 47.547.5 422422 적색Red 실시예 90Example 90 화합물23compound 23 Z-11Z-11 3.583.58 46.946.9 431431 적색Red 실시예 91Example 91 화합물23compound 23 Z-15Z-15 3.573.57 48.048.0 427427 적색Red 실시예 92Example 92 화합물23compound 23 Z-18Z-18 3.503.50 47.347.3 438438 적색Red 실시예 93Example 93 화합물23compound 23 Z-19Z-19 3.593.59 47.147.1 447447 적색Red 실시예 94Example 94 화합물23compound 23 Z-22Z-22 3.583.58 48.548.5 450450 적색Red 실시예 95Example 95 화합물23compound 23 Z-23Z-23 3.603.60 47.047.0 435435 적색Red 실시예 96Example 96 화합물23compound 23 Z-27Z-27 3.613.61 47.247.2 431431 적색Red 실시예 97Example 97 화합물23compound 23 Z-34Z-34 3.573.57 47.947.9 457457 적색Red 실시예 98Example 98 화합물26compound 26 Z-2Z-2 3.543.54 48.348.3 422422 적색Red 실시예 99Example 99 화합물26compound 26 Z-7Z-7 3.503.50 47.647.6 441441 적색Red 실시예 100Example 100 화합물26compound 26 Z-11Z-11 3.553.55 48.548.5 433433 적색Red 실시예 101Example 101 화합물26compound 26 Z-15Z-15 3.583.58 48.648.6 445445 적색Red 실시예 102Example 102 화합물26compound 26 Z-18Z-18 3.563.56 48.748.7 432432 적색Red 실시예 103Example 103 화합물26compound 26 Z-19Z-19 3.603.60 47.947.9 427427 적색Red 실시예 104Example 104 화합물26compound 26 Z-22Z-22 3.543.54 48.048.0 431431 적색Red 실시예 105Example 105 화합물26compound 26 Z-23Z-23 3.593.59 48.348.3 429429 적색Red 실시예 106Example 106 화합물26compound 26 Z-27Z-27 3.633.63 47.547.5 436436 적색Red 실시예 107Example 107 화합물26compound 26 Z-34Z-34 3.583.58 48.848.8 445445 적색Red 실시예 108Example 108 화합물31compound 31 Z-2Z-2 3.603.60 48.948.9 441441 적색Red 실시예 109Example 109 화합물31compound 31 Z-7Z-7 3.623.62 50.350.3 450450 적색Red 실시예 110Example 110 화합물31compound 31 Z-11Z-11 3.583.58 51.251.2 438438 적색Red 실시예 111Example 111 화합물31compound 31 Z-15Z-15 3.593.59 50.650.6 461461 적색Red 실시예 112Example 112 화합물31compound 31 Z-18Z-18 3.633.63 51.351.3 457457 적색Red 실시예 113Example 113 화합물31compound 31 Z-19Z-19 3.623.62 50.850.8 421421 적색Red 실시예 114Example 114 화합물31compound 31 Z-22Z-22 3.613.61 49.949.9 417417 적색Red 실시예 115Example 115 화합물31compound 31 Z-23Z-23 3.653.65 49.449.4 429429 적색Red 실시예 116Example 116 화합물31compound 31 Z-27Z-27 3.513.51 50.350.3 415415 적색Red 실시예 117Example 117 화합물31compound 31 Z-34Z-34 3.583.58 51.751.7 433433 적색Red 실시예 118Example 118 화합물 33compound 33 Z-3Z-3 3.653.65 47.547.5 441441 적색Red 실시예 119Example 119 화합물 33compound 33 Z-8Z-8 3.673.67 48.248.2 434434 적색Red 실시예 120Example 120 화합물 33compound 33 Z-12Z-12 3.613.61 49.349.3 448448 적색Red 실시예 121Example 121 화합물 33compound 33 Z-16Z-16 3.693.69 47.747.7 421421 적색Red 실시예 122Example 122 화합물 33compound 33 Z-20Z-20 3.603.60 48.548.5 405405 적색Red 실시예 123Example 123 화합물 33compound 33 Z-29Z-29 3.713.71 49.249.2 417417 적색Red 실시예 124Example 124 화합물 33compound 33 Z-30Z-30 3.633.63 48.648.6 423423 적색Red 실시예 125Example 125 화합물 33compound 33 Z-32Z-32 3.653.65 49.749.7 436436 적색Red 실시예 126Example 126 화합물37compound 37 Z-3Z-3 3.593.59 49.349.3 452452 적색Red 실시예 127Example 127 화합물37compound 37 Z-8Z-8 3.613.61 50.350.3 437437 적색Red 실시예 128Example 128 화합물37compound 37 Z-12Z-12 3.583.58 50.750.7 429429 적색Red 실시예 129Example 129 화합물37compound 37 Z-16Z-16 3.523.52 49.549.5 447447 적색Red 실시예 130Example 130 화합물37compound 37 Z-20Z-20 3.473.47 50.450.4 418418 적색Red 실시예 131Example 131 화합물37compound 37 Z-29Z-29 3.633.63 51.451.4 412412 적색Red 실시예 132Example 132 화합물37compound 37 Z-30Z-30 3.673.67 51.251.2 437437 적색Red 실시예 133Example 133 화합물37compound 37 Z-32Z-32 3.613.61 52.752.7 440440 적색Red 실시예 134Example 134 화합물46compound 46 Z-5Z-5 3.493.49 52.752.7 427427 적색Red 실시예 135Example 135 화합물46compound 46 Z-6Z-6 3.483.48 51.851.8 441441 적색Red 실시예 136Example 136 화합물46compound 46 Z-9Z-9 3.403.40 54.554.5 419419 적색Red 실시예 137Example 137 화합물46compound 46 Z-14Z-14 3.523.52 53.753.7 405405 적색Red 실시예 138Example 138 화합물46compound 46 Z-17Z-17 3.573.57 53.153.1 413413 적색Red 실시예 139Example 139 화합물46compound 46 Z-24Z-24 3.553.55 52.552.5 425425 적색Red 실시예 140Example 140 화합물46compound 46 Z-26Z-26 3.583.58 52.952.9 414414 적색Red 실시예 141Example 141 화합물46compound 46 Z-28Z-28 3.493.49 53.253.2 431431 적색Red 실시예 142Example 142 화합물46compound 46 Z-35Z-35 3.533.53 51.951.9 441441 적색Red 실시예 143Example 143 화합물46compound 46 Z-36Z-36 3.563.56 52.752.7 408408 적색Red 실시예 144Example 144 화합물51compound 51 Z-5Z-5 3.453.45 51.351.3 437437 적색Red 실시예 145Example 145 화합물51compound 51 Z-6Z-6 3.463.46 50.850.8 421421 적색Red 실시예 146Example 146 화합물51compound 51 Z-9Z-9 3.403.40 50.750.7 408408 적색Red 실시예 147Example 147 화합물51compound 51 Z-14Z-14 3.453.45 52.452.4 397397 적색Red 실시예 148Example 148 화합물51compound 51 Z-17Z-17 3.493.49 50.550.5 418418 적색Red 실시예 149Example 149 화합물51compound 51 Z-24Z-24 3.383.38 52.152.1 408408 적색Red 실시예 150Example 150 화합물51compound 51 Z-26Z-26 3.433.43 53.753.7 397397 적색Red 실시예 151Example 151 화합물51compound 51 Z-28Z-28 3.473.47 50.450.4 387387 적색Red 실시예 152Example 152 화합물51compound 51 Z-35Z-35 3.513.51 52.852.8 399399 적색Red 실시예 153Example 153 화합물51compound 51 Z-36Z-36 3.493.49 51.951.9 425425 적색Red

표 2의 결과는 두가지 종류의 호스트를 공증착 한 결과를 나타냈는데 제1 호스트와 제2 호스트를 1:1 중량비율로 사용했을 때 제1 호스트만 사용한 결과 보다 더 우수한 결과를 나타냈다. 제2 호스트를 사용함에 따라 정공의 양이 많아지면서 적색 발광층 내에 전자와 정공이 더 안정적인 균형을 유지하게 되고 효율과 수명이 많이 상승하는 것을 확인할 수 있었다. 결론적으로 본 발명의 화합물을 적색 발광층의 호스트로 사용하였을 때 유기 발광 소자의 구동전압, 발광 효율 및 수명 특성을 개선할 수 있다는 것을 확인할 수 있다. The results in Table 2 show the results of co-deposition of two types of hosts. When the first host and the second host were used in a 1:1 weight ratio, better results were obtained than the result of using only the first host. As the amount of holes increases as the second host is used, electrons and holes in the red light emitting layer maintain a more stable balance, and it can be seen that efficiency and lifespan are greatly increased. In conclusion, it can be confirmed that when the compound of the present invention is used as a host of the red light emitting layer, the driving voltage, luminous efficiency, and lifespan characteristics of the organic light emitting diode can be improved.

1: 기판
2: 제1 전극
3: 발광층
4: 제2 전극
5: 정공주입층
6: 정공수송층
7: 전자저지층
8: 정공저지층
9: 전자 주입 및 수송층
1: Substrate
2: first electrode
3: light emitting layer
4: second electrode
5: hole injection layer
6: hole transport layer
7: Electronic blocking layer
8: hole blocking layer
9: Electron injection and transport layer

Claims (14)

하기 화학식 1로 표시되는 화합물:
[화학식 1]
Figure 112021098811611-pat00181

상기 화학식 1에 있어서,
R1은 수소; 또는 중수소이고,
R2 내지 R4는 각각 독립적으로, 수소; 또는 중수소이거나, 또는 인접한 치환기는 서로 결합하여 치환 또는 비치환된 벤젠고리를 형성하며,
R5 및 R6은 각각 독립적으로, 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로고리기이며,
a는 0 내지 6의 정수이고,
b 및 d는 각각 독립적으로, 0 내지 4의 정수이며,
c는 0 내지 2의 정수이고,
a 내지 d가 각각 독립적으로, 2 이상인 경우에는 괄호 내의 치환기는 서로 같거나 상이하다.
A compound represented by the following formula (1):
[Formula 1]
Figure 112021098811611-pat00181

In Formula 1,
R1 is hydrogen; or deuterium,
R2 to R4 are each independently hydrogen; or deuterium, or adjacent substituents combine with each other to form a substituted or unsubstituted benzene ring,
R5 and R6 are each independently a substituted or unsubstituted aryl group; Or a substituted or unsubstituted heterocyclic group,
a is an integer from 0 to 6,
b and d are each independently an integer of 0 to 4,
c is an integer from 0 to 2,
a to d are each independently, when two or more, the substituents in parentheses are the same as or different from each other.
청구항 1에 있어서, 상기 화학식 1로 표시되는 화합물은 하기 화학식 2 내지 4 중 어느 하나로 선택되는 것인 화합물:
[화학식 2]
Figure 112020011233657-pat00182

[화학식 3]
Figure 112020011233657-pat00183

[화학식 4]
Figure 112020011233657-pat00184

상기 화학식 2 내지 4에서, R1 내지 R6 및 a 내지 d는 화학식 1에서 정의된 바와 같다.
The method according to claim 1, wherein the compound represented by Formula 1 is a compound selected from any one of the following Formulas 2 to 4:
[Formula 2]
Figure 112020011233657-pat00182

[Formula 3]
Figure 112020011233657-pat00183

[Formula 4]
Figure 112020011233657-pat00184

In Formulas 2 to 4, R1 to R6 and a to d are as defined in Formula 1.
청구항 1에 있어서, 상기 화학식 1로 표시되는 화합물은 하기 화학식 2-1 내지 2-8 중 어느 하나로 선택되는 것인 화합물:
[화학식 2-1]
Figure 112020011233657-pat00185

[화학식 2-2]
Figure 112020011233657-pat00186

[화학식 2-3]
Figure 112020011233657-pat00187

[화학식 2-4]
Figure 112020011233657-pat00188

[화학식 2-5]
Figure 112020011233657-pat00189

[화학식 2-6]
Figure 112020011233657-pat00190

[화학식 2-7]
Figure 112020011233657-pat00191

[화학식 2-8]
Figure 112020011233657-pat00192

상기 화학식 2-1 내지 2-8에서, R4 내지 R6 및 d는 화학식 1에서 정의된 바와 같고,
R7은 수소; 또는 중수소이며,
e1 및 e2는 각각 0 또는 1이고, e1과 e2의 합은 1 내지 2이며,
e는 0 내지 10의 정수이고,
e가 2 이상인 경우에는 복수의 R7는 서로 같거나 상이하다.
The compound according to claim 1, wherein the compound represented by Formula 1 is selected from any one of the following Formulas 2-1 to 2-8:
[Formula 2-1]
Figure 112020011233657-pat00185

[Formula 2-2]
Figure 112020011233657-pat00186

[Formula 2-3]
Figure 112020011233657-pat00187

[Formula 2-4]
Figure 112020011233657-pat00188

[Formula 2-5]
Figure 112020011233657-pat00189

[Formula 2-6]
Figure 112020011233657-pat00190

[Formula 2-7]
Figure 112020011233657-pat00191

[Formula 2-8]
Figure 112020011233657-pat00192

In Formulas 2-1 to 2-8, R4 to R6 and d are as defined in Formula 1,
R7 is hydrogen; or deuterium,
e1 and e2 are each 0 or 1, the sum of e1 and e2 is 1 to 2,
e is an integer from 0 to 10,
When e is 2 or more, a plurality of R7s are the same as or different from each other.
청구항 1에 있어서, 상기 화학식 1로 표시되는 화합물은 하기 화학식 3-1 내지 3-8 중 어느 하나로 선택되는 것인 화합물:
[화학식 3-1]
Figure 112020011233657-pat00193

[화학식 3-2]
Figure 112020011233657-pat00194

[화학식 3-3]
Figure 112020011233657-pat00195

[화학식 3-4]
Figure 112020011233657-pat00196

[화학식 3-5]
Figure 112020011233657-pat00197

[화학식 3-6]
Figure 112020011233657-pat00198

[화학식 3-7]
Figure 112020011233657-pat00199

[화학식 3-8]
Figure 112020011233657-pat00200

상기 화학식 3-1 내지 3-8에서, R4 내지 R6 및 d는 화학식 1에서 정의된 바와 같고,
R8은 수소; 또는 중수소이며,
f는 0 내지 8의 정수이고,
f가 2 이상인 경우에는 복수의 R8은 서로 같거나 상이하다.
The method according to claim 1, wherein the compound represented by Formula 1 is a compound selected from any one of Formulas 3-1 to 3-8:
[Formula 3-1]
Figure 112020011233657-pat00193

[Formula 3-2]
Figure 112020011233657-pat00194

[Formula 3-3]
Figure 112020011233657-pat00195

[Formula 3-4]
Figure 112020011233657-pat00196

[Formula 3-5]
Figure 112020011233657-pat00197

[Formula 3-6]
Figure 112020011233657-pat00198

[Formula 3-7]
Figure 112020011233657-pat00199

[Formula 3-8]
Figure 112020011233657-pat00200

In Formulas 3-1 to 3-8, R4 to R6 and d are as defined in Formula 1,
R8 is hydrogen; or deuterium,
f is an integer from 0 to 8;
When f is 2 or more, a plurality of R8s are the same as or different from each other.
청구항 1에 있어서, 상기 화학식 1로 표시되는 화합물은 하기 화학식 4-1 내지 4-8 중 어느 하나로 선택되는 것인 화합물:
[화학식 4-1]
Figure 112020011233657-pat00201

[화학식 4-2]
Figure 112020011233657-pat00202

[화학식 4-3]
Figure 112020011233657-pat00203

[화학식 4-4]
Figure 112020011233657-pat00204

[화학식 4-5]
Figure 112020011233657-pat00205

[화학식 4-6]
Figure 112020011233657-pat00206

[화학식 4-7]
Figure 112020011233657-pat00207

[화학식 4-8]
Figure 112020011233657-pat00208

상기 화학식 4-1 내지 4-8에서, R4 내지 R6 및 d는 화학식 1에서 정의된 바와 같고,
R7은 수소; 또는 중수소이며,
e1 및 e2는 각각 0 또는 1이고, e1과 e2의 합은 1 내지 2이며,
e는 0 내지 10의 정수이고,
e가 2 이상인 경우에는 복수의 R7는 서로 같거나 상이하다.
The method according to claim 1, wherein the compound represented by Formula 1 is a compound selected from any one of the following Formulas 4-1 to 4-8:
[Formula 4-1]
Figure 112020011233657-pat00201

[Formula 4-2]
Figure 112020011233657-pat00202

[Formula 4-3]
Figure 112020011233657-pat00203

[Formula 4-4]
Figure 112020011233657-pat00204

[Formula 4-5]
Figure 112020011233657-pat00205

[Formula 4-6]
Figure 112020011233657-pat00206

[Formula 4-7]
Figure 112020011233657-pat00207

[Formula 4-8]
Figure 112020011233657-pat00208

In Formulas 4-1 to 4-8, R4 to R6 and d are as defined in Formula 1,
R7 is hydrogen; or deuterium,
e1 and e2 are each 0 or 1, the sum of e1 and e2 is 1 to 2,
e is an integer from 0 to 10,
When e is 2 or more, a plurality of R7s are the same as or different from each other.
청구항 1에 있어서,
상기 화학식 1로 표시되는 화합물은 하기 화합물 중에서 선택되는 것인 화합물:
Figure 112020011233657-pat00209

Figure 112020011233657-pat00210

Figure 112020011233657-pat00211

Figure 112020011233657-pat00212

Figure 112020011233657-pat00213

Figure 112020011233657-pat00214

Figure 112020011233657-pat00215

Figure 112020011233657-pat00216

Figure 112020011233657-pat00217

Figure 112020011233657-pat00218

Figure 112020011233657-pat00219

Figure 112020011233657-pat00220

Figure 112020011233657-pat00221

Figure 112020011233657-pat00222

Figure 112020011233657-pat00223

Figure 112020011233657-pat00224

Figure 112020011233657-pat00225

Figure 112020011233657-pat00226

Figure 112020011233657-pat00227

Figure 112020011233657-pat00228

Figure 112020011233657-pat00229

Figure 112020011233657-pat00230

Figure 112020011233657-pat00231

Figure 112020011233657-pat00232

Figure 112020011233657-pat00233

Figure 112020011233657-pat00234

Figure 112020011233657-pat00235

Figure 112020011233657-pat00236

Figure 112020011233657-pat00237

Figure 112020011233657-pat00238

Figure 112020011233657-pat00239

Figure 112020011233657-pat00240

Figure 112020011233657-pat00241

Figure 112020011233657-pat00242

Figure 112020011233657-pat00243

Figure 112020011233657-pat00244

Figure 112020011233657-pat00245

Figure 112020011233657-pat00246

Figure 112020011233657-pat00247

Figure 112020011233657-pat00248

Figure 112020011233657-pat00249

Figure 112020011233657-pat00250

Figure 112020011233657-pat00251

Figure 112020011233657-pat00252

Figure 112020011233657-pat00253

Figure 112020011233657-pat00254

Figure 112020011233657-pat00255

Figure 112020011233657-pat00256

Figure 112020011233657-pat00257

Figure 112020011233657-pat00258

Figure 112020011233657-pat00259

Figure 112020011233657-pat00260

Figure 112020011233657-pat00261

Figure 112020011233657-pat00262
.
The method according to claim 1,
The compound represented by Formula 1 is a compound selected from the following compounds:
Figure 112020011233657-pat00209

Figure 112020011233657-pat00210

Figure 112020011233657-pat00211

Figure 112020011233657-pat00212

Figure 112020011233657-pat00213

Figure 112020011233657-pat00214

Figure 112020011233657-pat00215

Figure 112020011233657-pat00216

Figure 112020011233657-pat00217

Figure 112020011233657-pat00218

Figure 112020011233657-pat00219

Figure 112020011233657-pat00220

Figure 112020011233657-pat00221

Figure 112020011233657-pat00222

Figure 112020011233657-pat00223

Figure 112020011233657-pat00224

Figure 112020011233657-pat00225

Figure 112020011233657-pat00226

Figure 112020011233657-pat00227

Figure 112020011233657-pat00228

Figure 112020011233657-pat00229

Figure 112020011233657-pat00230

Figure 112020011233657-pat00231

Figure 112020011233657-pat00232

Figure 112020011233657-pat00233

Figure 112020011233657-pat00234

Figure 112020011233657-pat00235

Figure 112020011233657-pat00236

Figure 112020011233657-pat00237

Figure 112020011233657-pat00238

Figure 112020011233657-pat00239

Figure 112020011233657-pat00240

Figure 112020011233657-pat00241

Figure 112020011233657-pat00242

Figure 112020011233657-pat00243

Figure 112020011233657-pat00244

Figure 112020011233657-pat00245

Figure 112020011233657-pat00246

Figure 112020011233657-pat00247

Figure 112020011233657-pat00248

Figure 112020011233657-pat00249

Figure 112020011233657-pat00250

Figure 112020011233657-pat00251

Figure 112020011233657-pat00252

Figure 112020011233657-pat00253

Figure 112020011233657-pat00254

Figure 112020011233657-pat00255

Figure 112020011233657-pat00256

Figure 112020011233657-pat00257

Figure 112020011233657-pat00258

Figure 112020011233657-pat00259

Figure 112020011233657-pat00260

Figure 112020011233657-pat00261

Figure 112020011233657-pat00262
.
제1 전극; 상기 제1 전극과 대향하여 구비된 제2 전극; 및 상기 제1 전극과 상기 제2 전극 사이에 구비된 1층 이상의 유기물층을 포함하고,
상기 유기물층 중 1층 이상은 청구항 1 내지 6 중 어느 하나의 항에 따른 화합물을 포함하는 것을 특징으로 하는 유기 발광 소자.
a first electrode; a second electrode provided to face the first electrode; and one or more organic material layers provided between the first electrode and the second electrode,
At least one of the organic material layers is an organic light-emitting device comprising the compound according to any one of claims 1 to 6.
청구항 7에 있어서,
상기 유기물층은 발광층을 포함하고,
상기 발광층은 상기 화학식 1의 화합물을 포함하는 것인 유기 발광 소자.
8. The method of claim 7,
The organic material layer includes a light emitting layer,
The light emitting layer is an organic light emitting device comprising the compound of Formula 1.
청구항 7에 있어서,
상기 유기물층은 발광층을 포함하고,
상기 발광층은 상기 화학식 1의 화합물을 호스트로서 포함하는 것인 유기 발광 소자.
8. The method of claim 7,
The organic material layer includes a light emitting layer,
The light emitting layer is an organic light emitting device comprising the compound of Formula 1 as a host.
청구항 7에 있어서,
상기 유기물층은 정공주입층 또는 정공수송층을 포함하고,
상기 정공주입층 또는 정공수송층은 상기 화학식 1의 화합물을 포함하는 것인 유기 발광 소자.
8. The method of claim 7,
The organic layer includes a hole injection layer or a hole transport layer,
The hole injection layer or the hole transport layer is an organic light emitting device comprising the compound of Formula 1.
청구항 7에 있어서,
상기 유기물층은 전자수송층 또는 전자주입층을 포함하고,
상기 전자수송층 또는 전자주입층은 상기 화학식 1의 화합물을 포함하는 것인 유기 발광 소자.
8. The method of claim 7,
The organic layer includes an electron transport layer or an electron injection layer,
The electron transport layer or the electron injection layer is an organic light emitting device comprising the compound of Formula 1.
청구항 7에 있어서,
상기 유기 발광 소자는 정공주입층, 정공수송층, 전자수송층, 전자주입층, 전자저지층 및 정공저지층으로 이루어진 군에서 선택되는 1층 또는 2층 이상을 더 포함하는 것인 유기 발광 소자.
8. The method of claim 7,
The organic light emitting device further comprises one or more layers selected from the group consisting of a hole injection layer, a hole transport layer, an electron transport layer, an electron injection layer, an electron blocking layer and a hole blocking layer.
청구항 7에 있어서,
상기 유기물층은 발광층을 포함하고,
상기 발광층은 상기 화학식 1의 화합물을 제1 호스트로서 포함하고, 하기 화학식 H로 표시되는 제2 호스트를 더 포함하는 것인 유기 발광 소자:
[화학식 H]
Figure 112020011233657-pat00263

상기 화학식 H에서,
A는 치환 또는 비치환된 나프탈렌 고리이고,
Ar1은 치환 또는 비치환된 탄소수 6 내지 60의 아릴기이며,
L1 내지 L3은 각각 독립적으로, 단일결합; 또는 치환 또는 비치환된 탄소수 6 내지 60의 아릴렌기이고,
Ar2 및 Ar3는 각각 독립적으로, 치환 또는 비치환된 탄소수 6 내지 60의 아릴기; 또는 치환 또는 비치환된 N, O 및 S 중 1개 이상의 헤테로원자를 포함하는 탄소수 2 내지 60의 헤테로아릴기이며,
p는 0 내지 9인 정수이다.
8. The method of claim 7,
The organic material layer includes a light emitting layer,
The light emitting layer includes the compound of Formula 1 as a first host, and an organic light emitting device further comprising a second host represented by the following Formula H:
[Formula H]
Figure 112020011233657-pat00263

In the above formula (H),
A is a substituted or unsubstituted naphthalene ring,
Ar1 is a substituted or unsubstituted aryl group having 6 to 60 carbon atoms,
L1 to L3 are each independently, a single bond; Or a substituted or unsubstituted arylene group having 6 to 60 carbon atoms,
Ar2 and Ar3 are each independently, a substituted or unsubstituted C6-C60 aryl group; Or a C 2 to C 60 heteroaryl group comprising at least one heteroatom among substituted or unsubstituted N, O and S,
p is an integer from 0 to 9;
청구항 13에 있어서,
상기 화학식 H로 표시되는 제2 호스트는 하기 구조 중 어느 하나로 표시되는 것인 유기 발광 소자:
Figure 112020011233657-pat00264

Figure 112020011233657-pat00265

Figure 112020011233657-pat00266

Figure 112020011233657-pat00267

Figure 112020011233657-pat00268

Figure 112020011233657-pat00269

Figure 112020011233657-pat00270

Figure 112020011233657-pat00271

Figure 112020011233657-pat00272

Figure 112020011233657-pat00273

Figure 112020011233657-pat00274

Figure 112020011233657-pat00275

Figure 112020011233657-pat00276

Figure 112020011233657-pat00277

Figure 112020011233657-pat00278

Figure 112020011233657-pat00279
.
Figure 112020011233657-pat00280
.
14. The method of claim 13,
The second host represented by the formula (H) is an organic light emitting device represented by any one of the following structures:
Figure 112020011233657-pat00264

Figure 112020011233657-pat00265

Figure 112020011233657-pat00266

Figure 112020011233657-pat00267

Figure 112020011233657-pat00268

Figure 112020011233657-pat00269

Figure 112020011233657-pat00270

Figure 112020011233657-pat00271

Figure 112020011233657-pat00272

Figure 112020011233657-pat00273

Figure 112020011233657-pat00274

Figure 112020011233657-pat00275

Figure 112020011233657-pat00276

Figure 112020011233657-pat00277

Figure 112020011233657-pat00278

Figure 112020011233657-pat00279
.
Figure 112020011233657-pat00280
.
KR1020200012735A 2019-02-01 2020-02-03 Compound and organic light emitting device comprising the same KR102353156B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20190013534 2019-02-01
KR1020190013534 2019-02-01

Publications (2)

Publication Number Publication Date
KR20200096174A KR20200096174A (en) 2020-08-11
KR102353156B1 true KR102353156B1 (en) 2022-01-19

Family

ID=71840080

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200012735A KR102353156B1 (en) 2019-02-01 2020-02-03 Compound and organic light emitting device comprising the same

Country Status (3)

Country Link
KR (1) KR102353156B1 (en)
CN (1) CN113195480A (en)
WO (1) WO2020159334A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112430225B (en) * 2020-10-30 2022-05-17 陕西莱特光电材料股份有限公司 Nitrogen-containing compound, electronic component, and electronic device
CN113999161A (en) * 2021-11-12 2022-02-01 上海八亿时空先进材料有限公司 Indole compound and application thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016149473A (en) 2015-02-13 2016-08-18 コニカミノルタ株式会社 Aromatic heterocyclic derivative, organic electroluminescent element using the same, illumination device, and display device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101771531B1 (en) 2010-03-25 2017-08-28 에스에프씨 주식회사 Spiro compound and organic electroluminescent devices comprising the same
KR20130055216A (en) * 2011-11-18 2013-05-28 롬엔드하스전자재료코리아유한회사 Novel organic electroluminescent compounds and organic electroluminescent device using the same
KR101991428B1 (en) * 2015-11-17 2019-06-20 주식회사 엘지화학 Heterocyclic compound and organic electronic device using the same
KR101913926B1 (en) * 2016-02-11 2018-10-31 주식회사 엘지화학 Heterocyclic compound and organic light emitting device using the same
KR102116161B1 (en) * 2016-02-29 2020-05-27 주식회사 엘지화학 Nitrogen-containing compound and organic electronic device using the same
KR20170111387A (en) * 2016-03-28 2017-10-12 에스에프씨 주식회사 Organic light-emitting compounds and Organic light-emitting device comprising the same
KR101961334B1 (en) * 2016-10-25 2019-03-22 주식회사 엘지화학 Novel hetero-cyclic compound and organic light emitting device comprising the same
KR101915716B1 (en) * 2016-12-20 2018-11-08 희성소재 (주) Organic light emitting device and composition for organic layer of organic light emitting device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016149473A (en) 2015-02-13 2016-08-18 コニカミノルタ株式会社 Aromatic heterocyclic derivative, organic electroluminescent element using the same, illumination device, and display device

Also Published As

Publication number Publication date
KR20200096174A (en) 2020-08-11
WO2020159334A1 (en) 2020-08-06
CN113195480A (en) 2021-07-30

Similar Documents

Publication Publication Date Title
KR102339004B1 (en) Compound and organic light emitting device comprising the same
KR102152520B1 (en) Organic light emitting device
KR102312476B1 (en) Compound and organic light emitting device comprising the same
KR102427162B1 (en) Organic light emitting device
KR20200021423A (en) Organic light emitting device
KR102353156B1 (en) Compound and organic light emitting device comprising the same
KR102353154B1 (en) Compound and organic light emitting device comprising the same
KR102312477B1 (en) Compound and organic light emitting device comprising the same
KR20210131639A (en) Heterocyclic compound and organic light emitting device comprising same
KR102353153B1 (en) Compound and organic light emitting device comprising the same
KR102359899B1 (en) Compound and organic light emitting device comprising the same
KR102339699B1 (en) Compound and organic light emitting device comprising the same
KR102339005B1 (en) Compound and organic light emitting device comprising the same
KR102223482B1 (en) Compound and organic light emitting device comprising the same
KR102393504B1 (en) Compound and organic light emitting device comprising same
KR102446406B1 (en) Novel compound and organic light emitting device comprising the same
KR102413613B1 (en) Novel compound and organic light emitting device comprising the same
KR102123742B1 (en) Compound and organic light emitting device comprising the same
KR102353174B1 (en) Compound and organic light emitting device comprising the same
KR20210106645A (en) Heterocyclic compound and organic light emitting device comprising same
KR102464010B1 (en) Compound and organic light emitting device comprising same
KR102328788B1 (en) Compound and organic light emitting device comprising same
KR20210108919A (en) Novel compound and organic light emitting device comprising the same
KR20210067963A (en) Novel compound and organic light emitting device comprising the same

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right