KR102348768B1 - 동형 암호화를 이용한 블록체인 데이터 보호 - Google Patents

동형 암호화를 이용한 블록체인 데이터 보호 Download PDF

Info

Publication number
KR102348768B1
KR102348768B1 KR1020197011580A KR20197011580A KR102348768B1 KR 102348768 B1 KR102348768 B1 KR 102348768B1 KR 1020197011580 A KR1020197011580 A KR 1020197011580A KR 20197011580 A KR20197011580 A KR 20197011580A KR 102348768 B1 KR102348768 B1 KR 102348768B1
Authority
KR
South Korea
Prior art keywords
random number
account
transaction
blockchain
balance
Prior art date
Application number
KR1020197011580A
Other languages
English (en)
Other versions
KR20200054129A (ko
Inventor
웬빈 장
바올리 마
Original Assignee
어드밴스드 뉴 테크놀로지스 씨오., 엘티디.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 어드밴스드 뉴 테크놀로지스 씨오., 엘티디. filed Critical 어드밴스드 뉴 테크놀로지스 씨오., 엘티디.
Publication of KR20200054129A publication Critical patent/KR20200054129A/ko
Application granted granted Critical
Publication of KR102348768B1 publication Critical patent/KR102348768B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/008Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols involving homomorphic encryption
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q20/00Payment architectures, schemes or protocols
    • G06Q20/38Payment protocols; Details thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/12Applying verification of the received information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/06Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols the encryption apparatus using shift registers or memories for block-wise or stream coding, e.g. DES systems or RC4; Hash functions; Pseudorandom sequence generators
    • H04L9/0643Hash functions, e.g. MD5, SHA, HMAC or f9 MAC
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/08Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
    • H04L9/0816Key establishment, i.e. cryptographic processes or cryptographic protocols whereby a shared secret becomes available to two or more parties, for subsequent use
    • H04L9/0819Key transport or distribution, i.e. key establishment techniques where one party creates or otherwise obtains a secret value, and securely transfers it to the other(s)
    • H04L9/0825Key transport or distribution, i.e. key establishment techniques where one party creates or otherwise obtains a secret value, and securely transfers it to the other(s) using asymmetric-key encryption or public key infrastructure [PKI], e.g. key signature or public key certificates
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/08Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
    • H04L9/0861Generation of secret information including derivation or calculation of cryptographic keys or passwords
    • H04L9/0869Generation of secret information including derivation or calculation of cryptographic keys or passwords involving random numbers or seeds
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/32Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials
    • H04L9/3218Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials using proof of knowledge, e.g. Fiat-Shamir, GQ, Schnorr, ornon-interactive zero-knowledge proofs
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/32Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials
    • H04L9/3236Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials using cryptographic hash functions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/32Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials
    • H04L9/3236Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials using cryptographic hash functions
    • H04L9/3239Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials using cryptographic hash functions involving non-keyed hash functions, e.g. modification detection codes [MDCs], MD5, SHA or RIPEMD
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/32Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials
    • H04L9/3247Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials involving digital signatures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/50Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols using hash chains, e.g. blockchains or hash trees
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L2209/00Additional information or applications relating to cryptographic mechanisms or cryptographic arrangements for secret or secure communication H04L9/00
    • H04L2209/08Randomization, e.g. dummy operations or using noise
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L2209/00Additional information or applications relating to cryptographic mechanisms or cryptographic arrangements for secret or secure communication H04L9/00
    • H04L2209/16Obfuscation or hiding, e.g. involving white box
    • H04L2209/38
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L2209/00Additional information or applications relating to cryptographic mechanisms or cryptographic arrangements for secret or secure communication H04L9/00
    • H04L2209/56Financial cryptography, e.g. electronic payment or e-cash

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Business, Economics & Management (AREA)
  • Accounting & Taxation (AREA)
  • Power Engineering (AREA)
  • Strategic Management (AREA)
  • Finance (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Financial Or Insurance-Related Operations Such As Payment And Settlement (AREA)
  • Storage Device Security (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

본 개시의 구현들은, 합의 노드에 의해 제1 계정으로부터, 트랜잭션 금액의 커미트먼트 값의 디지털 서명된 사본, 제1 계정의 공개 키를 사용하여 암호화된 제2 난수, 제2 계정의 공개 키를 사용하여 암호화된 제3 난수, 하나 이상의 범위 증명, 및 하나 이상의 선택된 난수에 기초하여 생성된 값들의 세트를 수신하는 단계를 포함한다. 그 후 상기 합의 노드는 디지털 서명을 생성하는 데 사용된 개인 키에 대응하는 제1 계정의 공개 키를 사용하여 디지털 서명된 사본에 대응하는 디지털 서명을 검증한다. 그것은 또한 제1 난수, 제2 난수, 및 제3 난수가 동일하면 잔액 이체의 금액에 기초하여 제1 계정의 잔액 및 제2 계정의 잔액을 업데이트한다.

Description

동형 암호화를 이용한 블록체인 데이터 보호
블록체인 시스템(blockchain system), 합의 네트워크(consensus network), 분산 원장 시스템 네트워크(distributed ledger system network), 또는 블록체인이라고도 지칭될 수 있는, 블록체인 네트워크는 참여하는 엔티티들이 안전하게, 그리고 변경할 수 없게 데이터를 저장하는 것을 가능하게 한다. 블록체인은 트랜잭션들의 원장 시스템(ledger system)으로서 기술될 수 있고, 원장의 다수의 사본이 블록체인 네트워크에 걸쳐 저장된다. 블록체인의 예시적인 유형들은 퍼블릭 블록체인(public blockchain), 허가형 블록체인(permissioned blockchain) 및 프라이빗 블록체인(private blockchain)을 포함할 수 있다. 퍼블릭 블록체인은 블록체인을 사용하고 합의 프로세스에 참여하는 모든 엔티티들에게 개방된다. 허가형 블록체인은 퍼블릭 블록체인과 유사하지만 조인할 권한이 있는 엔티티들에게만 개방된다. 프라이빗 블록체인은 특정 엔티티를 위한 것으로서, 중앙에서 읽기 및 쓰기 권한을 제어한다.
블록체인은 참가자들이 암호화폐를 사용하여 상품 및/또는 서비스를 구매/판매하기 위한 트랜잭션을 수행하는 것을 가능하게 하는 암호화폐 네트워크에서 사용된다. 일반적인 암호화폐는 비트코인을 포함한다. 암호화폐 네트워크에서는, 사용자들 간의 트랜잭션을 기록하기 위해 레코드 보존 모델(record-keeping model)이 사용된다. 예시적인 레코드 보존 모델은 UTXO(unspent transaction output) 모델, 및 계정 잔액(account balance) 모델을 포함한다. UTXO 모델에서는, 각각의 트랜잭션은 이전 트랜잭션으로부터의 출력을 소비하고 후속 트랜잭션에서 소비될 수 있는 새로운 출력을 생성한다. 사용자의 소비되지 않은 트랜잭션들이 추적되고, 사용자의 소비되지 않은 트랜잭션들 모두의 합계로서 사용자가 소유한 잔액이 계산된다. 계정 잔액 모델에서는, 각각의 사용자의 계정 잔액이 글로벌 상태로서 추적된다. 각각의 트랜잭션에 대해, 지출 계정의 잔액을 체크하여 그것이 트랜잭션 금액 이상인지를 확인한다. 이것은 전통적인 은행 업무에 필적한다.
블록체인 원장은 일련의 블록들을 포함하고, 그 각각은 네트워크에서 실행되는 하나 이상의 트랜잭션을 포함한다. 각각의 블록은 원장의 페이지로 비유될 수 있지만, 블록체인 자체는 원장의 전체 사본이다. 개별 트랜잭션들이 확인되어 블록에 추가되고, 이는 블록체인에 추가된다. 블록체인 원장의 사본들이 네트워크의 노드들에 걸쳐 복제된다. 이러한 방식으로, 블록체인의 상태에 대한 글로벌 합의가 존재한다. 또한, 블록체인은, 적어도 공용 네트워크의 경우, 볼 수 있는 모든 노드들에게 개방된다. 블록체인 사용자들의 프라이버시를 보호하기 위해, 암호화 기술들이 구현될 수 있다.
계정 모델에서는, 트랜잭션의 양쪽 당사자가 커밋(commit)하는 값들을 숨기기 위해 커미트먼트 스킴(commitment schemes)이 사용될 수 있다. 커미트먼트 스킴은 당사자들이 선택 또는 값에 커밋하고, 나중에 그 값을 관련된 다른 당사자들에게 전달할 필요로부터 발생할 수 있다. 예를 들어, 인터랙티브 페더슨 커미트먼트(interactive Pedersen Commitment)에서, 당사자 A가 난수 값 r에 기초하여 생성되는 커미트먼트 값 PC(r, t)를 전송함으로써 트랜잭션 금액 t에 커밋할 수 있다. 커미트먼트 값이 생성되고, 당사자 B는 난수 r을 획득함으로써만 트랜잭션 금액 t를 드러낼 수 있다.
본 개시의 구현들은 사용자 확인, 상호 작용, 및 트랜잭션 금액 또는 계정 잔액을 드러냄 없이 블록체인 트랜잭션들의 프라이버시 보호된 검증을 위한 컴퓨터 구현 방법을 포함한다. 더 상세하게는, 본 개시의 구현들은 다른 블록체인 노드들에 커미트먼트들을 생성하기 위한 트랜잭션 금액, 계정 잔액들, 또는 난수들을 드러냄 없이 동형 암호화(homomorphic encryption), 및 커미트먼트 스킴들에 기초하여 블록체인 사용자들 간의 트랜잭션들의 유효성을 검사하는 것에 관한 것이다.
일부 구현들에서, 액션들은 제1 계정(account)으로부터, 제1 난수에 기초하여 생성된 제1 계정으로부터 제2 계정으로 이체될 트랜잭션 금액의 커미트먼트 값의 디지털 서명된 사본, 상기 제1 계정의 공개 키를 사용하여 암호화된 제2 난수, 상기 제2 계정의 공개 키를 사용하여 암호화된 제3 난수, 하나 이상의 범위 증명, 및 하나 이상의 선택된 난수에 기초하여 생성된 값들의 세트를 수신하는 단계; 상기 디지털 서명을 생성하는 데 사용된 개인 키에 대응하는 상기 제1 계정의 공개 키를 사용하여 상기 디지털 서명된 사본에 대응하는 디지털 서명을 검증하는 단계; 상기 하나 이상의 범위 증명이, 상기 트랜잭션 금액이 0보다 크고 상기 제1 계정의 잔액(balance) 이하임을 입증하는 것으로 결정하는 단계; 상기 값들의 세트에 기초하여 상기 제1 난수, 상기 제2 난수, 및 상기 제3 난수가 동일한지를 결정하는 단계; 및 상기 제1 난수, 상기 제2 난수, 및 상기 제3 난수가 동일하면 상기 잔액 이체의 금액에 기초하여 상기 제1 계정의 잔액 및 상기 제2 계정의 잔액을 업데이트하는 단계를 포함한다. 다른 구현들은 상기 방법들의 액션들들을 수행하도록 구성된, 대응하는 시스템, 장치, 및 컴퓨터 저장 디바이스 상에 인코딩된, 컴퓨터 프로그램을 포함한다.
이들 및 다른 구현들은 각각 옵션으로 다음의 특징들 중 하나 이상을 포함할 수 있다: 상기 커미트먼트 값은 동형인 커미트먼트 스킴을 사용하여 생성된다; 상기 커미트먼트 스킴은 페더슨 커미트먼트 스킴이다; 상기 제2 난수 및 상기 제3 난수는 결정론적 동형 암호화(HE) 스킴에 기초하여 암호화되고, 결정론적 HE 스킴은 HE(a + b) = HE(a) * HE(b) 및 HE(ab) = HE(b)a의 선형 속성들을 가지며, 여기서 a 및 b는 HE를 위해 사용되는 평문이다; 선택된 난수는 r1 및 t1에 의해 표현되고, 및 선택된 난수는 r2 및 t2를 생성하는 데 사용되고, 여기서 r2 = r1 + xr, t2 = t1 + xt이고, 여기서 r1 및 t1은 상기 하나 이상의 선택된 난수들을 나타내고, r은 상기 제1 난수이고, t는 상기 잔액 이체의 금액이고, x는 해시 값이고; 상기 값들의 세트는 또한 T1, T1' 및 T1"에 기초하여 생성되고, 여기서 T1 = gr1ht1, T1' = HE_A(r1), T1" = HE_B(r1)이고, 여기서 g 및 h는 타원 곡선의 생성자들이고, 여기서 HE_A(r1)는 상기 제1 계정의 공개 키를 사용하여 r1의 HE에 기초해서 생성되고, HE_B(r1)는 상기 제2 계정의 공개 키를 사용하여 r1의 HE에 기초해서 생성되고, 여기서 x는 T1, T1' 및 T1"의 해싱에 기초하여 생성되고; 결정론적 HE의 속성들에 기초하여 상기 제1 난수, 상기 제2 난수, 및 상기 제3 난수는 동일한 것으로 결정되고; gr2ht2 = TxT1, HE_A(r2) = T'xT1', 및 HE_B(r2) = T"xT1"이면 상기 제1 난수, 상기 제2 난수, 및 상기 제3 난수는 동일한 것으로 결정되고, 여기서 T = grht, T' = HE_A(r), 및 T" = HE_B(r)이고, 여기서 HE_A(r) 및 HE_A(r2)는 상기 제1 계정의 공개 키를 사용하여, 각각, r 및 r2의 HE에 기초해서 생성되고, HE_B(r) 및 HE_B(r2)는 상기 제2 계정의 공개 키를 사용하여 r 및 r2의 HE에 기초해서 생성되고; T, T', 및 T"는 상기 트랜잭션 금액 t의 암호문을 형성하고; 상기 제1 계정의 잔액 및 상기 제2 계정의 잔액을 업데이트하는 단계는 동형 암호화에 기초하여 수행된다.
또한, 본 개시는 또한 하나 이상의 프로세서에 결합되고 명령어가 저장되어 있는 하나 이상의 비일시적 컴퓨터 판독가능 저장 매체를 제공하고, 상기 명령어는 상기 하나 이상의 프로세서에 의해 실행될 때, 상기 하나 이상의 프로세서로 하여금 본 명세서에서 제공된 방법들의 구현들에 따른 동작들을 수행하게 한다.
본 개시는 또한, 본 명세서에서 제공된 방법들을 구현하기 위한 시스템을 제공한다. 상기 시스템은 하나 이상의 프로세서, 및 상기 하나 이상의 프로세서에 결합되고 명령어가 저장되어 있는 컴퓨터 판독가능 저장 매체를 포함하고, 상기 명령어는 상기 하나 이상의 프로세서에 의해 실행될 때, 상기 하나 이상의 프로세서로 하여금 본 명세서에서 제공된 방법들의 구현들에 따른 동작들을 수행하게 한다.
본 개시에 따른 방법들은 본 명세서에서 설명된 양태들 및 특징들의 임의의 조합을 포함할 수 있음을 알 것이다. 즉, 본 개시에 따른 방법들은 본 명세서에서 구체적으로 설명된 양태들 및 특징들의 조합들로 제한되지 않고, 제공된 양태들 및 특징들의 임의의 조합을 포함한다.
본 개시의 하나 이상의 구현의 상세한 사항들은 첨부 도면들 및 이하의 설명에서 설명된다. 본 개시의 다른 특징들 및 이점들은 상세한 설명 및 도면들로부터, 그리고 청구항들로부터 명백할 것이다.
도 1은 본 개시의 구현들을 실행하는 데 사용될 수 있는 예시적인 환경을 묘사한다.
도 2는 본 개시의 구현들에 따른 예시적인 개념 아키텍처를 묘사한다.
도 3은 본 개시의 구현들에 따른 동형 암호화에 기초한 블록체인 트랜잭션의 프라이버시 보호된 유효성 검사의 예시적인 방법을 묘사한다.
도 4는 본 개시의 구현들에 따른 동형 암호화에 기초한 예시적인 블록체인 트랜잭션을 묘사한다.
도 5는 본 개시의 구현들에 따른 동형 암호화에 기초한 블록체인 트랜잭션의 프라이버시 보호된 유효성 검사의 다른 예시적인 방법을 묘사한다.
도 6은 본 개시의 구현들에 따른 동형 암호화에 기초한 다른 예시적인 블록체인 트랜잭션을 묘사한다.
도 7은 본 개시의 구현들에 따라 실행될 수 있는 예시적인 프로세스를 묘사한다.
도 8은 본 개시의 구현들에 따라 실행될 수 있는 다른 예시적인 프로세스를 묘사한다.
다양한 도면들에서 유사한 참조 부호들은 동일한 요소들을 나타낸다.
본 개시의 구현들은 사용자 확인, 상호 작용, 및 트랜잭션 금액 또는 계정 잔액을 드러냄 없이 블록체인 트랜잭션들의 프라이버시 보호된 검증을 위한 컴퓨터 구현 방법을 포함한다. 더 상세하게는, 본 개시의 구현들은 다른 블록체인 노드들에 커미트먼트들을 생성하기 위한 트랜잭션 금액, 계정 잔액들, 또는 난수들을 드러냄 없이 동형 암호화, 및 커미트먼트 스킴들에 기초하여 블록체인 사용자들 간의 트랜잭션들의 유효성을 검사하는 것에 관한 것이다.
본 개시의 구현들에 대한 추가 컨텍스트를 제공하기 위해, 그리고 위에서 소개된 바와 같이, 합의 네트워크(예를 들어, 피어-투-피어 노드들로 구성됨), 분산 원장 시스템, 또는 단순히 블록 체인이라고도 지칭될 수 있는, 블록체인 네트워크는 참여하는 엔티티들이 안전하게, 그리고 변경할 수 없게 트랜잭션을 수행하고, 데이터를 저장하는 것을 가능하게 한다. 블록체인은 퍼블릭 블록체인, 프라이빗 블록체인, 또는 컨소시엄 블록체인으로서 제공될 수 있다. 본 개시의 구현들은 참여하는 엔티티들 사이에 공개적인 퍼블릭 블록체인을 참조하여 본 명세서에서 더 상세하게 설명된다. 그러나, 본 개시의 구현들은 임의의 적절한 유형의 블록체인에서 실현될 수 있다는 것이 고려된다.
퍼블릭 블록체인에서, 합의 프로세스는 합의 네트워크의 노드들에 의해 제어된다. 예를 들어, 수백, 수천, 심지어 수백만 개의 엔티티가 퍼블릭 블록체인에 참여할 수 있고, 그 각각은 퍼블릭 블록체인에서 적어도 하나의 노드를 운영한다. 따라서, 퍼블릭 블록체인은 참여하는 엔티티들에 대하여 공용 네트워크로 간주될 수 있다. 일부 예들에서, 대다수의 엔티티들(노드들)은 블록이 유효하고 블록체인에 추가되도록 하기 위해 모든 블록에 서명해야 한다. 예시적인 퍼블릭 블록체인은 피어-투-피어 결제 네트워크(암호화폐 네트워크)인 비트코인 네트워크에서 사용되는 블록체인을 포함한다. 블록체인이라는 용어는 흔히 비트코인 네트워크와 관련하여 언급되지만, 본 명세서에서 사용된, 블록체인은 일반적으로 비트코인 네트워크에 특별히 관계없이 분산 원장(distributed ledgers)을 언급한다.
일반적으로, 퍼블릭 블록체인은 퍼블릭 트랜잭션들을 지원한다. 퍼블릭 트랜잭션은 블록체인 내의 모든 노드들과 공유되고, 블록체인 원장은 모든 노드들에 걸쳐 복제된다. 즉, 모든 노드들이 블록체인에 대하여 완벽한 상태 합의에 있다. 합의(예를 들어, 블록을 블록 체인에 추가하는 것에 동의)를 달성하기 위해, 합의 프로토콜이 블록체인 네트워크 내에 구현된다. 예시적인 합의 프로토콜은 비트코인 네트워크에 구현된 작업증명(proof-of-work, POW)을 포함하지만, 이에 제한되지는 않는다.
본 개시의 구현들은 상기 컨텍스트을 고려하여 본 명세서에서 더 상세하게 설명된다. 더 상세하게는, 그리고 위에서 소개된 바와 같이, 본 개시의 구현들은 다른 블록체인 노드들에 커미트먼트들을 생성하기 위한 트랜잭션 금액, 계정 잔액들, 또는 난수들을 드러냄 없이 HE, 및 커미트먼트 스킴들에 기초하여 블록체인 사용자들 간의 트랜잭션들의 유효성을 검사하는 것에 관한 것이다.
본 개시의 구현들에 따르면, 블록체인 트랜잭션은 커미트먼트를 생성하는 데 사용되는 트랜잭션 계정 잔액, 트랜잭션 금액, 또는 난수를 드러냄 없이 커미트먼트에 기초하여 유효성이 검사되고 블록체인(원장)에 기록될 수 있다. 페더슨 커미트먼트(PC)와 같은 커미트먼트 스킴이 난수를 사용하여 트랜잭션 금액의 커미트먼트를 생성하는 데 사용될 수 있다. 트랜잭션 금액 및 난수는 확률론적 또는 결정론적 HE를 사용하여 암호화될 수 있다. 트랜잭션 금액 및 난수는 또한 HE의 속성들에 기초하여 트랜잭션의 유효성을 검사하기 위한 증명들로서 값들의 세트를 생성하는 데 사용될 수 있다. 트랜잭션의 커미트먼트, 암호화된 트랜잭션 금액, 암호화된 난수, 및 증명들은 블록체인 노드에 의해, 계정 잔액, 트랜잭션 금액, 또는 난수가 드러남 없이 트랜잭션이 유효한지를 검증하는 데 사용될 수 있다.
도 1은 본 개시의 구현들을 실행하는 데 사용될 수 있는 예시적인 환경(100)을 묘사한다. 일부 예들에서, 예시적인 환경(100)은 엔티티들이 퍼블릭 블록체인(102)에 참여하는 것을 가능하게 한다. 예시적인 환경(100)은 컴퓨팅 시스템들(106, 108) 및 네트워크(110)를 포함한다. 일부 예들에서, 네트워크(110)는 로컬 영역 네트워크(LAN), 광역 네트워크(WAN), 인터넷, 또는 이들의 조합을 포함하고, 웹 사이트들, 사용자 디바이스들(예를 들어, 컴퓨팅 디바이스들), 및 백엔드 시스템들을 연결한다. 일부 예들에서, 네트워크(110)는 유선 및/또는 무선 통신 링크를 통해 액세스될 수 있다.
묘사된 예에서, 컴퓨팅 시스템들(106, 108)은 각각 퍼블릭 블록체인(102) 내의 노드로서의 참여를 가능하게 하는 임의의 적절한 컴퓨팅 시스템을 포함할 수 있다. 예시적인 컴퓨팅 디바이스들은 서버, 데스크톱 컴퓨터, 랩톱 컴퓨터, 태블릿 컴퓨팅 디바이스, 및 스마트폰을 포함하지만, 이에 제한되지는 않는다. 일부 예들에서, 컴퓨팅 시스템들(106, 108)은 퍼블릭 블록체인(102)과 상호 작용하기 위한 하나 이상의 컴퓨터 구현 서비스를 호스팅한다. 예를 들어, 컴퓨팅 시스템(106)은 제1 엔티티(예를 들어, 사용자 A)가 하나 이상의 다른 엔티티(예를 들어, 다른 사용자들)와의 그의 트랜잭션을 관리하기 위해 사용하는 트랜잭션 관리 시스템과 같은, 제1 엔티티의 컴퓨터 구현 서비스들을 호스팅할 수 있다. 컴퓨팅 시스템(108)은 제2 엔티티(예를 들어, 사용자 B)가 하나 이상의 다른 엔티티(예를 들어, 다른 사용자들)와의 그의 트랜잭션을 관리하기 위해 사용하는 트랜잭션 관리 시스템과 같은, 제2 엔티티의 컴퓨터 구현 서비스들을 호스팅할 수 있다. 도 1의 예에서, 퍼블릭 블록체인(102)은 노드들의 피어-투-피어 네트워크로 표현되고, 컴퓨팅 시스템들(106, 108)은 퍼블릭 블록체인(102)에 참여하는 제1 엔티티 및 제2 엔티티 각각의 노드들을 제공한다.
도 2는 본 개시의 구현들에 따른 예시적인 개념 아키텍처(200)를 묘사한다. 예시적인 개념 아키텍처(200)는 엔티티 계층(202), 호스팅된 서비스 계층(204) 및 퍼블릭 블록체인 계층(206)을 포함한다. 묘사된 예에서, 엔티티 계층(202)은 3개의 엔티티, Entity_1(E1), Entity_2(E2), 및 Entity_3(E3)을 포함하고, 각각의 엔티티는 각각의 트랜잭션 관리 시스템(208)을 갖는다.
묘사된 예에서, 호스팅된 서비스 계층(204)은 각각의 트랜잭션 관리 시스템(208)에 대한 블록체인 인터페이스들(210)을 포함한다. 일부 예들에서, 각각의 트랜잭션 관리 시스템(208)은 통신 프로토콜(예를 들어, 하이퍼텍스트 전송 프로토콜 보안(HTTPS))을 사용하여 네트워크(예를 들어, 도 1의 네트워크(110))를 통해 각각의 블록체인 인터페이스(210)와 통신한다. 일부 예들에서, 각각의 블록체인 인터페이스(210)는 각각의 트랜잭션 관리 시스템(208)과 블록체인 계층(206) 간의 통신 연결을 제공한다. 더 상세하게는, 각각의 블록체인 인터페이스(210)는 각각의 엔티티가 블록체인 계층(206)의 블록체인 네트워크(212)에 기록된 트랜잭션들을 수행하는 것을 가능하게 한다. 일부 예들에서, 블록체인 인터페이스(210)와 블록체인 계층(206) 간의 통신은 원격 프로시저 호출(RPC)을 사용하여 수행된다. 일부 예들에서, 블록체인 인터페이스들(210)은 각각의 트랜잭션 관리 시스템들(208)에 대한 블록체인 노드들을 "호스팅"한다. 예를 들어, 블록체인 인터페이스들(210)은 블록체인 네트워크(212)에 액세스하기 위한 애플리케이션 프로그래밍 인터페이스(API)를 제공한다.
본 명세서에서 설명된 바와 같이, 블록체인 네트워크(212)는 블록체인(216)에 변경할 수 없게 정보를 기록하는 복수의 노드(214)를 포함하는 피어-투-피어 네트워크로서 제공된다. 단일 블록체인(216)이 개략적으로 묘사되어 있지만, 블록체인(216)의 다수의 사본이 제공되고, 블록체인(212)에 걸쳐 유지된다. 예를 들어, 각각의 노드(214)는 블록체인(216)의 사본을 저장한다. 일부 구현들에서, 블록체인(216)은 퍼블릭 블록체인에 참여하는 둘 이상의 엔티티 사이에서 수행되는 트랜잭션들과 관련된 정보를 저장한다.
도 3은 본 개시의 구현들에 따른 HE에 기초한 블록체인 트랜잭션의 프라이버시 보호된 유효성 검사의 예시적인 방법(300)을 묘사한다. 하이-레벨에서, 예시적인 방법(300)은 사용자 노드 A(302), 사용자 노드 B(도 3에 도시되지 않음), 및 합의 노드라고도 지칭되는 블록체인 노드(304)에 의해 수행된다. 값의 이체와 같은 트랜잭션이 사용자 노드 A(302)로부터 사용자 노드 B로 행해질 수 있다. 계정 프라이버시를 보호하기 위해, 사용자 노드 A(302)는 난수 r에 기초하여, PC와 같은, 커미트먼트 스킴을 사용하여 트랜잭션 금액 t의 커미트먼트를 생성할 수 있다. PC를 사용하여 생성된 커미트먼트는 PC(r, t)로 표현될 수 있다. 사용자 노드 A(302)는 또한 사용자 노드 B의 공개 키에 기초해서 HE를 사용하여 난수를 암호화할 수 있다. 이것은 HE(r)로 표현될 수 있다. (PC(r, t), HE(r))로 표현된, 트랜잭션 금액 t의 암호문이 사용자 노드 B로 송신될 수 있다. 암호문을 수신한 후, 사용자 노드 B는 개인 키를 사용하여 난수 r을 복호화할 수 있다. 사용자 노드 B는 난수 r을 사용하여 트랜잭션 금액 t를 복호화할 수 있다. 트랜잭션의 유효성을 입증하기 위해, 블록체인 노드(304)는 커미트먼트 내의 난수와, HE를 사용하여 암호화된 난수를 비교할 수 있다. 난수들이 일치하면, 트랜잭션은 트랜잭션 데이터의 영지식(zero-knowledge)으로 블록체인 노드(304)에 의해 유효한 것으로 결정된다. 예시적인 방법(300)에 대한 더 상세한 사항들은 도 3에 대한 다음의 설명에서 논의된다.
306에서, 사용자 노드 A(302)는 제1 난수에 기초하여 트랜잭션 금액의 커미트먼트 값을 생성하고, HE에 기초해서, 사용자 노드 A(302)의 공개 키를 사용하여 제2 난수, 및 사용자 노드 B의 공개 키를 사용하여 제3 난수를 암호화한다. 제1 난수, 제2 난수, 및 제3 난수는 커미트먼트 스킴을 사용하여 트랜잭션 금액 t의 커미트먼트를 생성하는 데 사용된 동일한 난수 r일 수 있다. 일부 구현들에서, 커미트먼트 스킴은 PC와 같은 이중 지수 형태를 가질 수 있다. 비제한적인 예로서 PC를 사용하여, 제1 난수 r에 의해 생성된 커미트먼트 값은 PC(r, t) = grht로 표현될 수 있고, 여기서 g 및 h는 타원 곡선의 생성자들 수 있고, PC(r, t)는 곡선 점들의 스칼라 곱셈이고, t는 커밋되는 트랜잭션 금액이다. Okayoto-Uchiyama(OU) HE 및 Boneh-Goh-Nissim HE와 같은 HE에 기초한 다른 커미트먼트 스킴들도 커미트먼트 값을 생성하는 데 사용될 수 있음을 이해해야 한다.
사용자 노드 A(302)의 공개 키를 사용하여 암호화된 제2 난수 r의 암호화는 HE_A(r)로 표현될 수 있다. 사용자 노드 B의 공개 키를 사용하여 암호화된 제3 난수 r의 암호화는 HE_B(r)로 표현될 수 있다.
일부 구현들에서, 공개 키 HE 암호화는 난수를 고정된 값으로 설정함으로써, Paillier HE, Benaloh HE, OU HE, Naccache-Stern HE, Damgard-Jurik HE, 또는 Boneh-Goh-Nissim HE와 같은 확률론적 HE 스킴으로부터 획득될 수 있는 결정론적 HE일 수 있다. 일부 구현들에서는, HE(a + b) = HE(a) + HE(b) 및 HE(ab) = HE(b)a - 여기서 a 및 b는 HE를 위해 사용되는 평문임 - 인 선형 속성들을 만족시키는 결정론적 HE 스킴들이 본 개시를 위해 사용될 수 있다.
일부 예들에서, T = PC(r, t), T' = HE_A(r), 및 T" = HE_B(r)이고, 트랜잭션 금액의 암호문은 (T, T', 및 T")로 표현될 수 있다. 예시적인 조건들이 충족되면, 트랜잭션은 유효한 것으로 결정될 수 있다. 첫째로, 트랜잭션 금액 t는 0 이상이고, 사용자 노드 A(302)의 계정 잔액 s_A 이하이다. 둘째로, 트랜잭션이 사용자 노드 A(302)에 의해 허가된 것임을 입증하기 위해 트랜잭션은 사용자 노드 A(302)의 개인 키에 의해 디지털 서명된다. 셋째로, 커미트먼트 PC(r, t) 내의 난수 r은 사용자 노드 A(302) 및 사용자 노드 B 각각의 공개 키들을 사용하여 암호문 HE_A(r), 및 HE_B(r)으로 암호화된 r과 동일하다.
일부 구현들에서, 암호문은 또한 (PC(r', t'), HE_A(r'))로 표현될 수 있는 전송된 금액(t')의 암호문, 및 (PC(r", T"), HE_B(r"))로 표현될 수 있는 수신된 금액(T")의 암호문으로 분리될 수 있다. 그러한 경우들에서, 트랜잭션의 유효성을 검사하기 위해 전송된 금액 t'도 수신된 금액 T"와 동일한 것으로 결정될 필요가 있다.
308에서, 사용자 노드 A(302)는 하나 이상의 범위 증명(range proof)을 생성한다. 일부 구현들에서, 범위 증명들은 트랜잭션 금액 t가 0 이상임을 보여주는 RP1의 범위 증명, 및 트랜잭션 금액 t가 사용자 노드 A의 계정 잔액 이하임을 보여주는 RP2의 범위 증명을 포함할 수 있다.
310에서, 사용자 노드 A(302)는 하나 이상의 선택된 난수에 기초하여 HE를 사용하여 값들의 세트를 생성한다. Pf로 표시된, 값들의 세트는 커미트먼트 PC(r, t) 내의 난수 r이, 사용자 노드 A(302) 및 사용자 노드 B 각각의 공개 키들을 사용하여 암호문 HE_A(r) 및 HE_B(r)로 암호화된 r과 동일함을 입증하는 데 사용되는 증명들을 포함할 수 있다. 일부 구현들에서, 2개의 난수 r1 및 t1이 (T1, T1', T1")로 표시된 t1의 암호문들의 다른 세트를 계산하기 위해 선택될 수 있고, 여기서 T1 = gr1ht1, T1' = HE_A(r1), T1" = HE_B(r1)이다. 2개의 추가적인 증명 r2 및 t2가 r2 = r1 + xr, t2 = t1 + xt로서 계산될 수 있고, 여기서 x는 T1, T1', 및 T1"의 해시이다. 값들의 세트는 Pf = (T1, T1', T1", r2, t2)로서 표시될 수 있다.
312에서, 사용자 노드 A(302)는 그의 개인 키를 사용하여 암호문(T, T', T"), 암호문(T1, T1', T1"), r2, t2, 범위 증명들 RP1 및 RP2, 및 사용자 노드 A(302), 및 사용자 노드 B의 공개 키들에 디지털 서명한다. 사용자 노드 A(302)에 의해 추가된 디지털 서명은 트랜잭션이 사용자 노드 A(302)에 의해 허가된 것임을 보여주는 데 사용될 수 있다. 314에서 디지털 서명된 사본이 블록체인 네트워크에 제출된다.
316에서, 블록체인 노드(304)는 사용자 노드 A(302)의 공개 키를 사용하여 디지털 서명을 검증한다. 블록체인 노드(304)는 블록체인 네트워크에서 트랜잭션들의 유효성을 입증할 수 있는 합의 노드일 수 있다. 블록체인 노드(304)가 공개 키를 사용하여 사용자 노드 A(302)의 디지털 서명을 검증할 수 없다면, 디지털 서명은 부정확한 것으로 결정될 수 있고, 트랜잭션은 거부될 수 있다. 일부 구현들에서, 블록체인 노드(304)는 또한 이중 지출 방지 메커니즘(anti-double spending mechanism)을 포함할 수 있다. 블록체인 노드(304)는 트랜잭션이 이미 실행되었거나 기록되었는지를 검증할 수 있다. 트랜잭션이 이미 실행되었다면, 트랜잭션은 거부될 수 있다. 그렇지 않다면, 트랜잭션의 유효성 검사가 진행될 수 있다.
318에서, 블록체인 노드(304)는 하나 이상의 범위 증명을 검증한다. 예를 들어, 범위 증명 RP1은 트랜잭션 금액 t가 0 이상임을 입증하는 데 사용될 수 있고, 범위 증명 RP2는 트랜잭션 금액 t가 사용자 노드 A(302)의 계정 잔액 이하임을 입증하는 데 사용될 수 있다.
320에서, 블록체인 노드(304)는 값들의 세트에 기초하여 제1 난수, 제2 난수, 및 제3 난수가 동일한 것으로 결정한다. 일부 구현들에서, 결정은, 위에 논의된 바와 같이, 결정론적 HE의 속성들에 기초하여 예시적인 조건들 gr2ht2 = TxT1, HE_A(r2) = T'xT1', 및 HE_B(r2) = T"xT1"이 참(true)인지를 결정하는 것을 포함한다. 참이면, 이는 커미트먼트 내의 난수가 사용자 노드 A(302), 및 사용자 노드 B의 공개 키들을 사용하여 동형으로 암호화된 난수들과 동일하고, 트랜잭션이 유효함을 나타낼 수 있다.
322에서, 블록체인 노드(304)는 사용자 노드 A(302), 및 사용자 노드 B의 계정 잔액들을 업데이트한다. 잔액 업데이트들은 사용자 노드 A(302), 또는 사용자 노드 B 중 어느 하나의 계정 잔액을 드러냄 없이 HE의 속성들에 기초하여 수행될 수 있다. 계정 잔액들의 업데이트는 도 4를 참조하여 본 명세서에서 더 상세하게 설명된다.
도 4는 본 개시의 구현들에 따른, HE에 기초한 예시적인 블록체인 트랜잭션(400)을 묘사한다. 예시적인 블록체인 트랜잭션(400)으로 나타내는 바와 같이, 사용자 노드 A(402)는 트랜잭션 금액 t를 사용자 노드 B(406)로 이체한다. 트랜잭션 전에, 사용자 노드 A(402)는 s_A의 계정 잔액을 갖고, 사용자 노드 B(406)는 s_B의 계정 잔액을 갖는다.
예로서 도 3을 참조하여 본 명세서에서 설명된 암호화 스킴들 및 트랜잭션 프로세스를 사용하여, 계정 잔액 s_A는 PC에 기초한 난수 r_A를 사용하여 암호화될 수 있고, 난수 r_A는 HE에 기초하여 암호화될 수 있다. 계정 잔액 s_A의 암호문은 (S_A, S'_A) = (gr _ Ahs _A, HE_A(r_A))로 표현될 수 있고, 여기서 g 및 h는 계정 잔액 s_A의 PC를 생성하기 위한 타원 곡선의 생성자들일 수 있다. 유사하게, 사용자 노드 B(406)의 계정 잔액 s_B는 PC에 기초한 난수 r_B를 사용하여 암호화될 수 있다. 계정 잔액 s_B의 암호문은 (S_B, S'_B) = (gr _ Bhs _B, HE_A(r_B))로 표현될 수 있다.
404에서, 사용자 노드 A(402)는 트랜잭션의 유효성을 검사하는 데 사용되는 증명들에 디지털 서명을 추가하고, 디지털 서명된 사본을 블록체인 네트워크(408)에 제출할 수 있다. 도 3을 참조하여 위에 설명된 바와 같이, 증명들은 트랜잭션 금액(T, T', T"), 하나 이상의 범위 증명(RP1, RP2), 및 다른 증명들(T1, T1', T1", r2, t2)의 암호문을 포함할 수 있다.
트랜잭션 후에, 사용자 노드 A(402)의 계정 잔액은 s_A-t'로 표현될 수 있고, 사용자 노드 B(406)의 계정 잔액은 s_B + T"로 표현될 수 있고, 여기서 t'는 사용자 노드 A(402)에 의해 전송된 금액이고 T"는 사용자 노드 B에 의해 수신된 금액이다. 트랜잭션 후에 사용자 노드 A(402)의 계정 잔액의 암호문은 (S_A/T, S'_A/T')로 표현될 수 있고, 트랜잭션 후에 사용자 노드 B(406)의 계정 잔액의 암호문은 (S_B * T, S'_B * T")로 표현될 수 있다. S_A, S'_A, S_B, S'_B, T, T', T"는 각각 이중 지수 형태를 갖는 HE를 사용하여 암호화되므로, 평문 값들로 복호화하지 않고서 그들의 암호화된 형태로 가산 및 감산이 수행될 수 있다.
도 5는 본 개시의 구현들에 따른 HE에 기초한 블록체인 트랜잭션의 프라이버시 보호된 유효성 검사의 다른 예시적인 방법(500)을 묘사한다. 하이-레벨에서, 예시적인 방법(500)은 사용자 노드 A(502), 사용자 노드 B(도 5에 도시되지 않음), 및 합의 노드라고도 지칭되는 블록체인 노드(504)에 의해 수행된다. 값의 이체와 같은 트랜잭션이 사용자 노드 A(502)로부터 사용자 노드 B로 행해질 수 있다. 계정 프라이버시를 보호하기 위해, 사용자 노드 A(502)는 난수 r에 기초하여 PC와 같은 커미트먼트 스킴을 사용하여 트랜잭션 금액 t의 커미트먼트를 생성할 수 있다. PC를 사용하여 생성된 커미트먼트는 PC(r, t)로 표현될 수 있다. 사용자 노드 A(502)는 또한 OU와 같은 이중 지수 형태를 갖는 HE를 사용하여 트랜잭션 금액 t, 및 난수 r을 암호화할 수 있다.
트랜잭션 금액 t의 암호문이 블록체인 네트워크에 제출될 수 있다. 블록체인 노드(504)는, 암호문을 수신한 후에, PC에 숨겨진 난수 r이 사용자 노드 A(502), 및 사용자 노드 B 각각의 공개 키들을 사용하여 OU로 암호화된 난수 r과 일치하는지를 결정할 수 있다. 또한, 블록체인 노드(504)는 PC에 숨겨진 트랜잭션 금액 t가 사용자 노드 A(502), 및 사용자 노드 B의 공개 키들을 사용하여 OU로 암호화된 트랜잭션 금액 t와 일치하는지를 결정할 수 있다. 난수들과 트랜잭션 금액들 양쪽 모두가 일치하면, 트랜잭션은 트랜잭션 데이터의 영지식으로 블록체인 노드(504)에 의해 유효한 것으로 결정될 수 있다.
506에서, 사용자 노드 A(502)는 제1 난수에 기초하여 제1 트랜잭션 금액의 커미트먼트 값을 생성하고, 제1 트랜잭션 금액 및 제1 난수는 사용자 노드 A(502)의 공개 키를 사용하여 암호화된다. 제2 트랜잭션 금액 및 제2 난수는 사용자 노드 B의 공개 키를 사용하여 암호화된다. 제1 트랜잭션 금액 및 제2 트랜잭션 금액은 동일한 금액 t일 수 있다. 제1 난수 및 제2 난수는 커미트먼트 스킴을 사용하여 트랜잭션 금액 t의 커미트먼트을 생성하는 데 사용된 동일한 난수 r일 수 있다. 일부 구현들에서, 커미트먼트 스킴은 PC와 같은 이중 지수 형태를 가질 수 있다. 예로서 PC를 사용하여, 제1 난수 r에 의해 생성된 커미트먼트 값은 PC(r, t) = grht로 표현될 수 있고, 여기서 g 및 h는 타원 곡선의 생성자들 수 있고, PC(r, t)는 곡선 점들의 스칼라 곱셈이고, t는 커밋되는 트랜잭션 금액이다. OU HE 및 Boneh-Goh-Nissim HE와 같은 HE에 기초한 다른 커미트먼트 스킴들도 커미트먼트 값을 생성하는 데 사용될 수 있음을 이해해야 한다.
사용자 노드 A(502)는 또한 사용자 노드 A(502)의 공개 키를 사용하여 제1 난수 및 제1 트랜잭션 금액을 암호화하고, 사용자 노드 B의 공개 키를 사용하여 제2 난수 및 제2 트랜잭션 금액을 암호화할 수 있다. 일부 구현들에서, 난수들 및 트랜잭션 금액들의 암호화는 OU와 같은 확률론적 HE에 기초할 수 있다. 예로서 OU를 사용하여, 사용자 노드 A(502)의 공개 키를 사용한 제1 난수 및 제1 트랜잭션 금액의 암호화는 각각 OU_A(r) = u1rv1y1, 및 OU_A(t) = u1tv1y2로 표현될 수 있고, 여기서 u1 및 v1은 타원 곡선 상의 생성자들이고, y1 및 y2는 OU_A(r) 및 OU_A(t)를 생성하는 데 사용된 난수들이다. 암호화된 제2 난수 및 제2 트랜잭션 금액은 각각 OU_B(r) = u2rv2z1 및 OU_B(t) = u2tv2z2로 표현될 수 있고, u2 및 v2는 타원 곡선 상의 생성자들이고, z1 및 z2는 각각 OU_B(r) 및 OU_B(t)를 생성하는 데 사용된 난수들이다. 확률론적 OU는 OU(a + b) = OU(a) * OU(b)라는 속성을 만족시키고, 여기서 a 및 b는 OU를 위해 사용된 평문이다.
트랜잭션 금액 t의 암호문은 (PC(r, t), OU_A(r), OU_A(t), OU_B(r), OU_B(t))로 표현될 수 있다. 다음의 예시적인 조건들이 충족되면, 트랜잭션은 유효한 것으로 결정될 수 있다. 첫째로, 트랜잭션 금액 t는 0 이상이고 사용자 노드 A(502)의 계정 잔액 s_A 이하이다. 둘째로, 트랜잭션이 사용자 노드 A(502)에 의해 허가된 것임을 입증하기 위해 트랜잭션은 사용자 노드 A(502)의 개인 키에 의해 디지털 서명된다. 셋째로, 커미트먼트 PC(r, t) 내의 난수 r은 사용자 노드 A(502) 및 사용자 노드 B 각각의 공개 키들을 사용하여 암호문 OU_A(r), 및 OU_B(r)로 암호화된 r과 동일하다. 넷째로, 커미트먼트 PC(r, t) 내의 트랜잭션 금액 t는 사용자 노드 A(502) 및 사용자 노드 B 각각의 공개 키들을 사용하여 암호문 OU_A(t), 및 OU_B(t)로 암호화된 t와 동일하다.
일부 구현들에서, 암호문은 또한 (PC(r', t'), OU_A(r'), OU_A(T'))로 표현될 수 있는 전송된 금액(t')의 암호문, 및 (PC(r", T"), OU_B(r"), OU_B(T"))로 표현될 수 있는 수신된 금액(T")의 암호문으로 분리될 수 있다. 그러한 경우들에서, 트랜잭션의 유효성을 검사하기 위해 전송된 금액 t'도 수신된 금액 T"와 같은 것으로 결정될 필요가 있다.
508에서, 사용자 노드 A(502)는 하나 이상의 범위 증명을 생성한다. 일부 구현들에서, 범위 증명들은 트랜잭션 금액 t가 0 이상임을 보여주는 RP1의 범위 증명, 및 트랜잭션 금액 t가 사용자 노드 A의 계정 잔액 이하임을 보여주는 RP2의 범위 증명을 포함할 수 있다.
510에서, 사용자 노드 A(502)는 하나 이상의 선택된 난수에 기초해서 HE를 사용하여 값들의 세트를 생성한다. Pf로 표시된 값들의 세트는 커미트먼트 PC(r, t) 내의 난수 r이 암호문 OU_A(r) 및 OU_B(r)로 암호화된 r과 동일하고, 트랜잭션 커미트먼트 PC(r, t) 내의 트랜잭션 금액 t가 암호문 OU_A(t) 및 OU_B(t)로 암호화된 t와 동일함을 입증하는 데 사용되는 증명들을 포함할 수 있다. 일부 구현들에서, 4개의 난수 r*, t*, z1*, 및 z2*는 (C, D, E)로 표시된 암호문들의 다른 세트를 계산하기 위해 선택될 수 있고, 여기서 C = gr *ht*, D = u2r *v2z1 *, 및 E = u2t *v2z2 *이고, 여기서 g, h, u2, 및 v2는 타원 곡선의 생성자들이다. 4개의 추가적인 증명 a, b, c, 및 d는 a = r* + xr, b = t* + xt, c = z1* + xz1, 및 d = z2* + xz2로 계산될 수 있고, 여기서 x는 g, h, u2, v2, C, D, 및 E의 해시 함수이다. 그 후 값들의 세트는 Pf = (C, D, E, a, b, c, d)로 표시될 수 있다.
512에서, 사용자 노드 A(502)는 그의 개인 키를 사용하여 암호문(PC(r, t), OU_A(r), OU_A(t), OU_B(r), OU_B(t)), 범위 증명들 RP1 및 RP2, 및 값들의 세트 Pf에 디지털 서명한다. 사용자 노드 A(502)에 의해 추가된 디지털 서명은 트랜잭션이 사용자 노드 A(502)에 의해 허가된 것임을 보여주는 데 사용될 수 있다. 디지털 서명된 사본은 514에서 블록체인 네트워크에 제출된다.
516에서, 블록체인 노드(504)는 사용자 노드 A(502)의 공개 키를 사용하여 디지털 서명을 검증한다. 블록체인 노드(504)는 블록체인 네트워크에서 트랜잭션들의 유효성을 입증할 수 있는 합의 노드일 수 있다. 블록체인 노드(504)가 사용자 노드 A의 공개 키를 사용하여 디지털 서명을 검증할 수 없다면, 디지털 서명은 부정확한 것으로 결정될 수 있고, 트랜잭션은 거부될 수 있다. 일부 구현들에서, 블록체인 노드(504)는 또한 이중 지출 방지 메커니즘을 포함할 수 있다. 블록체인 노드(504)는 트랜잭션이 이미 실행되었거나 기록되었는지를 검증할 수 있다. 트랜잭션이 이미 실행되었다면, 트랜잭션은 거부될 수 있다. 그렇지 않다면, 트랜잭션의 유효성 검사가 진행될 수 있다.
518에서, 블록체인 노드(504)는 하나 이상의 범위 증명을 검증한다. 예를 들어, 범위 증명 RP1은 트랜잭션 금액 t가 0 이상임을 입증하는 데 사용될 수 있고, 범위 증명 RP2는 트랜잭션 금액 t가 사용자 노드 A(502)의 계정 잔액 이하임을 입증하는 데 사용될 수 있다.
520에서, 블록체인 노드(504)는 값들의 세트에 기초하여 제1 트랜잭션 금액이 제2 트랜잭션 금액과 동일한지, 그리고 제1 난수가 제2 난수와 동일한지를 결정한다. 일부 구현들에서, 결정은 gahb = CTx, u2av2c = DZ_B1x, 및 u2bv2d = EZ_B2x인지를 결정하는 것을 포함하고, 여기서 T = grht는 제1 트랜잭션 금액 t의 커미트먼트 값이고, Z_B1 = u2rv2z1, Z_B2 = u2tv2z2이고, z1 및 z2는 확률론적 HE 스킴에 기초하여 제2 트랜잭션 금액 및 제2 난수를 암호화하는 데 사용되는 난수들이다. 참이면, 이는 커미트먼트 내의 난수 및 트랜잭션 금액이 사용자 노드 A(502), 및 사용자 노드 B의 공개 키들을 사용하여 동형으로 암호화된 난수들 및 트랜잭션 금액들과 각각 동일하고, 트랜잭션이 유효함을 나타낼 수 있다.
522에서, 블록체인 노드(504)는 사용자 노드 A(502) 및 사용자 노드 B의 계정 잔액들을 업데이트한다. 계정 잔액 업데이트들은 사용자 노드 A(502) 및/또는 사용자 노드 B의 계정 잔액들을 드러내지 않고서 HE의 속성들에 기초하여 수행될 수 있다.
도 6은 본 개시의 구현들에 따른, HE에 기초한 다른 예시적인 블록체인 트랜잭션(600)을 묘사한다. 예시적인 트랜잭션(600)에 도시된 바와 같이, 사용자 노드 A(602)는 트랜잭션 금액 t를 사용자 노드 B(606)로 이체한다. 트랜잭션 전에, 사용자 노드 A(602)는 s_A의 계정 잔액을 갖고, 사용자 노드 B(606)는 s_B의 계정 잔액을 갖는다.
일부 예들에서, 계정 잔액 s_A는 도 5를 참조하여 본 명세서에서 설명된 암호화 스킴들 및 트랜잭션 프로세스를 사용하여 PC에 기초한 난수 r_A를 사용하여 숨겨질 수 있다. 난수 r_A 및 계정 잔액은 OU에 기초하여 암호화될 수 있다. 계정 잔액 s_A의 암호문은 (S_A, R_A, Q_A) = (gr _ Ahs _A, OU_A(r_A), OU_A(s_A))로 표현될 수 있고, 여기서 g 및 h는 계정 잔액 s_A의 PC를 생성하기 위한 타원 곡선의 생성자들일 수 있다. 유사하게, 사용자 노드 B(606)의 계정 잔액 s_B는 PC에 기초한 난수 r_B를 사용하여 암호화될 수 있다. 계정 잔액 s_B의 암호문은 (S_B, S'_B) = (gr _ Bhs _B, OU_B(r_B), OU_B(s_B))로 표현될 수 있다.
604에서, 사용자 노드 A(602)는 트랜잭션의 유효성을 검사하는 데 사용되는 증명들에 디지털 서명을 추가하고, 디지털 서명된 사본을 블록체인 네트워크(608)에 제출할 수 있다. 도 5를 참조하여 본 명세서에서 설명된 바와 같이, 증명들은 트랜잭션 금액(PC(r, t), OU_A(r), OU_A(t), OU_B(r), OU_B(t)), 하나 이상의 범위 증명(RP1, RP2), 및 다른 증명들(C, D, E, a, b, c, d)의 암호문을 포함할 수 있다.
트랜잭션 후에, 사용자 노드 A(602)의 계정 잔액은 s_A - t로 표현될 수 있고, 사용자 노드 B(606)의 계정 잔액은 s_B + t로 표현될 수 있다. 트랜잭션 후에 사용자 노드 A(602)의 계정 잔액의 암호문은 (S_A / T,R_A / Y_A1, Q_A / Y_A2)로 표현될 수 있고, 여기서 Y_A1 = OU_A(r) 및 Y_A2 = OU_A(t)이다. 트랜잭션 후에 사용자 노드 B(606)의 계정 잔액의 암호문은 (S_B * T,R_B * Z_B1,Q_B * Z_B2)로 표현될 수 있고, 여기서 Z_B1 = OU_B(r) 및 Z_B2 = OU_B(t)이다. S_A, S_B, R_A, R_B, Q_A, Q_B, Y_A1, Y_A2, Z_B1, Z_B2, 및 T는 이중 지수 형태를 갖는 HE를 사용하여 암호화되므로, 평문 값들을 복호화하지 않고서 그들의 암호화된 형태로 가산 및 감산이 수행될 수 있다.
도 7은 본 개시의 구현들에 따라 실행될 수 있는 예시적인 프로세스(700)를 묘사한다. 프레젠테이션의 명확성을 위해, 이하의 설명은 이 설명에서 다른 도면들의 컨텍스트에서 방법(700)을 일반적으로 설명한다. 그러나, 예시적인 프로세스(700)는, 예를 들어, 임의의 시스템, 환경, 소프트웨어 및 하드웨어, 또는 적절하게, 시스템들, 환경들, 소프트웨어, 및 하드웨어의 조합에 의해 수행될 수 있다는 것이 이해될 것이다. 일부 구현들에서, 예시적인 프로세스(700)의 단계들은 병렬로, 조합으로, 루프로, 또는 임의의 순서로 실행될 수 있다.
702에서, 합의 노드는, 제1 계정으로부터, 제1 난수에 기초하여 생성된 제1 계정으로부터 제2 계정으로 이체될 트랜잭션 금액의 커미트먼트 값의 디지털 서명된 사본을 수신한다. 합의 노드는 또한 제1 계정으로부터, 제1 계정의 공개 키를 사용하여 암호화된 제2 난수, 제2 계정의 공개 키를 사용하여 암호화된 제3 난수, 하나 이상의 범위 증명, 및 하나 이상의 선택된 난수에 기초하여 HE를 사용하여 생성된 값들의 세트를 수신할 수 있다. 일부 구현들에서, 커미트먼트 값은 HE 기반 커미트먼트 스킴을 사용하여 생성된다. 일부 구현들에서, 제2 난수 및 제3 난수는 결정론적 HE 스킴에 기초하여 암호화된다.
일부 구현들에서, 값들의 세트는 (T1, T1', T1", r2, t2)에 의해 표현되고, 여기서 r2 = r1 + xr, t2 = t1 + xt이고, 여기서 r1 및 t1은 하나 이상의 선택된 난수를 나타내고, r은 제1 난수를 나타내고, t는 잔액 이체의 금액을 나타낸다. 일부 예들에서, T1 = gr1ht1, T1' = HE_A(r1), T1" = HE_B(r1)이고, 여기서 g 및 h는 타원 곡선의 생성자들이고, HE_A(r1)는 제1 계정의 공개 키를 사용하여 r1의 HE에 기초해서 생성되고, HE_B(r1)은 제2 계정의 공개 키를 사용하여 r1의 HE에 기초하여 생성된다. 일부 예들에서, x는 T1, T1' 및 T1"의 해싱에 기초하여 생성된다.
704에서, 합의 노드는 디지털 서명을 생성하는 데 사용된 개인 키에 대응하는 제1 계정의 공개 키를 사용하여 디지털 서명된 사본에 대응하는 디지털 서명을 검증한다.
706에서, 합의 노드는 하나 이상의 범위 증명이, 잔액 이체의 금액이 0보다 크고 제1 계정의 잔액 이하임을 입증하는지를 결정한다.
708에서, 합의 노드는 값들의 세트에 기초하여 제1 난수, 제2 난수, 및 제3 난수가 동일한지를 결정한다. 일부 구현들에서, gr2ht2 = TxT1, HE_A(r2) = T'xT1', 및 HE_B(r2) = T"xT1"이면, 제1 난수, 제2 난수, 및 제3 난수는 동일한 것으로 결정되고, 여기서 T = grht는 잔액 이체의 금액의 커미트먼트 값이고, T' = HE_A(r), 및 T" = HE_B(r)이고, HE_A(r)는 제1 계정의 공개 키를 사용하여 r의 HE에 기초해서 생성되고, HE_B(r)는 제2 계정의 공개 키를 사용하여 r의 HE에 기초해서 생성되고, HE_A(r2)은 제1 계정의 공개 키를 사용하여 r2의 HE에 기초해서 생성되고, HE_B(r2)는 제2 계정의 공개 키를 사용하여 r2의 HE에 기초해서 생성되고, x는 g, h, T1, T1' 및 T1"의 해싱에 기초하여 생성된다. 일부 구현들에서, T, T', 및 T"는 트랜잭션 금액 t의 암호문을 형성한다.
710에서, 합의 노드는 제1 난수, 제2 난수, 및 제3 난수가 동일하면, 트랜잭션 금액에 기초하여 제1 계정의 잔액 및 제2 계정의 잔액을 업데이트한다. 일부 구현들에서, 제1 계정의 잔액 및 제2 계정의 잔액을 업데이트하는 것은 HE에 기초하여 수행된다.
도 8은 본 개시의 구현들에 따라 실행될 수 있는 다른 예시적인 프로세스(800)를 묘사한다. 프레젠테이션의 명확성을 위해, 이하의 설명은 이 설명에서 다른 도면들의 컨텍스트에서 예시적인 프로세스(800)을 일반적으로 설명한다. 그러나, 예시적인 프로세스(800)는, 예를 들어, 임의의 시스템, 환경, 소프트웨어 및 하드웨어, 또는 적절하게, 시스템들, 환경들, 소프트웨어, 및 하드웨어의 조합에 의해 수행될 수 있다는 것을 이해할 것이다. 일부 구현들에서, 예시적인 프로세스(800)의 단계들은 병렬로, 조합으로, 루프로, 또는 임의의 순서로 실행될 수 있다.
802에서, 합의 노드는, 제1 계정으로부터, 제1 계정으로부터 제2 계정으로 이체할 제1 트랜잭션 금액의 커미트먼트 값의 디지털 서명된 사본을 수신한다. 일부 예들에서, 커미트먼트 값의 디지털 서명된 사본은 제1 난수에 기초하여 생성된다. 합의 노드는 또한 제1 계정의 공개 키를 사용하여 암호화된 제1 난수 및 제1 트랜잭션 금액, 제2 계정의 공개 키를 사용하여 암호화된 제2 난수 및 잔액 이체의 제2 금액, 하나 이상의 범위 증명, 및 하나 이상의 선택된 난수에 기초하여 HE를 사용하여 생성된 값들의 세트를 수신한다. 일부 구현들에서, 커미트먼트 값은 PC 스킴을 사용하여 생성된다. 일부 구현들에서, 잔액 이체의 제1 금액 및 제1 난수는 확률론적 HE 알고리즘에 기초하여 제1 계정의 공개 키를 사용하여 암호화된다. 일부 예들에서, 잔액 이체의 제2 금액 및 제2 난수는 확률론적 HE 알고리즘에 기초하여 제2 계정의 공개 키를 사용하여 암호화된다. 일부 구현들에서, 확률론적 HE 알고리즘은 Okamoto-Uchiyama HE 알고리즘이다.
일부 구현들에서, 값들의 세트는 (C, D, E, a, b, c, d)에 의해 표현되고, a = r* + xr, b = t* + xt, c = z1* + xz1, 및 d = z2* + xz2이고, 여기서 r*, t*, z1*, 및 z2*는 하나 이상의 선택된 난수를 나타내고, r은 제1 난수를 나타내고, t는 잔액 이체의 제1 금액을 나타내고, C = gr *ht*, D = u2r *v2z1 *, E = u2t *v2z2 *이고, g, h, u2, 및 v2는 타원 곡선의 생성자들이고, x는 C, D 및 E의 해싱에 기초하여 생성된다.
804에서, 합의 노드는 디지털 서명을 생성하는 데 사용된 개인 키에 대응하는 제1 계정의 공개 키를 사용하여 디지털 서명된 사본에 대응하는 디지털 서명을 검증한다.
806에서, 합의 노드는 하나 이상의 범위 증명이, 잔액 이체의 금액이 0보다 크고 제1 계정의 잔액 이하임을 입증하는지를 결정한다.
808에서, 합의 노드는 값들의 세트에 기초하여 제1 금액이 제2 금액과 동일한지, 그리고 제1 난수가 제2 난수와 동일한지를 결정한다. 일부 구현들에서, gahb = CTx, u2av2c = DZ_B1x, 및 u2bv2d = EZ_B2x이면, 제1 금액 및 제2 금액은 동일한 것으로 결정되고, 제1 난수 및 제2 난수는 동일한 것으로 결정되고, 여기서 T = grht는 잔액 이체의 금액의 커미트먼트 값이고, Z_B1 = u2rv2z1, Z_B2 = u2tv2z2이다. 일부 예들에서, z1 및 z2는 확률론적 HE 스킴에 기초하여 제2 트랜잭션 금액 및 제2 난수를 암호화하는 데 사용되는 난수들이다.
810에서, 합의 노드는 제1 금액 및 제2 금액이 동일하고, 제1 난수 및 제2 난수가 동일하면, 잔액 이체의 제1 금액에 기초하여 제1 계정의 잔액 및 제2 계정의 잔액을 업데이트한다. 일부 구현들에서, 제1 계정의 잔액 및 제2 계정의 잔액을 업데이트하는 것은 HE에 기초하여 수행된다.
본 명세서에서 설명된 내용의 구현들은 특정한 이점들 또는 기술적 효과들을 실현하도록 구현될 수 있다. 예를 들어, 본 개시의 구현들은 블록체인 노드들의 계정 잔액 및 트랜잭션 금액이 트랜잭션 시에 비공개적인 것(private)을 가능하게 한다. 자금 이체의 수신자는 트랜잭션을 확인하거나 난수를 사용하여 커미트먼트를 검증할 필요가 없고, 트랜잭션 유효성 검사는 넌-인터랙티브(non-interactive)일 수 있다. 블록체인 노드는 HE 및 커미트먼트 스킴들에 기초해서 트랜잭션의 유효성을 검사하여 영지식 증명을 허용할 수 있다.
설명된 방법은 다양한 모바일 컴퓨팅 디바이스의 계정/데이터 보안의 향상을 가능하게 한다. 계정들의 잔액 및 트랜잭션 금액은 HE에 기초하여 암호화될 수 있고 커미트먼트 스킴들에 의해 숨겨질 수 있다. 그에 따라, 합의 노드는 계정의 실제 계정 잔액를 드러냄 없이 HE의 속성들에 기초한 트랜잭션 후에 원장 내의 계정 잔액들을 업데이트할 수 있다. 트랜잭션을 확인하기 위해 난수가 수신자에게 전송될 필요가 없기 때문에, 데이터 유출의 위험이 감소되고 난수를 관리하는 데 사용될 필요가 있는 컴퓨팅 및 메모리 리소스들이 적어진다.
본 명세서에서 설명된 구현들 및 동작들은 본 명세서에 개시된 구조들 또는 이들 중 하나 이상의 조합들을 포함하여, 디지털 전자 회로에서, 또는 컴퓨터 소프트웨어, 펌웨어, 또는 하드웨어에서 구현될 수 있다. 동작들은 하나 이상의 컴퓨터 판독가능 저장 디바이스 상에 저장된 또는 다른 소스들로부터 수신된 데이터에 대해 데이터 처리 장치에 의해 수행되는 동작들로서 구현될 수 있다. 데이터 처리 장치, 컴퓨터, 또는 컴퓨팅 디바이스는 예로서 프로그램 가능 프로세서, 컴퓨터, 시스템 온 칩, 또는 전술한 것 중 다수의 것들, 또는 그의 조합들을 포함하여, 데이터를 처리하기 위한 장치, 디바이스, 및 머신을 포함할 수 있다. 장치는, 예를 들어, 중앙 처리 유닛(CPU), 필드 프로그래머블 게이트 어레이(FPGA) 또는 주문형 집적 회로(ASIC)와 같은 특수 목적 로직 회로를 포함할 수 있다. 장치는 또한 문제의 컴퓨터 프로그램에 대한 실행 환경을 생성하는 코드, 예를 들어, 프로세서 펌웨어를 구성하는 코드, 프로토콜 스택, 데이터베이스 관리 시스템, 운영 체제(예를 들어 운영 체제 또는 운영 체제들의 조합), 크로스-플랫폼 런타임 환경, 가상 머신, 또는 이들 중 하나 이상의 조합을 포함할 수 있다. 장치 및 실행 환경은 웹 서비스, 분산 컴퓨팅 및 그리드 컴퓨팅 인프라와 같은, 다양한 상이한 컴퓨팅 모델 인프라들을 실현할 수 있다.
컴퓨터 프로그램(예를 들어, 프로그램, 소프트웨어, 소프트웨어 애플리케이션, 소프트웨어 모듈, 소프트웨어 유닛, 스크립트 또는 코드로도 알려져 있음)은 컴파일된 또는 해석형 언어, 선언적 또는 절차 언어를 포함한, 임의의 형태의 프로그래밍 언어로 작성할 수 있고, 그것은 독립형 프로그램으로서 또는 모듈, 컴포넌트, 서브루틴, 객체, 또는 컴퓨팅 환경에서 사용하기에 적합한 다른 유닛으로서 배포되는 것을 포함하여, 임의의 형태로 배포할 수 있다. 프로그램은 다른 프로그램들 또는 데이터를 유지하는 파일의 일부(예를 들어, 마크업 언어 문서에 저장된 하나 이상의 스크립트)에, 문제의 프로그램에 전용되는 단일 파일에, 또는 다수의 코디네이션된 파일들(예를 들어, 하나 이상의 모듈, 서브-프로그램, 또는 코드의 부분들을 저장하는 파일들)에 저장될 수 있다. 컴퓨터 프로그램은 하나의 컴퓨터 상에서 또는 하나의 사이트에 위치하는 또는 다수의 사이트에 걸쳐 분산되고 통신 네트워크에 의해 상호 연결되는 다수의 컴퓨터 상에서 실행될 수 있다.
컴퓨터 프로그램의 실행을 위한 프로세서들은, 예로서, 범용 및 특수 목적 마이크로프로세서 양쪽 모두, 및 임의의 종류의 디지털 컴퓨터의 임의의 하나 이상의 프로세서를 포함한다. 일반적으로, 프로세서는 판독 전용 메모리 또는 랜덤 액세스 메모리 또는 양쪽 모두로부터 명령어 및 데이터를 수신할 것이다. 컴퓨터의 필수 요소들은 명령어에 따라 액션들을 수행하기 위한 프로세서 및 명령어 및 데이터를 저장하기 위한 하나 이상의 메모리 디바이스이다. 일반적으로, 컴퓨터는 또한 데이터를 저장하기 위한 하나 이상의 대용량 저장 디바이스를 포함하거나, 그로부터 데이터를 수신하거나 그것에 데이터를 전송하거나, 또는 양쪽 모두를 수행하기 위해 동작 가능하게 결합될 것이다. 컴퓨터는 다른 디바이스, 예를 들어, 모바일 디바이스, 개인 휴대 정보 단말기(PDA), 게임 콘솔, 글로벌 포지셔닝 시스템(GPS) 수신기, 또는 휴대용 저장 디바이스에 임베드될 수 있다. 컴퓨터 프로그램 명령어 및 데이터를 저장하기에 적합한 디바이스들은, 예로서, 반도체 메모리 디바이스, 자기 디스크, 및 광자기 디스크를 포함하여, 비휘발성 메모리, 매체 및 메모리 디바이스를 포함한다. 프로세서 및 메모리는 특수 목적 로직 회로에 의해 보완되거나 그에 통합될 수 있다.
모바일 디바이스들은 핸드세트, 사용자 장비(UE), 휴대 전화(예를 들어, 스마트폰), 태블릿, 웨어러블 디바이스(예를 들어, 스마트 시계 및 스마트 안경), 인체 내부의 이식된 디바이스(예를 들어, 바이오센서, 와우 이식), 또는 다른 유형의 모바일 디바이스를 포함할 수 있다. 모바일 디바이스들은 다양한 통신 네트워크(아래에 설명됨)에 무선으로(예를 들어, 무선 주파수(RF) 신호를 사용하여) 통신할 수 있다. 모바일 디바이스들은 모바일 디바이스의 현재 환경의 특성을 결정하기 위한 센서들을 포함할 수 있다. 센서들은 카메라, 마이크, 근접 센서, GPS 센서, 모션 센서, 가속도계, 주변 광 센서, 습도 센서, 자이로스코프, 컴퍼스, 기압계, 지문 센서, 얼굴 인식 시스템, RF 센서(예를 들어, Wi-Fi 및 셀룰러 라디오), 열 센서, 또는 다른 유형의 센서들을 포함할 수 있다. 예를 들어, 카메라들은 가동 또는 고정 렌즈들, 플래시, 이미지 센서, 및 이미지 프로세서를 갖는 전방 또는 후방 카메라를 포함할 수 있다. 카메라는 얼굴 및/또는 홍채 인식을 위한 상세한 사항들을 캡처할 수 있는 메가픽셀 카메라일 수 있다. 카메라는 메모리에 저장되거나 원격으로 액세스되는 데이터 프로세서 및 인증 정보와 함께 얼굴 인식 시스템을 구성할 수 있다. 얼굴 인식 시스템 또는 하나 이상의 센서, 예를 들어, 마이크, 모션 센서, 가속도계, GPS 센서, 또는 RF 센서가 사용자 인증에 사용될 수 있다.
사용자와의 상호 작용을 제공하기 위해, 구현들은 디스플레이 디바이스 및 입력 디바이스, 예를 들어, 사용자에게 정보를 디스플레이하기 위한 액정 디스플레이(LCD) 또는 유기 발광 다이오드(OLED)/가상 현실(VR)/증강 현실(AR) 디스플레이 및 사용자가 컴퓨터에 정보를 입력하는 데 사용될 수 있는 터치스크린, 키보드, 및 포인팅 디바이스를 갖는 컴퓨터 상에 구현될 수 있다. 다른 종류의 디바이스들도 사용자와의 상호 작용을 제공하는 데 사용될 수 있는데, 예를 들어, 사용자에게 제공되는 피드백은 임의의 형태의 감각 피드백, 예를 들어, 시각 피드백, 청각 피드백, 또는 촉각 피드백일 수 있고; 사용자로부터의 입력은 음향, 음성, 또는 촉각 입력을 포함하여, 임의의 형태로 수신될 수 있다. 또한, 컴퓨터는 사용자에 의해 사용되는 디바이스에 문서를 전송하고 그로부터 문서를 수신함으로써 예를 들어, 웹 브라우저로부터 수신된 요청에 응답하여 사용자의 클라이언트 디바이스 상의 웹 브라우저에 웹 페이지를 전송함으로써 사용자와 상호 작용할 수 있다.
구현들은 유선 또는 무선 디지털 데이터 통신(또는 이들의 조합)의 임의의 형태 또는 매체, 예를 들어, 통신 네트워크에 의해 상호 연결된 컴퓨팅 디바이스들을 사용하여 구현될 수 있다. 상호 연결된 디바이스들의 예는 전형적으로 통신 네트워크를 통해 상호 작용하는 일반적으로 서로 멀리 떨어진 클라이언트 및 서버이다. 클라이언트, 예를 들어, 모바일 디바이스는 자체로, 서버와, 또는 서버를 통해 트랜잭션들을 수행, 예를 들어, 구매, 판매, 지불, 제공, 전송, 또는 대출 트랜잭션들을 수행하거나, 또는 그것을 허가할 수 있다. 그러한 트랜잭션들은 액션과 응답이 시간적으로 근접하도록 실시간으로 이루어질 수 있는데, 예를 들어 개인이 액션과 응답이 실질적으로 동시에 발생하는 것을 인지하거나, 개인의 액션에 후속하는 응답에 대한 시간 차이가 1 밀리초(ms) 미만 또는 1 초 미만이거나, 또는 응답은 시스템의 처리 제한을 고려하여 의도적인 지연이 없다.
통신 네트워크들의 예는 로컬 영역 네트워크(LAN), 무선 액세스 네트워크(RAN), 대도시 영역 네트워크(MAN), 및 광역 네트워크(WAN)를 포함한다. 통신 네트워크는 인터넷의 전부 또는 일부, 다른 통신 네트워크, 또는 통신 네트워크들의 조합을 포함할 수 있다. 정보는 LTE(Long Term Evolution), 5G, IEEE 802, 인터넷 프로토콜(IP) 또는 다른 프로토콜들 또는 프로토콜들의 조합들을 포함하여, 다양한 프로토콜들 및 표준들에 따라 통신 네트워크 상에서 송신될 수 있다. 통신 네트워크는 연결된 컴퓨팅 디바이스들 간에 음성, 비디오, 생체 인식, 또는 인증 데이터, 또는 다른 정보를 송신할 수 있다.
개별 구현들로서 기술된 특징들은 단일 구현에서, 조합하여 구현될 수 있는 반면, 단일 구현으로서 기술된 특징들은 다수의 구현들에서, 개별적으로, 또는 임의의 적합한 부분 조합으로 구현될 수 있다. 특정 순서로 설명되고 청구된 동작들은 그 특정 순서를 요구하는 이해되어서도 안 되고, 모든 예시된 동작들이 수행되어야 하는 것으로 이해되어서도 안된다(일부 동작들은 선택 사항일 수 있다). 적절하게, 멀티태스킹 또는 병렬 처리(또는 멀티태스킹과 병렬 처리의 조합)가 수행될 수 있다.

Claims (12)

  1. 블록체인 네트워크의 합의 노드(consensus node)에 의해 수행되는 컴퓨터 구현 방법(computer-implemented method)에 있어서,
    제1 계정으로부터,
    제1 난수에 기초하여 생성된 상기 제1 계정으로부터 제2 계정으로의 잔액 이체와 관련된 트랜잭션 금액의 커미트먼트 값(commitment value);
    상기 제1 계정의 공개 키를 사용하여 암호화된 제2 난수;
    상기 제2 계정의 공개 키를 사용하여 암호화된 제3 난수;
    하나 이상의 범위 증명(range proof); 및
    하나 이상의 선택된 난수에 기초하여 생성된 값들의 세트
    의 디지털 서명된 사본을 수신하는 단계;
    디지털 서명을 생성하는 데 사용된 개인 키에 대응하는 상기 제1 계정의 공개 키를 사용하여 상기 디지털 서명된 사본에 대응하는 상기 디지털 서명을 검증하는 단계;
    영지식 범위 증명(Zero-Knowledge Range Proofs)의 동작들을 수행함으로써, 상기 하나 이상의 범위 증명이, 상기 트랜잭션 금액이 0보다 크고 상기 제1 계정의 잔액 이하임을 입증하는 것으로 결정하는 단계;
    상기 값들의 세트에 기초하여 상기 제1 난수, 상기 제2 난수, 및 상기 제3 난수가 동일한 것으로 결정하는 단계; 및
    상기 제1 난수, 상기 제2 난수, 및 상기 제3 난수가 동일한 것으로 결정하는 것에 응답하여, 상기 잔액 이체의 금액에 기초하여 상기 제1 계정의 잔액 및 상기 제2 계정의 잔액을 업데이트하는 단계를 포함하고,
    상기 제2 난수 및 상기 제3 난수는 결정론적(deterministic) 동형 암호화(homomorphic encryption; HE) 스킴 - 상기 결정론적 HE 스킴은 HE(a + b) = HE(a) * HE(b) 및 HE(ab) = HE(b)a인 선형 속성들을 가지며, 여기서 a 및 b는 HE를 위해 사용되는 평문임 - 에 기초하여 암호화되는, 컴퓨터 구현 방법.
  2. 제1항에 있어서, 상기 커미트먼트 값은 동형인 커미트먼트 스킴을 사용하여 생성되는, 컴퓨터 구현 방법.
  3. 제2항에 있어서, 상기 커미트먼트 스킴은 페더슨 커미트먼트 스킴(Pedersen commitment scheme)인, 컴퓨터 구현 방법.
  4. 삭제
  5. 제1항에 있어서, 상기 하나 이상의 선택된 난수는 r1 및 t1에 의해 표현되고, 상기 하나 이상의 선택된 난수는 r2 및 t2를 생성하는 데 사용되며, 여기서 r2 = r1 + xr, t2 = t1 + xt이고, r1 및 t1은 상기 하나 이상의 선택된 난수를 나타내고, r은 상기 제1 난수이며, t는 상기 잔액 이체의 금액이고, x는 해시 값인, 컴퓨터 구현 방법.
  6. 제5항에 있어서, 상기 값들의 세트는 또한 T1, T1' 및 T1"에 기초하여 생성되며, 여기서 T1 = gr1ht1, T1' = HE_A(r1), T1" = HE_B(r1)이고, g 및 h는 타원 곡선의 생성자들이고, HE_A(r1)는 상기 제1 계정의 공개 키를 사용하여 r1의 HE에 기초해서 생성되며, HE_B(r1)는 상기 제2 계정의 공개 키를 사용하여 r1의 HE에 기초해서 생성되고, x는 T1, T1' 및 T1"의 해싱에 기초하여 생성되는, 컴퓨터 구현 방법.
  7. 제6항에 있어서, 상기 결정론적 HE 스킴의 상기 선형 속성들에 기초하여 상기 제1 난수, 상기 제2 난수, 및 상기 제3 난수가 동일한 것으로 결정되는, 컴퓨터 구현 방법.
  8. 제6항에 있어서, gr2ht2 = TxT1, HE_A(r2) = T'xT1', 및 HE_B(r2) = T"xT1"이면 상기 제1 난수, 상기 제2 난수, 및 상기 제3 난수는 동일한 것으로 결정되며, 여기서 T = grht, T' = HE_A(r), 및 T" = HE_B(r)이고, HE_A(r) 및 HE_A(r2)는 상기 제1 계정의 공개 키를 사용하여, 각각, r 및 r2의 HE에 기초해서 생성되고, HE_B(r) 및 HE_B(r2)는 상기 제2 계정의 공개 키를 사용하여 r 및 r2의 HE에 기초해서 생성되는, 컴퓨터 구현 방법.
  9. 제8항에 있어서, T, T', 및 T"는 트랜잭션 금액 t의 암호문을 형성하는, 컴퓨터 구현 방법.
  10. 제1항에 있어서, 상기 제1 계정의 잔액 및 상기 제2 계정의 잔액을 업데이트하는 단계는 동형 암호화에 기초하여 수행되는, 컴퓨터 구현 방법.
  11. 하나 이상의 프로세서에 결합되고 명령어가 저장되어 있는 비일시적 컴퓨터 판독가능 저장 매체에 있어서, 상기 명령어는 상기 하나 이상의 프로세서에 의해 실행될 때, 상기 하나 이상의 프로세서로 하여금 제1항 내지 제3항과 제5항 내지 제10항 중 어느 한 항에 기재된 방법에 따른 동작들을 수행하게 하는, 비일시적 컴퓨터 판독가능 저장 매체.
  12. 시스템에 있어서,
    컴퓨팅 디바이스; 및
    상기 컴퓨팅 디바이스에 결합되고 명령어가 저장되어 있는 컴퓨터 판독가능 저장 디바이스를 포함하고, 상기 명령어는 상기 컴퓨팅 디바이스에 의해 실행될 때, 상기 컴퓨팅 디바이스로 하여금 제1항 내지 제3항과 제5항 내지 제10항 중 어느 한 항에 기재된 방법에 따른 동작들을 수행하게 하는, 시스템.
KR1020197011580A 2018-11-07 2018-11-07 동형 암호화를 이용한 블록체인 데이터 보호 KR102348768B1 (ko)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/114421 WO2019072269A2 (en) 2018-11-07 2018-11-07 PROTECTION OF BLOCK CHAIN DATA USING A HOMOMORPHIC ENCRYPTION

Publications (2)

Publication Number Publication Date
KR20200054129A KR20200054129A (ko) 2020-05-19
KR102348768B1 true KR102348768B1 (ko) 2022-01-06

Family

ID=66100026

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020197011580A KR102348768B1 (ko) 2018-11-07 2018-11-07 동형 암호화를 이용한 블록체인 데이터 보호

Country Status (16)

Country Link
US (1) US10615960B2 (ko)
EP (1) EP3545640B1 (ko)
JP (1) JP6767580B2 (ko)
KR (1) KR102348768B1 (ko)
CN (1) CN110546667B (ko)
AU (1) AU2018348319B2 (ko)
BR (1) BR112019008151A2 (ko)
CA (1) CA3041161C (ko)
ES (1) ES2876926T3 (ko)
MX (1) MX2019004662A (ko)
PH (1) PH12019500877A1 (ko)
PL (1) PL3545640T3 (ko)
RU (1) RU2708344C1 (ko)
SG (1) SG11201903552PA (ko)
TW (1) TWI718585B (ko)
WO (1) WO2019072269A2 (ko)

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11507683B2 (en) 2017-01-20 2022-11-22 Enveil, Inc. Query processing with adaptive risk decisioning
US11777729B2 (en) 2017-01-20 2023-10-03 Enveil, Inc. Secure analytics using term generation and homomorphic encryption
WO2018136801A1 (en) 2017-01-20 2018-07-26 Enveil, Inc. End-to-end secure operations using a query matrix
WO2018136811A1 (en) 2017-01-20 2018-07-26 Enveil, Inc. Secure web browsing via homomorphic encryption
US11196541B2 (en) 2017-01-20 2021-12-07 Enveil, Inc. Secure machine learning analytics using homomorphic encryption
US10880275B2 (en) 2017-01-20 2020-12-29 Enveil, Inc. Secure analytics using homomorphic and injective format-preserving encryption
SG11201913426RA (en) * 2018-05-08 2020-01-30 Visa Int Service Ass Sybil-resistant identity generation
CN109359971B (zh) 2018-08-06 2020-05-05 阿里巴巴集团控股有限公司 区块链交易方法及装置、电子设备
CN109359974B (zh) * 2018-08-30 2020-10-30 创新先进技术有限公司 区块链交易方法及装置、电子设备
US10902133B2 (en) 2018-10-25 2021-01-26 Enveil, Inc. Computational operations in enclave computing environments
US10817262B2 (en) 2018-11-08 2020-10-27 Enveil, Inc. Reduced and pipelined hardware architecture for Montgomery Modular Multiplication
SG11201906751YA (en) 2018-12-21 2019-08-27 Alibaba Group Holding Ltd Blockchain data protection based on generic account model and homomorphic encryption
JP6871380B2 (ja) 2018-12-29 2021-05-12 アドバンスド ニュー テクノロジーズ カンパニー リミテッド 情報保護のシステム及び方法
DE102019002732A1 (de) * 2019-04-15 2020-10-15 Giesecke+Devrient Gesellschaft mit beschränkter Haftung Verfahren zum direkten Übertragen von elektronischen Münzdatensätzen zwischen Endgeräten sowie Bezahlsystem
US11444776B2 (en) * 2019-05-01 2022-09-13 Kelce S. Wilson Blockchain with daisy chained records, document corral, quarantine, message timestamping, and self-addressing
CN113139873A (zh) * 2019-08-30 2021-07-20 创新先进技术有限公司 在区块链中并发执行交易的方法和装置
EP3861676A1 (en) * 2019-10-21 2021-08-11 Google LLC Verifiable consent for privacy protection
CN110766400B (zh) * 2019-10-22 2023-01-13 全链通有限公司 基于区块链的交易记录处理方法、记账节点及介质
CN111078787B (zh) * 2019-11-11 2023-07-21 重庆邮电大学 一种基于随机数映射的区块链共识方法
CN111104968B (zh) * 2019-12-02 2023-04-18 北京理工大学 一种基于区块链的安全svm训练方法
CN113055177B (zh) * 2019-12-27 2022-08-16 深圳市迅雷网络技术有限公司 区块链系统及数值信息传输方法、系统、装置、介质
CN113128999B (zh) * 2019-12-31 2024-04-12 航天信息股份有限公司 一种区块链隐私保护方法及装置
CN113065951A (zh) * 2020-01-02 2021-07-02 苏州同济区块链研究院有限公司 基于区块链的交易方法、系统、装置、设备及介质
WO2020098833A2 (en) 2020-02-03 2020-05-22 Alipay (Hangzhou) Information Technology Co., Ltd. Blockchain-based trustable gurantees
EP3799644B1 (en) 2020-02-03 2022-11-02 Alipay (Hangzhou) Information Technology Co., Ltd. Blockchain-based trustable guarantees
EP3794484B1 (en) 2020-02-03 2024-04-17 Alipay (Hangzhou) Information Technology Co., Ltd. Blockchain-based trustable guarantees
CN111433799B (zh) 2020-02-03 2022-03-25 支付宝(杭州)信息技术有限公司 基于区块链的可信保函
SG11202012925RA (en) 2020-02-03 2021-01-28 Alipay Hangzhou Inf Tech Co Ltd Blockchain-based trustable guarantees
SG11202013145YA (en) 2020-02-03 2021-01-28 Alipay Hangzhou Inf Tech Co Ltd Blockchain-based trustable guarantees
DE102020104906A1 (de) * 2020-02-25 2021-08-26 Giesecke+Devrient Gesellschaft mit beschränkter Haftung Verfahren zum direkten übertragen von elektronischen münzdatensätzen zwischen endgeräten, bezahlsystem, währungssystem und überwachungseinheit
CN111523891B (zh) * 2020-04-23 2023-11-24 腾讯科技(深圳)有限公司 基于区块链的信息加密方法、装置、设备及存储介质
CN111936995A (zh) 2020-06-08 2020-11-13 支付宝实验室(新加坡)有限公司 海关清关数据的分布式存储
CN111868725B (zh) 2020-06-08 2024-05-24 支付宝实验室(新加坡)有限公司 基于区块链处理进口海关清关数据
CN111936994A (zh) 2020-06-08 2020-11-13 支付宝实验室(新加坡)有限公司 用于海关清关的基于区块链的文档注册
CN111989663B (zh) 2020-06-08 2024-07-16 支付宝实验室(新加坡)有限公司 基于区块链的智能合约池
WO2020169126A2 (en) 2020-06-08 2020-08-27 Alipay Labs (singapore) Pte. Ltd. Managing user authorizations for blockchain-based custom clearance services
WO2020169127A2 (en) 2020-06-08 2020-08-27 Alipay Labs (singapore) Pte. Ltd. User management of blockchain-based custom clearance service platform
WO2022056424A1 (en) * 2020-09-11 2022-03-17 Transparent Financial Systems, Inc. Distributed self-governing computer network to correlate blockchain and private computer system transactions method, apparatus, and system
US11601258B2 (en) 2020-10-08 2023-03-07 Enveil, Inc. Selector derived encryption systems and methods
US11588617B2 (en) * 2020-11-01 2023-02-21 The Toronto-Dominion Bank Validating confidential data using homomorphic computations
CN113159762B (zh) * 2021-01-28 2024-04-09 武汉天喻信息产业股份有限公司 基于Paillier和博弈论的区块链交易方法
CN112769542B (zh) * 2021-04-12 2021-06-11 富算科技(上海)有限公司 基于椭圆曲线的乘法三元组生成方法、装置、设备及介质
CN113821789B (zh) * 2021-09-26 2023-06-23 北京邮电大学 基于区块链的用户密钥生成方法、装置、设备及介质
CN114092242A (zh) * 2021-11-03 2022-02-25 支付宝(杭州)信息技术有限公司 基于范围证明实现隐私交易的方法和系统

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8744077B2 (en) * 2008-10-28 2014-06-03 International Business Machines Corporation Cryptographic encoding and decoding of secret data
JP5300983B2 (ja) * 2009-10-29 2013-09-25 三菱電機株式会社 データ処理装置
US8630422B2 (en) * 2009-11-10 2014-01-14 International Business Machines Corporation Fully homomorphic encryption method based on a bootstrappable encryption scheme, computer program and apparatus
US8861716B2 (en) * 2010-03-30 2014-10-14 International Business Machines Corporation Efficient homomorphic encryption scheme for bilinear forms
US8731199B2 (en) * 2012-09-28 2014-05-20 Sap Ag Zero knowledge proofs for arbitrary predicates over data
FR3001848B1 (fr) * 2013-02-01 2015-01-09 Morpho Procede de chiffrement homomorphe pour le ou exclusif et calcul securise d'une distance de hamming
US10083310B1 (en) * 2013-03-13 2018-09-25 Hrl Laboratories, Llc System and method for mobile proactive secure multi-party computation (MPMPC) using commitments
JP2017527192A (ja) * 2014-09-30 2017-09-14 株式会社東芝 1つまたは複数の計量デバイスから2つ以上の第3者へデータを配布する準同形ベースの方法
US20160162897A1 (en) * 2014-12-03 2016-06-09 The Filing Cabinet, LLC System and method for user authentication using crypto-currency transactions as access tokens
US9875370B2 (en) * 2015-03-26 2018-01-23 Microsoft Technology Licensing, Llc Database server and client for query processing on encrypted data
WO2016200885A1 (en) * 2015-06-08 2016-12-15 Blockstream Corporation Cryptographically concealing amounts transacted on a ledger while preserving a network's ability to verify the transaction
US10713731B2 (en) * 2016-07-22 2020-07-14 Nec Corporation Method for secure ledger distribution and computer system using secure distributed ledger technology
CN106548330B (zh) * 2016-10-27 2018-03-16 上海亿账通区块链科技有限公司 基于区块链的交易验证方法及系统
CN106571905B (zh) * 2016-11-02 2019-05-17 南京邮电大学 一种数值型数据同态保序加密方法
JP6692450B2 (ja) * 2016-11-09 2020-05-13 株式会社日立製作所 ブロックチェーン取引システムおよびブロックチェーン取引方法
CN106549749B (zh) * 2016-12-06 2019-12-24 杭州趣链科技有限公司 一种基于加法同态加密的区块链隐私保护方法
WO2018115567A1 (en) * 2016-12-19 2018-06-28 Nokia Technologies Oy Method and apparatus for private data transfer between parties
CN106845960B (zh) * 2017-01-24 2018-03-20 上海壹账通区块链科技有限公司 基于区块链的安全交易方法及系统
US10277395B2 (en) * 2017-05-19 2019-04-30 International Business Machines Corporation Cryptographic key-generation with application to data deduplication
CN107294698B (zh) * 2017-07-25 2019-11-26 西安电子科技大学 单密文同态计算的全同态加密方法
CN108021821A (zh) * 2017-11-28 2018-05-11 北京航空航天大学 多中心区块链交易隐私保护系统及方法
CN108764874B (zh) * 2018-05-17 2021-09-07 深圳前海微众银行股份有限公司 基于区块链的匿名转账方法、系统及存储介质
CN111833186A (zh) * 2018-09-20 2020-10-27 创新先进技术有限公司 基于区块链的交易方法、装置和节点设备
AU2018348318B2 (en) * 2018-11-07 2020-05-21 Advanced New Technologies Co., Ltd. Blockchain system supporting public and private transactions under account models
MX2019004656A (es) * 2018-11-07 2019-08-12 Alibaba Group Holding Ltd Proteccion de datos de cadena de bloque que usa cifrado homomorfico.
JP6817429B2 (ja) * 2018-11-07 2021-01-20 アドバンスド ニュー テクノロジーズ カンパニー リミテッド ゼロ知識証明を用いたアカウント注釈モデルに基づくブロックチェーンデータの保護

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Demirel Denise, and Jean Lancrenon. "How to Securely Prolong the Computational Bindingness of Pedersen Commitments." IACR Cryptol. ePrint Arch, 584(2015.) 1부.*
Denis Lukianov, "Compact confidential transactions for bitcoin." (2015.) 1부.*
Franca, B. F. "Homomorphic mini-blockchain scheme." (2015.) 1부.*

Also Published As

Publication number Publication date
TWI718585B (zh) 2021-02-11
EP3545640B1 (en) 2021-04-07
WO2019072269A3 (en) 2019-09-12
JP6767580B2 (ja) 2020-10-14
PL3545640T3 (pl) 2021-10-18
CN110546667B (zh) 2023-08-18
SG11201903552PA (en) 2019-05-30
CN110546667A (zh) 2019-12-06
MX2019004662A (es) 2019-08-21
PH12019500877A1 (en) 2019-12-02
WO2019072269A2 (en) 2019-04-18
RU2708344C1 (ru) 2019-12-05
EP3545640A4 (en) 2020-01-08
AU2018348319A1 (en) 2020-05-21
ES2876926T3 (es) 2021-11-15
JP2019537348A (ja) 2019-12-19
CA3041161A1 (en) 2019-04-18
US20190253235A1 (en) 2019-08-15
TW202019123A (zh) 2020-05-16
KR20200054129A (ko) 2020-05-19
CA3041161C (en) 2021-10-12
AU2018348319B2 (en) 2020-10-01
US10615960B2 (en) 2020-04-07
BR112019008151A2 (pt) 2019-09-10
EP3545640A2 (en) 2019-10-02

Similar Documents

Publication Publication Date Title
KR102348768B1 (ko) 동형 암호화를 이용한 블록체인 데이터 보호
KR102215245B1 (ko) 준동형 암호화를 사용하는 블록체인 데이터 보호
RU2733223C1 (ru) Защита данных цепочек блоков на основе общей модели на основе счетов и гомоморфного шифрования
KR102213414B1 (ko) 일반 계정 모델 및 동형 암호화 기반의 블록 체인 데이터 보호
EP3542336B1 (en) Blockchain data protection based on account note model with zero-knowledge proof
KR102151894B1 (ko) 계좌 모델 하에서 퍼블릭 및 프라이빗 트랜잭션을 지원하는 블록체인 시스템

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
N231 Notification of change of applicant
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant