KR102347987B1 - Artificial soil composition for plant cultivation comprising heat treated wood chip, nitrogen source and fermented rice straw - Google Patents

Artificial soil composition for plant cultivation comprising heat treated wood chip, nitrogen source and fermented rice straw Download PDF

Info

Publication number
KR102347987B1
KR102347987B1 KR1020200022651A KR20200022651A KR102347987B1 KR 102347987 B1 KR102347987 B1 KR 102347987B1 KR 1020200022651 A KR1020200022651 A KR 1020200022651A KR 20200022651 A KR20200022651 A KR 20200022651A KR 102347987 B1 KR102347987 B1 KR 102347987B1
Authority
KR
South Korea
Prior art keywords
heat
rice straw
treated
artificial soil
oak
Prior art date
Application number
KR1020200022651A
Other languages
Korean (ko)
Other versions
KR20210108009A (en
Inventor
양재경
최지원
박재현
정지영
하시영
이동환
Original Assignee
경상국립대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 경상국립대학교산학협력단 filed Critical 경상국립대학교산학협력단
Priority to KR1020200022651A priority Critical patent/KR102347987B1/en
Publication of KR20210108009A publication Critical patent/KR20210108009A/en
Application granted granted Critical
Publication of KR102347987B1 publication Critical patent/KR102347987B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05GMIXTURES OF FERTILISERS COVERED INDIVIDUALLY BY DIFFERENT SUBCLASSES OF CLASS C05; MIXTURES OF ONE OR MORE FERTILISERS WITH MATERIALS NOT HAVING A SPECIFIC FERTILISING ACTIVITY, e.g. PESTICIDES, SOIL-CONDITIONERS, WETTING AGENTS; FERTILISERS CHARACTERISED BY THEIR FORM
    • C05G3/00Mixtures of one or more fertilisers with additives not having a specially fertilising activity
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05CNITROGENOUS FERTILISERS
    • C05C11/00Other nitrogenous fertilisers
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05FORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C, e.g. FERTILISERS FROM WASTE OR REFUSE
    • C05F5/00Fertilisers from distillery wastes, molasses, vinasses, sugar plant or similar wastes or residues, e.g. from waste originating from industrial processing of raw material of agricultural origin or derived products thereof
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05GMIXTURES OF FERTILISERS COVERED INDIVIDUALLY BY DIFFERENT SUBCLASSES OF CLASS C05; MIXTURES OF ONE OR MORE FERTILISERS WITH MATERIALS NOT HAVING A SPECIFIC FERTILISING ACTIVITY, e.g. PESTICIDES, SOIL-CONDITIONERS, WETTING AGENTS; FERTILISERS CHARACTERISED BY THEIR FORM
    • C05G1/00Mixtures of fertilisers belonging individually to different subclasses of C05
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/20Fertilizers of biological origin, e.g. guano or fertilizers made from animal corpses

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pest Control & Pesticides (AREA)
  • Engineering & Computer Science (AREA)
  • Botany (AREA)
  • Environmental & Geological Engineering (AREA)
  • Cultivation Of Plants (AREA)

Abstract

본 발명은 열처리된 목재 칩, 질소원 및 발효볏짚을 유효성분으로 함유하는 작물 재배용 인공토양 조성물에 관한 것으로, 상기 열처리된 참나무 칩과 질소원으로 이루어진 혼합물 또는 상기 혼합물과 발효볏짚을 유효성분으로 함유하는 조성물은 참외 종자의 발아율 및 엽수를 증가시키고 초장 및 근장의 생장을 향상시키는 효과를 나타내는 것이 확인됨에 따라, 상기 조성물은 일반 토양 및 인공사료를 대체할 수 있는 작물 재배용 인공토양으로 제공될 수 있다.The present invention relates to an artificial soil composition for growing crops containing heat-treated wood chips, a nitrogen source and fermented rice straw as active ingredients, and a mixture comprising the heat-treated oak chips and a nitrogen source, or a composition containing the mixture and fermented rice straw as active ingredients increases the germination rate and leaf number of melon seeds, and has been confirmed to exhibit the effect of improving the growth of plant and root lengths, so that the composition can be provided as artificial soil for crop cultivation that can replace general soil and artificial feed.

Description

열처리된 목재 칩, 질소원 및 발효볏짚을 유효성분으로 함유하는 작물 재배용 인공토양 조성물{Artificial soil composition for plant cultivation comprising heat treated wood chip, nitrogen source and fermented rice straw}Artificial soil composition for plant cultivation comprising heat treated wood chip, nitrogen source and fermented rice straw as active ingredients;

본 발명은 열처리된 목재 칩, 질소원 및 발효볏짚을 유효성분으로 함유하는 작물 재배용 인공토양 조성물을 제공하고자 한다.An object of the present invention is to provide an artificial soil composition for growing crops containing heat-treated wood chips, a nitrogen source, and fermented rice straw as active ingredients.

현재 가정이나 종묘장에서 작물의 재배에 사용되는 토양은 자연상태에서 얻어지는 일반 토양을 화분이나 육모판 위에 깔고 그 위에 작물을 심어 재배하고 있는 실정이다. 이와 같은 일반 토양은 살균되어 있지 않으므로 작물이 병해충으로부터 해를 입게되어 생장에 방해가 되고, 또한 수분을 공급하기 위해 매일 뿌려지는 물에 의해 유기질비료성분 등의 영양분 손실이 커 지력이 약해지며, 특히 관상과 채소의 재배를 위해 가정의 정원이나 아파트 베란다에서 키우는 작물재배의 경우에는 물에 의해 흙탕물이 흐르거나 흙먼지가 바람에 날리게 되어 환경을 오히려 악화시키는 문제점이 있다.Currently, the soil used for growing crops at home or nursery is a situation in which general soil obtained in a natural state is laid on a pot or a nursery, and crops are planted thereon. Since such general soil is not sterilized, crops are harmed by pests and diseases, which impedes growth, and the loss of nutrients such as organic fertilizer components by daily water to supply moisture is large, weakening the fertility, especially In the case of crops grown in home gardens or apartment verandas for the cultivation of ornamentals and vegetables, there is a problem in that muddy water flows by water or dust is blown away by the wind, which worsens the environment.

한편, 농작물, 작물, 수목과 같은 식물자원(plant resource)에 대해 성장 촉진, 과실 증대 및 병충해로부터 보호하기 위해 비료를 사용하고 있다. 이러한 비료는 상기 식물자원이 토양으로부터 흡수하는 영양성분이 부족하기 때문에 부족한 영양성분을 보충하기 위해 포함하고 있다. 비료에 함유되어 있는 영양성분은 질소, 인, 칼륨, 무기질, 수분 등 다양하며, 특히 질소, 인, 칼륨 등의 성분을 강화하는 것이 많다. On the other hand, fertilizers are used to promote growth, increase fruit, and protect from pests and diseases for plant resources such as crops, crops, and trees. These fertilizers are included to compensate for the lack of nutrients that the plant resources absorb from the soil. Nutrients contained in fertilizers are various, such as nitrogen, phosphorus, potassium, minerals, and moisture.

현재 사용되고 있는 화학비료는 대부분이 속효성(速效性)으로 물에 녹아 식물이 흡수하며 비료흡수량보다 과량의 비료를 시비하므로 비료가 과다 용출되는 경향이 많다. 또한, 시비 직후 식물이 비료성분을 일시에 흡수하여 이용할 수 없기 때문에 시비된 비료는 산사태, 홍수, 산불등의 여러 가지 자연현상에 의해 유실량이 많을 뿐만 아니라, 유실된 비료는 토양에 흡착되거나 또는 토양 내의 지하수로 스며들어 토양 및 지하수의 오염을 증가시키는 원인이 되기도 한다.Most of the chemical fertilizers currently used are fast-acting, so they dissolve in water and are absorbed by plants. In addition, immediately after fertilization, the plant cannot absorb and use the fertilizer components at once, so the applied fertilizer is not only lost due to various natural phenomena such as landslides, floods, forest fires, etc., but also the lost fertilizer is absorbed into the soil or It seeps into the groundwater in the interior and may cause increased contamination of the soil and groundwater.

이러한 문제점을 해결하기 위해 화학비료의 영양 성분을 함유하면서 일반 토양을 대체할 수 있는 새로운 작물 재배용 인공토양에 대한 개발이 필요한 실정이다.In order to solve this problem, it is necessary to develop a new artificial soil for growing crops that can replace general soil while containing nutrients of chemical fertilizers.

대한민국 등록특허 제10-1766452호 (2017.08.02. 공고)Republic of Korea Patent Registration No. 10-1766452 (2017.08.02. Announcement)

본 발명은 작물의 성장에 필요한 영양 성분을 함유하는 목재 칩 혼합물을 제공하여, 인공사료에 의한 환경문제를 개선하고, 일반 토양을 대체할 수 있는 기능성 인공토양으로 제공하고자 한다.The present invention is to provide a wood chip mixture containing nutrients necessary for the growth of crops, to improve the environmental problems caused by artificial feed, and to provide a functional artificial soil that can replace general soil.

본 발명은 열처리된 목재 칩과 질소원으로 이루어진 혼합물 및 발효볏짚을 유효성분으로 함유하는 작물 재배용 인공토양 조성물을 제공한다.The present invention provides an artificial soil composition for growing crops containing a mixture of heat-treated wood chips and a nitrogen source and fermented rice straw as active ingredients.

본 발명에 따르면, 열처리된 참나무 칩과 질소원으로 이루어진 혼합물 또는 상기 혼합물과 발효볏짚을 유효성분으로 함유하는 조성물은 참외 종자의 발아율 및 엽수를 증가시키고 초장 및 근장의 생장을 향상시키는 효과를 나타내는 것이 확인됨에 따라, 상기 조성물은 일반 토양 및 인공사료를 대체할 수 있는 작물 재배용 인공토양으로 제공될 수 있다.According to the present invention, it is confirmed that a mixture consisting of heat-treated oak chips and a nitrogen source or a composition containing the mixture and fermented rice straw as an active ingredient increases the germination rate and number of leaves of melon seeds, and shows the effect of improving plant and root growth. Accordingly, the composition may be provided as artificial soil for growing crops that can replace general soil and artificial feed.

도 1은 소나무 및 참나무 목분의 열처리 온도에 따른 탄질비 (C/N ratio) 변화를 확인한 결과로, 도 1A는 소나무 목분의 결과이며, 도 1B는 참나무 목분의 결과이다.
도 2는 소나무 및 참나무 목분의 열처리 온도에 따른 EC (Electrical capacity) 변화를 확인한 결과로, 도 2A는 소나무 목분의 결과이며, 도 2B는 참나무 목분의 결과이다.
도 3은 소나무 목분 및 참나무 목분의 열처리 온도에 따른 pH 변화를 확인한 결과로, 도 3A는 소나무 목분의 결과이며, 도 3B는 참나무 목분의 결과이다.
도 4는 열처리 온도에 따른 GI (germination index) 분석 결과로, 도 4A는 소나무 목분의 결과이며, 도 4B는 참나무 목분의 결과이며, control은 대조구(증류수)이며, untreated는 열처리하지 대조구이다.
도 5는 열처리 시간에 따른 탄질비(C/N ratio)를 확인한 결과로, 도 5A는 소나무 목분의 결과이며, 도 5B는 참나무 목분의 결과이다.
도 6은 열처리 시간에 따른 EC(Electrical capacity)를 확인한 결과로, 도 6A는 소나무 목분의 결과이며, 도 6B는 참나무 목분의 결과이다.
도 7은 열처리 시간에 따른 pH를 확인한 결과로, 도 6A는 소나무 목분의 결과이며, 도 6B는 참나무 목분의 결과이다.
도 8은 열처리 시간에 따른 GI (germination index) 분석 결과로, 도 8A는 소나무 목분의 결과이며, 도 8B는 참나무 목분의 결과이며, control은 대조구(증류수)이며, untreated는 열처리하지 대조구이다.
도 9는 질소공급원으로 효모추출물 (Yeast extract), NH4HCO3 (Ammonium Bicarbonate) 및 효모추출물+NH4HCO3 (1:1,w/w) 첨가에 따른 탄질율을 확인한 결과이다.
도 10은 질소공급원으로 효모추출물 (Yeast extract), NH4HCO3 (Ammonium Bicarbonate) 및 효모추출물+NH4HCO3 (1:1,w/w) 첨가된 열처리 참나무 목분에 참외 종자를 파종 후 발아율(%)을 확인한 결과이다.
도 11은 질소공급원으로 효모추출물 (Yeast extract), NH4HCO3 (Ammonium Bicarbonate) 및 효모추출물+NH4HCO3 (1:1,w/w) 첨가된 열처리 참나무 목분에 참외 종자를 파종 후 초장 생장(mm)을 확인한 결과이다.
도 12는 질소공급원으로 효모추출물 (Yeast extract), NH4HCO3 (Ammonium Bicarbonate) 및 효모추출물+NH4HCO3 (1:1,w/w) 첨가된 열처리 참나무 목분에 참외 종자를 파종 후 근장 생장(mm)을 확인한 결과이다.
도 13은 질소공급원으로 효모추출물 (Yeast extract), NH4HCO3 (Ammonium Bicarbonate) 및 효모추출물+NH4HCO3 (1:1,w/w) 첨가된 열처리 참나무 목분에 참외 종자를 파종 후 엽장(mm)을 확인한 결과이다.
도 14는 볏짚과 계분 혼합물의 탄질율(C/N ratio)을 확인한 결과이다.
도 15는 볏짚과 계분 혼합물의 EC를 확인한 결과이다.
도 16은 볏짚과 계분 혼합물의 pH를 확인한 결과이다.
도 17은 볏짚과 계분 혼합물의 미생물 활성을 확인한 결과이다.
도 18은 볏짚과 계분 혼합물의 발효기간 경과에 따른 EC를 확인한 결과이다.
도 19는 볏짚과 계분 혼합물의 발효기간 경과에 따른 pH를 확인한 결과이다.
도 20은 볏짚의 발효 온도에 따른 미생물 활성 결과를 확인한 결과이다.
도 21은 볏짚의 발효 기간 경과에 따른 미생물 활성 결과를 확인한 결과이다.
도 22는 목질원료, 질소공급원 및 볏짚의 혼합비율에 따른 포름알데히드 방출량을 확인한 결과이다.
도 23은 목질원료, 질소공급원 및 볏짚의 혼합비율에 따른 이산화탄소 방출량을 확인한 결과이다.
도 24는 제조된 기능성 토양을 이용한 참외 모종 생장을 확인한 결과이다.
도 25는 질소원이 혼합된 열처리 목분과 발효 볏집 혼합 비율에 따른 참외 모종의 줄기 길이를 확인한 결과이다.
도 26는 제조된 기능성 토양에 이식한 참외 모종의 뿌리 길이를 확인한 결과이다.
도 27은 발효볏짚 및 질소원이 혼합된 열처리 참나무 목분으로 제조된 기능성 토양에 이식한 참외 모종의 엽수를 확인한 결과이다.
도 28은 참외 모종의 최대 초장(stem length) 생장을 위한 열처리 목분, 질소원 및 발효볏짚 혼합 비율을 확인한 반응표면분석 결과로, A는 열처리 목분; B는 질소원; C는 발효볏짚이다.
도 29는 RSM(Response suface method)을 수행하여 예상치와 실제 데이터 값의 일치성을 확인한 결과이다.
도 30은 참외 모종의 최대 근장(root length) 생장을 위한 열처리 목분, 질소원 및 발효볏짚 혼합 비율을 확인한 반응표면분석 결과로, A는 열처리 목분; B는 질소원; C는 발효볏짚이다.
도 31은 RSM(Response suface method)을 수행하여 예상치와 실제 데이터 값의 일치성을 확인한 결과이다.
도 32는 소나무 열수 추출물의 제조과정을 나타낸 모식도이다.
도 33은 열처리 목분/질소원/발효볏짚 혼합물에 소나무 열수추출물을 투입한 후 참외 모종의 줄기 생장을 확인한 결과이다.
도 34는 열처리 목분/질소원/발효볏짚 혼합물에 소나무 열수추출물을 투입한 후 참외 모종의 뿌리 생장을 확인한 결과이다.
도 35는 참외 재배를 위한 복합기능성 토양 제조 공정을 나타낸 모식도이다.
1 is a result of confirming the carbon-to-material ratio (C/N ratio) change according to the heat treatment temperature of pine and oak wood powder. FIG. 1A is a result of pine wood powder, and FIG. 1B is a result of oak wood powder.
2 is a result of confirming the change in electrical capacity (EC) according to the heat treatment temperature of pine and oak wood powder. FIG. 2A is a result of pine wood powder, and FIG. 2B is a result of oak wood powder.
3 is a result of confirming the pH change according to the heat treatment temperature of pine wood powder and oak wood powder. FIG. 3A is a result of pine wood powder, and FIG. 3B is a result of oak wood powder.
4 is a GI (germination index) analysis result according to heat treatment temperature, FIG. 4A is a result of pine wood powder, FIG. 4B is a result of oak wood powder, control is a control (distilled water), and untreated is a control without heat treatment.
5 is a result of confirming the carbon-to-material ratio (C/N ratio) according to heat treatment time, FIG. 5A is a result of pine wood powder, and FIG. 5B is a result of oak wood powder.
6 is a result of checking the electrical capacity (EC) according to the heat treatment time, FIG. 6A is a result of pine wood powder, and FIG. 6B is a result of oak wood powder.
7 is a result of confirming the pH according to heat treatment time, FIG. 6A is a result of pine wood powder, and FIG. 6B is a result of oak wood powder.
8 is a GI (germination index) analysis result according to heat treatment time, FIG. 8A is a result of pine wood powder, FIG. 8B is a result of oak wood powder, control is a control (distilled water), and untreated is a control without heat treatment.
9 is a nitrogen source as a source of yeast extract (Yeast extract), NH 4 HCO 3 (Ammonium Bicarbonate) and yeast extract + NH 4 HCO 3 (1:1, w/w) is the result of confirming the carbon content according to the addition.
Figure 10 is a nitrogen source of yeast extract (Yeast extract), NH 4 HCO 3 (Ammonium Bicarbonate) and yeast extract + NH 4 HCO 3 (1:1, w / w) added to heat-treated oak wood flour after sowing melon seeds germination rate (%) is the result of checking.
11 is a plant growth after sowing melon seeds in heat-treated oak wood flour added with yeast extract, NH 4 HCO 3 (Ammonium Bicarbonate) and yeast extract + NH 4 HCO 3 (1:1,w/w) as a nitrogen source; This is the result of checking the growth (mm).
12 is a nitrogen source after sowing melon seeds in heat-treated oak wood flour added with yeast extract, NH 4 HCO 3 (Ammonium Bicarbonate) and yeast extract + NH 4 HCO 3 (1:1, w/w) root This is the result of checking the growth (mm).
13 shows melon seeds in heat-treated oak wood flour added with yeast extract, NH 4 HCO 3 (Ammonium Bicarbonate) and yeast extract + NH 4 HCO 3 (1:1, w/w) as nitrogen source (mm) is the result of checking.
14 is a result of confirming the carbon content ratio (C/N ratio) of the rice straw and chicken manure mixture.
15 is a result of confirming the EC of the rice straw and chicken manure mixture.
16 is a result of confirming the pH of the rice straw and chicken manure mixture.
17 is a result confirming the microbial activity of the rice straw and chicken manure mixture.
18 is a result of confirming the EC according to the fermentation period of the rice straw and chicken manure mixture.
19 is a result of confirming the pH according to the fermentation period of the rice straw and chicken manure mixture.
20 is a result of confirming the results of microbial activity according to the fermentation temperature of rice straw.
21 is a result of confirming the results of microbial activity according to the fermentation period of rice straw.
22 is a result of confirming the amount of formaldehyde emission according to the mixing ratio of wood raw material, nitrogen source, and rice straw.
23 is a result of confirming the amount of carbon dioxide emission according to the mixing ratio of wood raw material, nitrogen source, and rice straw.
24 is a result confirming the growth of melon seedlings using the prepared functional soil.
25 is a result of confirming the stem length of melon seedlings according to the mixing ratio of heat-treated wood flour mixed with nitrogen source and fermented rice flour.
26 is a result of confirming the root length of melon seedlings transplanted into the prepared functional soil.
27 is a result of confirming the number of leaves of a melon seedling transplanted into functional soil prepared with heat-treated oak wood flour mixed with fermented rice straw and nitrogen source.
28 is a reaction surface analysis result confirming the mixing ratio of heat-treated wood flour, nitrogen source, and fermented rice straw for maximum stem length growth of melon seedlings, where A is heat-treated wood flour; B is a nitrogen source; C is fermented rice straw.
29 is a result of confirming the correspondence between an expected value and an actual data value by performing a response surface method (RSM).
30 is a reaction surface analysis result confirming the mixing ratio of heat-treated wood flour, nitrogen source, and fermented rice straw for maximum root length growth of melon seedlings, A is heat-treated wood flour; B is a nitrogen source; C is fermented rice straw.
31 is a result of confirming the correspondence between an expected value and an actual data value by performing a response surface method (RSM).
32 is a schematic diagram showing the manufacturing process of a pine hot water extract.
33 is a result of confirming the stem growth of melon seedlings after adding hot water extract of pine to a heat-treated wood flour/nitrogen source/fermented rice straw mixture.
34 is a result of confirming the root growth of melon seedlings after adding hot water extract of pine to a heat-treated wood flour/nitrogen source/fermented rice straw mixture.
35 is a schematic diagram showing a multifunctional soil manufacturing process for melon cultivation.

이하, 본 발명을 보다 상세하게 설명한다.Hereinafter, the present invention will be described in more detail.

본 발명은 열처리된 목재 칩과 질소원으로 이루어진 혼합물 및 발효볏짚을 유효성분으로 함유하는 작물 재배용 인공토양 조성물을 제공할 수 있다.The present invention can provide an artificial soil composition for growing crops containing a mixture of heat-treated wood chips and a nitrogen source and fermented rice straw as active ingredients.

상기 열처리된 목재 칩은 50 내지 110℃에서 50 내지 70분간 열처리된 것일 수 있으며, 상기 목재 칩은 소나무 칩 및 참나무 칩으로 이루어진 군에서 선택되는 것일 수 있으며, 보다 바람직하게는 100℃에서 60분간 열처리된 참나무 칩일 수 있으나, 이에 제한되지 않는다.The heat-treated wood chips may be heat-treated at 50 to 110° C. for 50 to 70 minutes, and the wood chips may be selected from the group consisting of pine chips and oak chips, more preferably heat treatment at 100° C. for 60 minutes. It may be an oak chip, but is not limited thereto.

본 발명의 열처리된 목재 칩의 열처리 과정 중 상기 온도 조건 미만으로 열을 가할 경우, 작물재배에 악영향을 미치는 페놀성분이 목재에 잔존하는 문제점이 나타날 수 있으며, 상기 온도 조건을 초과하여 열을 가할 경우, 공극이 과다하게 발생하고 유기물이 침출되는 문제점이 나타날 수 있다.When heat is applied below the above temperature conditions during the heat treatment of the heat-treated wood chips of the present invention, there may be a problem that phenol components that adversely affect crop cultivation remain in the wood, and when heat is applied in excess of the above temperature conditions , there may be problems with excessive voids and leaching of organic matter.

상기 인공토양 조성물은 열처리된 목재 칩 80-95 중량% 및 질소원 5 내지 20 중량%로 혼합된 것일 수 있으며, 보다 바람직하게는 열처리된 목재 칩 90 중량% 및 질소원 10 중량%로 혼합된 것일 수 있으나, 이에 제한되지 않는다.The artificial soil composition may be a mixture of 80-95% by weight of heat-treated wood chips and 5 to 20% by weight of a nitrogen source, and more preferably a mixture of 90% by weight of heat-treated wood chips and 10% by weight of a nitrogen source. , but not limited thereto.

상기 질소원은 효모추출물, NH4HCO3 또는 이들의 혼합물일 수 있으며, 보다 바람직하게는 효모추출물일 수 있으나, 이에 제한되지 않는다.The nitrogen source may be a yeast extract, NH 4 HCO 3 or a mixture thereof, and more preferably a yeast extract, but is not limited thereto.

본 발명의 질소원은 생물체에 중요한 단백질이나 핵산의 원료가 되는 질소화합물로, 상기 질소원의 함량 범위 미만으로 포함될 경우, 질소기아가 발생하여 작물에 영양생장이 저하되고 잎의 갈변현상이 일어나는 문제점이 나타날 수 있으며, 상기 함량 범위를 초과하여 포함될 경우 질소가 토양 중에 축적되어 꽃눈의 분화가 미미해지는 문제점이 나타날 수 있다. The nitrogen source of the present invention is a nitrogen compound that is a raw material for proteins or nucleic acids important for living organisms. If included in excess of the above content range, nitrogen may accumulate in the soil, resulting in insignificant differentiation of flower buds.

상기 발효볏짚은 볏짚과 가축분이 건조중량 기준 6:4 내지 9:1 비율로 혼합되는 것일 수 있으며, 보다 바람직하게는 볏짚과 가축분이 건조중량 기준 7:4 비율로 혼합되는 것일 수 있으나, 이에 제한되지 않는다.The fermented rice straw may be a mixture of rice straw and livestock meal in a ratio of 6:4 to 9:1 based on dry weight, and more preferably, rice straw and livestock meal may be mixed in a ratio of 7:4 based on dry weight, but limited thereto. doesn't happen

상기 발효볏짚은 25 내지 35℃에서 5 내지 12일간 발효되는 것일 수 있으며, 보다 바람직하게는 30℃에서 10일간 발효되는 것일 수 있으나, 이에 제한되지 않는다.The fermented rice straw may be fermented at 25 to 35° C. for 5 to 12 days, and more preferably, may be fermented at 30° C. for 10 days, but is not limited thereto.

상기 인공토양 조성물은 조성물 100 중량부에 대하여, 열처리된 목재 칩과 질소원으로 이루어진 혼합물 85 내지 95 중량부 및 발효볏짚 5 내지 15 중량부로 이루어지는 것일 수 있다.The artificial soil composition may be composed of 85 to 95 parts by weight of a mixture of heat-treated wood chips and a nitrogen source and 5 to 15 parts by weight of fermented rice straw based on 100 parts by weight of the composition.

본 발명의 발효볏짚은 작물 생장에 유용한 미생물 증대 역할을 하며, 상기 인공토양 조성물 중 발효볏짚이 함량 범위 미만으로 포함될 경우, 유용 미생물의 부족으로 인하여 영양공급이 불리하고 인산 가용화, 질소고정 등이 원활하지 못한 문제점이 나타날 수 있으며, 함량 범위를 초과하여 포함될 경우, 양분의 과다집적과 토양 산성화 등의 문제점이 나타날 수 있다.The fermented rice straw of the present invention serves to increase microorganisms useful for crop growth, and when the fermented rice straw in the artificial soil composition contains less than the content range, the nutritional supply is disadvantageous due to the lack of useful microorganisms, and phosphoric acid solubilization, nitrogen fixation, etc. are smooth Problems that could not be achieved may appear, and if the content exceeds the content range, problems such as excessive accumulation of nutrients and soil acidification may appear.

상기 인공토양 조성물은 작물의 발아율 및 엽수를 증가시키고, 작물 모종의 초장 및 근장의 생장을 향상시키는 것일 수 있다.The artificial soil composition may be to increase the germination rate and leaf number of crops, and to improve the growth of plant and root growth of crop seedlings.

상기 작물은 감자, 고추, 피망, 토마토, 오이, 수박, 참외, 배추, 상추, 무, 양배추, 유채, 딸기, 벼, 보리, 옥수수 및 인삼으로 이루어진 군에서 선택되는 것일 수 있다.The crops may be selected from the group consisting of potatoes, red peppers, bell peppers, tomatoes, cucumbers, watermelons, melons, Chinese cabbages, lettuce, radishes, cabbage, rapeseeds, strawberries, rice, barley, corn and ginseng.

상기 인공토양 조성물은 소나무 열수 추출물을 추가로 더 포함할 수 있다.The artificial soil composition may further include a pine hot water extract.

상기 소나무 열수 추출물은 인공토양 조성물 100 중량%에 대하여, 1 내지 3 중량%로 포함되는 것일 수 있으며, 보다 바람직하게는 인공토양 조성물 100 중량%에 대하여, 소나무 열수 추출물 분말을 2 중량%로 투입하는 것일 수 있으나, 이에 제한되지 않는다.The pine hot water extract may be included in an amount of 1 to 3 wt% based on 100 wt% of the artificial soil composition, and more preferably, the pine hot water extract powder is added in an amount of 2 wt% with respect to 100 wt% of the artificial soil composition may be, but is not limited thereto.

이하, 본 발명의 이해를 돕기 위하여 실시예를 들어 상세하게 설명하기로 한다. 다만 하기의 실시예는 본 발명의 내용을 예시하는 것일 뿐 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해 제공되는 것이다.Hereinafter, examples will be described in detail to help the understanding of the present invention. However, the following examples are merely illustrative of the content of the present invention, and the scope of the present invention is not limited to the following examples. The embodiments of the present invention are provided to more completely explain the present invention to those of ordinary skill in the art.

<실시예 1> 기능성 토양 제조를 위한 목질원료 제조<Example 1> Preparation of wood raw material for production of functional soil

1. 다양한 열처리 조건에 따른 목질원료 제조1. Manufacture of wood raw materials according to various heat treatment conditions

국내 침엽수·활엽수 목부를 이용한 기능성 토양 개발을 위해, 소나무 칩 및 참나무 칩을 이용하여 톱밥을 제조하였다. For the development of functional soil using domestic softwood and hardwood xylem, sawdust was manufactured using pine and oak chips.

경상대학교 학술림으로부터 제공받은 소나무 칩 및 참나무 칩을 파쇄하고, 4 mm 체(sieve)를 이용하여 4 mm pass 크기의 목분으로 제조하였다. Pine chips and oak chips provided from Gyeongsang National University Academic Forest were crushed, and 4 mm pass size wood powder was used using a 4 mm sieve.

준비된 4 mm pass 크기의 소나무 및 참나무 목분의 전건중량 30g을 증류수 600mL과 1:20 (w/v)비율로 혼합한 후, 60, 80, 100 및 120℃ 온도로 15분간 열처리하였다.30 g of the prepared 4 mm pass sized pine and oak wood flour was mixed with 600 mL of distilled water in a 1:20 (w/v) ratio, and then heat-treated at 60, 80, 100, and 120° C. for 15 minutes.

열처리된 혼합물을 No.2 filter paper(150 mm, Advantec)을 사용하여 감압여과한 후 잔사를 105℃에서 24시간 건조하여 실험 재료로 사용하였다.The heat-treated mixture was filtered under reduced pressure using No.2 filter paper (150 mm, Advantec), and the residue was dried at 105° C. for 24 hours and used as a test material.

2. 목질원료의 열처리 조건에 따른 화학적 특성 확인2. Confirmation of chemical properties according to heat treatment conditions of wood raw materials

다양한 온도의 열처리 조건이 적용된 목질원료의 화학적 특성(탄질비, EC 등) 분석을 통하여 기능성 토양 원료로써의 잠재력을 확인하기 위해, 15분간 60℃, 80℃, 100℃ 및 120℃로 열처리된 소나무 목분 및 참나무 목분의 화학적 특성을 확인하였으며, 대조구로는 열처리하지 않은 소나무 및 참나무 목분을 사용하였다.Pine heat treated at 60℃, 80℃, 100℃ and 120℃ for 15 minutes to check the potential as a functional soil raw material through the analysis of the chemical properties (carbon to nitrogen ratio, EC, etc.) of the wood material to which heat treatment conditions of various temperatures are applied The chemical properties of wood flour and oak wood flour were checked, and non-heat-treated pine and oak wood flour was used as a control.

2-1. 탄질비 (C/N ratio, carbon-nitrogen ratio) 확인2-1. Check carbon-to-nitrogen ratio (C/N ratio, carbon-nitrogen ratio)

분쇄기(Grinder)를 이용하여 실험 재료를 분쇄한 후, 80 mesh 체로 분급하여 시료로 사용하였다. 시료를 건조시킨 후, 미량원소분석기(Flash 2000, Thermo Scientific)를 이용하여 TC(Total carbon) 및 TN(Total nitrogen)을 측정하고, 하기 계산식 1로 탄질비를 확인하였다.After grinding the test material using a grinder, it was classified through an 80 mesh sieve and used as a sample. After drying the sample, TC (Total carbon) and TN (Total nitrogen) were measured using a trace element analyzer (Flash 2000, Thermo Scientific), and the carbon-to-nitrogen ratio was confirmed by Equation 1 below.

[계산식 1][Formula 1]

C/N ratio = TC/TNC/N ratio = TC/TN

그 결과, 도 1과 같이 미처리, 60℃, 80℃, 100℃ 및 120℃로 열처리한 소나무 목분의 탄질비는 각각 142, 208, 196, 186 및 168이었으며, 미처리, 60℃, 80℃, 100℃ 및 120℃로 열처리한 참나무의 탄질비는 각각 70, 78, 79, 71 및 73으로 나타났다. As a result, as shown in FIG. 1 , the carbon-to-carbon ratios of pine wood powder heat-treated at 60° C., 80° C., 100° C. and 120° C. were 142, 208, 196, 186 and 168, respectively. Untreated, 60° C., 80° C., 100 The carbon-to-carbon ratios of oak heat treated at ℃ and 120℃ were 70, 78, 79, 71 and 73, respectively.

또한, 소나무 및 참나무 목분에서 60℃ 및 80℃ 온도로 열처리했을 때 미처리 목분보다 탄질비가 증가되는 것으로 확인되었으며, 100℃ 및 120℃에서는 탄질비가 감소하는 것으로 확인되었다.In addition, it was confirmed that the carbon-to-material ratio was increased compared to the untreated wood flour when heat-treated at 60°C and 80°C in pine and oak wood powder, and it was confirmed that the carbon-to-material ratio decreased at 100°C and 120°C.

참외 생장에 적합한 토양의 탄질비는 30으로, 소나무와 참나무 목분 모두 적정 탄질비를 초과하는 것으로 확인되었으며, 적정 탄질비를 초과할 경우 영양분의 급격한 분해로 인해 작물의 질소기아 (질소 부족 현상)를 유발시키므로 추후 탄질비 개선을 위한 질소원 투입이 필요한 것이 확인되었다.The carbon-quality ratio of soil suitable for melon growth was 30, and both pine and oak wood flour were found to exceed the appropriate carbon-to-nitrogen ratio. It was confirmed that it was necessary to input a nitrogen source to improve the carbon-to-nitrogen ratio in the future.

2-2. 전기용량 (Electrical capacity, EC) 확인2-2. Check Electrical capacity (EC)

EC (Electrical capacity)는 전기전도도로써 식물에 대한 염류장애를 판단하는데 중요한 지표이며, 참외 재배에 적합한 토양의 EC는 1dS/m(1000μS/cm) 이하이다.EC (Electrical capacity) is an important indicator for judging salinity disorders for plants as electrical conductivity, and EC of soil suitable for melon cultivation is less than 1 dS/m (1000 μS/cm).

실험 재료를 분쇄기로 분쇄한 후, 20 mesh 체 및 80 mesh 체를 이용하여 분급하였다. 20 mesh를 통과하고 80 mesh를 통과하지 않은 목분을 시료로 사용하였다. 시료 1 g과 증류수 5 ml을 1:5 (w/v)로 혼합하여 실온에서 1시간 정치반응 시킨 후, EC meter (HI8733, HANNA)로 측정하였다.After the test material was pulverized with a grinder, it was classified using a 20 mesh sieve and an 80 mesh sieve. Wood flour that passed through 20 mesh and did not pass through 80 mesh was used as a sample. 1 g of the sample and 5 ml of distilled water were mixed at a ratio of 1:5 (w/v) and allowed to react at room temperature for 1 hour, followed by measurement with an EC meter (HI8733, HANNA).

그 결과, 도 2와 같이 소나무 및 참나무 목분은 미처리보다 열처리했을 때 EC가 감소하는 것으로 확인되었으며, 모든 열처리 온도조건에서 소나무 및 참나무 목분의 EC는 적합 범위내에 포함되는 것으로 확인되었다.As a result, as shown in FIG. 2 , it was confirmed that EC decreased when heat-treated compared to untreated pine and oak wood powder, and EC of pine and oak wood powder was found to be within the appropriate range under all heat treatment temperature conditions.

상기 결과로부터 식물에 대한 염류장애는 일어나지 않을 것으로 판단되었다.From the above results, it was determined that salinity disorders would not occur for plants.

2-3. pH 확인2-3. pH check

pH는 토양 용액의 수소 이온 농도를 의미하고 산성 및 염기성을 나타내는 지표가 되며, 참외 재배에 적합한 토양의 pH는 6.0-6.5로 약산성이다.pH means the concentration of hydrogen ions in the soil solution and is an indicator of acidity and basicity. The pH of the soil suitable for melon cultivation is 6.0-6.5, which is slightly acidic.

실험 재료를 grinder로 분쇄한 후, mesh 체로 분급하여 20 mesh pass-80 mesh on 크기의 목분을 시료로 사용하였다. After grinding the test material with a grinder, it was classified through a mesh sieve, and wood flour of a size of 20 mesh pass-80 mesh on was used as a sample.

시료 1 g과 증류수 5 ml를 1:5 (w/v)로 혼합하여 실온에서 1시간 정치반응 시킨 후, pH meter (HI1295, HANNA)로 측정하였다.1 g of the sample and 5 ml of distilled water were mixed at a ratio of 1:5 (w/v) and allowed to react at room temperature for 1 hour, followed by measurement with a pH meter (HI1295, HANNA).

그 결과, 도 3과 같이 소나무 목분의 pH는 열처리 유무에 따른 유의성이 나타나지 않았으며, 참나무 목분은 열처리 온도가 증가할수록 pH가 감소하는 경향을 나타내었다.As a result, as shown in FIG. 3 , the pH of pine wood powder did not show significance with or without heat treatment, and the pH of oak wood powder showed a tendency to decrease as the heat treatment temperature increased.

상기 결과로부터 참나무 목분이 소나무 목분보다 적정 pH 수치와 근접하므로 참나무 목분이 소나무 목분보다 참외 재배에 적합한 것으로 확인되었다.From the above results, it was confirmed that oak wood flour was more suitable for melon cultivation than pine wood flour because oak wood flour was closer to an appropriate pH value than pine wood flour.

2-4. 양이온 (K, Ca, Mg, P) 함량 확인2-4. Confirmation of cation (K, Ca, Mg, P) content

Grinder를 이용하여 실험 재료를 분쇄 후, mesh 체를 이용해 분급하여 20 mesh pass-80 mesh on 크기의 목분을 시료로 사용하였다.After grinding the test material using a grinder, it was classified using a mesh sieve, and wood flour with a size of 20 mesh pass-80 mesh on was used as a sample.

250 mL 둥근 플라스크에 전건중량 1 g의 시료를 투입하고, 습식분해액 (HNO3:H2SO4:HClO4, 10:1:4) 25 mL를 첨가한 후 Heating mantle을 이용하여 medium 온도로 시료가 완전히 분해될 때까지 진탕한 다음 No. 2 filter paper를 사용하여 중력 여과하였다.In a 250 mL round flask, put a sample with a total dry weight of 1 g, add 25 mL of a wet decomposition solution (HNO 3 :H 2 SO 4 :HClO 4 , 10:1:4), and then heat to medium temperature using a heating mantle. Shake until the sample is completely decomposed, then No. Gravity filtration was performed using 2 filter papers.

여과액으로 증류수를 사용하여 100 mL까지 투입하고 ICP spectrometer (OPTIMA 4300DV, PerkinElmer) 분석기를 사용하여 희석된 여과액의 K, Ca, Mg 및 P 함량을 표 1 및 표 2와 같이 확인하였다.Distilled water was added as the filtrate to 100 mL, and the K, Ca, Mg and P contents of the diluted filtrate were confirmed as shown in Tables 1 and 2 using an ICP spectrometer (OPTIMA 4300DV, PerkinElmer) analyzer.

칼륨 (potassium, K)은 식물의 생리작용 조절에 관여하고 결핍 시 식물 생장이 불량하게 된다. 참외 생육에 필요한 토양의 K 적정범위는 토양 100 g당 19.5-31.3 mg이다. 표 1 및 표 2를 참고하면 소나무 목분을 열처리 하였을 때 K의 함량이 감소하여 참외 생육에 필요한 토양의 적정 범위에 도달하는 것으로 확인되었다. 또한, 참나무 목분은 열처리 온도가 높아질수록 K의 함량이 적정 범위에 근접해지는 것으로 확인되었다.Potassium (potassium, K) is involved in the regulation of plant physiology, and when it is deficient, plant growth is poor. The optimal range of K for melon growth is 19.5-31.3 mg per 100 g of soil. Referring to Tables 1 and 2, it was confirmed that the K content decreased when pine wood flour was heat treated, and thus reached the appropriate range of soil required for the growth of melons. In addition, it was confirmed that the K content of oak wood flour approaches an appropriate range as the heat treatment temperature increases.

칼슘 (calcium, Ca)은 세포벽의 성분으로 결핍 시 식물 뿌리의 생장이 불량해진다. 참외 재배에 적합한 토양의 Ca 함량 범위는 토양 100 g당 200-240 mg이다.Calcium (calcium, Ca) is a component of the cell wall, and when it is deficient, the growth of plant roots is poor. The Ca content range of soil suitable for melon cultivation is 200-240 mg per 100 g of soil.

표 1 및 표 2를 참고하면 열처리된 소나무 목분 또는 미처리 소나무 목분은 토양 Ca 함량의 적정 범위보다 낮은 것으로 확인됨에 따라, 참외 뿌리의 생장이 원활하지 못할 것으로 판단되었다.Referring to Tables 1 and 2, heat-treated pine wood flour or untreated pine wood flour was found to be lower than the appropriate range of soil Ca content, so it was determined that the growth of melon roots was not smooth.

한편, 열처리된 참나무 목분 또는 참나무 목분은 토양 Ca 함량의 적정 범위를 초과하는 것으로 확인되었으며, 초과된 토양 Ca 함량은 참외가 흡수하지 않기 때문에 참외 재배에 영향을 미치지 않을 것으로 판단되었다.On the other hand, it was confirmed that the heat-treated oak wood flour or oak wood flour exceeded the appropriate range of soil Ca content, and it was determined that the excess soil Ca content would not affect melon cultivation because melons did not absorb it.

마그네슘 (magnesium, Mg)은 엽록소의 구성 성분으로서 결핍 시 잎이 누렇게 변색되며, 참외 재배시 필요한 토양의 Mg 함량 범위는 토양 100 g당 36-48 mg이다.Magnesium (Mg) is a component of chlorophyll, and when it is deficient, leaves turn yellow, and the Mg content of soil required for melon cultivation is 36-48 mg per 100 g of soil.

표 1 및 표 2를 참고하면 소나무 목분 및 참나무 목분은 열처리 온도가 높아질수록 Mg 함량이 감소하는 경향을 나타내었다. 반면, 참나무 목분이 소나무 목분보다 참외 재배 시 필요한 토양의 Mg 범위에 근접하게 나타났다.Referring to Tables 1 and 2, the Mg content of pine wood flour and oak wood flour showed a tendency to decrease as the heat treatment temperature increased. On the other hand, oak wood flour was closer to the Mg range of the soil required for melon cultivation than pine wood flour.

인 (Phosphorus, P)은 작물의 생육 전반에 영향을 미치며 결핍 시 식물의 영양생장이 감소하며, 참외 생육에 적합한 토양의 P 적정범위는 토양 100 g당 2.5-3.0 mg이다.Phosphorus (P) affects overall crop growth, and when it is deficient, vegetative growth of plants is reduced.

표 1 및 표 2를 참고하면 소나무 목분 및 참나무 목분은 열처리 온도가 높아질수록 P 함량이 감소하는 경향을 나타었다. 특히 소나무 칩을 60 ℃로 열처리했을 때 식물 생장에 적합한 P의 함량에 근접하였으며, 참나무 목분은 100 ℃로 열처리했을 때 적정 P의 함량에 가장 근접하는 것으로 확인되었다.Referring to Tables 1 and 2, the P content of pine wood flour and oak wood flour showed a tendency to decrease as the heat treatment temperature increased. In particular, it was confirmed that the content of P suitable for plant growth was close to that of pine chips when heat treated at 60 °C, and oak wood flour was found to be closest to the content of appropriate P when heat treated at 100 °C.

열처리 온도에 따른 소나무 목분의 양이온 함량 (mg/100g)Cationic content of pine wood flour according to heat treatment temperature (mg/100g) 열처리 온도heat treatment temperature KK CaCa MgMg PP Untreateduntreated 167.0 ± 2.7a167.0 ± 2.7a 113.5 ± 1.9a113.5 ± 1.9a 17.6 ± 0.3a17.6 ± 0.3a 12.9 ± 0.1a12.9 ± 0.1a 60 ℃60 ℃ 19.7 ± 0.2d19.7 ± 0.2d 90.1 ± 0.3d90.1 ± 0.3d 13.3 ± 0.1c13.3 ± 0.1c 4.0 ± 0.0b4.0 ± 0.0b 80 ℃80 ℃ 29.6 ± 0.6b29.6 ± 0.6b 89.9 ± 1.1d89.9 ± 1.1d 13.7 ± 0.1b13.7 ± 0.1b 0.0 ± 0.00.0 ± 0.0 100 ℃100 ℃ 22.3 ± 0.0c22.3 ± 0.0c 95.0 ± 0.3c95.0 ± 0.3c 13.4 ± 0.1c13.4 ± 0.1c 0.0 ± 0.00.0 ± 0.0 120 ℃120 ℃ 17.7 ± 0.4d17.7 ± 0.4d 100.1 ± 0.8b100.1 ± 0.8b 12.8 ± 0.1d12.8 ± 0.1d 0.0 ± 0.00.0 ± 0.0

열처리 온도에 따른 참나무 목분의 양이온 함량 (mg/100g)Cationic content of oak wood flour according to heat treatment temperature (mg/100g) 열처리 온도heat treatment temperature KK CaCa MgMg PP Untreateduntreated 65.2 ± 0.7a65.2 ± 0.7a 568.8 ± 9.9a568.8 ± 9.9a 34.1 ± 0.2a34.1 ± 0.2a 8.6 ± 0.4 a8.6 ± 0.4 a 60 ℃60 ℃ 59.9 ± 0.7b59.9 ± 0.7b 463.4 ± 9.3d463.4 ± 9.3d 31.4 ± 0.3b31.4 ± 0.3b 6.0 ± 0.1b6.0 ± 0.1b 80 ℃80 ℃ 47.7 ± 0.7c47.7 ± 0.7c 542.2 ± 11.7bc542.2 ± 11.7bc 33.7 ± 0.2a33.7 ± 0.2a 4.9 ± 0.0c4.9 ± 0.0c 100 ℃100 ℃ 36.4 ± 1.1d36.4 ± 1.1d 554.2 ± 8.4ab554.2 ± 8.4ab 30.9 ± 0.5b30.9 ± 0.5b 4.1 ± 0.1d4.1 ± 0.1d 120 ℃120 ℃ 30.1 ± 1.0e30.1 ± 1.0e 526.7 ± 10.2c526.7 ± 10.2c 29.7 ± 0.9c29.7 ± 0.9c 0.7 ± 0.1e0.7 ± 0.1e

3. 참외 재배 조건에 적합한 목질원료의 열처리 온도 확인3. Confirmation of heat treatment temperature of wood raw materials suitable for melon cultivation conditions

3-1. GI (germination index) 분석3-1. GI (germination index) analysis

소나무 칩 및 참나무 칩을 15분간 60℃, 80℃, 100℃ 및 120℃로 각각 열처리하고 여과된 소나무 칩 및 참나무 칩 잔사의 전건중량 20 g과 증류수 200 mL (1:10, w/v)를 500 mL 삼각플라스크에 투여하여 shaking incubator 25 ℃, 100 rpm에서 1시간 혼합하였다.Pine chips and oak chips were heat-treated at 60℃, 80℃, 100℃ and 120℃ for 15 minutes, respectively, and 20 g of whole dry weight of the filtered pine and oak chip residues and 200 mL of distilled water (1:10, w/v) were added. It was administered to a 500 mL Erlenmeyer flask and mixed in a shaking incubator at 25 °C and 100 rpm for 1 hour.

혼합물을 No.2 filter paper(150 mm, Advantec)를 사용하여 감압여과 후, 미처리 및 다양한 열처리를 한 소나무 칩과 참나무 칩 증류수 추출액을 이용하여 GI 분석을 수행하였다.The mixture was filtered under reduced pressure using No.2 filter paper (150 mm, Advantec), and then GI analysis was performed using distilled water extracts from pine chips and oak chips that had been untreated and subjected to various heat treatments.

90 × 15 mm 페트리 디쉬에 페이퍼 티슈 2장을 깔고 시판 참외 종자(금노다지은천참외, ㈜농우바이오) 20립을 치상하였다. 7일 동안 소나무 칩과 참나무 칩 증류수 추출물을 1일 1회 3 mL를 투입하였으며, 24℃ 항온배양기에서 발아시켰다. 대조구로는 증류수를 투입하였다.Two paper tissues were laid on a 90 × 15 mm Petri dish, and 20 commercially available melon seeds (Geumnodajieuncheon melon, Nongwoo Bio Co., Ltd.) were placed. For 7 days, 3 mL of distilled water extracts from pine chips and oak chips were added once a day, and they were germinated in an incubator at 24°C. As a control, distilled water was added.

실험 기간 종료 후 참외 종자가 1 mm 이상 생장한 개수를 측정하였으며, 발아한 참외 종자의 근장(뿌리)을 버니어캘리퍼스를 이용하여 측정하여 하기 계산식 2를 이용하여 GI(%)를 계산하였다.After the end of the experiment period, the number of melon seeds grown by 1 mm or more was measured, and the root length (root) of the germinated melon seeds was measured using vernier calipers, and the GI (%) was calculated using Equation 2 below.

[계산식 2][Formula 2]

Figure 112020019566159-pat00001
Figure 112020019566159-pat00001

그 결과, 도 4와 같이 열처리 온도에 따른 소나무 칩 중 가장 높은 GI를 가진 온도는 60℃ 였으며, 열처리된 참나무 칩 중 가장 높은 GI를 가진 온도는 100℃ 였다. 대조구를 기준으로 GI가 70% 이상이면 식물생장에 독성이 없다고 판단되므로, 미처리 및 열처리 온도에 따른 소나무 칩과 참나무 칩은 참외생장에 독성이 없는 것으로 확인되었다.As a result, as shown in FIG. 4 , the temperature with the highest GI among the pine chips according to the heat treatment temperature was 60° C., and the temperature with the highest GI among the heat-treated oak chips was 100° C. If the GI is 70% or more based on the control group, it is judged that there is no toxicity to plant growth. Therefore, it was confirmed that the pine and oak chips according to the untreated and heat-treated temperature were not toxic to melon growth.

상기 결과로부터 60℃에서 열처리한 소나무 칩은 EC 및 양이온 함량에서 참외 생장에 적합한 화학적 특성을 나타내었으며, 가장 높은 GI 분석의 결과를 나타내는 것으로 확인됨에 따라, 60℃가 소나무 칩에 가장 적합한 온도로 확인되었다.From the above results, it was confirmed that pine chips heat-treated at 60 ° C showed chemical properties suitable for melon growth in EC and cation content, and showed the highest GI analysis results, so 60 ° C was confirmed as the most suitable temperature for pine chips. became

또한, 100℃에서 열처리한 참나무 칩은 탄질비, EC 및 양이온 함량에서 참외 생장에 적합한 화학적 특성을 나타내었으며, GI 분석에서 높은 수치를 나타내는 것으로 확인됨에 따라, 100℃가 참나무 칩에 가장 적합한 온도임이 확인되었다.In addition, the oak chips heat-treated at 100 ° C showed chemical properties suitable for melon growth in terms of carbon quality, EC and cation content, and as it was confirmed that high values were shown in GI analysis, 100 ° C was the most suitable temperature for oak chips. Confirmed.

4. 참외 재배 조건에 적합한 목질원료의 열처리 시간 확인4. Confirmation of heat treatment time for wood raw materials suitable for melon cultivation conditions

4-1. 열처리 시간에 따른 목질원료 준비4-1. Preparation of wood raw materials according to heat treatment time

4 mm pass 크기의 소나무 칩 및 참나무 칩의 전건중량 30 g과 증류수 600 mL을 1:20 (w/v)비율로 혼합한 후, autoclave를 이용하여 소나무 칩은 60℃에서 15분, 30분, 60분 및 120분간 열처리하였으며, 참나무 칩은 100℃에서 15분, 30분, 60분, 120분으로 열처리 하였다.After mixing 30 g of total dry weight of 4 mm pass sized pine and oak chips with 600 mL of distilled water in a 1:20 (w/v) ratio, pine chips were stored at 60°C for 15 minutes, 30 minutes, and 30 minutes using an autoclave. Heat treatment was performed for 60 minutes and 120 minutes, and the oak chips were heat treated at 100° C. for 15 minutes, 30 minutes, 60 minutes, and 120 minutes.

혼합물은 No.2 filter paper(150 mm, Advantec)를 사용하여 감압여과한 후, 잔사는 105℃에서 24시간 건조하여 실험 재료로 사용하였으며, 대조구로 열처리하지 않은 소나무 칩 및 참나무 칩을 사용하였다.The mixture was filtered under reduced pressure using No.2 filter paper (150 mm, Advantec), and the residue was dried at 105° C. for 24 hours and used as an experimental material. As a control, pine chips and oak chips that were not heat treated were used.

4-2. 화학적 특성 분석을 통하여 기능성 토양 원료로써의 잠재력 확인4-2. Confirmation of potential as a functional soil raw material through chemical characterization

4-2-1. 탄질비(C/N ratio, carbon-nitrogen ratio) 확인4-2-1. Check carbon-to-nitrogen ratio (C/N ratio, carbon-nitrogen ratio)

상기 다양한 시간으로 열처리된 소나무 칩 및 참나무 칩과 대조구를 Grinder를 이용하여 분쇄 후, 80 mesh 체로 분급하여 80 mesh pass를 시료로 사용하였다.After grinding the pine and oak chips and the control heat-treated at various times using a grinder, they were classified through an 80 mesh sieve, and an 80 mesh pass was used as a sample.

상기 시료를 완전 건조시킨 후, 미량원소분석기(Flash 2000, Thermo Scientific)를 이용하여 TC(Total carbon) 및 TN(Total nitrogen)을 측정하고, 계산식 1을 이용하여 탄질비를 확인하였다.After the sample was completely dried, TC (Total carbon) and TN (Total nitrogen) were measured using a trace element analyzer (Flash 2000, Thermo Scientific), and the carbon-to-nitrogen ratio was confirmed using Equation 1.

그 결과, 도 5와 같이 소나무 칩은 열처리 시간 30분 이상부터 탄질비가 절반 이상 감소하나, 여전히 식물 생장에는 적합하지 않은 탄질비를 지니고 있으므로 이를 30전후 탄질비로 개선하기 위해 질소원을 추가로 투입하는 과정이 필요한 것으로 확인되었으며, 참나무 칩 역시 열처리 시간이 증가할수록 탄질비가 감소하는 경향을 나타내었다. As a result, as shown in FIG. 5 , the carbon-to-nitrogen ratio of pine chips is reduced by more than half from 30 minutes or more of heat treatment time, but still has a carbon-to-nitrogen ratio that is not suitable for plant growth. was confirmed to be necessary, and the carbon-to-nitrogen ratio of oak chips also showed a tendency to decrease as the heat treatment time increased.

소나무 칩과 참나무 칩 열처리 시간 120분의 탄질비를 비교하였을 때, 소나무 칩의 탄질비는 105.0이고 참나무 칩의 탄질비는 57.8로써 약 1.8배의 탄질비가 차이가 났으며, 소나무 칩 및 참나무 칩의 높은 탄질비를 개선하기 위하여 질소원 추가투입 과정이 필요한 것으로 나타났다.When comparing the carbon-to-material ratio of pine chips and oak chips heat treatment time of 120 minutes, the carbon-to-nitrogen ratio of pine chips was 105.0 and that of oak chips was 57.8, which was about 1.8 times different. In order to improve the high carbon-to-nitrogen ratio, it was found that an additional nitrogen source was needed.

4-2-2. 전기용량 (Electrical capacity, EC) 확인4-2-2. Check Electrical capacity (EC)

상기 다양한 시간으로 열처리된 소나무 칩 및 참나무 칩과 대조구를 Grinder를 이용하여 분쇄 후, 20 mesh sieve, 80 mesh sieve를 이용하여 분급하고 20 mesh pass-80 mesh on 크기의 목분을 시료로 사용하였다. 시료 1 g과 증류수 5 ml 1:5 (w/v)로 혼합하여 실온에서 1시간 정치반응 시킨 후, EC meter(HI8733, HANNA)로 측정하였다.After grinding the pine and oak chips and the control heat-treated at various times using a grinder, they were classified using a 20 mesh sieve and an 80 mesh sieve, and wood flour of a size of 20 mesh pass-80 mesh on was used as a sample. 1 g of the sample and 5 ml of distilled water were mixed 1:5 (w/v) and allowed to react at room temperature for 1 hour, followed by measurement with an EC meter (HI8733, HANNA).

그 결과, 도 6과 같이 소나무 칩 및 참나무 칩은 열처리시 EC가 감소하지만 소나무 칩과 달리 참나무 칩은 미처리재와 유의성을 나타내지 않았으며, 소나무 칩 및 참나무 칩의 EC는 모두 적정범위 내에 존재하는 것으로 확인되었다.As a result, as shown in FIG. 6 , the EC of pine chips and oak chips decreased during heat treatment, but unlike pine chips, oak chips did not show significance with untreated materials, and EC of both pine chips and oak chips was found to be within an appropriate range. Confirmed.

상기 결과로부터 우드칩 내의 염류로 인해 식물생장에 영향을 끼치지 않을 것으로 판단되었다.From the above results, it was determined that the salts in the wood chips would not affect the plant growth.

4-2-3. pH 확인4-2-3. pH check

상기 다양한 시간으로 열처리된 소나무 칩 및 참나무 칩과 대조구를 Grinder를 이용하여 분쇄 후, mesh sieve로 분급한 20 mesh pass-80 mesh on 크기의 목분을 시료로 사용하였다. 시료 1 g과 증류수 5 ml를 1:5 (w/v)로 혼합하여 실온에서 1시간 정치반응 시킨 후, pH meter(HI1295, HANNA)로 측정하였다. After grinding the pine chips and oak chips and the control heat-treated for various times using a grinder, wood flour of a size of 20 mesh pass-80 mesh on classified with a mesh sieve was used as a sample. 1 g of the sample and 5 ml of distilled water were mixed at a ratio of 1:5 (w/v) and allowed to react at room temperature for 1 hour, followed by measurement with a pH meter (HI1295, HANNA).

참외 생장에 적합한 토양의 적정 pH는 6.0-6.5로 약산성으로, 도 7과 같이 소나무 칩의 pH는 미처리 4.8, 15분 4.7, 30분 4.7, 60분 4.8, 120분 4.9로써 강산성을 나타내는 것으로 확인됨에 따라, 열처리 시간에 따른 유의성은 확인되지 않았으나, 60분 열처리한 참나무 칩의 pH는 5.6으로써 열처리 시간 중 유일하게 약산성토양 범위에 존재하는 것을 확인할 수 있었다.The optimum pH of the soil suitable for melon growth is 6.0-6.5, which is slightly acidic, and as shown in FIG. 7, the pH of pine chips is untreated 4.8, 15 min 4.7, 30 min 4.7, 60 min 4.8, 120 min 4.9, indicating strong acidity. Therefore, the significance according to the heat treatment time was not confirmed, but the pH of the oak chip heat treated for 60 minutes was 5.6, and it was confirmed that it was only present in the weakly acidic soil range during the heat treatment time.

4-2-4. 양이온(K, Ca, Mg, P) 함량 확인4-2-4. Confirmation of cation (K, Ca, Mg, P) content

상기 다양한 시간으로 열처리된 소나무 칩 및 참나무 칩과 대조구를 Grinder를 이용하여 분쇄 후, mesh sieve를 이용해 분급하여 20 mesh pass-80 mesh on 크기의 목분을 시료로 사용하였다.After grinding the pine chips and oak chips and the control heat-treated for various times using a grinder, classifying them using a mesh sieve, and wood flour having a size of 20 mesh pass-80 mesh on was used as a sample.

250 mL 둥근 플라스크에 시료 전건 중량 1 g을 투입하고, 습식분해액 (HNO3:H2SO4:HClO4 =10:1:4) 25 mL를 첨가한 후 Heating mentle을 이용하여 medium 온도로 시료가 완전히 분해될 때까지 진탕한 다음 No. 2 filter paper를 사용하여 중력 여과하였다. 여과액은 증류수를 사용하여 100mL까지 mass up하고, ICP spectrometer (OPTIMA 4300DV, PerkinElmer) 분석기를 사용하여 희석된 여과액의 K, Ca, Mg 및 P를 표 3 및 표 4와 같이 측정하였다.In a 250 mL round flask, put 1 g of the whole dry weight of the sample, add 25 mL of the wet decomposition solution (HNO 3 :H 2 SO 4 :HClO 4 =10:1:4), and then heat the sample to medium temperature using a heating mentle. Shake until completely decomposed, then No. Gravity filtration was performed using 2 filter papers. The filtrate was mass-up to 100 mL using distilled water, and K, Ca, Mg and P of the diluted filtrate were measured as shown in Tables 3 and 4 using an ICP spectrometer (OPTIMA 4300DV, PerkinElmer) analyzer.

표 3 및 표 4를 참고하면, 참외 생육에 필요한 토양의 K 적정범위는 토양 100 g당 19.5-31.3 mg으로, 소나무 칩의 열처리 시간이 30분 이상 증가하였을 때 적정 범위 이상의 K의 함량을 포함하였으며, 참나무 칩은 100℃의 모든 열처리 시간 조건에서 토양의 K 적정함량 범위에 적합한 것으로 확인되었다.Referring to Tables 3 and 4, the appropriate K content of soil required for melon growth was 19.5-31.3 mg per 100 g of soil, and when the heat treatment time of pine chips increased by 30 minutes or more, the K content was above the appropriate range. , it was confirmed that the oak chips were suitable for the appropriate K content range of the soil under all heat treatment time conditions of 100 °C.

참외 재배에 적합한 토양의 Ca 범위는 토양 100 g당 200-240 mg으로 소나무 칩은 토양의 Ca 적정 범위에 근접한 값을 지니는 대조구 및 시험구가 확인되지 않았으며, 모두 미달인 것으로 나타났다. 참나무 칩은 토양의 Ca 적정 범위에 근접한 값을 지니는 대조구 및 시험구가 없으며 과량의 Ca가 잔존하는 것으로 확인되었다.The Ca range of the soil suitable for melon cultivation was 200-240 mg per 100 g of soil, and the control and test groups having a value close to the soil Ca titration range for pine chips were not identified, and both were found to be insufficient. In the oak chip, there was no control or test group having a value close to the soil Ca titration range, and it was confirmed that an excess of Ca remained.

참외 재배시 필요한 토양의 Mg 범위는 토양 100 g당 36-48 mg으로, 소나무 칩은 참외 재배시 필요한 토양의 Mg 범위에 미달되나 참나무 칩은 토양의 적정 범위와 근접한 Mg 함량을 나타내었다.The Mg range of the soil required for melon cultivation was 36-48 mg per 100 g of soil, and the pine chip fell short of the soil Mg range required for melon cultivation, but the oak chip showed the Mg content close to the proper range of the soil.

또한, 참외 생육에 적합한 토양의 P 적정범위는 토양 100 g당 2.5-3.0 mg으로, 15분 열처리한 소나무 칩을 제외하고는 모두 기준의 2배 이상 초과한 P 함량이 잔존하며, 참나무 칩은 열처리 시간에 따른 4가지 조건 중 15분, 30분 및 60분 처리시 적정 P 함량과 근접한 값을 함유하는 것으로 확인되었다.In addition, the optimum P range of soil suitable for melon growth is 2.5-3.0 mg per 100 g of soil. Except for pine chips that have been heat-treated for 15 minutes, a P content that exceeds twice the standard remains, and oak chips are heat-treated. It was confirmed to contain a value close to the appropriate P content when treated for 15 minutes, 30 minutes, and 60 minutes among the four conditions according to time.

열처리 시간에 따른 소나무 칩의 양이온 함량 (mg/100g)Cation content of pine chips according to heat treatment time (mg/100g) TreatmentsTreatments KK CaCa MgMg PP Optimum rangeOptimum range 19.5 - 31.319.5 - 31.3 200 - 240200 - 240 36 - 4836 - 48 2.5-3.02.5-3.0 미처리 소나무untreated pine 167.0 ± 2.7a167.0 ± 2.7a 113.5 ± 1.9a113.5 ± 1.9a 17.6 ± 0.3a17.6 ± 0.3a 12.9 ± 0.1a12.9 ± 0.1a 소나무 15분, 60 ℃Pine 15 min, 60 ℃ 19.7 ± 0.2d19.7 ± 0.2d 90.1 ± 0.3c90.1 ± 0.3c 13.3 ± 0.1c13.3 ± 0.1c 4.0 ± 0.0d4.0 ± 0.0d 소나무 30분, 60 ℃Pine 30 min, 60 ℃ 92.9 ± 1.9b92.9 ± 1.9b 85.5 ± 1.5d85.5 ± 1.5d 13.6 ± 0.2bc13.6 ± 0.2bc 8.7 ± 0.0b8.7 ± 0.0b 소나무 60분, 60 ℃Pine 60 min, 60 ℃ 71.1 ± 1.1c71.1 ± 1.1c 98.9 ± 1.8b98.9 ± 1.8b 13.3 ± 0.2c13.3 ± 0.2c 6.6 ± 2.4c6.6 ± 2.4c 소나무 120분, 60 ℃Pine 120 min, 60 ℃ 70.5 ± 1.5c70.5 ± 1.5c 111.5 ± 1.7a111.5 ± 1.7a 13.8 ± 0.2b13.8 ± 0.2b 9.0 ± 0.1b9.0 ± 0.1b

열처리 시간에 따른 참나무 칩의 양이온 함량 (mg/100g)Cationic content of oak chips according to heat treatment time (mg/100g) TreatmentsTreatments KK CaCa MgMg PP Optimum rangeOptimum range 19.5 - 31.319.5 - 31.3 200 - 240200 - 240 36 - 4836 - 48 2.5-3.02.5-3.0 미처리 참나무untreated oak 65.2 ± 0.7a65.2 ± 0.7a 568.8 ± 9.9c568.8 ± 9.9c 34.1 ± 0.2a34.1 ± 0.2a 8.6 ± 0.4a8.6 ± 0.4a 참나무 15분, 100 ℃Oak 15 minutes, 100 ℃ 36.4 ± 1.1b36.4 ± 1.1b 554.2 ± 8.4c554.2 ± 8.4c 30.9 ± 0.5a30.9 ± 0.5a 4.1 ± 0.1bc4.1 ± 0.1bc 참나무 30분, 100 ℃Oak 30 minutes, 100 ℃ 28.6 ± 0.5c28.6 ± 0.5c 619.0 ± 14.3b619.0 ± 14.3b 33.1 ± 0.1a33.1 ± 0.1a 3.9 ± 0.0bc3.9 ± 0.0bc 참나무 60분, 100 ℃Oak 60 min, 100 ℃ 26.2 ± 0.6d26.2 ± 0.6d 665.4 ± 6.7a665.4 ± 6.7a 29.8 ± 0.3a29.8 ± 0.3a 3.7 ± 0.0c3.7 ± 0.0c 참나무 120분, 100 ℃Oak 120 min, 100 ℃ 25.2 ± 0.3e25.2 ± 0.3e 619.3 ± 9.5b619.3 ± 9.5b 31.3 ± 0.2a31.3 ± 0.2a 4.1 ± 0.0b4.1 ± 0.0b

5. 다양한 조건으로 열처리된 목질원료의 추출물 제조 및 독성 평가를 위한 GI (germination index) 분석5. GI (germination index) analysis for the preparation of extracts and toxicity evaluation of wood raw materials heat treated under various conditions

60℃에서 15분, 30분, 60분 및 120분 autoclaving하여 열처리한 소나무 칩, 100℃에서 15분, 30분, 60분, 120분 autoclaving하여 열처리한 참나무 칩 및 대조구로 열처리하지 않은 소나무 칩 및 참나무 칩의 잔사를 각각 전건중량 20 g으로 증류수 200 mL(1:10, w/v)와 500 mL 삼각플라스크에 투여하여 shaking incubator 25℃, 100 rpm에서 1시간 혼합하였다.Pine chips heat-treated by autoclaving at 60°C for 15 minutes, 30 minutes, 60 minutes, and 120 minutes; The residues of oak chips were administered to 200 mL of distilled water (1:10, w/v) and a 500 mL Erlenmeyer flask at a total dry weight of 20 g, respectively, and mixed in a shaking incubator at 25° C. and 100 rpm for 1 hour.

No.2 filter paper(150 mm, Advantec)를 사용하여 감압여과 후, 미처리 및 열처리를 시간을 달리한 소나무 칩과 참나무 칩 증류수 추출액을 이용하여 독성평가를 위한 GI 분석을 수행하였다.After filtration under reduced pressure using No.2 filter paper (150 mm, Advantec), GI analysis for toxicity evaluation was performed using distilled water extracts of pine chips and oak chips that were not treated and subjected to heat treatment at different times.

90 × 15 mm 페트리 디쉬에 페이퍼 티슈 2장을 깔고 시판 참외 종자(금노다지은천참외, ㈜농우바이오) 20립을 치상 후, 24℃ 항온배양기에서 발아시켰다.Two sheets of paper tissue were laid on a 90 × 15 mm Petri dish, and 20 commercially available melon seeds (Geumnodajieuncheon melon, Nongwoobio Co., Ltd.) were planted and germinated in an incubator at 24°C.

7일 동안 소나무 칩과 참나무 칩 증류수 추출물을 1일 1회 3 mL를 투입하였으며, 대조구로는 증류수를 투입하였다.For 7 days, 3 mL of distilled water extracts from pine chips and oak chips were added once a day, and distilled water was added as a control.

실험 기간 종료 후 참외 종자가 1 mm 이상 생장한 개수를 측정하고, 발아한 참외 종자의 근장(뿌리)을 버니어캘리퍼스를 이용하여 측정하여 상기 계산식 2를 이용하여 GI(%)를 계산하였다.After the end of the experiment period, the number of melon seeds grown by 1 mm or more was measured, and the root length (root) of the germinated melon seeds was measured using vernier calipers, and the GI (%) was calculated using Equation 2 above.

그 결과, 도 8과 같이 열처리 시간에 따른 소나무 칩 중 가장 높은 GI를 가진 열처리 시간은 60℃에서 60분으로 나타났으며, 참나무 칩 중 가장 높은 GI를 가진 열처리 시간은 100℃에서 15분과 60분으로 확인되었다.As a result, as shown in FIG. 8 , the heat treatment time with the highest GI among pine chips according to the heat treatment time was found to be 60 minutes at 60° C., and the heat treatment times with the highest GI among oak chips were 15 minutes and 60 minutes at 100° C. was confirmed as

대조구를 기준으로 GI가 70% 이상이면 식물생장에 독성이 없다고 판단되므로 미처리 및 열처리 시간에 따른 소나무 칩과 참나무 칩은 참외생장에 독성이 없는 것으로 확인되었다.If the GI is 70% or more based on the control group, it is judged that there is no toxicity to plant growth. Therefore, it was confirmed that pine and oak chips according to untreated and heat-treated time were not toxic to melon growth.

상기 결과로부터 60분간 열처리한 소나무 칩은 EC에서 참외 생육에 적합한 화학적 특성이 확인되었으며, 가장 높은 GI 분석의 결과가 나타남에 따라 가장 적합한 시간임이 확인되었으며, 60분간 열처리한 참나무 칩 역시 pH, EC 및 양이온 함량에서 참외 생장에 적합한 화학적 특성이 확인되었으며, GI 분석에서 높은 수치가 나타남에 따라 가장 적합한 시간으로 확인되었다.From the above results, the chemical properties suitable for melon growth were confirmed in EC for the pine chip heat treated for 60 minutes, and it was confirmed that it was the most suitable time according to the results of the highest GI analysis. Chemical properties suitable for melon growth were confirmed in terms of cation content, and as the GI analysis showed high values, it was confirmed as the most suitable time.

6. 기능성 토양 제조에 적합한 목질원료의 열처리 조건6. Heat treatment conditions for wood raw materials suitable for functional soil production

앞선 실험에서 확인된 바와 같이 소나무 칩의 최적 열처리 조건은 60℃에서 60분간 열처리한 것으로, EC에서 참외 생육에 적합한 화학적 특성을 가지고 있고 가장 높은 GI 분석의 결과가 확인되었다. 또한, 참나무 칩의 최적 열처리 조건은 100 ℃에서 60분간 열처리한 것으로, pH, EC 및 양이온 함량에서 참외 생장에 적합한 화학적 특성이 나타났으며, GI 분석에서 높은 수치가 확인되었다.As confirmed in the previous experiment, the optimum heat treatment condition for pine chips was heat treatment at 60° C. for 60 minutes, and the EC had chemical properties suitable for melon growth and the highest GI analysis was confirmed. In addition, the optimal heat treatment conditions for oak chips were heat treatment at 100 °C for 60 minutes, and chemical properties suitable for melon growth were shown in pH, EC and cation content, and high values were confirmed in GI analysis.

60℃에서 60분간 열처리한 소나무 칩의 탄질비는 125.0를 나타내었고, 100℃에서 60분간 열처리한 참나무 칩의 탄질비는 62.7로써 약 2배의 탄질비 차이가 확인되었으며, 이를 참외 생육에 적합한 탄질비인 30 전후로 맞춰주기 위하여 질소원 추가 투입과정이 필요한 것을 확인할 수 있었다. 그러나 참나무 칩을 이용할 경우, 소나무 칩에 질소원을 혼합하는 양의 2배를 줄여서 사용할 수 있으므로 질소원 사용을 줄이기 위하여 참나무 칩이 기능성 토양 제조에 적합한 목질원료인 것으로 확인되었다.The carbon-to-material ratio of the pine chips heat-treated at 60 °C for 60 minutes was 125.0, and the carbon-to-material ratio of the oak chips heat treated at 100 °C for 60 minutes was 62.7, which was about twice the carbon-to-material ratio difference. In order to adjust the ratio to around 30, it was confirmed that an additional nitrogen source input process was necessary. However, when oak chips are used, the amount of mixing of nitrogen sources with pine chips can be reduced by two times, so it was confirmed that oak chips were suitable for the production of functional soil in order to reduce the use of nitrogen sources.

또한, 참외 생육에 적합한 토양의 pH는 6.0-6.5로 약산성 토양으로, 60℃에서 60분간 열처리한 소나무 칩의 pH는 4.8으로 강산성을 띄고 100℃에서 60분간 열처리한 참나무 칩의 pH는 5.6으로 확인됨에 따라, 참외 생육에 적합한 토양의 pH보다는 다소 낮으나 약산성을 나타내는 참나무 칩이 기능성 토양 제조에 적합한 목질원료인 것으로 확인되었다.In addition, the pH of the soil suitable for melon growth is 6.0-6.5, which is a weakly acidic soil, the pH of pine chips heat-treated at 60°C for 60 minutes is 4.8, and the pH of oak chips heat-treated at 100°C for 60 minutes is 5.6. As a result, it was confirmed that oak chips showing weak acidity although slightly lower than the pH of the soil suitable for melon growth was a wood material suitable for the production of functional soil.

양이온 함량에 있어서 소나무 칩은 P를 제외한 양이온(K, Ca, Mg)함량이 참외 생육에 적합한 양이온 함량범위보다 미달되는 것으로 확인된 반면, 참나무 칩의 양이온은 과량의 Ca를 제외한 K, Mg, P는 참외 생육에 적합한 양이온 함량 범위 내 존재하거나 근접한 값을 함유하므로 참나무 칩이 기능성 토양 제조에 적합한 목질원료인 것으로 확인되었다.In terms of the cation content, it was confirmed that the cation (K, Ca, Mg) content of pine chips excluding P was lower than the cation content range suitable for melon growth, whereas the cations of oak chips were K, Mg, P excluding excess Ca. It was confirmed that oak chips are suitable for the production of functional soil because they exist within or close to the cation content range suitable for melon growth.

상기 결과로부터 탄질비, pH 및 양이온함량이 참나무 칩에서 더 우세하게 나타는 것으로 확인됨에 따라, 참외 재배를 위한 복합 기능성 토양 제조에 적합한 목질원료로 100℃에서 60분간 열처리한 참나무 칩이 적합한 것으로 확인되었다.From the above results, it was confirmed that the carbon-to-nitrogen ratio, pH, and cation content were more dominant in the oak chip, so it was confirmed that the oak chip heat-treated at 100° C. for 60 minutes as a wood material suitable for manufacturing complex functional soil for melon cultivation is suitable. became

<실시예 2> 탄질비 (C/N비) 개선을 위한 질소원 확인<Example 2> Confirmation of nitrogen source for improving carbon-to-nitrogen ratio (C/N ratio)

1. 열처리된 목질원료와 다양한 질소원 혼합1. Mixing heat-treated wood raw materials with various nitrogen sources

질소원으로 효모추출물 (Yeast extract, Difco, USA), NH4HCO3 (Ammonium Bicarbonate, DAEJUNG, Korea) 및 효모추출물+NH4HCO3 (1:1,w/w)을 열처리된 참나무 칩(100 ℃, 60분) 목질원료에 첨가하여 베이스 원료를 제조하였다.Yeast extract (Yeast extract, Difco, USA), NH 4 HCO 3 (Ammonium Bicarbonate, DAEJUNG, Korea) and yeast extract+NH 4 HCO 3 (1:1,w/w) as a nitrogen source were heat-treated oak chips (100 ℃) , 60 min) was added to the wood raw material to prepare a base raw material.

열처리된 참나무 칩(100℃, 60분)을 grinder로 분쇄 후, 2 mm sieve를 이용하여 2 mm pass로 분급된 목분을 시료로 사용하였으며, 분급된 열처리 참나무 칩과 효모추출물, NH4HCO3, 효모추출물+NH4HCO3을 각각 7:3 (w/w) 비율로 혼합하였다.After grinding the heat-treated oak chips (100℃, 60 minutes) with a grinder, wood flour classified in a 2 mm pass using a 2 mm sieve was used as a sample, and the classified heat-treated oak chips and yeast extract, NH 4 HCO 3, Yeast extract + NH 4 HCO 3 Each was mixed in a ratio of 7:3 (w / w).

2. 탄질율 개선을 위한 질소원 확인2. Confirmation of nitrogen source to improve carbon quality

다양한 질소공급원 첨가에 따른 열처리된 목질원료의 탄질율을 확인하였다.The carbon content ratio of the heat-treated wood raw material according to the addition of various nitrogen sources was confirmed.

열처리된 참나무 칩을 grinder로 분쇄 후, mesh sieve를 이용하여 분급하여 얻은 80 mesh pass 목분과 질소원으로 효모추출물 (Yeast extract, Difco, USA), NH4HCO3 (Ammonium Bicarbonate, DAEJUNG, Korea) 및 효모추출물+NH4HCO3 (1:1,w/w) 질소원을 7:3 (w/w)로 혼합하고 이를 완전 건조시킨 후, 미량원소분석기(Flash 2000, Thermo Scientific)를 이용하여 TC(Total carbon) 및 TN(Total nitrogen)을 측정하였으며, 대조구로 질소원을 투입하지 않은 열처리된 참나무 칩(100℃, 60분)을 사용하였다.After grinding the heat-treated oak chips with a grinder, 80 mesh pass wood flour and nitrogen source obtained by classification using a mesh sieve, yeast extract (Yeast extract, Difco, USA), NH 4 HCO 3 (Ammonium Bicarbonate, DAEJUNG, Korea) and yeast Extract+NH 4 HCO 3 (1:1,w/w) nitrogen source was mixed at 7:3 (w/w) and completely dried, and then TC (Total carbon) and TN (Total nitrogen) were measured, and heat-treated oak chips (100° C., 60 minutes) without a nitrogen source were used as controls.

상기 측정된 TC와 TN을 이용하여 계산식 1로 탄질비(C/N ratio)를 확인하였다.The carbon-to-nitrogen ratio (C/N ratio) was confirmed by Equation 1 using the measured TC and TN.

그 결과, 도 9와 같이 대조구의 탄질비는 62.7, 효모추출물을 혼합한 열처리 참나무 칩의 탄질비는 4.0, NH4HCO3을 혼합한 열처리 참나무 칩의 탄질비는 28.1, 효모추출물+NH4HCO3(1:1, w/w)를 혼합한 열처리 참나무 칩의 탄질비는 4.2로 확인되었다. As a result, as shown in FIG. 9 , the carbon-to-nitrogen ratio of the control group was 62.7, the carbon-to-nitrogen ratio of the heat-treated oak chip mixed with yeast extract was 4.0, the carbon-to-nitrogen ratio of the heat-treated oak chip mixed with NH 4 HCO 3 was 28.1, yeast extract + NH 4 HCO 3 (1:1, w/w) of the heat-treated oak chips mixed with carbon-to-nitrogen ratio was confirmed to be 4.2.

상기 결과로부터 대조구인 열처리된 참나무 칩보다 효모추출물을 혼합한 열처리된 참나무 칩이 약 16배 낮은 탄질비를 나타내었으며, NH4HCO3을 혼합한 열처리 참나무 칩의 탄질비는 28.1로써 참외 재배에 가장 적합한 탄질비인 30 전후에 가장 근접한 값이나, 효모추출물은 천연원료이며, 소량으로도 열처리된 참나무 칩의 탄질비를 조절할 수 있고, 효모추출물을 혼합하여 열처리 참나무 칩으로 기능성 토양을 제조할 경우, 다른 질소원 사용보다 약 7배 적은 양을 사용하므로 제품의 단가를 낮추는 요소가 될 수 있으므로, 탄질비 개선을 위한 질소원으로는 효모추출물을 선택하였다.From the above results, the heat-treated oak chip mixed with yeast extract showed a carbon-to-material ratio about 16 times lower than that of the heat-treated oak chip as a control, and the heat-treated oak chip mixed with NH 4 HCO 3 had a carbon-to-material ratio of 28.1, which is the most suitable for melon cultivation. It is the closest value around 30, which is a suitable carbon-to-material ratio, but yeast extract is a natural raw material, and even a small amount can control the carbon-to-quality ratio of heat-treated oak chips. Since it uses about 7 times less than the nitrogen source, it can be a factor to lower the unit price of the product.

3. 열처리된 목질원료의 탄질비 최적화 확인3. Confirmation of optimization of carbon-to-carbon ratio of heat-treated wood raw materials

3-1. 질소원으로 효모추출물을 이용한 열처리된 목질원료의 탄질화 최적화 확인3-1. Confirmation of optimization of carbonitization of heat-treated wood raw materials using yeast extract as a nitrogen source

열처리된 참나무 칩(100℃, 60분)을 grinder로 분쇄 후, mesh sieve로 분급하여 80 mesh pass된 목분을 시료로 사용하였으며, 효모추출물 역시 mesh sieve를 이용하여 분급된 80 mesh pass를 사용하였다.After grinding the heat-treated oak chips (100℃, 60 minutes) with a grinder, classifying them with a mesh sieve and using 80 mesh pass wood flour as a sample, and the yeast extract was also classified using a mesh sieve 80 mesh pass was used.

상기 80 mesh pass된 열처리된 참나무 칩과 효모추출물을 99:1, 96:4, 93:7, 91:9, 89:11 및 86:14(w/w) 비율로 혼합하고 이를 완전 건조시킨 후, 미량원소분석기(Flash 2000, Thermo Scientific)를 이용하여 TC(Total carbon) 및 TN(Total nitrogen)을 측정하였다.After the 80 mesh pass heat-treated oak chips and yeast extract were mixed in a ratio of 99:1, 96:4, 93:7, 91:9, 89:11 and 86:14 (w/w), and then completely dried , TC (Total carbon) and TN (Total nitrogen) were measured using a trace element analyzer (Flash 2000, Thermo Scientific).

대조구는 질소원을 투입하지 않은 열처리된 참나무 칩(100 ℃, 60분)을 사용하였으며, 상기 측정된 TC와 TN을 이용하여 계산식 1로 탄질비(C/N ratio)를 확인하였다.As a control, heat-treated oak chips (100° C., 60 minutes) without a nitrogen source were used, and the carbon-to-nitrogen ratio (C/N ratio) was confirmed by Equation 1 using the measured TC and TN.

작물의 질소기아(질소부족현상)를 방지하기위해 탄질비를 30전후로 조절되어야 하므로, 표 5와 같이 열처리된 참나무 칩과 효모추출물을 91:9(w/w)로 혼합하였을 때, 참외 재배를 위한 토양으로써 가장 적합한 탄질비인 29.4가 확인됨에 따라, 상기 조건에서 질소부족현상이 나타나지 않을 것으로 판단되었다.In order to prevent nitrogen starvation (nitrogen deficiency) of crops, the carbon-to-nitrogen ratio should be adjusted to around 30. As shown in Table 5, when heat-treated oak chips and yeast extract are mixed at 91:9 (w/w), melon cultivation As the carbon-to-nitrogen ratio of 29.4, which is the most suitable as a soil for soil, was confirmed, it was determined that nitrogen deficiency would not occur under the above conditions.

효모추출물 혼합 비율에 따른 열처리된 참나무 칩의 탄질비Carbon to carbon ratio of heat-treated oak chips according to the mixing ratio of yeast extract Heat treated oak wood:yeast extract
(w/w)
Heat treated oak wood:yeast extract
(w/w)
Total carbon
(%)
Total carbon
(%)
Total nitrogen
(%)
Total nitrogen
(%)
C/N ratio
C/N ratio
100:0100:0 48.4 ± 0.448.4 ± 0.4 0.3 ± 0.00.3 ± 0.0 145.3 ± 2.3a145.3 ± 2.3a 99:199:1 48.3 ± 1.148.3 ± 1.1 0.6 ± 0.10.6 ± 0.1 75.7 ± 7.6b75.7 ± 7.6b 96:496:4 47.7 ± 0.547.7 ± 0.5 0.8 ± 0.20.8 ± 0.2 57.6 ± 10.3c57.6 ± 10.3c 93:793:7 48.7 ± 0.448.7 ± 0.4 0.9 ± 0.10.9 ± 0.1 57.0 ± 7.3c57.0 ± 7.3c 91:991:9 48.2 ± 0.448.2 ± 0.4 1.7 ± 0.31.7 ± 0.3 29.4 ± 6.0d29.4 ± 6.0d 89:1189:11 48.6 ± 0.848.6 ± 0.8 1.5 ± 0.71.5 ± 0.7 25.6 ± 5.2d25.6 ± 5.2d 86:1486:14 48.7 ± 0.348.7 ± 0.3 1.9 ± 0.11.9 ± 0.1 26.2 ± 1.9d26.2 ± 1.9d

3-2. 참외 종자를 이용한 생육 평가 실험을 통하여 열처리된 목질원료의 탄질화 최적화 확인3-2. Confirmation of optimization of carbonitization of heat-treated wood raw materials through growth evaluation experiment using melon seeds

열처리된 참나무 칩(100℃, 60분)은 2 mm sieve를 이용하여 분급한 뒤, 2 mm pass된 목분을 시료로 사용하였으며, 상기 목분 시료에 효모추출물을 93:7, 91:9 및 89:11(w/w) 비율로 혼합하여 베이스 원료로 사용하였다.The heat-treated oak chips (100°C, 60 minutes) were classified using a 2 mm sieve, and wood flour passed 2 mm was used as a sample. It was mixed at a ratio of 11 (w/w) and used as a base material.

4 cm × 4 cm × 4 cm cell 크기의 36구 플러그 트레이를 이용하였으며, 시판 상토(푸르미, ㈜서울바이오) 및 미처리 참나무 칩를 대조구로 사용하고 열처리된 참나무 칩(100℃, 60분), 열처리된 참나무 칩과 효모추출물 혼합 베이스 원료(93:7, 91:9, 89:11(w/w))를 참외 종자를 이용한 생육 평가를 위한 시험구로 사용하였다.A 36-hole plug tray with a size of 4 cm × 4 cm × 4 cm cells was used, and commercially available top soil (Purmi, Seoul Bio) and untreated oak chips were used as controls, and heat-treated oak chips (100°C, 60 minutes), heat-treated Oak chips and yeast extract mixed base raw materials (93:7, 91:9, 89:11 (w/w)) were used as test groups for growth evaluation using melon seeds.

플러그 트레이 한 구(plot)당 1립의 시판 참외 종자(금노다지은천참외, ㈜농우바이오)를 파종하였으며, 시험구가 마르지 않도록 1일 1회 두상관수하며 평균 온도 25℃에서 14일간 생육평가를 수행하였다. 실험은 플러그 트레이 한 구(plot)로 5반복 진행하였다.One commercially available melon seed (Geumnodajieuncheon melon, Nongwoobio Co., Ltd.) was sown per plug tray per plot, and head-correlated once a day to prevent drying of the test plots, and growth evaluation at an average temperature of 25℃ for 14 days was performed. The experiment was repeated 5 times with one plug tray (plot).

생육평가는 발아율, 초장 생장, 근장 생장, 엽장을 측정하였으며 초장 생장, 근장 생장, 엽장은 발아율 측정이 끝난 후 측정하였다.For growth evaluation, germination rate, plant growth, root growth, and leaf length were measured.

1) 발아율 확인1) Check the germination rate

발아율은 유근이 길이 1 mm 이상 자란 것으로 판정하며 하기 계산식 3을 이용하여 발아율(%)을 확인하였다.The germination rate was determined to be 1 mm or more in length, and the germination rate (%) was confirmed by using the following formula (3).

[계산식 3][Formula 3]

Figure 112020019566159-pat00002
Figure 112020019566159-pat00002

그 결과, 도 10과 같이 열처리 하지 않은 참나무 칩을 제외한 대조구 및 시험구는 모두 발아하였으며, 대조구인 상토와 시험구인 열처리된 참나무 칩(100℃, 60분) 및 열처리된 참나무 칩과 효모추출물 혼합 베이스 원료(91:9, w/w)에서 모든 참외 종자가 발아하여 발아율 100%로 확인된 반면, 열처리하지 않은 참나무 칩의 발아율이 0%임이 확인되면서, 참나무 칩의 열처리 필요성이 확인되었다.As a result, all of the control and test groups except for the oak chips that were not heat treated as shown in FIG. 10 germinated, and the heat-treated oak chips (100° C., 60 minutes) as the control top soil and the test groups, and the heat-treated oak chips and yeast extract mixed base raw material (91:9, w/w), all melon seeds germinated and it was confirmed that the germination rate was 100%, while it was confirmed that the germination rate of oak chips that were not heat treated was 0%, confirming the need for heat treatment of oak chips.

특히, 참외 생육에 가장 적합한 탄질비에 근접한 수치를 가진 열처리된 참나무 칩과 효모추출물 혼합 베이스 원료(91:9, w/w)에서 발아율이 가장 높게 나타남에 따라, 열처리된 참나무 칩과 효모추출물 혼합 베이스 원료(91:9, w/w)가 가장 최적의 조건으로 판단되었다.In particular, as the germination rate was highest in the heat-treated oak chip and yeast extract mixed base material (91:9, w/w), which has a value close to the carbon-to-nitrile ratio most suitable for melon growth, the heat-treated oak chip and yeast extract mixture The base material (91:9, w/w) was determined to be the most optimal condition.

2) 초장 생장(stem length) 확인2) Check the stem length

초장 생장은 기반으로부터 식물의 가장 끝이 되는 지점을 기준으로 버니어 캘리퍼스를 이용하여 측정한 다음 평균값을 계산하였다.Plant growth was measured using a vernier caliper from the base to the most extreme point of the plant, and then the average value was calculated.

그 결과, 도 11과 같이 시험구 중 열처리된 참나무 칩과 효모추출물 혼합 베이스 원료(91:9, w/w)에서 가장 높은 초장 생장의 값이 확인되었다.As a result, as shown in FIG. 11 , the highest value of plant growth was confirmed in the heat-treated oak chip and yeast extract mixed base raw material (91:9, w/w) in the test group.

상기 결과로부터 참나무 칩과 효모추출물을 91:9(w/w)로 혼합한 베이스 원료가 가장 최적의 조건으로 판단되었다.From the above results, it was determined that the base material obtained by mixing oak chips and yeast extract at 91:9 (w/w) was the most optimal condition.

3) 근장 생장(root length) 확인3) Confirmation of root length

근장 생장은 기반으로부터 식물 뿌리의 끝이 되는 지점을 버니어 캘리퍼스를 이용하여 측정한 다음 평균값을 계산하였다.The root growth was measured using a vernier caliper at the point from the base to the tip of the plant root, and then the average value was calculated.

그 결과, 도 12와 같이 상토, 열처리된 참나무 칩 및 열처리된 참나무칩 효모추출물 혼합 베이스 원료(93:7, 91:9, w/w)는 모두 유의성을 나타내었으나, 열처리된 참나무 칩과 효모추출물을 혼합한 시험구중 91:9(w/w)비율로 혼합한 혼합물이 가장 높은 근장 생장이 확인되었다.As a result, as shown in FIG. 12, the mixed base materials (93:7, 91:9, w/w) of the top soil, the heat-treated oak chip and the heat-treated oak chip yeast extract all showed significance, but the heat-treated oak chip and yeast extract The highest root growth was confirmed in the mixture mixed with 91:9 (w/w) ratio among the test groups in which

상기 결과로부터 참나무 칩과 효모추출물을 91:9(w/w)로 혼합한 베이스 원료가 가장 최적의 조건으로 판단되었다.From the above results, it was determined that the base material obtained by mixing oak chips and yeast extract at 91:9 (w/w) was the most optimal condition.

4) 엽장(leaf length) 확인4) Check the leaf length

엽장은 정단부로부터 5 ㎝ 이내에서 가장 큰 잎의 길이를 버니어 캘리퍼스를 이용하여 측정한 다음 평균값을 계산하였다.The leaf length was measured using a vernier caliper to measure the length of the largest leaf within 5 cm from the apex, and then the average value was calculated.

그 결과, 도 13과 같이 시험구 중 열처리된 참나무 칩과 효모추출물을 혼합한 시험구 91:9(w/w)에서 가장 긴 엽장이 확인됨에 따라, 참나무 칩과 효모추출물을 91:9(w/w)로 혼합한 베이스 원료가 가장 최적의 조건으로 판단되었다.As a result, as the longest leaf length was confirmed in the test group 91:9 (w/w) in which the heat-treated oak chip and yeast extract were mixed in the test group as shown in FIG. 13, the oak chip and the yeast extract were mixed with 91:9 (w) /w) mixed base material was judged to be the most optimal condition.

상기 결과들로부터 초장 생장, 근장 생장, 엽장에서 가장 긴 값이 확인된 참나무 칩과 효모추출물을 91:9(w/w)로 혼합한 베이스 원료가 가장 최적의 조건인 것으로 확인되었다.From the above results, it was confirmed that the base raw material obtained by mixing oak chips and yeast extract, which had the longest values in super growth, root growth, and leaf length, at a ratio of 91:9 (w/w), was the most optimal condition.

<실시예 3> 원료 볏짚의 미생물활성 증대를 위한 발효 기술 <Example 3> Fermentation technology for increasing microbial activity of raw material rice straw

1. 발효볏짚 제조를 위한 볏짚과 계분 혼합물 제조1. Preparation of rice straw and chicken meal mixture for manufacturing fermented rice straw

Grinder을 이용하여 볏짚을 분쇄한 후 mesh sieve(20 mesh, 80 mesh)로 분급하여 20 mesh pass-80 mesh on 크기의 볏짚을 사용하였으며, 가공계분 100% (㈜일등미생물비료)은 절구를 이용하여 분쇄한 후 mesh sieve(20 mesh, 80 mesh)로 분급하여 20 mesh pass-80 mesh on 크기의 계분을 사용하였다.After grinding the rice straw using a grinder, it was classified with a mesh sieve (20 mesh, 80 mesh), and rice straw with a size of 20 mesh pass-80 mesh on was used. After pulverization, it was classified with a mesh sieve (20 mesh, 80 mesh), and a 20 mesh pass-80 mesh on size chicken manure was used.

분급된 볏짚과 계분을 기건 중량 9:1, 8:2, 7:3(w/w) 비율로 혼합하여 혼합물을 제조하였다.A mixture was prepared by mixing classified rice straw and chicken manure in dry weight ratios of 9:1, 8:2, 7:3 (w/w).

2. 볏짚 및 계분 혼합물의 화학적 특성 확인2. Confirmation of chemical properties of rice straw and chicken manure mixture

2-1. 탄질비(C/N ratio, carbon-nitrogen ratio) 확인2-1. Check carbon-to-nitrogen ratio (C/N ratio, carbon-nitrogen ratio)

가축분을 퇴비화하기 위해서는 미생물의 에너지원으로 사용되는 탄소와 미생물의 증식을 위한 구성성분으로 작용하는 탄질비를 적절히 맞추는 것이 중요하며 일반적으로 초기 탄질비를 25-30가 적당(Lee et al., 2004)한 것으로 보고되어 짐에 따라 볏짚 및 계분 혼합물의 탄질비를 확인하였다.In order to compost livestock meal, it is important to properly match the carbon used as an energy source for microorganisms and the carbon to nitrogen ratio, which acts as a component for the growth of microorganisms. ) was reported, and the carbon-to-nitrogen ratio of the rice straw and chicken manure mixture was confirmed.

Grinder 및 절구를 이용하여 볏짚과 계분을 분쇄한 후, 80 mesh sieve로 분급하여 80 mesh pass를 완전 건조시킨 후, 미량원소분석기(Flash 2000, Thermo Scientific)를 이용하여 TC(Total carbon) 및 TN(Total nitrogen)을 측정하고, 계산식 1을 이용하여 탄질비(C/N ratio)를 확인하였다.After grinding the rice straw and chicken manure using a grinder and a mortar, classify it with an 80 mesh sieve and dry the 80 mesh pass completely. Total nitrogen) was measured, and the carbon-to-nitrogen ratio (C/N ratio) was confirmed using Equation 1.

그 결과, 도 14와 같이 볏짚과 계분을 비율별로 혼합하였을 때, 볏짚과 계분을 중량 기준 7:3 혼합물이 가장 발효퇴비로 제조전 원료의 적합한 탄질비와 근접한 것으로 나타났다. As a result, as shown in FIG. 14 , when rice straw and chicken manure were mixed by ratio, a 7:3 mixture of rice straw and chicken manure by weight was the most fermented compost, and it was found to be close to the suitable carbon-to-nitrogen ratio of the raw material before manufacturing.

상기 결과로부터 가장 발효가 잘되는 원료의 혼합비는 볏짚과 계분 7:3인 것으로 확인되었다.From the above results, it was confirmed that the mixing ratio of the raw material with the best fermentation was 7:3 for rice straw and chicken manure.

2-2. EC(Electrical capacity) 확인2-2. EC (Electrical capacity) check

볏짚과 계분을 분쇄한 후 20 mesh sieve, 80 mesh sieve를 이용하여 분급하여 20 mesh pass-80 mesh on 크기를 시료를 사용하였다. 시료 1 g과 증류수 5 ml 1:5 (w/v)로 혼합하여 실온에서 1시간 정치반응 시킨 후, EC meter(HI8733, HANNA)로 EC를 확인하였다.After pulverizing rice straw and chicken manure, 20 mesh sieve and 80 mesh sieve were used to classify the sample, and a 20 mesh pass-80 mesh on size sample was used. After mixing 1 g of sample and 5 ml of distilled water 1:5 (w/v), and allowing to stand for 1 hour at room temperature, EC was checked with an EC meter (HI8733, HANNA).

참외 생육에 적합한 토양의 EC는 1 mS/cm 이하로써 도 15를 참고하면, 계분을 제외한 볏짚 및 볏짚과 계분 혼합물이 범위내에 존재하는 것이 확인되었다.The EC of soil suitable for melon growth was 1 mS/cm or less, and referring to FIG. 15 , it was confirmed that rice straw and a mixture of rice straw and chicken manure excluding chicken manure existed within the range.

상기 결과로부터 높은 EC를 가지고 있는 계분에 볏짚을 첨가함으로써 EC를 작물이 자랄 수 있는 토양의 적정범위로 낮추고 퇴비로 사용될 수 있음이 확인되었다.From the above results, it was confirmed that by adding rice straw to chicken manure with high EC, EC could be lowered to an appropriate range of soil for crops to grow and used as compost.

2-3. pH 확인2-3. pH check

pH는 미생물이 증식 및 대사 반응에 대한 pH의 영향은 매우 크며 생산되는 산물의 종류와 양에도 중요한 영향을 미치므로, 볏짚 및 계분 혼합물의 pH를 확인하였다.Since pH has a very large effect on the proliferation and metabolic reaction of microorganisms and has an important influence on the type and amount of products produced, the The pH was checked.

볏짚과 계분을 grinder로 분쇄한 후, mesh sieve로 분급한 20 mesh pass-80 mesh on 크기를 시료로 사용하였으며, 시료 1 g과 증류수 5 ml를 1:5 (w/v)로 혼합하여 실온에서 1시간 정치반응 시킨 후, pH meter(HI1295, HANNA)로 측정하였다.After pulverizing rice straw and chicken manure with a grinder, a 20 mesh pass-80 mesh on size classified with a mesh sieve was used as a sample, and 1 g of the sample and 5 ml of distilled water were mixed 1:5 (w/v) at room temperature. After allowing the reaction to stand for 1 hour, it was measured with a pH meter (HI1295, HANNA).

그 결과, 도 16과 같이 원료의 초기 pH는 알카리성을 띄므로 약산성을 띄는 참나무 칩의 pH를 개선할 수 있음이 확인되었다.As a result, as shown in FIG. 16 , it was confirmed that the pH of the slightly acidic oak chip could be improved because the initial pH of the raw material was alkaline.

3. 볏짚 및 계분 혼합물의 미생물 활성 평가3. Evaluation of Microbial Activity of Rice Straw and Chicken Manure Mixtures

3-1. 볏짚 및 계분 혼합물의 혼합비율에 따른 미생물 함량 확인3-1. Confirmation of microbial content according to the mixing ratio of rice straw and chicken manure mixture

볏짚과 계분을 9:1, 8:2, 7:3(w:w)으로 혼합하여 수분함량을 70 %로 맞춘 후, 30분간 침지시킨 상태의 상등액을 이용하여 미생물 활성 평가를 수행하였다.Rice straw and chicken manure were mixed at 9:1, 8:2, 7:3 (w:w) to adjust the moisture content to 70%, and then the microbial activity was evaluated using the supernatant immersed for 30 minutes.

시료 1 g과 멸균된 증류수 9 mL를 혼합하여 균사액 제조하고, 멸균된 증류수 900 μL가 들어있는 e-tube에 균사액 100 μL를 넣어 희석하였으며, 동일한 방법으로 102배, 103배 희석액을 제조하였다.Prepared by mixing distilled water 9 mL sterile water and the sample 1 g mycelium mixture, and the mixture was put in the mycelial solution 100 μL diluted in e-tube containing sterilized distilled water 900 μL, in the same way 10 twice, a 10 3 fold dilution prepared.

NA(Nutrient Agar)배지에 희석된 균사액 50 μL를 분주하여 유리막대로 도말 한 후, 30 ℃ 항온배양기에 48h 배양하였다.After dispensing 50 μL of the mycelium diluted in NA (Nutrient Agar) medium and smearing it with a glass rod, it was cultured for 48 h in an incubator at 30 ° C.

생장된 콜로니 수를 측정하고 하기 계산식 4를 이용하여 CFU(colony-forming unit)를 확인하였다.The number of grown colonies was measured and CFU (colony-forming unit) was confirmed using Equation 4 below.

[계산식 4] [Formula 4]

CFU = number of colony × dilution rate CFU = number of colonies × dilution rate

그 결과, 도 17과 같이 볏짚과 계분은 각각의 미생물이 존재하는 것을 확인할 수 있었으며, 원료가 함유하고 있는 미생물보다 볏짚과 계분을 혼합하였을 때 더 많은 양의 미생물을 가지는 것으로 나타났다. 특히 볏짚과 계분을 7:3(w:w)으로 혼합한 시료군에 가장 많은 양의 미생물이 함유된 것을 확인할 수 있었다.As a result, it was confirmed that each microorganism was present in the rice straw and chicken manure as shown in FIG. 17, and it was found to have a greater amount of microorganisms when the rice straw and chicken manure were mixed than the microorganisms contained in the raw material. In particular, it was confirmed that the largest amount of microorganisms was contained in the sample group in which rice straw and chicken manure were mixed at a ratio of 7:3 (w:w).

3-1. 볏짚의 발효기간 경과 (5일~20일)에 따른 화학적 특성 변화 확인3-1. Confirmation of changes in chemical properties according to fermentation period (5 to 20 days) of rice straw

1) EC(Electrical capacity) 확인1) EC (Electrical capacity) check

발효시 높은 전기전도도는 미생물 분해 효과를 증대시키는 것으로 보고됨 (Karanja et al., 2019)에 따라, 발효시간 경과에 따른 볏짚 및 계분 혼합물의 EC를 확인하였다.As it was reported that high electrical conductivity during fermentation enhances the microbial decomposition effect (Karanja et al., 2019), the EC of the rice straw and chicken manure mixture according to the lapse of fermentation time was confirmed.

볏짚과 가공계분을 grinder로 분쇄한 후, 20 mesh sieve, 80 mesh sieve를 이용하여 분급하여 20 mesh pass-80 mesh on 크기를 시료로 사용하였다.After pulverizing rice straw and processed chicken meal with a grinder, it was classified using 20 mesh sieve and 80 mesh sieve, and 20 mesh pass-80 mesh on size was used as a sample.

시료 1 g과 증류수 5 ml 1:5 (w:w)로 혼합하여 실온에서 1시간 정치반응 시킨 후, EC meter(HI8733, HANNA)로 측정하였다. 1 g of the sample and 5 ml of distilled water were mixed 1:5 (w:w) and allowed to react at room temperature for 1 hour, followed by measurement with an EC meter (HI8733, HANNA).

그 결과, 도 18과 같이 가장 높은 전기전도도를 나타낸 볏짚 7: 계분 3(w:w)이 볏짚 발효에 가장 효과적일 것으로 판단되었다.As a result, as shown in FIG. 18 , it was determined that rice straw 7: chicken manure 3 (w:w) showing the highest electrical conductivity was most effective for rice straw fermentation.

2) pH 확인2) Check the pH

가축분을 혼합하여 퇴비를 제조할 경우 초기 pH 8.0이상으로 상승하며 퇴비화가 완료되면 pH가 중성으로 안정화된다고 보고되어 있다.(Lee et al., 2004) 이에 따라, 발효 시간 경과에 따른 볏짚 및 계분 혼합물의 pH를 확인하였다.It has been reported that when compost is mixed with livestock meal, the initial pH rises to 8.0 or higher and the pH is stabilized to neutral when composting is completed (Lee et al., 2004). Accordingly, rice straw and chicken manure mixture according to fermentation time The pH was confirmed.

볏짚과 가공계분을 grinder로 분쇄한 후, mesh sieve로 분급한 20 mesh pass-80 mesh on 크기를 시료로 사용하였다. 시료 1 g과 증류수 5 ml를 1:5 (w:w)로 혼합하여 실온에서 1시간 정치반응 시킨 후, pH meter(HI1295, HANNA)로 측정하였다.After pulverizing rice straw and processed chicken meal with a grinder, a size of 20 mesh pass-80 mesh on which was classified with a mesh sieve was used as a sample. 1 g of the sample and 5 ml of distilled water were mixed in a ratio of 1:5 (w:w) and allowed to react at room temperature for 1 hour, followed by measurement with a pH meter (HI1295, HANNA).

그 결과, 도 19와 같이 실험에 사용된 볏짚과 계분 혼합물은 초기 pH는 8이며 발효일 수가 증가하면서 pH가 참외 생육에 적합한 약산성 pH인 6-6.5 범위에 적합한 것을 확인할 수 있었다.As a result, as shown in FIG. 19 , it was confirmed that the initial pH of the rice straw and chicken meal mixture used in the experiment was 8, and as the number of fermentation days increased, the pH was suitable for the range of 6-6.5, which is a slightly acidic pH suitable for melon growth.

특히, 혼합비율 중 볏짚과 계분 7:3(w:w) 혼합물이 시험구 중 가장 적합한 pH를 지니므로 발효퇴비로써 적합한 화학적 활성을 나타내는 것으로 확인되었다.In particular, it was confirmed that the rice straw and chicken manure 7:3 (w:w) mixture among the mixing ratios had the most suitable pH among the test groups, and thus exhibited suitable chemical activity as fermented compost.

상기 결과로부터 퇴비화 과정과 유사한 경향을 나타내는 것으로 확인됨에 EK라, 볏짚 및 계분 혼합물의 발효가 성공적으로 진행된 것이 확인되었다.As it was confirmed from the above results that it showed a similar tendency to the composting process, it was confirmed that the fermentation of EK, rice straw and chicken meal mixture was successfully performed.

4. 볏짚 및 계분 혼합물의 발효 조건 확인4. Confirmation of fermentation conditions of rice straw and chicken manure mixture

4-1. 발효온도 확인4-1. Check fermentation temperature

볏짚과 계분을 전건 중량 기준 9:1, 8:2 및 7:3 (w:w) 비율별로 혼합하여 autoclaving jar에 투입하여 수분함량을 70 %로 맞춘 후, 발효기(KGC-712KC, 한국)를 이용하여 실온, 30 ℃ 및 60 ℃ 온도를 설정하여 10일간 발효한 혼합물 시료에서 미생물 활성을 확인하였으며, 대조구로 볏짚을 사용하였다.Rice straw and chicken manure were mixed in 9:1, 8:2 and 7:3 (w:w) ratios based on whole dry weight, put into an autoclaving jar, and the moisture content was adjusted to 70%, and then a fermenter (KGC-712KC, Korea) was run. Microbial activity was confirmed in the sample of the mixture fermented for 10 days by setting room temperature, 30 ℃ and 60 ℃ temperature using the use of rice straw as a control.

시료 1 g과 멸균된 증류수 9 mL를 혼합하여 30분간 침지시킨 후 상등액을 균사액으로 사용하였다. 멸균된 증류수 900 μL가 들어있는 e-tube에 균사액 100 μL를 넣어 희석하였으며, 이와 동일한 방법으로 102 배, 103 배 희석액을 제조하였다.1 g of the sample and 9 mL of sterilized distilled water were mixed and immersed for 30 minutes, and then the supernatant was used as the mycelium. 100 μL of mycelium was added to an e-tube containing 900 μL of sterilized distilled water and diluted, and 10 2- fold and 10 3- fold dilutions were prepared in the same way.

NA(Nutrient Agar)배지에 희석된 균사액 50 μL를 분주하여 유리막대로 도말 한 후, 30 ℃ 항온배양기에 48h 배양하고, 생장된 colony 수를 측정한 후 계산식 4를 이용하여 CFU(colony-forming unit)를 확인하였다.After dispensing 50 μL of the mycelium diluted in NA (Nutrient Agar) medium and smearing it with a glass rod, incubate for 48 h in an incubator at 30 ° C. After measuring the number of grown colonies, use Equation 4 to calculate CFU (colony-forming unit) ) was confirmed.

그 결과, 도 20과 같이 볏짚과 계분을 건조 중량 기준 7:3으로 혼합하여, 볏짚 발효 온도는 30℃가 가장 적합한 것으로 확인되었다.As a result, as shown in FIG. 20, rice straw and chicken manure were mixed in a dry weight ratio of 7:3, and it was confirmed that the rice straw fermentation temperature was 30° C. most suitable.

4-2. 발효 기간 및 혼합물 비율 확인4-2. Check fermentation period and mixture ratio

볏짚과 계분을 전건 중량 기준 9:1, 8:2 및 7:3 (w:w) 비율별로 혼합하여 autoclaving jar에 투입하여 수분함량을 70 %로 맞춘 후, 발효기(KGC-712KC, 한국)를 이용하여 30 ℃ 온도를 설정하여 5일, 10일, 15일 및 20일간 발효한 혼합물을 시료로 이용하여 상기 4-1과 동일한 방법으로 미생물 활성을 확인하였으며, 대조구로 볏짚을 사용하였다.Rice straw and chicken manure were mixed in 9:1, 8:2 and 7:3 (w:w) ratios based on whole dry weight, put into an autoclaving jar, and the moisture content was adjusted to 70%, and then a fermenter (KGC-712KC, Korea) was run. Microbial activity was confirmed in the same manner as in 4-1, using a mixture fermented for 5 days, 10 days, 15 days, and 20 days as a sample by setting a temperature of 30 ° C.

그 결과, 도 21과 같이 볏짚과 계분을 전건 중량 기준 7:3으로 혼합했을 때, 가장 높은 미생물 활성이 확인되었으며, 볏짚 발효 기간은 10일이 가장 적합한 것으로 나타났다.As a result, as shown in FIG. 21 , when rice straw and chicken manure were mixed at a total dry weight ratio of 7:3, the highest microbial activity was confirmed, and 10 days of rice straw fermentation was found to be the most suitable.

상기 결과들로부터 기능성 토양의 원료로 적합한 발효 볏짚 제조를 위한 발효 조건은 볏짚과 계분을 전건 중량 기준 7:3으로 혼합하여 30℃ 온도에서 10일간 발효시키는 조건이 미생물 활성에 가장 적합한 것으로 확인되었다.From the above results, it was confirmed that the fermentation conditions for the production of fermented rice straw suitable as a raw material for functional soil were the conditions of mixing rice straw and chicken manure in a total dry weight ratio of 7:3 and fermenting them at 30 ° C. for 10 days for microbial activity.

<실시예 4> 참외 생장을 위한 목질원료, 질소공급원 및 발효 볏짚의 최적 혼합조건 확인<Example 4> Confirmation of optimal mixing conditions of wood raw material, nitrogen supply source and fermented rice straw for melon growth

1. 목질원료, 질소공급원 및 볏짚의 혼합비율에 따른 독성가스 방출량 확인1. Confirmation of toxic gas emission according to the mixing ratio of wood raw material, nitrogen supply source and rice straw

1-1. 포름알데히드 방출량 확인1-1. Formaldehyde emission check

포트 적용 기간 경과에 따른 기존 인공토양과 기능성 토양 혼합물의 포름알데히드 (KS M 1988: 2009법) 방출량을 확인하였다.Formaldehyde (KS M 1988: 2009 method) emission of the existing artificial soil and functional soil mixture according to the period of pot application was confirmed.

1) 아세틸 아세톤-아세트산 암모늄 제조1) Preparation of acetyl acetone-ammonium acetate

아세트산 암모늄 150 g을 1000 ml 플라스크에 넣고 약 800 ml의 증류수를 넣어 용해시킨 후, 아세트산 3 ml와 아세틸아세톤을 2 ml를 첨가하였으며, 상기 용액에 증류수를 넣어 1000 ml가 되도록하여 사용하였다.150 g of ammonium acetate was placed in a 1000 ml flask, about 800 ml of distilled water was added to dissolve, 3 ml of acetic acid and 2 ml of acetylacetone were added, and distilled water was added to the solution to make 1000 ml.

2) 시험편 제조2) Preparation of test pieces

포름알데히드 측정방법은 데시게이터법(KS M 1998)을 이용하여 실험을 진행하였다. 시료의 항량에 달할때까지 7일간 항온항습실(20℃, 65%)에 보관 후, 11L 데시게이터 내에 항량에 달한 시료와 유리포집그릇 내에 300 mL 증류수를 넣고 항온항습실(20℃, 65%)에서 24시간 보관하였다. 이후 유리포집그릇의 포름알데히드를 흡수한 물을 시험용 용액으로 사용하였으며, 바탕 시료는 증류수 25 mL를 사용하였다.For the formaldehyde measurement method, the experiment was conducted using the desigator method (KS M 1998). Store in a constant temperature and humidity room (20℃, 65%) for 7 days until the sample reaches a constant weight, put the sample that has reached constant weight in an 11L desiccator and 300 mL distilled water in a glass container, and place it in a constant temperature and humidity room (20℃, 65%). Stored for 24 hours. Afterwards, the water that absorbed the formaldehyde in the glass collecting bowl was used as a test solution, and 25 mL of distilled water was used as the background sample.

3) 표준 시료 제조3) Preparation of standard samples

35% 포름알데히드 용액 1.0 mL를 증류수로 희석하여 1L로 하여 표준용액으로 사용하였다. 포름알데히드 표준용액을 1.0 mL를 취해 증류수로 25 mL가 되게 희석하여 포름알데히드 표준용액이 0.125, 0.25, 0.5 및 0.75 mL가 되도록 희석한 포름알데히드 표준시료를 준비하였다.1.0 mL of 35% formaldehyde solution was diluted with distilled water to make 1 L and used as a standard solution. Take 1.0 mL of the formaldehyde standard solution and dilute it to 25 mL with distilled water to prepare a formaldehyde standard sample diluted so that the formaldehyde standard solution becomes 0.125, 0.25, 0.5 and 0.75 mL.

4) 포름알데히드 확인4) Formaldehyde check

각각의 시험편, 표준시료 및 바탕시료 25 mL과 아세틸 아세톤-아세트산 암모늄 25 mL를 혼합하여 65℃ water bath에서 10분간 가온하였다. 용액을 식힌 후, UV-vis spectrophotometer 412nm로 흡광도를 측정하고 하기 계산식 5를 이용하여 포름알데히드를 확인하였다.25 mL of each test piece, standard sample and blank sample, and 25 mL of acetylacetone-ammonium acetate were mixed and heated in a water bath at 65° C. for 10 minutes. After cooling the solution, absorbance was measured with a UV-vis spectrophotometer 412 nm, and formaldehyde was confirmed using Equation 5 below.

[계산식 5][Formula 5]

G=F*(Aa-Ab)*1800/SG=F*(Aa-Ab)*1800/S

G:시험편의 포름알데히드 농도(mg/L)G: Formaldehyde concentration of test piece (mg/L)

F:포름알데히드 표준용액에 대한 검정곡선의 기울기(mg/L)F: Slope of the calibration curve for formaldehyde standard solution (mg/L)

Aa:시험편을 넣은 데시게이터 내 용액의 흡광도Aa: Absorbance of the solution in the desiccator containing the specimen

Ab:포름알데히드 바탕시험 용액의 흡광도Ab: Absorbance of formaldehyde blank test solution

S:시험편의 표면적(cm2)S: surface area of the test piece (cm 2 )

그 결과, 도 22와 같이 참나무칩과 발효 볏짚을 혼합한 시험구는 포름알데히드 방출량은 E0(0.3 mg/L이하)등급으로써 작물 생장에 안전한 수치인 것으로 확인되었다.As a result, as shown in FIG. 22, the test group in which oak chips and fermented rice straw were mixed had a formaldehyde emission level of E0 (0.3 mg/L or less), which was confirmed to be a safe value for crop growth.

1-2. 이산화탄소 방출량 확인1-2. Check carbon dioxide emissions

이산화탄소 방출량 (KS M ISO 14855-1법)을 확인하였다.Carbon dioxide emission (KS M ISO 14855-1 method) was confirmed.

열처리 목분과 질소원 및 발효 볏짚 혼합물 30 g을 밀폐용기에 넣고 1일간 이산화탄소를 포집하고, 산화탄소 측정기(GC-2028)를 이용하여 밀폐용기 내에서 방출량을 확인하였다.30 g of a mixture of heat-treated wood flour, nitrogen source, and fermented rice straw was placed in an airtight container, carbon dioxide was collected for one day, and the amount of release in the airtight container was checked using a carbon oxide meter (GC-2028).

작물이 성장하는데 적합한 이산화탄소 함량은 800-1200 ppm으로 도 23과 같이 질소원 혼합된 참나무칩과 발효 볏짚을 9:1, 8:2, 7:3 (w:w)로 혼합 했을때, 참외 생육에 적합한 이산화탄소 함량을 배출하는 것으로 나타났다.The carbon dioxide content suitable for crop growth is 800-1200 ppm, and as shown in FIG. 23, when oak chips mixed with nitrogen source and fermented rice straw are mixed at 9:1, 8:2, 7:3 (w:w), It has been shown to emit a suitable carbon dioxide content.

2. 제조된 기능성 토양의 참외 모종 생장 평가 및 기능성 토양 원료의 최적 혼합 포뮬레이션 확인2. Evaluation of the growth of melon seedlings in the manufactured functional soil and confirmation of the optimal mixing formulation of functional soil raw materials

3-1. 기능성 토양의 참외 모종에 대한 생장 효능 확인3-1. Confirmation of growth efficacy for melon seedlings in functional soil

참외 모종에 대한 생장 효능평가를 수행하였다.Growth efficacy evaluation was performed on melon seedlings.

대조구로 시판상토, 질소원이 혼합된 참나무 목분을 이용하였다. 반복수는 5회로 수행하였으며, 시험일수는 14일로 모종을 36구 트레이에서 7일간 생장시킨 후 12cm 포트에 이식하였다. 질소원이 혼합된 참나무 목분과 발효볏짚을 전건중량 기준 7:3, 8:2 및 9:1 비율로 혼합하여 시험구로 사용하였다.As a control, oak wood flour mixed with commercially available soil and a nitrogen source was used. The number of repetitions was performed 5 times, and the number of test days was 14 days. Oak wood flour mixed with a nitrogen source and fermented rice straw were mixed in a ratio of 7:3, 8:2 and 9:1 based on the total dry weight and used as a test group.

그 결과, 도 24와 같이 참외 모종생장을 확인할 수 있었다. 또한 도 25를 참고하면, 질소원이 혼합된 참나무 목분과 발효 볏짚에 9:1 (w/w)로 혼합된 시험구의 참외 모종의 줄기가 가장 높은 생장 효과를 나타내는 것이 확인되었다.As a result, it was possible to confirm the growth of melon seedlings as shown in FIG. 24 . Also, referring to FIG. 25 , it was confirmed that the stem of the melon seedling of the test group mixed with oak wood flour and fermented rice straw mixed with a nitrogen source at a ratio of 9:1 (w/w) exhibited the highest growth effect.

또한, 제조된 기능성 토양에 이식한 참외모종의 근장(뿌리) 길이를 확인하였다.In addition, the root (root) length of the melon seedlings transplanted into the prepared functional soil was confirmed.

그 결과 도 26과 같이 질소원이 혼합된 열처리 목분은 발효 볏짚을 첨가하였을 때 미처리구보다 높은 근장 생장을 나타내었으며, 특히 질소원이 혼합된 열처리 목분 9와 발효 볏짚 1 비율의 혼합물이 시험구 중 가장 높은 근장 생장을 나타내는 것으로 확인됨에 따라, 대조구인 시판상토와 유사한 수준의 생장 효과가 나타는 것이 확인되었으며, 발효볏짚에서는 유의성이 없는 것을 확인할 수 있었다.As a result, heat-treated wood flour mixed with nitrogen source as shown in FIG. 26 showed higher root growth than untreated group when fermented rice straw was added. As it was confirmed to show growth, it was confirmed that a growth effect at a level similar to that of commercial soil as a control was shown, and it was confirmed that there was no significance in fermented rice straw.

또한, 제조된 기능성 토양에 이식한 참외모종의 엽수를 확인하였다. In addition, the number of leaves of the melon seedling transplanted into the prepared functional soil was confirmed.

엽수는 참외 줄기 당 잎 길이가 1cm이상 되는 잎만 조사하였으며, 생육이 완료되면 잎의 수 증가가 중지되므로 엽수를 통하여 참외 모종의 생육 속도를 알 수 있다.As for the leaf number, only leaves with a leaf length of 1 cm or more per melon stem were investigated, and the growth rate of melon seedlings can be known through the leaf number because the increase in the number of leaves stops when growth is complete.

그 결과, 도 27과 같이 질소원이 혼합된 열처리 목분 9와 발효 볏짚 1 비율의 혼합물이 시험구 중 가장 많은 엽수를 나타내는 것이 확인되었다. 상기 결과로부터 질소원이 혼합된 열처리 목분과 발효볏짚 혼합물은 대조구인 시판상토와 유사한 수준의 생장 효과를 나타낼 수 있음일 확인되었으며, 발효볏짚에서는 유의성이 없는 것을 확인할 수 있었다.As a result, it was confirmed that the mixture of 9 heat-treated wood flour mixed with nitrogen source and 1 ratio of fermented rice straw showed the largest number of leaves among the test groups as shown in FIG. 27 . From the above results, it was confirmed that the mixture of heat-treated wood flour and fermented rice straw mixed with a nitrogen source could exhibit a similar level of growth effect to that of commercial soil as a control, and it was confirmed that there was no significance in fermented rice straw.

3-2. 반응표면분석을 통한 기능성 토양 원료의 최적 혼합 포뮬레이션 도출3-2. Derivation of optimal mixing formulation of functional soil raw materials through response surface analysis

참외 생상을 위한 기능성 토양 원료의 최적 혼합 포뮬레이션을 도출하기 위해, RSM (response surface methodology)를 수행하였다. box-behnken법에 따라 표 6의 조건으로 수행하였으며, Design expert version 11을 이용하여 RSM을 분석하였다. In order to derive the optimal mixing formulation of functional soil raw materials for melon growth, response surface methodology (RSM) was performed. It was performed under the conditions of Table 6 according to the box-behnken method, and RSM was analyzed using Design expert version 11.

RunRun Independent variablesIndependent variables
(coded)(coded)
Independent variablesIndependent variables
(actual)(actual)
Stem length, mmStem length, mm Root length,root length,
mmmm
X1X1 X2X2 X3X3 X1X1 X2X2 X3X3 Y1Y1 Y2Y2 1One 1One 00 -1-One 8080 88 1010 52.4752.47 81.6481.64 22 00 00 00 8080 4.54.5 1515 25.1425.14 16.5416.54 33 1One 00 1One 8686 88 55 45.1645.16 40.5340.53 44 -1-One 1One 00 8686 4.54.5 1010 55.2055.20 85.1685.16 55 00 00 00 9292 88 1010 51.2551.25 82.6482.64 66 00 -1-One -1-One 8686 4.54.5 1010 55.9455.94 86.9486.94 77 -1-One 00 -1-One 8686 4.54.5 1010 56.4156.41 85.1585.15 88 1One -1-One 00 8686 88 1515 24.6924.69 20.1420.14 99 -1-One 00 1One 9292 4.54.5 1515 32.1532.15 31.5231.52 1010 00 -1-One 1One 8080 4.54.5 55 48.1548.15 42.6242.62 1111 1One 1One 00 8686 1One 1515 38.1538.15 19.5419.54 1212 00 1One 1One 8686 1One 55 45.6445.64 23.5923.59 1313 00 00 00 9292 1One 1010 12.4412.44 22.7022.70 1414 00 00 00 8080 1One 1010 15.2315.23 15.9815.98 1515 -1-One -1-One 00 8686 4.54.5 1010 55.1455.14 85.1185.11 1616 00 1One -1-One 9292 4.54.5 55 49.5149.51 43.5843.58 1717 00 00 00 8686 4.54.5 1010 55.6655.66 83.1483.14 Independent variablesIndependent variables LevelsLevels -1-One 00 1One X1: 열처리 목분, gX1: heat-treated wood flour, g 8080 8686 9292 X2: 질소원, gX2: nitrogen source, g 1One 4.54.5 88 X3: 발효볏짚, gX3: fermented rice straw, g 55 1010 1515

그 결과, 도 28 및 도 29와 같이 줄기생장을 위해서는 목분은 86.4 g, 질소원은 4.3 g, 발효 볏짚은 5.3 g 첨가시 58.0 mm의 초장길이를 얻을 수 있을 것으로 예측되었으며, 실측은 55.69 mm로 확인되었으며, 신뢰도는 0.75이었다.As a result, it was predicted that a plant length of 58.0 mm could be obtained when 86.4 g of wood flour, 4.3 g of nitrogen source, and 5.3 g of fermented rice straw were added for stem growth as shown in FIGS. 28 and 29, and the actual measurement was confirmed to be 55.69 mm. and the reliability was 0.75.

RSM 분석으로 도출된 예측식은 하기와 같다.The prediction formula derived from the RSM analysis is as follows.

줄기생장 (mm) = 55.69+0.5454A+7.76B-8.54C+0.3942AB+1.41AC-3.21BC-11.26A2-11.58B2-5.69C2 (A=열처리 목분 중량; B=질소원 중량; C=발효볏짚 중량)Stem growth (mm) = 55.69+0.5454A+7.76B-8.54C+0.3942AB+1.41AC-3.21BC-11.26A 2 -11.58B 2 -5.69C 2 (A = weight of heat treated wood flour; B = weight of nitrogen source; C = Weight of fermented rice straw)

또한, 도 30 및 도 31과 같이 뿌리 생장을 위해서는 열처리 목분 84.8 g, 질소원 6.1 g, 발효 볏짚 8.8 g 첨가시 88.1 mm의 근장길이를 얻을 수 있을 것으로 예측되었으며, 실측은 87.9 mm로 확인되었으며, 신뢰도는 0.76이었다.In addition, it was predicted that a root length of 88.1 mm could be obtained when 84.8 g of heat-treated wood flour, 6.1 g of nitrogen source, and 8.8 g of fermented rice straw were added for root growth as shown in FIGS. 30 and 31, and the actual measurement was confirmed to be 87.9 mm, reliability was 0.76.

RSM 분석으로 도출된 예측식은 하기와 같다.The prediction formula derived from the RSM analysis is as follows.

뿌리생장 (mm) = -2835.52+63.51836A+28.72299B-19.96523C-0.06811AB+0.116872AC-0.23345BC -0.37144A2-1.71318B2-1.52652C2 (A=열처리 목분 중량; B=질소원 중량; C=발효볏짚 중량)Root growth (mm) = -2835.52+63.51836A+28.72299B-19.96523C-0.06811AB+0.116872AC-0.23345BC -0.37144A 2 -1.71318B 2 -1.52652C 2 (A = weight of heat treated wood flour; B = weight of nitrogen source; C = weight of fermented rice straw)

<실시예 5> 소나무 열수 추출물의 혼합에 따른 참외 생장 효과 확인<Example 5> Confirmation of melon growth effect according to the mixing of pine hot water extract

도 32와 같은 과정으로 소나무 열수추출물을 얻었다.A pine hot water extract was obtained through the same process as in FIG. 32 .

먼저, 소나무 목분 20 g과 증류수 400 mL를 투입한 후 soxhlet extractor를 사용하여 boiling point에서 2시간 동안 반응시켰다. 획득된 소나무 열수 추출물을 40℃ 이하의 water bath에서 감압 진공 농축하였고 -72℃ deep freezer에서 48시간동안 냉동처리하고, freeze dryer를 통해 소나무 열수 추출물의 미분 파우더를 획득하였고 이를 열처리 목분 84.8 g, 질소원 6.1 g, 발효 볏짚 8.8 g 혼합물에 2 g처리하였다.First, 20 g of pine wood flour and 400 mL of distilled water were added, and then reacted for 2 hours at a boiling point using a soxhlet extractor. The obtained pine hot water extract was vacuum-concentrated in a water bath below 40 ° C, and frozen in a -72 ° C deep freezer for 48 hours, and fine powder of the hot pine hot water extract was obtained through a freeze dryer, which was heat treated wood flour 84.8 g, nitrogen source 6.1 g and 8.8 g of fermented rice straw were treated with 2 g.

그 결과, 도 33 및 도 34와 같이 열처리 목분, 질소원 및 발효 볏짚 혼합물에 소나무 열수 추출물 분말을 2 g 투입했을 때 참외 모종의 줄기와 뿌리 생장에 효과적인 것으로 확인되었으며, 특히 2% 소나무 열수 추출물 분말을 2g 투입했을 경우, 시판상토보다 참외 모종의 뿌리 및 줄기 생장이 우수한 것을 확인할 수 있었다.As a result, as shown in FIGS. 33 and 34, when 2 g of pine hot water extract powder was added to a mixture of heat-treated wood flour, nitrogen source and fermented rice straw, it was confirmed that it was effective for the stem and root growth of melon seedlings, especially 2% pine hot water extract powder When 2 g was added, it was confirmed that the root and stem growth of melon seedlings was superior to that of commercially available soil.

소나무 열수 추출물 분말에 포함된 탄수화물은 목분의 전건 중량 100 g 기준 (수분이 없는 상태)으로 glucose, galactose, fructose, mannose 및 arabinose가 각각 0.267 g, 0.166 g, 0.039 g, 0.078 g 및 0.397 g인 것으로 확인되었다.Carbohydrates contained in pine hot water extract powder are based on 100 g of whole dry weight of wood flour (in the absence of water), and glucose, galactose, fructose, mannose and arabinose are 0.267 g, 0.166 g, 0.039 g, 0.078 g and 0.397 g, respectively. Confirmed.

이에 따라, 가장 우수한 참외 생장을 위한 복합 기능성 토양 제조 공정은 도 35와 같다.Accordingly, the complex functional soil manufacturing process for the best melon growth is shown in FIG. 35 .

이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.As the specific parts of the present invention have been described in detail above, for those of ordinary skill in the art, it is clear that these specific descriptions are only preferred embodiments, and the scope of the present invention is not limited thereby. something to do. Accordingly, the substantial scope of the present invention will be defined by the appended claims and their equivalents.

Claims (12)

열처리된 참나무 칩과 질소원으로 이루어진 혼합물 85 내지 95 중량부 및 발효볏짚 5 내지 15 중량부를 유효성분으로 함유하는 인공토양 조성물; 및
상기 인공토양 조성물 100 중량%에 대하여, 소나무 열수 추출물 1 내지 3 중량%가 포함되는 것을 특징으로 하는 작물 재배용 인공토양 조성물.
Artificial soil composition containing 85 to 95 parts by weight of a mixture of heat-treated oak chips and a nitrogen source and 5 to 15 parts by weight of fermented rice straw as active ingredients; and
With respect to 100% by weight of the artificial soil composition, an artificial soil composition for growing crops, characterized in that 1 to 3% by weight of the pine hot water extract is included.
청구항 1에 있어서, 상기 열처리된 참나무 칩은 50 내지 110℃에서 50 내지 70분간 열처리 되는 것을 특징으로 하는 작물 재배용 인공토양 조성물.The artificial soil composition for growing crops according to claim 1, wherein the heat-treated oak chips are heat-treated at 50 to 110° C. for 50 to 70 minutes. 청구항 1에 있어서, 상기 열처리된 참나무 칩은 목분으로 제조되어 질소원과 혼합되는 것을 특징으로 하는 작물 재배용 인공토양 조성물.The artificial soil composition for growing crops according to claim 1, wherein the heat-treated oak chips are made of wood flour and mixed with a nitrogen source. 청구항 1에 있어서, 상기 인공토양 조성물은 열처리된 참나무 칩 80 내지 95 중량% 및 질소원 5 내지 20 중량%로 혼합된 것을 특징으로 하는 작물 재배용 인공토양 조성물.The artificial soil composition for growing crops according to claim 1, wherein the artificial soil composition is mixed with 80 to 95% by weight of heat-treated oak chips and 5 to 20% by weight of a nitrogen source. 청구항 1에 있어서, 상기 질소원은 효모추출물, NH4HCO3 또는 이들의 혼합물인 것을 특징으로 하는 작물 재배용 인공토양 조성물.The artificial soil composition for growing crops according to claim 1, wherein the nitrogen source is yeast extract, NH 4 HCO 3 or a mixture thereof. 청구항 1에 있어서, 상기 발효볏짚은 볏짚과 가축분이 건조중량 기준 9:1 비율로 혼합되는 것을 특징으로 하는 작물 재배용 인공토양 조성물.The artificial soil composition for growing crops according to claim 1, wherein the fermented rice straw is mixed with rice straw and livestock powder in a ratio of 9:1 based on dry weight. 청구항 1에 있어서, 상기 발효볏짚은 25 내지 35℃에서 5 내지 12일간 발효되는 것을 특징으로 하는 작물 재배용 인공토양 조성물.The artificial soil composition for growing crops according to claim 1, wherein the fermented rice straw is fermented at 25 to 35°C for 5 to 12 days. 삭제delete 청구항 1에 있어서, 상기 인공토양 조성물은 작물의 발아율 및 엽수를 증가시키고, 작물 모종의 초장 및 근장의 생장을 향상시키는 것을 특징으로 하는 작물 재배용 인공토양 조성물.The artificial soil composition for cultivation of crops according to claim 1, wherein the artificial soil composition increases the germination rate and leaf number of crops, and improves the growth of plant and root lengths of crop seedlings. 청구항 1에 있어서, 상기 작물은 감자, 고추, 피망, 토마토, 오이, 수박, 참외, 배추, 상추, 무, 양배추, 유채, 딸기, 벼, 보리, 옥수수 및 인삼으로 이루어진 군에서 선택되는 것을 특징으로 하는 작물 재배용 인공토양 조성물.The method according to claim 1, wherein the crop is potato, red pepper, green pepper, tomato, cucumber, watermelon, melon, Chinese cabbage, lettuce, radish, cabbage, rapeseed, strawberry, rice, barley, corn and ginseng, characterized in that selected from the group consisting of Artificial soil composition for growing crops. 삭제delete 삭제delete
KR1020200022651A 2020-02-25 2020-02-25 Artificial soil composition for plant cultivation comprising heat treated wood chip, nitrogen source and fermented rice straw KR102347987B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200022651A KR102347987B1 (en) 2020-02-25 2020-02-25 Artificial soil composition for plant cultivation comprising heat treated wood chip, nitrogen source and fermented rice straw

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200022651A KR102347987B1 (en) 2020-02-25 2020-02-25 Artificial soil composition for plant cultivation comprising heat treated wood chip, nitrogen source and fermented rice straw

Publications (2)

Publication Number Publication Date
KR20210108009A KR20210108009A (en) 2021-09-02
KR102347987B1 true KR102347987B1 (en) 2022-01-07

Family

ID=77794235

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200022651A KR102347987B1 (en) 2020-02-25 2020-02-25 Artificial soil composition for plant cultivation comprising heat treated wood chip, nitrogen source and fermented rice straw

Country Status (1)

Country Link
KR (1) KR102347987B1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101754717B1 (en) * 2016-07-21 2017-07-06 최상일 Growth Promoting Composition For Plant
KR101958951B1 (en) * 2016-10-11 2019-03-15 (주)에스엔비 Fermented rice straw fertilizer solution and a method of manufacturing the same environmentally friendly
KR102005283B1 (en) * 2016-02-12 2019-10-01 이정헌 A Method of Preparing Leaf Mold

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101766452B1 (en) 2017-01-04 2017-08-23 주식회사 동서산업 Manufacturing method of mixed organic fertilizer in wood chip form

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102005283B1 (en) * 2016-02-12 2019-10-01 이정헌 A Method of Preparing Leaf Mold
KR101754717B1 (en) * 2016-07-21 2017-07-06 최상일 Growth Promoting Composition For Plant
KR101958951B1 (en) * 2016-10-11 2019-03-15 (주)에스엔비 Fermented rice straw fertilizer solution and a method of manufacturing the same environmentally friendly

Also Published As

Publication number Publication date
KR20210108009A (en) 2021-09-02

Similar Documents

Publication Publication Date Title
Caspersen et al. Blueberry—Soil interactions from an organic perspective
JP7231808B2 (en) new organic soil
Montemurro et al. MSW compost application on tomato crops in Mediterranean conditions: effects on agronomic performance and nitrogen utilization
Fornes et al. Biochar versus hydrochar as growth media constituents for ornamental plant cultivation
Gunnarsson et al. Biodigestion of plant material can improve nitrogen use efficiency in a red beet crop sequence
KR101897580B1 (en) Complex organic fertilizer composition
CN112154896A (en) Organic ecotype cultivation medium for muskmelons
KR101029790B1 (en) Organic fertilizer suitable to organic onion cultivation and method for making the same
Abdipour et al. Effects of humic acid and cow manure biochar (CMB) in culture medium on growth and mineral concentrations of basil plant
Kirn et al. Using indigenous humic acid from lignite to increase growth and yield of okra (Abelmoschus esculentus L.)
Eklind et al. Use of herbage compost as horticultural substrate and source of plant nutrients
KR102347987B1 (en) Artificial soil composition for plant cultivation comprising heat treated wood chip, nitrogen source and fermented rice straw
KR102514602B1 (en) Method for producing organic fertilizer having activity of plant disease control using spent mushroom substrate
Van Haute Evaluation of the effects of compost on soil properties, performance and yield of maize and beans in Kenya
Ponchia et al. Compost Application in the vineyard and its influence on soil characteristics, vegetative and productive behaviour of grapevine
Zheng et al. Animal based biogas digestate application frequency effects on growth and water-nitrogen use efficiency in tomato.
Kaniszewski et al. New pelleted plant-based fertilizers for sustainable onion production
Šimanský et al. Impact of crop residues and biopreparations on nitrogen changes in Haplic Luvisol–model experiment.
Kaniszewski et al. Effect of irrigation and organic fertilization on the yield of crisphead lettuce grown under ecological conditions
Aiyelari et al. Effects of Terminalia catappa leaves with poultry manure compost, mulching and seedbed preparation on the growth and yield of okra (Abelmoschus esculentus L. Moench)
JP7123324B2 (en) Novel organic soil, method for producing the same, and method for cultivating plants using the same
Paulauskienė et al. The influence of various fertilizers on electrochemical properties of pumpkin fruits.
Jalali et al. The impact of nano Fe-chelate, Fe-EDDHA non-nano and FeSO4 on the growth and physiological index in lettuce (Lactuca sativa L.) varieties grown in NFT
Mammadova The effect of bio-humus on Cardinal grape yield (Vitis vinifera L.) and nutrient contents of dark brown soil using drip irrigation systems under the open field conditions
Kir et al. Testing peat-free growing media based on olive wood residues for olive saplings

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant