KR102347808B1 - Complexes for detecting viruses based conjugated polymer - Google Patents

Complexes for detecting viruses based conjugated polymer Download PDF

Info

Publication number
KR102347808B1
KR102347808B1 KR1020200167115A KR20200167115A KR102347808B1 KR 102347808 B1 KR102347808 B1 KR 102347808B1 KR 1020200167115 A KR1020200167115 A KR 1020200167115A KR 20200167115 A KR20200167115 A KR 20200167115A KR 102347808 B1 KR102347808 B1 KR 102347808B1
Authority
KR
South Korea
Prior art keywords
virus
block
complex
virus detection
cpnp
Prior art date
Application number
KR1020200167115A
Other languages
Korean (ko)
Other versions
KR102347808B9 (en
Inventor
함승주
임종우
박근선
박채원
송대섭
염민주
김현욱
안유림
박지연
Original Assignee
연세대학교 산학협력단
고려대학교 세종산학협력단
강원대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 연세대학교 산학협력단, 고려대학교 세종산학협력단, 강원대학교산학협력단 filed Critical 연세대학교 산학협력단
Priority to KR1020200167115A priority Critical patent/KR102347808B1/en
Priority to PCT/KR2020/019399 priority patent/WO2022119043A1/en
Application granted granted Critical
Publication of KR102347808B1 publication Critical patent/KR102347808B1/en
Publication of KR102347808B9 publication Critical patent/KR102347808B9/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/569Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
    • G01N33/56983Viruses
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/314Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry with comparison of measurements at specific and non-specific wavelengths
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54313Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being characterised by its particulate form
    • G01N33/54346Nanoparticles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/544Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being organic
    • G01N33/545Synthetic resin
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/569Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/314Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry with comparison of measurements at specific and non-specific wavelengths
    • G01N2021/3155Measuring in two spectral ranges, e.g. UV and visible
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/005Assays involving biological materials from specific organisms or of a specific nature from viruses
    • G01N2333/08RNA viruses
    • G01N2333/11Orthomyxoviridae, e.g. influenza virus

Abstract

The present invention relates to a complex for detecting viruses based on a conjugated polymer. The complex for detecting viruses has characteristics that an absorption wavelength changes when combined with a virus, the presence or absence of the virus can be checked through the change of the absorption wavelength, and the virus can be quantified by quantifying the change in the absorption wavelength.

Description

공액 고분자 기반 바이러스 검출용 복합체{COMPLEXES FOR DETECTING VIRUSES BASED CONJUGATED POLYMER}Conjugated polymer-based virus detection complex {COMPLEXES FOR DETECTING VIRUSES BASED CONJUGATED POLYMER}

본 발명은 공액 고분자 기반 바이러스 검출용 복합체에 관한 것으로 구체적으로 바이러스 검출용 복합체와 바이러스가 결합하면 복합체 내에 담지된 공액 고분자의 광학적 신호가 변하는 것을 이용한 바이러스 검출용 복합체이다.The present invention relates to a conjugated polymer-based virus detection complex, and specifically, a virus detection complex using a change in the optical signal of a conjugated polymer supported in the complex when the virus detection complex and the virus are combined.

코로나바이러스감염증-19(COVID-19)를 비롯해 최근 바이러스 감염에 의한 질환이 늘어나고 있다. 바이러스에 의한 질환 중에서 인플루엔자(influenza)는 흔히 '독감'으로 알려져 있고, 인플루엔자 바이러스 (influenza virus)에 의해서 발병되는 급성 호흡기 질환이다. 인플루엔자는 전세계적으로 크고 작은 유행을 일으키며, 유행이 시작되면 2~3주 내에 통상 인구의 10~20%가 감염될 정도로 전염성이 대단히 큰 질병이다.Diseases caused by viral infections, including COVID-19, are on the rise. Among diseases caused by viruses, influenza (influenza), commonly known as the 'flu', is an acute respiratory disease caused by influenza virus. Influenza causes large and small epidemics worldwide, and is very contagious enough to infect 10-20% of the general population within 2-3 weeks after the outbreak begins.

인플루엔자 바이러스에 감염되면 건강한 사람은 수 일 동안 오한, 발열, 두통, 기침 등의 증상을 보인 후 회복되나 만성 폐질환자, 심장 질환자 및 면역저하자 등은 폐렴과 같은 합병증이 발생하여 사망할 수 있다. 매년 성인 인구의 5~10%, 소아 인구의 20~30%가 인플루엔자 바이러스에 감염되어 최대 10억 명 수준에 이르며, 그 중 15만~50만 명이 사망에 이른다.When infected with influenza virus, a healthy person shows symptoms such as chills, fever, headache, and cough for several days and then recovers. Every year, 5-10% of the adult population and 20-30% of the pediatric population are infected with influenza virus, reaching the level of 1 billion people, of which 150,000 to 500,000 die.

이에 바이러스를 검출할 수 있는 다양한 기술이 개발되고 있다. 예를 들어, 국내 등록특허 제10-2050213호에는 뉴라미니데이즈(neuraminidase)를 갖는 인플루엔자 바이러스 현장 검출용 이분자 형광 프로브 시스템이 개시되며, 상기 이분자 형광 프로브 시스템은 인플루엔자 바이러스 존재 시 뉴라미니데이즈에 의해 시알릭산과 갈락토오스가 결합된 구조체로부터 갈락토오스가 분리되어 이분자 형광단백질 프로브 구조체에 결합함으로써 생성되는 형광의 변화를 측정하여 현장에서 인플루엔자 바이러스 존재 여부를 신속하고 높은 감도로 검출할 수 있다. 그러나 상기 방법은 인플루엔자 바이러스의 존재 여부만 확인할 수 있어 바이러스를 정량하려면 중합효소연쇄반응과 같은 유전자증폭검사를 추가로 수행해야 한다.Accordingly, various technologies capable of detecting viruses have been developed. For example, Korean Patent Registration No. 10-2050213 discloses a bimolecular fluorescent probe system for in situ detection of influenza virus having neuraminidase, and the bimolecular fluorescent probe system is sial by neuraminidase in the presence of influenza virus. By measuring the change in fluorescence generated by separating galactose from the ric acid and galactose-coupled structure and binding to the bimolecular fluorescent protein probe structure, the presence of influenza virus can be detected quickly and with high sensitivity in the field. However, since the above method can only confirm the presence of influenza virus, a gene amplification test such as polymerase chain reaction must be additionally performed to quantify the virus.

또한, 금나노입자 및 크로마토그래피를 이용한 가시적 바이러스 감염 진단법은 신속한 검출이 가능하나, 타겟 바이러스에 대한 정량적 검출이 어렵고 금 나노입자의 비특이적 반응을 해결할 필요가 있다.In addition, although a method for diagnosing a visible virus infection using gold nanoparticles and chromatography enables rapid detection, it is difficult to quantitatively detect a target virus and there is a need to solve the non-specific reaction of gold nanoparticles.

이러한 상황에서 본 발명자들은 나노 전달체와 바이러스 유래 펩타이드가 결합하면 나노 전달체 내부에 담지된 공액 고분자의 비공유적 상호작용에 의해 광학 변화가 일어나는 것을 이용하여 바이러스를 검출 및 정량하는 방법을 완성하였다.In this situation, the present inventors have completed a method for detecting and quantifying a virus using the fact that when the nanocarrier and the virus-derived peptide bind, an optical change occurs due to the non-covalent interaction of the conjugated polymer supported inside the nanocarrier.

본 발명의 목적은 제1 블록 공중합체 고분자 및 카르복시기를 포함하는 제2 블록 공중합체 고분자로 이루어진 나노 전달체, 상기 나노 전달체의 내부에 담지된 공액 고분자; 및 제2 블록 공중합체 고분자의 카르복시기과 펩타이드 결합으로 연결되는 바이러스 특이적 펩타이드를 포함하는 바이러스 검출용 복합체와 이의 용도를 제공하는 것이다.An object of the present invention is to provide a nanocarrier comprising a first block copolymer polymer and a second block copolymer polymer including a carboxyl group, a conjugated polymer supported inside the nanocarrier; And to provide a complex for virus detection comprising a virus-specific peptide linked by a peptide bond with the carboxyl group of the second block copolymer polymer and its use.

상기 목적을 달성하기 위하여, 본 발명의 일 양상은 In order to achieve the above object, an aspect of the present invention is

(a) 제1 블록 공중합체 고분자 및 카르복시기를 포함하는 제2 블록 공중합체 고분자로 이루어진 나노 전달체;(a) a nanocarrier comprising a first block copolymer polymer and a second block copolymer polymer containing a carboxyl group;

(b) 상기 나노 전달체의 내부에 담지된 공액 고분자; 및(b) a conjugated polymer supported inside the nanocarrier; and

(c) 제2 블록 공중합체 고분자의 카르복시기과 펩타이드 결합으로 연결되는 바이러스 특이적 펩타이드를 포함하는 바이러스 검출용 복합체를 제공한다.(c) provides a virus detection complex comprising a virus-specific peptide linked to the carboxyl group of the second block copolymer polymer by a peptide bond.

본 명세서에서, 용어 "블록 공중합체(block polymer)"는 한 종의 단량체가 중합되어 블록을 형성하고 이어서 다른 단량체가 중합되어 블록을 형성하는 식으로 반복되어 만들어진 공중합체이며, 이러한 블록 공중합체를 만들 수 있는 물질을 블록 공중합체 고분자라고 한다.As used herein, the term "block copolymer" refers to a copolymer made repeatedly in such a way that one type of monomer is polymerized to form a block, and then another monomer is polymerized to form a block, and such a block copolymer is Materials that can be made are called block copolymer polymers.

본 발명의 일 구체예에 따르면, 상기 제1 블록 공중합체 고분자는 메톡시폴리에틸렌글리콜-블록-폴리아미노산 (methoxy-poly(ethylene glycol)-block-poly(amino acid)) 또는 메톡시폴리에틸렌글리콜-블록-락틱산 (methoxy-poly(ethylene glycol)-block-lactic acid, mPEG-b-PLA)일 수 있다. 또한, 상기 메톡시폴리에틸렌글리콜-블록-폴리아미노산은 메톡시폴리에틸렌글리콜-블록-폴리페닐알라닌 (mPEG-b-pPhe), 메톡시폴리에틸렌글리콜-블록-폴리류신 (mPEG-b-pLeu), 메톡시폴리에틸렌글리콜-블록-폴리트립토판 (mPEG-b-pTrp) 및 메톡시폴리에틸렌글리콜-블록-폴리라이신 (mPEG-b-pLys)으로 이루어진 군에서 선택되며, 바람직하게는 메톡시폴리에틸렌글리콜-블록-폴리페닐알라닌 (mPEG-b-pPhe)일 수 있다.According to one embodiment of the present invention, the first block copolymer polymer is methoxypolyethylene glycol-block-polyamino acid (methoxy-poly(ethylene glycol)-block-poly(amino acid)) or methoxypolyethylene glycol-block -lactic acid (methoxy-poly(ethylene glycol)-block-lactic acid, mPEG-b-PLA). In addition, the methoxypolyethylene glycol-block-polyamino acid is methoxypolyethylene glycol-block-polyphenylalanine (mPEG-b-pPhe), methoxypolyethylene glycol-block-polyleucine (mPEG-b-pLeu), methoxypolyethylene It is selected from the group consisting of glycol-block-polytryptophan (mPEG-b-pTrp) and methoxypolyethylene glycol-block-polylysine (mPEG-b-pLys), preferably methoxypolyethylene glycol-block-polyphenylalanine ( mPEG-b-pPhe).

본 발명의 일 구체예에 따르면, 상기 제2 블록 공중합체 고분자는 나노 전달체에 바이러스 특이적 펩타이드가 펩타이드 결합으로 연결될 수 있도록 카르복시기를 포함한다. 이러한 제2 블록 공중합체에는 카르복시메틸폴리에틸렌글리콜-블록-폴리아미노산 (carboxymethyl-poly(ethylene glycol)-block-poly(amino acid)) 또는 카르복시메틸폴리에틸렌글리콜-블록-락틱산 (carboxymethyl-poly(ethylene glycol)-block-lactic acid, CM-PEG-b-PLA)이 있다. 상기 카르복시메틸폴리에틸렌글리콜-블록-폴리아미노산은 카르복시메틸폴리에틸렌글리콜-블록-폴리페닐알라닌 (CM-PEG-b-pPhe), 카르복시메틸폴리에틸렌글리콜-블록-폴리류신 (CM-PEG-b-pLeu), 카르복시메틸폴리에틸렌글리콜-블록-폴리트립토판 (CM-PEG-b-pTrp) 및 카르복시메틸폴리에틸렌글리콜-블록-폴리라이신 (CM-PEG-b-pLys)으로 이루어진 군에서 선택되며, 바람직하게는 카르복시메틸폴리에틸렌글리콜-블록-폴리페닐알라닌 (CM-PEG-b-pPhe)이다.According to one embodiment of the present invention, the second block copolymer polymer includes a carboxyl group so that the virus-specific peptide can be linked to the nanocarrier by a peptide bond. The second block copolymer includes carboxymethyl polyethylene glycol-block-polyamino acid (carboxymethyl-poly(ethylene glycol)-block-poly(amino acid)) or carboxymethyl polyethylene glycol-block-lactic acid (carboxymethyl-poly(ethylene glycol) )-block-lactic acid, CM-PEG-b-PLA). The carboxymethyl polyethylene glycol-block-polyamino acid is carboxymethyl polyethylene glycol-block-polyphenylalanine (CM-PEG-b-pPhe), carboxymethyl polyethylene glycol-block-polyleucine (CM-PEG-b-pLeu), carboxy It is selected from the group consisting of methyl polyethylene glycol-block-polytryptophan (CM-PEG-b-pTrp) and carboxymethyl polyethylene glycol-block-polylysine (CM-PEG-b-pLys), preferably carboxymethyl polyethylene glycol -block-polyphenylalanine (CM-PEG-b-pPhe).

상기 제1 및 제2 블록 공중합체 고분자는 고분자 사슬 간의 반발력과 인력으로 인해 자가 조립 특성을 나타내며, 제1 및 제2 블록 공중합체 고분자는 서로 혼합되어미셀(micelle)과 같은 구조를 형성할 수 있다. 이때 제1 및 제2 블록 공중합체 모두 나노전달체의 내부로는 아미노산이 위치하고, 나노전달체의 외부로는 제1 블록 공중합체는 메톡시폴리에틸렌글리콜, 제2 블록 공중합체는 카르복시메틸폴리에틸렌글리콜이 위치한다.The first and second block copolymer polymers exhibit self-assembly characteristics due to repulsion and attractive force between polymer chains, and the first and second block copolymer polymers are mixed with each other to form a structure such as micelles. . At this time, in both the first and second block copolymers, amino acids are located inside the nanocarrier, the first block copolymer is methoxypolyethylene glycol and the second block copolymer is carboxymethylpolyethyleneglycol to the outside of the nanocarrier. .

본 발명에서는 클로로포름에 mPEG-b-pPhe 및 CM-PEG-b-pPhe를 분산시키고, 이 용액을 탈염수에 추가하여 반응시킨 후 클로로포름을 증발시켜 블록 공중합체 고분자로 이루어진 나노 전달체를 얻었다. 이후 나노 전달체의 내부에 공액 고분자를 담지시켰다.In the present invention, mPEG-b-pPhe and CM-PEG-b-pPhe were dispersed in chloroform, the solution was added to demineralized water to react, and then chloroform was evaporated to obtain a nanocarrier composed of a block copolymer polymer. Thereafter, a conjugated polymer was supported on the inside of the nanocarrier.

본 명세서에서, 용어 "공액 고분자(conjugated polymer)"는 단일결합과 이중결합의 반복으로 인해 형성된 π-공액 구조를 갖는 고분자로 기존의 고분자에 비해 낮은 밴드갭 에너지를 보이고, 이것에 기인한 반도체적 전기 전도성이 주요한 특징이다. 또한, 산화-환원 반응, 고분자 내 전자의 편재성 변화 및 고분자 사이의 비공유적 상호작용에 의해 가시광선 영역에서 고유한 광학적 신호 변화를 보인다.In the present specification, the term "conjugated polymer" is a polymer having a π-conjugated structure formed due to the repetition of single bonds and double bonds, and shows a lower band gap energy than conventional polymers, resulting from this Electrical conductivity is the main characteristic. In addition, it shows a unique optical signal change in the visible light region due to oxidation-reduction reactions, changes in the ubiquity of electrons in polymers, and non-covalent interactions between polymers.

본 발명의 일 구체예에 따르면, 상기 공액 고분자는 π-공액 구조 단량체가 중합된 것이며, π-공액 구조 단량체는 아닐린(aniline) 유도체, 티오펜(thiophene) 유도체, 피롤(pyrrole) 유도체, 3,4-에틸렌다이옥시티오펜(3,4-ethylenedioxythiophene) 유도체, 아제핀(azepine) 유도체, 인돌(indole) 유도체, 카바졸(carbazole) 유도체, 플루오렌(fluorine) 유도체, 페닐렌(phenylene) 유도체, 파이렌(pyrene) 유도체 및 아줄렌(Azulene) 유도체로 이루어진 군으로부터 선택되는 어느 한 종 이상일 수 있다.According to one embodiment of the present invention, the conjugated polymer is a π-conjugated structural monomer polymerized, and the π-conjugated structural monomer is an aniline derivative, a thiophene derivative, a pyrrole derivative, 3, 4-ethylenedioxythiophene derivatives, azepine derivatives, indole derivatives, carbazole derivatives, fluorine derivatives, phenylene derivatives, pi It may be at least one selected from the group consisting of pyrene derivatives and azulene derivatives.

바람직하게는 상기 공액 고분자로 아닐린이 중합된 폴리아닐린과 피롤이 중합된 폴리피롤을 사용할 수 있으며, 아닐린과 피롤은 20:1 내지 5:1몰 비로 나노 전달체에 담지될 수 있다. 더욱 바람직하게는 아닐린과 피롤은 15:1 내지 7:1, 가장 바람직하게는 9:1의 몰 비로 나노전달체에 담지될 수 있다. 상기 비율에서 피롤의 함량이 적어지면 나노 전달체 내부에서 공액 고분자를 중합했을 때 공액 고분자의 안정성이 저하되고, 반대로 피롤의 함량을 증가시키면 광학적 신호의 변화율이 감소하여 검출 신호 분석이 어렵게 된다.Preferably, as the conjugated polymer, polyaniline in which aniline is polymerized and polypyrrole in which pyrrole is polymerized may be used, and aniline and pyrrole may be supported on the nanocarrier in a molar ratio of 20:1 to 5:1. More preferably, aniline and pyrrole may be supported on the nanocarrier in a molar ratio of 15:1 to 7:1, most preferably 9:1. When the content of pyrrole in the above ratio is decreased, the stability of the conjugated polymer is lowered when the conjugated polymer is polymerized inside the nanocarrier.

본 발명의 일 구체예에 따르면, 바이러스 검출용 복합체가 바이러스와 결합하면 바이러스 검출용 복합체끼리의 거리가 가까워지고, 복합체 내부에 담지된 공액 고분자끼리 비공유적 상호작용이 발생하여 광학 신호(흡광 파장 변화)를 발생한다. 이러한 흡광 파장 변화는 가시광선 영역에서 측정되며, 예를 들어 공액 고분자로 폴리아닐린 및 폴리피롤을 사용하면 430 ㎚ 및 630 ㎚의 흡광 파장에서 변화 폭이 크게 나타난다.According to one embodiment of the present invention, when the virus detection complex binds to the virus, the distance between the virus detection complexes becomes close, and a non-covalent interaction occurs between the conjugated polymers supported inside the complex, resulting in an optical signal (absorption wavelength change). ) occurs. This change in absorption wavelength is measured in the visible light region, and for example, when polyaniline and polypyrrole are used as conjugated polymers, the change in absorption wavelength of 430 nm and 630 nm is large.

본 발명에서, 상기 바이러스 검출용 펩타이드는 인플루엔자 A 바이러스 (influenza A virus), 인플루엔자 B 바이러스 (influenza B virus), 뎅기 바이러스 (Dengue virus), 인간 호흡기 세포융합 바이러스 (human respiratory syncytial virus, RSV), 노로바이러스 (norovirus), 메르스 코로나바이러스 (Middle East Respiratory Syndrome Coronavirus, MERS-CoV), 사스 코로나바이러스 (Severe Acute Respiratory Syndrome Coronavirus, SARS-CoV) 및 사스 코로나바이러스-2 (SARS-CoV-2, COVID-19)로 이루어진 군에서 선택되는 바이러스에서 유래한 것일 수 있다.In the present invention, the virus detection peptide is influenza A virus, influenza B virus, dengue virus, human respiratory syncytial virus (RSV), noro Viruses (norovirus), Middle East Respiratory Syndrome Coronavirus (MERS-CoV), Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) and SARS-CoV-2 (SARS-CoV-2, COVID-) 19) may be derived from a virus selected from the group consisting of.

인플루엔자 A 바이러스는 독감 원인 바이러스로 표면항원인 헤마글루타닌 (HA) 항원과 뉴라미다아제 (NA) 항원에 의해 아형이 결정되며, HA 항원은 H1-H18까지 알려져 있고, NA 항원은 N1-N9까지 알려져 있다. 사람 대 사람 감염을 일으키는 아형에는 H1N1, H2N2 및 H3N2가 있고, 조류 인플루엔자를 유발하는 아형에는 H5N1, H7N9, H5N8, H5N6가 있다.Influenza A virus is a virus causing influenza and its subtype is determined by hemagglutanin (HA) antigen and neuramidase (NA) antigen, which are surface antigens. HA antigens are known up to H1-H18, and NA antigens are N1-N9 is known until The subtypes that cause human-to-human infection include H1N1, H2N2, and H3N2, and the subtypes that cause avian influenza include H5N1, H7N9, H5N8, and H5N6.

상기 바이러스 검출용 펩타이드는 검출의 정확성을 위해 각 바이러스에 특이적인 서열인 것이 바람직하며, 구체적인 펩타이드 서열은 예를 들어, NCBI와 같은 공공 데이터베이스에 공지된 서열을 이용할 수 있다.The peptide for virus detection is preferably a sequence specific to each virus for the sake of accuracy of detection, and for the specific peptide sequence, for example, a sequence known in a public database such as NCBI may be used.

본 발명의 일 구체예에 따르면, 인플루엔자 A 바이러스에서 유래한 바이러스 검출용 펩타이드는 서열번호 1로 표시되는 서열을 사용할 수 있다.According to one embodiment of the present invention, the peptide for virus detection derived from influenza A virus may use the sequence represented by SEQ ID NO: 1.

본 발명자들은 바이러스의 검출과 정량을 동시에 수행할 수 있는 방법을 연구한 결과, 상기 복합체와 검출하고자 하는 표적 바이러스를 접촉시키면 복합체 표면의 바이러스 특이적 펩타이드에 표적 바이러스가 결합하여 복합체가 응집하고, 이에 의한 공액 고분자의 비공유적 상호작용에 의해 흡광 파장의 변화가 발생하므로 바이러스의 존재 유무를 검출할 수 있음을 확인하였다. 또한, 바이러스의 농도별 흡광 파장의 변화를 수치화하면 바이러스를 정량할 수 있다.The present inventors have studied a method for simultaneously performing detection and quantification of virus. As a result, when the complex and the target virus to be detected are brought into contact, the target virus binds to the virus-specific peptide on the surface of the complex and the complex aggregates, It was confirmed that the presence or absence of a virus can be detected because the change in the absorption wavelength occurs due to the non-covalent interaction of the conjugated polymer. In addition, the virus can be quantified by quantifying the change in the absorption wavelength for each concentration of the virus.

따라서, 본 발명의 다른 양상은 상기 바이러스 검출용 복합체를 유효성분으로 포함하는 바이러스 감염 확인용 조성물을 제공한다.Accordingly, another aspect of the present invention provides a composition for confirming virus infection comprising the complex for virus detection as an active ingredient.

또한, 본 발명의 또 다른 양상은 In addition, another aspect of the present invention is

(a) 바이러스의 유무를 확인하고자 하는 시료와 바이러스 감염 확인용 조성물을 접촉시키는 단계; 및(a) contacting a sample to be checked for the presence or absence of a virus with a composition for confirming virus infection; and

(b) 단계 (a)의 결과물에서 흡광도를 측정하는 단계;를 포함하는 바이러스 감염 진단을 위한 정보를 제공하는 방법을 제공한다.(b) measuring the absorbance in the resultant of step (a); provides a method of providing information for diagnosing a virus infection, including.

본 발명의 일 구체예에 따르면, 상기 단계 (a)는 바이러스 검출용 복합체가 바이러스와 결합할 수 있도록 일정 시간 동안 수행될 수 있으며, 예를 들어 5분 내지 40분, 보다 구체적으로는 10분 내지 30분 동안 수행될 수 있다.According to one embodiment of the present invention, step (a) may be carried out for a certain time so that the virus detection complex can bind to the virus, for example, 5 to 40 minutes, more specifically, 10 minutes to This can be done for 30 minutes.

또한, 상기 단계 (b)의 흡광도를 측정하는 단계는 400 ㎚ 내지 800 ㎚ 범위의 흡광 파장에서 수행될 수 있다.In addition, the step of measuring the absorbance of step (b) may be performed at an absorption wavelength in the range of 400 nm to 800 nm.

본 발명의 일 예에 따른 바이러스 검출용 복합체를 사용하면, 복합체와 표적 바이러스의 결합에 의해 나타나는 흡광 파장의 변화를 통해 바이러스의 존재 유무를 확인할 수 있고, 흡광 파장의 변화를 수치화하면 바이러스를 정량할 수 있다.When the complex for detecting virus according to an embodiment of the present invention is used, the presence or absence of a virus can be confirmed through the change in the absorption wavelength shown by the binding of the complex to the target virus, and the change in the absorption wavelength can be quantified to quantify the virus. can

도 1은 공액 고분자가 담지된 고분자 나노 전달체-펩타이드 복합체(CPNP-PEP)를 이용한 바이러스 검출 원리를 도식화한 것이다.
도 2는 본 발명의 일 예에 따라 공액 고분자가 담지된 고분자 나노 전달체-펩타이드 복합체(CPNP-PEP)를 합성하는 방법을 도식화한 것이다.
도 3은 공액 고분자가 담지된 고분자 나노 전달체(CPNP)가 단일 입자로 존재하는 CPNP 샘플(A)과 CPNP를 링커로 결합한 CPNP-Linker 샘플(B)에서 농도 희석에 따른 흡광도 변화를 비교한 결과이다.
도 4는 CPNP 샘플과 CPNP-Linker 샘플에서 나노입자의 크기 분포를 동적 광산란 입도분석기(dynamic light scattering, DLS)로 확인한 결과이다.
도 5는 CPNP 샘플과 CPNP-Linker 샘플에서 카르복시메틸폴리에틸렌글리콜-블록-폴리페닐알라닌의 함량에 따른 흡광 반응 수치를 그래프로 표시한 결과이다.
도 6은 공액 고분자가 담지된 고분자 나노 전달체(A) 및 공액 고분자가 담지된 고분자 나노 전달체-펩타이드 복합체(B)를 인플루엔자 A 바이러스 아형 CA04와 반응시킨 후 흡광 파장의 변화를 그래프로 표시한 결과이다.
도 7은 공액 고분자가 담지된 고분자 나노 전달체(CPNP) 및 공액 고분자가 담지된 고분자 나노 전달체-펩타이드 복합체(CPNP-PEP)를 인플루엔자 A 바이러스 아형 CA04와 반응시킨 후 흡광 반응 수치를 그래프로 표시한 결과이다.
도 8은 공액 고분자가 담지된 고분자 나노 전달체-펩타이드 복합체를 인플루엔자 A 바이러스 아형 CA04(A) 및 H3N2(B)와 각각 반응시킨 후 흡광 반응 수치를 그래프로 표시한 결과이다.
도 9는 공액 고분자가 담지된 고분자 나노 전달체-펩타이드 복합체(CPNP-PEP)를 인플루엔자 A 바이러스 아형 CA04(A) 및 H3N2(B)와 각각 반응시킨 후 흡광 반응 수치를 그래프로 표시한 결과이다.
1 is a schematic diagram of a virus detection principle using a polymer nanocarrier-peptide complex (CPNP-PEP) supported with a conjugated polymer.
2 is a schematic diagram of a method for synthesizing a polymer nanocarrier-peptide complex (CPNP-PEP) supported with a conjugated polymer according to an example of the present invention.
3 is a result of comparing the absorbance change according to concentration dilution in a CPNP sample (A) in which a polymer nanocarrier (CPNP) supported with a conjugated polymer exists as a single particle (A) and a CPNP-Linker sample (B) in which CPNP is combined as a linker. .
4 is a result of confirming the size distribution of nanoparticles in a CPNP sample and a CPNP-Linker sample with a dynamic light scattering (DLS).
5 is a graph showing the absorption reaction values according to the content of carboxymethyl polyethylene glycol-block-polyphenylalanine in the CPNP sample and the CPNP-Linker sample.
6 is a graph showing the change in the absorption wavelength after reacting the conjugated polymer-supported polymer nanocarrier (A) and the conjugated polymer-supported polymer nanocarrier-peptide complex (B) with influenza A virus subtype CA04. .
7 is a graph showing the absorbance reaction values after reacting the conjugated polymer-supported polymer nanocarrier (CPNP) and the conjugated polymer-supported polymer nanocarrier-peptide complex (CPNP-PEP) with influenza A virus subtype CA04. to be.
8 is a graph showing the absorbance value after reacting the conjugated polymer-supported polymer nanocarrier-peptide complex with influenza A virus subtypes CA04 (A) and H3N2 (B), respectively.
9 is a graph showing the absorbance value after reacting the conjugated polymer-supported polymer nanocarrier-peptide complex (CPNP-PEP) with influenza A virus subtypes CA04 (A) and H3N2 (B), respectively.

이하 하나 이상의 구체예를 실시예를 통하여 보다 상세하게 설명한다. 그러나, 이들 실시예는 하나 이상의 구체예를 예시적으로 설명하기 위한 것으로 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다.Hereinafter, one or more specific examples will be described in more detail through examples. However, these examples are for illustrative purposes of one or more embodiments, and the scope of the present invention is not limited to these examples.

제조예 1: CPNP-PEP 합성Preparation Example 1: CPNP-PEP synthesis

1-1. 공액 고분자가 담지된 고분자 나노 전달체 합성1-1. Synthesis of polymer nanocarriers supported with conjugated polymers

메톡시폴리에틸렌글리콜(methoxy-poly(ethylene glycol), mPEG)과 페닐알라닌 (phenylalanine)의 블록 공중합체 고분자인 mPEG-b-pPhe (poly(ethylene glycol)-block-poly(phenylalanine))를 당 업계에 알려진 방법에 따라 합성하였다. 동일한 방법으로 카르복시메틸폴리에틸렌글리콜 (carboxymethyl-poly(ethylene glycol), CM-PEG)과 페닐알라닌의 블록 공중합체 고분자인 CM-PEG-b-pPhe를 합성하였다.mPEG-b-pPhe (poly(ethylene glycol)-block-poly(phenylalanine)), a block copolymer polymer of methoxy-poly(ethylene glycol) and phenylalanine, is known in the art. It was synthesized according to the method. CM-PEG-b-pPhe, a block copolymer polymer of carboxymethyl-poly(ethylene glycol) and phenylalanine, was synthesized in the same manner.

합성한 mPEG-b-pPhe와 CM-PEG-b-pPhe의 혼합물 5 ㎎을 클로로포름 1 ㎖에 분산시키고, 탈염수(deionized water, DIW) 10 ㎖이 들어 있는 바이알에 블록 공중합체 고분자가 분산된 상기 클로로포름 용액 1 ㎖를 추가하였다. 오픈한 상태로 바이알을 24시간 동안 600 rpm에서 교반하여, 클로로포름을 증발시켰다 (DIW-chloroform 2-phase system → DIW 1-phase system).5 mg of the synthesized mixture of mPEG-b-pPhe and CM-PEG-b-pPhe is dispersed in 1 ml of chloroform, and the chloroform in which the block copolymer polymer is dispersed in a vial containing 10 ml of deionized water (DIW) 1 ml of the solution was added. In an open state, the vial was stirred at 600 rpm for 24 hours to evaporate chloroform (DIW-chloroform 2-phase system → DIW 1-phase system).

이후 클로로포름이 증발된 결과물에 아닐린(aniline) 20.25 ㎕ (0.225 mmol) 및 피롤(pyrrole) 1.75 ㎕ (0.025 mmol)를 몰비(Molar ratio) 9:1로 추가하여 2시간 동안 교반하였다. 이 과정에서 용액이 전체적으로 투명한 노란색을 띄게 된다. 교반하면서 1M의 APS(ammonium persulfate) 용액 0.5 ㎖를 추가하였다. APS를 첨가하면 용액의 색이 투명한 노란색에서 불투명한 갈색으로 즉각적으로 변한다. 결과물을 냉장고에서 48시간 동안 보관한 후 원심분리(8000 RPM, 10분)로 3회 세척하였다.After chloroform was evaporated, 20.25 μl (0.225 mmol) of aniline and 1.75 μl (0.025 mmol) of pyrrole were added at a molar ratio of 9:1 and stirred for 2 hours. In this process, the solution becomes transparent yellow as a whole. While stirring, 0.5 ml of a 1M ammonium persulfate (APS) solution was added. Upon addition of APS, the color of the solution immediately changes from a clear yellow to an opaque brown. The resultant was stored in a refrigerator for 48 hours and then washed three times by centrifugation (8000 RPM, 10 minutes).

이하에서는 상기 공액 고분자가 담지된 고분자 나노 전달체를 "CPNP (Conjugated polymer encapsulated nanoparticle)"로 기재한다.Hereinafter, the polymer nanocarrier on which the conjugated polymer is supported will be referred to as "CPNP (Conjugated polymer encapsulated nanoparticle)".

1.2 공액 고분자가 담지된 고분자 나노 전달체와 펩타이드의 결합1.2 Combination of conjugated polymer-supported polymer nanocarriers and peptides

EDC (1-Ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride) 및 Sulfo-NHS (N-hydroxysulfosuccinimide) 용액을 각각 5 ㎎/1.3 ㎖ 및 10 ㎎/1.3 ㎖ 농도로 제조하였다. CPNP 4 ㎖을 400 rpm으로 교반하고, 여기에 상기 EDC 용액 (5 ㎎/1.3 ㎖) 및 Sulfo-NHS (10 ㎎/1.3 ㎖) 용액을 1시간 간격으로 400 ㎕씩 총 2회 첨가하였다. 이후. 인플루엔자 A 바이러스 아형 CA04(H1N1) 특이적 펩타이드(2 ㎎/1 ㎖ in 20% DMSO)를 800 ㎕ 첨가하여 하룻밤 동안 교반하고, 원심분리(8000 RPM, 10분)로 3회 세척하였다. 상기 CA04(H1N1) 특이적 펩타이드 (Fmoc-ARLSPTMVHPNGAQP-NH2)는 ㈜펩트론(대전, 대한민국)에서 구입하였다.EDC (1-Ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride) and Sulfo-NHS (N-hydroxysulfosuccinimide) solutions were prepared at 5 mg/1.3 ml and 10 mg/1.3 ml concentrations, respectively. 4 ml of CPNP was stirred at 400 rpm, and 400 μl of the EDC solution (5 mg/1.3 ml) and Sulfo-NHS (10 mg/1.3 ml) solution were added at an interval of 1 hour for a total of 2 times. after. Influenza A virus subtype CA04 (H1N1) specific peptide (2 mg/1 ml in 20% DMSO) was added 800 μl, stirred overnight, and washed 3 times by centrifugation (8000 RPM, 10 minutes). The CA04(H1N1) specific peptide (Fmoc-ARLSPTMVHPNGAQP-NH 2 ) was purchased from Peptron Co., Ltd. (Daejeon, Korea).

이하에서는 바이러스 탐지용 펩타이드가 표면에 결합되어 있고, 공액 고분자가 내부에 담지된 고분자 나노 전달체를 "CPNP-PEP"로 기재한다. 도 2에 CPNP-PEP의 합성 방법을 개략적으로 도시하였다.Hereinafter, a polymer nanocarrier having a virus detection peptide bound to the surface and having a conjugated polymer supported therein will be described as "CPNP-PEP". Figure 2 schematically shows the synthesis method of CPNP-PEP.

실험예 1: 단일 CPNP 샘플과 CPNP-Linker 샘플의 차이 확인Experimental Example 1: Confirmation of the difference between a single CPNP sample and a CPNP-Linker sample

나노입자 사이의 거리에 의한 흡광 변화를 확인하기 위해 CPNP가 단일 입자로 존재하는 CPNP 샘플과 CPNP를 링커로 결합시킨 샘플(CPNP-Linker)에 대하여 희석에 따른 흡광도 변화를 비교하였다. 링커는 양쪽에 아민기를 포함하는 헥사메틸렌다이아민 (hexamethylenediamine)을 사용하였으며, CM-PEG-b-pPhe를 포함하는 CPNP의 표면에 드러난 카르복시메틸 작용기들을 연결함으로써 인위적으로 CPNP를 응집시킨다. CPNP와 링커는 CPNP-PEP 제조에 사용한 EDC/Sulfo-NHS 방법으로 서로 연결시켰다. In order to confirm the change in absorbance due to the distance between nanoparticles, the change in absorbance according to dilution was compared between the CPNP sample in which CPNP is present as a single particle and the sample in which CPNP is combined as a linker (CPNP-Linker). As the linker, hexamethylenediamine containing amine groups on both sides was used, and the CPNP was artificially aggregated by linking the carboxymethyl functional groups exposed on the surface of the CPNP containing CM-PEG-b-pPhe. CPNP and linker were linked to each other by the EDC/Sulfo-NHS method used to prepare CPNP-PEP.

각 샘플을 0.25 ㎎/㎖부터 0.00782 ㎎/㎖ 농도까지 1/2로 희석하며 흡광 파장을 분석한 결과, CPNP 샘플에서 흡광 파장(430 ㎚ 및 630 ㎚)의 변화가 큰 것을 알 수 있었다 (도 3의 A). 반면, CPNP-Linker 샘플에서는 희석에 의한 입자 사이의 거리 변화가 제한되어 흡광 파장의 변화폭이 적게 나타났다 (도 3의 B). 이 결과를 통해 나노입자 사이의 거리와 흡광 파장 변화의 관계를 확인하였다.As a result of analyzing the absorption wavelength by diluting each sample by 1/2 from 0.25 mg/ml to 0.00782 mg/ml concentration, it was found that the change in the absorption wavelength (430 nm and 630 nm) was large in the CPNP sample (Fig. 3) A). On the other hand, in the CPNP-Linker sample, the change in the distance between the particles due to dilution was limited, so the change in the absorption wavelength was small (FIG. 3B). Through this result, the relationship between the distance between nanoparticles and the change in absorption wavelength was confirmed.

또한, CPNP의 응집 정도를 확인하기 위해 CPNP 샘플과 CPNP-Linker 샘플을 동적 광산란 입도분석기(dynamic light scattering, DLS)로 분석하였다. 분석 결과, CPNP-Linker 샘플에서 더 넓은 입자 분포가 나타나는 것을 확인하여 CPNP-Linker 샘플에서는 입자들이 응집되나, CPNP 샘플에서는 단일 입자 형태로 존재하는 것을 알 수 있었다 (도 4).In addition, in order to confirm the degree of aggregation of CPNP, the CPNP sample and the CPNP-Linker sample were analyzed by dynamic light scattering (DLS). As a result of the analysis, it was confirmed that a wider particle distribution appeared in the CPNP-Linker sample, and it was found that the particles were aggregated in the CPNP-Linker sample, but existed in the form of single particles in the CPNP sample (FIG. 4).

CPNP 샘플 및 CPNP-Linker 샘플의 농도에 따른 스펙트럼 변화를 수학식 1에 따라 정량화하여 그래프로 표시하였다. 먼저 CPNP에 포함된 CM-PEGb―pPhe의 백분율에 따른 스펙트럼 변화를 확인한 결과, CM-PEG-b-pPhe가 80% 포함된 경우 스펙트럼 차이가 가장 극명하게 드러나는 것을 알 수 있었다 (도 5의 C; A 내지 D 각각 CM-PEGb―pPhe의 백분율이 20%, 50%, 80% 및 100%). 또한, CPNP-Linker 샘플과 비교하여 단일 입자로 존재하는 CPNP 샘플에서 스펙트럼의 변화폭이 큰 것을 수치화하여 플랏팅(plotting)한 결과, 링커에 의한 CPNP 결합 유무에 따라 반응성 차이가 가장 크게 드러나는 입자 농도는 0.3125 ㎎/㎖인 것을 확인하였다 (도 5의 C). 상기 농도가 반응성 최대화를 위한 적정 농도이다.Spectral changes according to the concentrations of the CPNP sample and the CPNP-Linker sample were quantified according to Equation 1 and displayed as a graph. First, as a result of confirming the spectral change according to the percentage of CM-PEGb-pPhe contained in CPNP, it was found that the spectral difference was most clearly revealed when 80% of CM-PEG-b-pPhe was contained (Fig. 5C; A to D, respectively, the percentage of CM-PEGb-pPhe is 20%, 50%, 80% and 100%). In addition, compared to the CPNP-Linker sample, as a result of quantifying and plotting the large spectrum change in the CPNP sample that exists as a single particle, the particle concentration that shows the greatest difference in reactivity depending on the presence or absence of CPNP binding by the linker is It was confirmed that it was 0.3125 mg/ml (FIG. 5C). The above concentration is a suitable concentration for maximizing reactivity.

[수학식 1][Equation 1]

Optical Response (OR) = (I 430 -I * 430 ) + (I 430 -I * 430 ) (I * =initial value)Optical Response (OR) = (I 430 -I * 430 ) + (I 430 -I * 430 ) ( I * =initial value)

실험예 2: CPNP-PEP과 바이러스의 결합 여부 확인Experimental Example 2: Confirmation of binding of CPNP-PEP and virus

CPNP-PEP (0.625 ㎎/㎖) 또는 CPNP (0.625 ㎎/㎖)를 다양한 농도로 희석한 인플루엔자 A 바이러스 샘플 (아형 CA04(H1N1): HA titer 2^10)과 1:1로 20분 동안 상온에서 반응시키고, 흡광도를 측정하여 수학식 1에 따라 광학 반응(optical response)을 수치화하였다.Influenza A virus samples (subtype CA04(H1N1): HA titer 2^10) diluted with CPNP-PEP (0.625 mg/ml) or CPNP (0.625 mg/ml) at various concentrations were 1:1 at room temperature for 20 minutes. The reaction was carried out, and the absorbance was measured to quantify the optical response according to Equation 1.

확인 결과, CPNP와 인플루엔자 A 바이러스 샘플을 반응시킨 경우 흡광 파장의 변화가 발생하지 않아 CPNP와 인플루엔자 A 바이러스가 결합하지 않는 것을 알 수 있었다. 그러나 CPNP-PEP과 인플루엔자 A 바이러스 샘플을 반응시키면 바이러스 타이터와 비례하여 흡광 변화가 발생했으며, 이는 CPNP-PEP과 인플루엔자 A 바이러스가 결합하였음을 의미한다 (도 6의 A 및 B). As a result of the confirmation, when the CPNP and the influenza A virus sample were reacted, the change in the absorption wavelength did not occur, so it was found that the CPNP and the influenza A virus did not bind. However, when CPNP-PEP and influenza A virus sample were reacted, an absorbance change occurred in proportion to the virus titer, which means that CPNP-PEP and influenza A virus were combined ( FIGS. 6A and 6B ).

또한, 흡광 반응 수치를 그래프로 표시한 결과 CPNP-PEP과 인플루엔자 A 바이러스 샘플을 반응시킨 경우 바이러스 타이터에 비례하여 광학 반응이 증가하는 것을 알 수 있었다 (도 7). 이 결과는 바이러스-펩타이드 결합에 기인한 입자 응집이 흡광 신호로 나타나는 것을 의미한다.In addition, as a result of displaying the absorbance response value as a graph, it was found that the optical response increased in proportion to the virus titer when the CPNP-PEP and the influenza A virus sample were reacted ( FIG. 7 ). This result means that particle aggregation due to virus-peptide binding appears as an absorption signal.

본 실험예의 결과를 통해 본 발명의 CPNP-PEP이 인플루엔자 A 바이러스를 특이적으로 검출할 수 있음을 알 수 있다.From the results of this experimental example, it can be seen that the CPNP-PEP of the present invention can specifically detect influenza A virus.

실험예 3: CPNP-PEP를 이용한 바이러스 검출 여부 확인Experimental Example 3: Confirmation of Virus Detection Using CPNP-PEP

CPNP-PEP (0.0625 ㎎/㎖)를 다양한 농도로 희석한 인플루엔자 A 바이러스 샘플과 1:1로 20분 동안 상온에서 반응시키고, 흡광도를 측정하여 수학식 1에 따라 수치화하였다. 인플루엔자 A 바이러스 샘플은 염기서열이 서로 차이가 많이 나는 아형 CA04(H1N1) 및 아형 H3N2를 사용하였다.CPNP-PEP (0.0625 mg/ml) was reacted with influenza A virus samples diluted to various concentrations 1:1 at room temperature for 20 minutes, and the absorbance was measured and quantified according to Equation 1. For influenza A virus samples, subtype CA04 (H1N1) and subtype H3N2, which have a lot of nucleotide sequence difference from each other, were used.

확인 결과, CPNP-PEP과 CPNP와 인플루엔자 A 바이러스 아형 H3N2 샘플을 반응시킨 경우 흡광 파장의 변화가 발생하지 않으나, CPNP-PEP과 인플루엔자 A 바이러스 아형 CA04(H1N1) 샘플을 반응시키면 바이러스 타이터와 비례하여 흡광 변화가 발생하는 것을 알 수 있었다 (도 8의 A 및 B).As a result, when CPNP-PEP and CPNP were reacted with influenza A virus subtype H3N2 sample, there was no change in absorption wavelength, but when CPNP-PEP and influenza A virus subtype CA04 (H1N1) sample were reacted, it was proportional to the virus titer. It was found that an absorption change occurred (A and B in FIGS. 8A and 8B).

또한, 흡광 반응 수치를 그래프로 표시한 결과 CPNP-PEP과 인플루엔자 A 바이러스 아형 CA04(H1N1) 샘플을 반응시킨 경우 바이러스 타이터에 비례하여 광학 반응이 증가하는 것을 알 수 있었다 (도 9).In addition, as a result of displaying the absorbance value as a graph, it was found that when the CPNP-PEP and influenza A virus subtype CA04 (H1N1) sample were reacted, the optical response increased in proportion to the virus titer (FIG. 9).

본 실험예의 결과를 통해 본 발명의 CPNP-PEP이 펩타이드의 특이성에 따라 특정 바이러스와 결합할 수 있고, 결합에 의해 나타나는 흡광 파장의 변화를 수치화하면 선택적이고 정량적인 바이러스 검출이 가능함을 알 수 있다.From the results of this experimental example, it can be seen that the CPNP-PEP of the present invention can bind to a specific virus according to the specificity of the peptide, and selective and quantitative virus detection is possible by quantifying the change in the absorption wavelength caused by the binding.

<110> UNIVERSITY-INDUSTRY FOUNDATION, YONSEI UNIVERSITY KNU-Industry Cooperation Foundation Korea University Research and Business Foundation, Sejong Campus <120> COMPLEXES FOR DETECTING VIRUSES BASED CONJUGATED POLYMER <130> DP-2020-1234_P20U16C1853 <160> 1 <170> KoPatentIn 3.0 <210> 1 <211> 15 <212> PRT <213> Influenza A virus <400> 1 Ala Arg Leu Ser Pro Thr Met Val His Pro Asn Gly Ala Gln Pro 1 5 10 15 <110> UNIVERSITY-INDUSTRY FOUNDATION, YONSEI UNIVERSITY KNU-Industry Cooperation Foundation Korea University Research and Business Foundation, Sejong Campus <120> COMPLEXES FOR DETECTING VIRUSES BASED CONJUGATED POLYMER <130> DP-2020-1234_P20U16C1853 <160> 1 <170> KoPatentIn 3.0 <210> 1 <211> 15 <212> PRT <213> Influenza A virus <400> 1 Ala Arg Leu Ser Pro Thr Met Val His Pro Asn Gly Ala Gln Pro 1 5 10 15

Claims (11)

(a) 제1 블록 공중합체 고분자 및 카르복시기를 포함하는 제2 블록 공중합체 고분자로 이루어진 나노 전달체;
(b) 상기 나노 전달체의 내부에 담지된 공액 고분자; 및
(c) 제2 블록 공중합체 고분자의 카르복시기와 펩타이드 결합으로 연결되는 바이러스 특이적 펩타이드를 포함하는 바이러스 검출용 복합체.
(a) a nanocarrier consisting of a first block copolymer polymer and a second block copolymer polymer including a carboxyl group;
(b) a conjugated polymer supported inside the nanocarrier; and
(c) a virus detection complex comprising a virus-specific peptide linked to the carboxyl group of the second block copolymer polymer by a peptide bond.
제1항에 있어서, 상기 제1 블록 공중합체는 메톡시폴리에틸렌글리콜-블록-폴리아미노산 (methoxy-poly(ethylene glycol)-block-poly(amino acid)) 또는 메톡시폴리에틸렌글리콜-블록-락틱산 (methoxy-poly(ethylene glycol)-block-lactic acid, mPEG-b-PLA)인, 바이러스 검출용 복합체.According to claim 1, wherein the first block copolymer is methoxypolyethylene glycol-block-polyamino acid (methoxy-poly(ethylene glycol)-block-poly(amino acid)) or methoxypolyethylene glycol-block-lactic acid ( methoxy-poly(ethylene glycol)-block-lactic acid, mPEG-b-PLA), a complex for virus detection. 제2항에 있어서, 상기 메톡시폴리에틸렌글리콜-블록-폴리아미노산은 메톡시폴리에틸렌글리콜-블록-폴리페닐알라닌 (mPEG-b-pPhe), 메톡시폴리에틸렌글리콜-블록-폴리류신 (mPEG-b-pLeu), 메톡시폴리에틸렌글리콜-블록-폴리트립토판 (mPEG-b-pTrp) 및 메톡시폴리에틸렌글리콜-블록-폴리라이신 (mPEG-b-pLys)으로 이루어진 군에서 선택되는 것인, 바이러스 검출용 복합체.According to claim 2, wherein the methoxypolyethylene glycol-block-polyamino acid is methoxypolyethylene glycol-block-polyphenylalanine (mPEG-b-pPhe), methoxypolyethylene glycol-block-polyleucine (mPEG-b-pLeu) , Methoxypolyethylene glycol-block-polytryptophan (mPEG-b-pTrp) and methoxypolyethylene glycol-block-polylysine (mPEG-b-pLys), which is selected from the group consisting of, the complex for virus detection. 제1항에 있어서, 상기 제2 블록 공중합체는 카르복시메틸폴리에틸렌글리콜-블록-폴리아미노산 (carboxymethyl-poly(ethylene glycol)-block-poly(amino acid)) 또는 카르복시메틸폴리에틸렌글리콜-블록-락틱산 (carboxymethyl-poly(ethylene glycol)-block-lactic acid, CM-PEG-b-PLA)인, 바이러스 검출용 복합체.According to claim 1, wherein the second block copolymer is carboxymethyl polyethylene glycol-block-polyamino acid (carboxymethyl-poly(ethylene glycol)-block-poly(amino acid)) or carboxymethyl polyethylene glycol-block-lactic acid ( carboxymethyl-poly(ethylene glycol)-block-lactic acid, CM-PEG-b-PLA), a complex for virus detection. 제4항에 있어서, 상기 카르복시메틸폴리에틸렌글리콜-블록-폴리아미노산은 카르복시메틸폴리에틸렌글리콜-블록-폴리페닐알라닌 (CM-PEG-b-pPhe), 카르복시메틸폴리에틸렌글리콜-블록-폴리류신 (CM-PEG-b-pLeu), 카르복시메틸폴리에틸렌글리콜-블록-폴리트립토판 (CM-PEG-b-pTrp) 및 카르복시메틸폴리에틸렌글리콜-블록-폴리라이신 (CM-PEG-b-pLys)으로 이루어진 군에서 선택되는 것인, 바이러스 검출용 복합체.5. The method of claim 4, wherein the carboxymethyl polyethylene glycol-block-polyamino acid is carboxymethyl polyethylene glycol-block-polyphenylalanine (CM-PEG-b-pPhe), carboxymethyl polyethylene glycol-block-polyleucine (CM-PEG- b-pLeu), carboxymethyl polyethylene glycol-block-polytryptophan (CM-PEG-b-pTrp) and carboxymethyl polyethylene glycol-block-polylysine (CM-PEG-b-pLys) , a complex for virus detection. 제1항에 있어서, 상기 공액 고분자는 π-공액 구조 단량체가 중합된 것인, 바이러스 검출용 복합체.According to claim 1, wherein the conjugated polymer is a π- conjugated structure monomer is polymerized, the virus detection complex. 제6항에 있어서, 상기 π-공액 구조 단량체는 아닐린(aniline) 유도체, 티오펜(thiophene) 유도체, 피롤(pyrrole) 유도체, 3,4-에틸렌다이옥시티오펜(3,4-ethylenedioxythiophene) 유도체, 아제핀(azepine) 유도체, 인돌(indole) 유도체, 카바졸(carbazole) 유도체, 플루오렌(fluorine) 유도체, 페닐렌(phenylene) 유도체, 파이렌(pyrene) 유도체 및 아줄렌(Azulene) 유도체로 이루어진 군으로부터 선택되는 어느 한 종 이상인 것인, 바이러스 검출용 복합체.7. The method of claim 6, wherein the π-conjugated structural monomer is an aniline derivative, a thiophene derivative, a pyrrole derivative, a 3,4-ethylenedioxythiophene derivative, an aze From the group consisting of azepine derivatives, indole derivatives, carbazole derivatives, fluorine derivatives, phenylene derivatives, pyrene derivatives and azulene derivatives Any one or more species selected, the complex for virus detection. 제1항에 있어서, 상기 바이러스 검출용 펩타이드는 인플루엔자 A 바이러스, 인플루엔자 B 바이러스, 뎅기 바이러스, 인간 호흡기 세포융합 바이러스, 노로바이러스, 메르스 코로나바이러스, 사스 코로나바이러스및 사스 코로나바이러스-2로 이루어진 군에서 선택되는 바이러스에서 유래한 것인, 바이러스 검출용 복합체.According to claim 1, wherein the virus detection peptide is influenza A virus, influenza B virus, dengue virus, human respiratory syncytial virus, norovirus, MERS coronavirus, SARS coronavirus and SARS coronavirus-2 from the group consisting of A complex for virus detection, which is derived from the selected virus. 제8항에 있어서, 인플루엔자 A 바이러스에서 유래한 바이러스 검출용 펩타이드는 서열번호 1로 표시되는 서열을 포함하는 것인, 바이러스 검출용 복합체.The complex for virus detection according to claim 8, wherein the peptide for virus detection derived from influenza A virus comprises the sequence represented by SEQ ID NO: 1. 제1항의 바이러스 검출용 복합체를 유효성분으로 포함하는 바이러스 감염 확인용 조성물.A composition for confirming virus infection comprising the complex for virus detection of claim 1 as an active ingredient. (a) 바이러스의 유무를 확인하고자 하는 시료와 제10항의 바이러스 감염 확인용 조성물을 접촉시키는 단계; 및
(b) 단계 (a)의 결과물에서 흡광도를 측정하는 단계;를 포함하는
바이러스 감염 진단을 위한 정보를 제공하는 방법.
(a) contacting a sample to be checked for the presence or absence of a virus with the composition for confirming virus infection of claim 10; and
(b) measuring the absorbance in the resultant of step (a); including
How to provide information for diagnosing a viral infection.
KR1020200167115A 2020-12-03 2020-12-03 Complexes for detecting viruses based conjugated polymer KR102347808B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020200167115A KR102347808B1 (en) 2020-12-03 2020-12-03 Complexes for detecting viruses based conjugated polymer
PCT/KR2020/019399 WO2022119043A1 (en) 2020-12-03 2020-12-30 Polymer conjugate-based composite for virus detection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200167115A KR102347808B1 (en) 2020-12-03 2020-12-03 Complexes for detecting viruses based conjugated polymer

Publications (2)

Publication Number Publication Date
KR102347808B1 true KR102347808B1 (en) 2022-01-07
KR102347808B9 KR102347808B9 (en) 2022-09-30

Family

ID=79355135

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200167115A KR102347808B1 (en) 2020-12-03 2020-12-03 Complexes for detecting viruses based conjugated polymer

Country Status (2)

Country Link
KR (1) KR102347808B1 (en)
WO (1) WO2022119043A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005525554A (en) * 2002-05-13 2005-08-25 オレ インガナス、 Polyelectrolyte complexes (eg zwitterionic polythiophene) with receptors (eg polynucleotides, antibodies, etc.) for biosensor applications
JP2014209117A (en) * 2013-03-29 2014-11-06 積水メディカル株式会社 Color particles for immunochromato, and immunochromato reagent for diagnosis using the same
KR20160085718A (en) * 2015-01-08 2016-07-18 한국생명공학연구원 Kit for detecting virus
KR20180090513A (en) * 2017-02-03 2018-08-13 연세대학교 산학협력단 Kit for detecting virus
KR20190121636A (en) * 2018-04-18 2019-10-28 부산대학교 산학협력단 Biosensor using conjugated polyelectrolyte and method for detecting analyte using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005525554A (en) * 2002-05-13 2005-08-25 オレ インガナス、 Polyelectrolyte complexes (eg zwitterionic polythiophene) with receptors (eg polynucleotides, antibodies, etc.) for biosensor applications
JP2014209117A (en) * 2013-03-29 2014-11-06 積水メディカル株式会社 Color particles for immunochromato, and immunochromato reagent for diagnosis using the same
KR20160085718A (en) * 2015-01-08 2016-07-18 한국생명공학연구원 Kit for detecting virus
KR20180090513A (en) * 2017-02-03 2018-08-13 연세대학교 산학협력단 Kit for detecting virus
KR20190121636A (en) * 2018-04-18 2019-10-28 부산대학교 산학협력단 Biosensor using conjugated polyelectrolyte and method for detecting analyte using the same

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHUN H et al, Polymer Chemistry (2018), vol 9, pp 2116-2123 *
The foil selection carefully base" the polymer society of Korea conference treatise excerpt collection (2019. 10.)" vol 44" no 2" pp 124(poster 2PS-257). *
박근선 저, 한국고분자학회 학술대회 연구논문 초록집 (2019.10.), vol 44, no 2, pp 124(포스터2PS-257).

Also Published As

Publication number Publication date
WO2022119043A1 (en) 2022-06-09
KR102347808B9 (en) 2022-09-30

Similar Documents

Publication Publication Date Title
Ma et al. A multi-walled carbon nanotubes based molecularly imprinted polymers electrochemical sensor for the sensitive determination of HIV-p24
JP6494794B2 (en) Virus detection kit
Pei et al. Niche nanoparticle-based FRET assay for bleomycin detection via DNA scission
Feng et al. Selective fluorescent sensing of α-amanitin in serum using carbon quantum dots-embedded specificity determinant imprinted polymers
Mintz et al. Carbon dots and gold nanoparticles based immunoassay for detection of alpha-L-fucosidase
Derakhshan et al. State-of-the-Art of Nanodiagnostics and Nanotherapeutics against SARS-CoV-2
Ling et al. Energy transfer with gold nanoparticles for analytical applications in the fields of biochemical and pharmaceutical sciences
Zhu et al. A colorimetric sandwich-type bioassay for SARS-CoV-2 using a hACE2-based affinity peptide pair
Yan et al. A sandwich-hybridization assay for simultaneous determination of HIV and tuberculosis DNA targets based on signal amplification by quantum dots-PowerVision™ polymer coding nanotracers
Moon et al. Facile and sensitive detection of influenza viruses using SERS antibody probes
Cheng et al. Rapid and visual detection of protamine based on ionic self-assembly of a water soluble perylene diimide derivative
Ding et al. Silica nanoparticles coated by poly (acrylic acid) brushes via host-guest interactions for detecting DNA sequence of Hepatitis B virus
de Paula Rezende et al. Polydiacetylene/triblock copolymer nanosensor for the detection of native and free bovine serum albumin
Jin et al. Peptidic sulfhydryl for interfacing nanocrystals and subsequent sensing of SARS-CoV-2 protease
KR102347808B1 (en) Complexes for detecting viruses based conjugated polymer
Wang et al. Sensitive multiplexed DNA detection using silica nanoparticles as the target capturing platform
Guerrero-Esteban et al. Sensitive SARS-CoV-2 detection in wastewaters using a carbon nanodot-amplified electrochemiluminescence immunosensor
US10011649B2 (en) High affinity synbodies for influenza
Wang et al. Minimalist Design for a Hand-Held SARS-Cov-2 Sensor: Peptide-Induced Covalent Assembly of Hydrogel Enabling Facile Fiber-Optic Detection of a Virus Marker Protein
Jiang et al. Simple and fast colorimetric detection of lipopolysaccharide based on aptamer and SYBR Green I mediated aggregation of gold nanoparticles
Zhang et al. Dual signal output ratiometric biosensor platform with regulable nanofiber-mediated signal amplification strategy for ultrasensitive detection of tumor biomarker
WO2011150541A1 (en) Visual detection method for antigen/antibody reaction, kit and applications thereof
Dai et al. Facile synthesis of dual-ligand europium-metal organic gels for ratiometric electrochemiluminescence detecting I27L gene
Zhang et al. Thiol-sensitive probe enables dynamic electrochemical assembly of serum protein for detecting SARS-Cov-2 marker protease in clinical samples
Villa-Manso et al. Bifunctional Au@ Pt/Au nanoparticles as electrochemiluminescence signaling probes for SARS-CoV-2 detection

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
G170 Re-publication after modification of scope of protection [patent]
G170 Re-publication after modification of scope of protection [patent]
G170 Re-publication after modification of scope of protection [patent]