KR102346347B1 - Allylarenes and a Method for Producing the Same - Google Patents

Allylarenes and a Method for Producing the Same Download PDF

Info

Publication number
KR102346347B1
KR102346347B1 KR1020190171734A KR20190171734A KR102346347B1 KR 102346347 B1 KR102346347 B1 KR 102346347B1 KR 1020190171734 A KR1020190171734 A KR 1020190171734A KR 20190171734 A KR20190171734 A KR 20190171734A KR 102346347 B1 KR102346347 B1 KR 102346347B1
Authority
KR
South Korea
Prior art keywords
formula
group
allyl
mol
carbon atoms
Prior art date
Application number
KR1020190171734A
Other languages
Korean (ko)
Other versions
KR20210079688A (en
Inventor
정일남
조아라
김영민
강승환
Original Assignee
제이에스아이실리콘주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 제이에스아이실리콘주식회사 filed Critical 제이에스아이실리콘주식회사
Priority to KR1020190171734A priority Critical patent/KR102346347B1/en
Priority to US17/113,695 priority patent/US11685702B2/en
Publication of KR20210079688A publication Critical patent/KR20210079688A/en
Application granted granted Critical
Publication of KR102346347B1 publication Critical patent/KR102346347B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C15/00Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
    • C07C15/02Monocyclic hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/42Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with a hydrogen acceptor
    • C07C5/44Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with a hydrogen acceptor with halogen or a halogen-containing compound as an acceptor
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2531/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • C07C2531/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • C07C2531/24Phosphines

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

본 발명은 알릴아로마틱 회합물 및 그의 제조 방법에 관한 것이다. 알릴아로마릭 화합물은 화학식 3로 표시된다
화학식 3:

Figure 112019132117177-pat00011
. The present invention relates to an allylaromatic association and a method for preparing the same. Allyl aromatic compound is represented by the formula (3)
Formula 3:
Figure 112019132117177-pat00011
.

Description

알릴아로마틱 화합물 및 그의 제조 방법{Allylarenes and a Method for Producing the Same} Allylaromatic compound and its preparation method {Allylarenes and a Method for Producing the Same}

본 발명은 알릴아로마틱 화합물 및 그의 제조 방법에 관한 것이고, 구체적으로 유기포스핀 화합물 촉매로 알릴할라이드와 아로마틱 화합물의 반응에 의하여 생성되는 알릴아로마틱 화합물 및 그의 제조 방법에 관한 것이다. The present invention relates to an allyl aromatic compound and a method for preparing the same, and more particularly, to an allyl aromatic compound produced by reaction of an allyl halide with an aromatic compound using an organophosphine compound catalyst and a method for preparing the same.

루이스 산 촉매를 사용하여 아로마틱 화합물에 알킬할라이드를 반응하여 알킬기를 아로마틱 화합물에 치환시키는 프리델-크래프트 알킬화반응은 유기합성에서 매우 중요한 반응으로 널리 사용되고 있다(Roberts, Royston M; Khalaf, Ali, Friedel-Crafts Alkylation Chemistry, Marcel Dekker, Inc., New York, New York, USA, 1984). 그러나 프리델-크래프트 알킬화반응은 루이스 산 촉매에 의하여 알킬 아로마틱 화합물의 알킬기가 아로마틱 고리에서 위치를 옮기거나 하나의 아로마틱 고리에서 다른 고리로 이동하여 알킬기의 수가 변할 수 있다는 단점을 가진다. 알킬화를 위한 아로마틱 화합물의 고리가 3개인 안트라센 또는 그보다 고리가 많은 아로마틱 화합물은 촉매인 루이스 산과 배위결합을 하여 촉매의 활성이 크게 저하되므로 실용성이 낮다. 또한 알릴할라이드를 사용하여 아로마틱 화합물에 알릴기를 치환시키는 경우 알릴할라이드의 탄소-탄소 이중 결합이 촉매인 루이스 산과 작용하여 아로마틱 화합물의 고리에 부가되는 반응이 먼저 일어날 수 있다. 이로 인하여 알릴기로 치환된 화합물이 아닌 할로알킬기가 부가된 화합물이 얻어질 수 있다. 보론 트리클로라이드 또는 알루미늄 트리클로라이드와 같은 루이스 산을 촉매로 사용하는 프리델-크래프트 형태의 알킬화반응으로 알릴기를 직접 치환하는 경우 알릴할라이드를 대신하여 알릴알콜 또는 알릴이더를 사용하여야 한다. 알릴할라이드에 의한 아로마틱 화합물의 알릴화를 위하여 산 촉매를 사용하는 대신 중성 화합물이 사용되어야 한다. 그리고 중성 촉매에 의하여 탄소와 할로겐 결합이 활성화되어 치환을 용이하도록 하는 촉매가 요구된다. 유기포스포늄 클로라이드를 촉매로 사용하여 알킬할라이드와 트리클로로실란을 반응하여 알킬할라이드에서 할로겐을 떼어내고 트리클로로실란에서 수소를 취해 할로겐화수소를 발생시키며 탈할로겐화수소Si-C 결합반응으로 알킬기를 실란에 치환시키는 알킬클로로실란의 합성이 공지되어 있다(Yeon Seok Cho, Y. S.; Kang, S.-H.; Han, J. S.; Yoo, B. R.; Jung, I. N., J. Am. Chem. Soc. 2001, 123, 5584). 위의 선행 기술을 참조하면, 알릴클로라이드 또는 벤질클로라이드와 같은 활성이 큰 알킬할라이드 반응의 경우 130 ~ 150℃에서 좋은 수율로 알킬클로로실란가 합성되고, 관능기가 치환되지 않은 비활성 알킬할라이드가 반응하는 경우 30 ~ 50℃ 정도 더 높은 온도 조건에서 높은 수율로 알킬클로로실란이 합성될 수 있다. 또한 촉매로 4차 유기포스포늄 클로라이드가 사용되지 않고 3차 트리알킬포스핀이 사용되어도 반응 중에 반응물질인 알킬클로라이드와 반응하여 4차 유기포스포늄 클로라이드가 생성되므로 촉매의 범위는 3차 유기포스핀을 포함한다. 선행기술에서 개시된 것처럼, 알킬할라이드와 트리클로로실란을 반응하여 탈할로겐화수소Si-C결합반응으로 알킬기를 실란에 치환시키는 알킬클로로실란의 합성반응에서 촉매로 사용되는 4차 유기포스포늄 클로라이드는 유기염으로 중성이 된다. 또한 3차 트리알킬포스핀은 루이스산이 아니라 루이스염기에 속한다. 이러한 유기포스포늄 클로라이드가 아로마틱 화합물과 알릴할라이드의 반응에 사용되면 알릴할라이드에서 할로겐을 그리고 아로마틱고리에서 수소를 분리시켜 HX를 발생시키는 탈할로겐화수소C-C결합 반응이 발생될 수 있다. 이와 같이 루이스산을 촉매로 사용하지 않고 3차 유기포스핀 또는 4차 유기포스포늄 염을 촉매로 사용하여 알릴할라이드를 아로마틱 화합물과 반응하여 탈할로겐화수소C-C결합반응으로 아릴아로마틱 화합물이 합성될 수 있고, 적절한 양의 촉매가 사용될 수 있다. 또한 촉매가 반응물질 또는 생성물과 물리적인 성질이 서로 다르므로 회수가 용이하고 재사용이 가능하다. 이로 인하여 공지의 제조방법에 비하면 매우 경제적이고 고수율로 알릴아로마틱 화합물이 제조될 수 있다. 그러므로 본 발명은 위와 같은 착안에 기초한 것으로 아래와 같은 목적을 가진다. The Friedel-Crafts alkylation reaction in which an alkyl group is substituted for an aromatic compound by reacting an alkyl halide with an aromatic compound using a Lewis acid catalyst is widely used as a very important reaction in organic synthesis (Roberts, Royston M; Khalaf, Ali, Friedel-Crafts) Alkylation Chemistry, Marcel Dekker, Inc., New York, New York, USA, 1984 ). However, the Friedel-Crafts alkylation reaction has a disadvantage in that the number of alkyl groups may change due to the displacement of the alkyl group of the alkyl aromatic compound from the aromatic ring or from one aromatic ring to the other by the Lewis acid catalyst. Anthracene having three rings or an aromatic compound having more rings than that of an aromatic compound for alkylation is not practical because the activity of the catalyst is greatly reduced by coordination with the catalyst Lewis acid. In addition, when an allyl group is substituted in an aromatic compound using an allyl halide, a reaction in which the carbon-carbon double bond of the allyl halide interacts with a Lewis acid as a catalyst to be added to the ring of the aromatic compound may occur first. Due to this, a compound to which a haloalkyl group is added, not a compound substituted with an allyl group, may be obtained. When an allyl group is directly substituted in the Friedel-Crafts type alkylation reaction using a Lewis acid such as boron trichloride or aluminum trichloride as a catalyst, allyl alcohol or allyl ether must be used instead of allyl halide. Instead of using an acid catalyst for the allylation of an aromatic compound with an allyl halide, a neutral compound should be used. In addition, there is a need for a catalyst in which carbon and halogen bonds are activated by a neutral catalyst to facilitate substitution. Using organophosphonium chloride as a catalyst, the alkyl halide and trichlorosilane are reacted to remove the halogen from the alkyl halide, and hydrogen is taken from the trichlorosilane to generate hydrogen halide. The synthesis of substituted alkylchlorosilanes is known (Yeon Seok Cho, YS; Kang, S.-H.; Han, JS; Yoo, BR; Jung, IN, J. Am. Chem. Soc. 2001 , 123 , 5584). Referring to the prior art above, in the case of an alkyl halide reaction with high activity such as allyl chloride or benzyl chloride, alkylchlorosilane is synthesized in a good yield at 130 to 150° C., and when an inactive alkyl halide unsubstituted with a functional group is reacted 30 Alkylchlorosilanes can be synthesized in high yield at a higher temperature condition of about ~50°C. In addition, even if quaternary organophosphonium chloride is not used as a catalyst and tertiary trialkylphosphine is used, it reacts with alkyl chloride as a reactant during the reaction to generate quaternary organophosphonium chloride, so the scope of the catalyst is tertiary organophosphine includes As disclosed in the prior art, the quaternary organophosphonium chloride used as a catalyst in the synthesis reaction of alkylchlorosilane in which an alkyl group is replaced with a silane by a dehydrohalogenation Si-C bond reaction by reacting an alkyl halide with trichlorosilane is an organic salt becomes neutral with Also, tertiary trialkylphosphines belong to Lewis bases, not Lewis acids. When this organophosphonium chloride is used for the reaction of an aromatic compound and an allyl halide, a dehydrohalogenation CC bonding reaction that separates halogen from the allyl halide and hydrogen from the aromatic ring to generate HX may occur. As described above, without using a Lewis acid as a catalyst, by using a tertiary organophosphine or a quaternary organophosphonium salt as a catalyst, the allyl halide is reacted with an aromatic compound to synthesize an arylaromatic compound by dehydrohalogenation CC bonding reaction. , an appropriate amount of catalyst may be used. In addition, since the catalyst has different physical properties from the reactant or product, it is easy to recover and reuse. Due to this, the allyl aromatic compound can be prepared in a very economical and high yield compared to known manufacturing methods. Therefore, the present invention is based on the above idea and has the following objects.

선행기술 1: Jung, I. N.; Cho, K. D.; Lim, J. C. Yoo, B. R. US Patent 4,613,491Prior art 1: Jung, I. N.; Cho, K. D.; Lim, J. C. Yoo, B. R. US Patent 4,613,491 선행기술 2: Roberts, Royston M; Khalaf, Ali, Friedel-Crafts Alkylation Chemistry, Marcel Dekker, Inc., New York, New York, USA, 1984Prior Art 2: Roberts, Royston M; Khalaf, Ali, Friedel-Crafts Alkylation Chemistry, Marcel Dekker, Inc., New York, New York, USA, 1984 선행기술 3: Yeon Seok Cho, Y. S.; Kang, S.-H.; Han, J. S.; Yoo, B. R.; Jung, I. N., J. Am. Chem. Soc. 2001, 123, 5584Prior Art 3: Yeon Seok Cho, Y. S.; Kang, S.-H.; Han, J. S.; Yoo, B. R.; Jung, I. N., and J. Am. Chem. Soc. 2001, 123, 5584

본 발명의 목적은 유기포스핀화합물 촉매로 알릴할라이드와 아로마틱 화합물을 반응시켜 HX를 생성시키는 탈할로겐화수소C-C결합 반응에 의하여 합성되는 알릴아로마틱 화합물 및 그의 제조방법을 제공하는 것이다. An object of the present invention is to provide an allyl aromatic compound synthesized by a C-C bond reaction of hydrogen halide to generate HX by reacting an allyl halide with an aromatic compound using an organophosphine compound catalyst, and a method for preparing the same.

본 발명의 적절한 실시 형태에 따르면, 알릴아로마틱 화합물은 화학식 3으로 표시되고, According to a suitable embodiment of the present invention, the allyl aromatic compound is represented by Formula 3,

화학식 3:Formula 3:

Figure 112019132117177-pat00001
,
Figure 112019132117177-pat00001
,

화학식 3에서 R1= H, Me, CH2Cl 또는 CH2Br; R2= H, Me, Ph, CH2Cl 또는 CH2Br; R3= H, Me, CH2Cl 또는 CH2Br; R4= H 또는 Me; Ar1 = 벤젠, 알킬벤젠, 할로벤젠, 플루오렌, 터페닐렌, 나프탈렌, 1-메틸나프탈렌, 2-메틸나프탈렌, 1,2-디메틸나프탈렌, 안트라센, 안트론, 2-(t-부틸)안트라퀴논, 2-(t-부틸)안트라센, 9-메틸안트라센, 9,10-디메틸안트라센, 9-벤질안트라센, 9,10-디벤질안트라센, 9-(디페닐메틸)안트라센, 페난트렌, 바이페닐, 바이페닐이더, 바이페닐설파이드, 피렌, 퍼릴렌. 테트라센, 펜타센 또는 고리가 1~8인 아로마틱 화합물; R5 = H, X, 페닐기 또는 탄소수가 1~8개인 알킬기가 치환된 페닐기; X= F, Cl, Br 또는 I; R6 = H, 탄소수가 1~6개인 알킬기, 페닐기, 벤질기 또는 디페닐메틸기; R7= H 또는 Me; R8 = H 또는 Me; R9 = 알릴기, 메틸기 또는 페닐기를 치환기로 갖는 화학식 1로 표시되는 알릴기가 되고, n은 0, 1 또는 2가 된다. R 1 =H, Me, CH 2 Cl or CH 2 Br in Formula 3; R 2 = H, Me, Ph, CH 2 Cl or CH 2 Br; R 3 = H, Me, CH 2 Cl or CH 2 Br; R 4 = H or Me; Ar 1 = benzene, alkylbenzene, halobenzene, fluorene, terphenylene, Naphthalene, 1-methylnaphthalene, 2-methylnaphthalene, 1,2-dimethylnaphthalene, anthracene, anthrone, 2-(t-butyl)anthraquinone, 2-(t-butyl)anthracene, 9-methylanthracene, 9, 10-dimethylanthracene, 9-benzylanthracene, 9,10-dibenzylanthracene, 9-(diphenylmethyl)anthracene, phenanthrene, biphenyl, biphenylether, biphenylsulfide, pyrene, perylene. tetracene, pentacene or aromatic compounds having 1 to 8 rings; R 5 = H, X, a phenyl group substituted with a phenyl group or an alkyl group having 1 to 8 carbon atoms; X=F, Cl, Br or I; R 6 = H, an alkyl group having 1 to 6 carbon atoms, a phenyl group, a benzyl group or a diphenylmethyl group; R 7 = H or Me; R 8 = H or Me; R 9 = an allyl group represented by Formula 1 having an allyl group, a methyl group, or a phenyl group as a substituent, and n is 0, 1 or 2.

본 발명의 다른 적절한 실시 형태에 따르면, 화학식 1 및 화학식 2로 표시되는 화합물을 반응시켜 화학식 3으로 표시되는 화합물을 생성시키고, According to another suitable embodiment of the present invention, the compound represented by Formula 1 and Formula 2 is reacted to produce a compound represented by Formula 3,

화학식 1: Formula 1:

Figure 112019132117177-pat00002
Figure 112019132117177-pat00002

화학식 2: Formula 2:

Figure 112019132117177-pat00003
,
Figure 112019132117177-pat00003
,

화학식 1, 2 및 3에서 R1= H, Me, CH2Cl 또는 CH2Br; R2= H, Me, Ph, CH2Cl 또는 CH2Br; R3= H, Me, CH2Cl 또는 CH2Br; R4= H 또는 Me; Ar1 = 벤젠, 알킬벤젠, 할로벤젠, 바이페닐, 플루오렌, 터페닐렌, 나프탈렌, 1-메틸나프탈렌, 2-메틸나프탈렌, 1,2-디메틸나프탈렌, 안트라센, 안트론, 2-(t-부틸)안트라퀴논, 2-(t-부틸)안트라센, 9-메틸안트라센, 9,10-디메틸안트라센, 9-벤질안트라센, 9,10-디벤질안트라센, 9-(디페닐메틸)안트라센, 페난트렌, 바이페닐이더, 바이페닐설파이드, 피렌, 퍼릴렌, 테트라센, 펜타센 또는 고리가 1~8인 아로마틱 화합물; R5 = H, X, 페닐기 또는 탄소수가 1~8개인 알킬기가 치환된 페닐기; X= F, Cl, Br 또는 I; R6 = H, 탄소수가 1~6개인 알킬기, 페닐기, 벤질기 또는 디페닐메틸기; R7= H 또는 Me; R8 = H 또는 Me; R9 = 알릴기, 메틸기 또는 페닐기를 치환기로 갖는 화학식 1로 표시되는 알릴기가 되고, n은 0, 1 또는 2가 되는 알릴아로마틱 화합물의 제조 방법이 제공된다. R 1 =H, Me, CH 2 Cl or CH 2 Br in formulas 1, 2 and 3; R 2 = H, Me, Ph, CH 2 Cl or CH 2 Br; R 3 = H, Me, CH 2 Cl or CH 2 Br; R 4 = H or Me; Ar 1 = benzene, alkylbenzene, halobenzene, Biphenyl, fluorene, terphenylene , naphthalene, 1-methylnaphthalene, 2-methylnaphthalene, 1,2-dimethylnaphthalene, anthracene, anthrone, 2-(t-butyl)anthraquinone, 2-(t-butyl ) anthracene, 9-methylanthracene, 9,10-dimethylanthracene , 9-benzylanthracene, 9,10-dibenzylanthracene, 9-(diphenylmethyl)anthracene, phenanthrene, biphenyl ether, biphenylsulfide, pyrene , perylene, tetracene, pentacene or aromatic compounds having 1 to 8 rings; R 5 = H, X, a phenyl group substituted with a phenyl group or an alkyl group having 1 to 8 carbon atoms; X=F, Cl, Br or I; R 6 = H, an alkyl group having 1 to 6 carbon atoms, a phenyl group, a benzyl group or a diphenylmethyl group; R 7 = H or Me; R 8 = H or Me; R 9 = an allyl group represented by Formula 1 having an allyl group, a methyl group or a phenyl group as a substituent, and n is 0, 1, or 2 is provided a method for producing an allyl aromatic compound.

본 발명의 다른 적절한 실시 형태에 따르면, 화학식 4로 표시되는 화합물이 촉매로 사용될 수 있고, According to another suitable embodiment of the present invention, the compound represented by Formula 4 may be used as a catalyst,

화학식 4: Formula 4:

P(R")3, P(R") 3,

화학식 4에서 R”는 탄소 수가 1~12개의 알킬기, 탄소 수가 2~12개의 알케닐기 또는 페닐기를 포함할 수 있고, 서로 다른 R”는 공유 결합으로 연결된 환형 구조가 된다.In Formula 4, R″ may include an alkyl group having 1 to 12 carbon atoms, an alkenyl group having 2 to 12 carbon atoms, or a phenyl group, and R″ different from each other becomes a cyclic structure connected by a covalent bond.

본 발명의 다른 적절한 실시 형태에 따르면, 화학식 5로 표시되는 화합물이 촉매로 사용되고, According to another suitable embodiment of the present invention, the compound represented by Formula 5 is used as a catalyst,

화학식 5:Formula 5:

P(R")4X', P(R") 4 X',

화학식 5에서 R”는 탄소 수가 1~12개의 알킬기, 탄소 수가 2~12개의 알케닐기 또는 페닐기를 포함할 수 있고, 서로 다른 R”는 공유 결합으로 연결된 환형 구조가 되고, X'= Cl, Br 또는 I가 된다. In Formula 5, R″ may include an alkyl group having 1 to 12 carbon atoms, an alkenyl group having 2 to 12 carbon atoms, or a phenyl group, and R″ different from each other becomes a cyclic structure connected by a covalent bond, and X′=Cl, Br or I.

본 발명의 또 다른 적절한 실시 형태에 따르면, 화학식 6으로 표시되는 화합물이 촉매로 사용되고, According to another suitable embodiment of the present invention, the compound represented by Formula 6 is used as a catalyst,

화학식 6:Formula 6:

X'(R")3 P-Y-P(R")3X’,X'(R") 3 PYP(R") 3 X',

화학식 6에서 R“는 탄소 수가 1~12개의 알킬기, 탄소 수가 2~12개의 알케닐기 또는 페닐기를 포함할 수 있고, 서로 다른 R”는 공유 결합으로 연결된 환형 구조가 되고, X'= Cl, Br 또는 I가 되고, Y= 탄소 수가 1~12가 되는 알킬렌기, 방향족 기를 포함한 탄소 수가 1~12가되는 알킬렌기 또는 방향족기가 된다. In Formula 6, R" may include an alkyl group having 1 to 12 carbon atoms, an alkenyl group having 2 to 12 carbon atoms, or a phenyl group, and R" different from each other becomes a cyclic structure connected by a covalent bond, and X'=Cl, Br or I and Y = an alkylene group having 1 to 12 carbon atoms, an alkylene group having 1 to 12 carbon atoms including an aromatic group, or an aromatic group.

본 발명의 또 다른 적절한 실시 형태에 따르면, 반응 온도는 100~250 ℃가 된다.According to another suitable embodiment of the present invention, the reaction temperature is 100-250 °C.

본 발명의 또 다른 적절한 실시 형태에 따르면, 반응 용매는 지방족 탄화수소, 이더(ether), 다이메톡시에탄(DME) 또는 THF가 되거나, 용매가 없이 반응된다. According to another suitable embodiment of the present invention, the reaction solvent is an aliphatic hydrocarbon, ether, dimethoxyethane (DME) or THF, or is reacted without a solvent.

본 발명은 공지의 알루미늄, 보론, 철, 구리 등의 금속 클로라이드에 해당하는 루이스산 촉매를 사용하여 아로마틱 화합물과 알릴 할라이드를 반응하여 알릴아로마틱 화합물을 얻는 과정을 대체할 수 있다. 공지의 반응을 위하여 탄소-탄소의 이중결합이 아로마틱 고리에 부가되는 할로알킬기가 치환된 아로마틱 화합물이 생성되므로 위와 같은 촉매를 대신하여 금속화합물이 아닌 중성에 해당하는 촉매가 요구된다. 이와 같은 화합물 군은 유기물 중에서 5족인 질소나 인 화합물의 4차 염이 될 수 있다. 4차 유기포스포늄 염을 촉매로 사용하여 알킬 클로라이드와 Si-H 결합을 가진 클로로실란을 반응하여 탈할로겐화수소Si-C결합반응으로 다양한 알킬실란이 합성될 수 있다. 본 발명에 따른 방법은 이와 같은 공정에 착안하여 알릴 할라이드를 아로마틱 화합물과 반응하여 알릴아로마틱 화합물을 합성하기 위하여 위와 같은 촉매가 사용될 수 있다. 이러한 촉매는 탈할로겐화수소C-C결합 반응에 의해 알릴아로마틱 화합물의 합성 과정에서 매우 효과적으로 작용할 수 있고, 촉매가 쉽게 회수되어 재활용이 될 수 있다는 장점을 가진다. 본 발명에 따른 알릴아로마틱 화합물은 알릴기와 아로마틱 고리가 다시 고리를 형성하여 아로마틱 고리를 늘린 화합물을 제조하거나 알릴 관능기에 수소규소화 반응으로 아로마틱 화합물이 치환된 유기규소화합물이 제조될 수 있도록 한다. 고리가 셋인 안트라센과 그보다 더 많은 고리를 갖는 아로마틱 화합물이 치환된 유기규소화합물은 형광성을 가진다. 본 발명에 따른 형광성이 있는 유기규소화합물은 새로운 기능성 실리콘 제품의 개발을 위하여 유용하게 사용될 수 있다.The present invention can replace the process of obtaining an allyl aromatic compound by reacting an aromatic compound with an allyl halide using a known Lewis acid catalyst corresponding to a metal chloride such as aluminum, boron, iron, or copper. For the known reaction, an aromatic compound substituted with a haloalkyl group in which a carbon-carbon double bond is added to an aromatic ring is produced. Therefore, a catalyst corresponding to neutrality, not a metal compound, is required instead of the above catalyst. Such a group of compounds may be a quaternary salt of a nitrogen or phosphorus compound of Group 5 among organic substances. Using a quaternary organophosphonium salt as a catalyst, alkyl chloride and chlorosilane having a Si-H bond are reacted, and various alkylsilanes can be synthesized by dehydrohalogenation Si-C bond reaction. In the method according to the present invention, the catalyst as described above may be used to synthesize an allyl aromatic compound by reacting an allyl halide with an aromatic compound based on this process. Such a catalyst can act very effectively in the process of synthesizing an allyl aromatic compound by dehydrohalogenation C-C bonding reaction, and has the advantage that the catalyst can be easily recovered and recycled. In the allyl aromatic compound according to the present invention, an allyl group and an aromatic ring form a ring again to prepare a compound in which an aromatic ring is increased, or an organosilicon compound in which an aromatic compound is substituted with an allyl functional group by a hydrogen silylation reaction can be prepared. Organosilicon compounds substituted with three-ring anthracene and aromatic compounds having more rings have fluorescence. The fluorescent organosilicon compound according to the present invention can be usefully used for the development of new functional silicone products.

아래에서 본 발명은 제시된 실시 예를 참조하여 상세하게 설명이 되지만 실시 예는 본 발명의 명확한 이해를 위한 것으로 본 발명은 이에 제한되지 않는다. Hereinafter, the present invention will be described in detail with reference to the presented examples, but the examples are for a clear understanding of the present invention, and the present invention is not limited thereto.

본 발명에 따른 알릴아로마틱 화합물은 화학식 3로 표시되고, Allyl aromatic compound according to the present invention is represented by Formula 3,

화학식 3:Formula 3:

Figure 112019132117177-pat00004
,
Figure 112019132117177-pat00004
,

화학식 3에서 R1= H, Me, CH2Cl 또는 CH2Br; R2= H, Me, Ph, CH2Cl 또는 CH2Br; R3= H, Me, CH2Cl 또는 CH2Br; R4= H 또는 Me; Ar1 = 벤젠, 알킬벤젠, 할로벤젠, 바이페닐, 플루오렌, 터페닐렌, 나프탈렌, 1-메틸나프탈렌, 2-메틸나프탈렌, 1,2-디메틸나프탈렌, 안트라센, 안트론, 2-(t-부틸)안트라퀴논, 2-(t-부틸)안트라센, 9-메틸안트라센, 9,10-디메틸안트라센, 9-벤질안트라센, 9,10-디벤질안트라센, 9-(디페닐메틸)안트라센, 페난트렌, 바이페닐, 바이페닐이더, 바이페닐설파이드, 피렌, 퍼릴렌. 테트라센, 펜타센 또는 고리가 1~8인 아로마틱 화합물; R5 = H X, 또는 탄소수가 1~8개인 페닐기 또는 알킬기가 치환된 페닐기 ; X= F, Cl, Br 또는 I; R6 = H, 탄소수가 1~6개인 알킬기, 페닐기, 벤질기 또는 디페닐메틸기; R7= H 또는 Me; R8 = H 또는 Me; R9 = 알릴기, 메틸기 또는 페닐기를 치환기로 갖는 화학식 1로 표시되는 알릴기가 되고, n은 0, 1 또는 2가 된다. R 1 =H, Me, CH 2 Cl or CH 2 Br in Formula 3; R 2 = H, Me, Ph, CH 2 Cl or CH 2 Br; R 3 = H, Me, CH 2 Cl or CH 2 Br; R 4 = H or Me; Ar 1 = Benzene , alkylbenzene , halobenzene , biphenyl, fluorene, terphenylene , naphthalene, 1-methylnaphthalene, 2-methylnaphthalene, 1,2-dimethylnaphthalene, anthracene, anthrone, 2-(t-butyl)anthraene Quinone, 2-(t-butyl)anthracene, 9-methylanthracene, 9,10-dimethylanthracene , 9-benzylanthracene, 9,10-dibenzylanthracene, 9-(diphenylmethyl)anthracene, phenanthrene, biphenyl , biphenyl ether, biphenyl sulfide, pyrene, perylene. tetracene, pentacene or aromatic compounds having 1 to 8 rings; R 5 = HX, or a phenyl group having 1 to 8 carbon atoms or a phenyl group substituted with an alkyl group; X=F, Cl, Br or I; R 6 = H, an alkyl group having 1 to 6 carbon atoms, a phenyl group, a benzyl group or a diphenylmethyl group; R 7 = H or Me; R 8 = H or Me; R 9 = an allyl group represented by Formula 1 having an allyl group, a methyl group, or a phenyl group as a substituent, and n is 0, 1 or 2.

화학식 3으로 표시되는 알릴아로마틱 화합물은 3차 유기포스핀 또는 4차 유기포스포늄 염을 촉매로 사용하여 아래의 화학식 1의 알릴할라이드를 화학식 2의 아로마틱 화합물과 반응시켜 생성될 수 있다.The allyl aromatic compound represented by Formula 3 may be produced by reacting the allyl halide of Formula 1 below with the aromatic compound of Formula 2 using a tertiary organophosphine or a quaternary organophosphonium salt as a catalyst.

반응식 1: Scheme 1:

Figure 112019132117177-pat00005
,
Figure 112019132117177-pat00005
,

<화학식 1> <화학식 2> <화학식 3> <Formula 1> <Formula 2> <Formula 3>

화학식 1에서 R1 = H, Me, CH2Cl 또는 CH2Br; R2 = H, Me, Ph, CH2Cl 또는 CH2Br; R3 = H, Me, CH2Cl 또는 CH2Br; R4 = H 또는 Me; 그리고 X = Cl, Br 또는 I가 된다. 화학식 2에서 Ar1= 벤젠, 알킬벤젠, 할로벤젠, 바이페닐, 플루오렌, 터페닐렌, 나프탈렌, 1-메틸나프탈렌, 2-메틸나프탈렌, 1,2-디메틸나프탈렌, 안트라센, 안트론, 2-(t-부틸)안트라퀴논, 2-(t-부틸)안트라센, 9-메틸안트라센, 9,10-디메틸안트라센, 9-벤질안트라센, 9,10-디벤질안트라센, 9-(디페닐메틸)안트라센, 페난트렌, 바이페닐, 다이페닐이더, 다이페닐설파이드, 피렌, 퍼릴렌. 테트라센 또는 펜타센가 될 수 있고, 예를 들어 고리가 1~8인 아로마틱 화합물 또는 또는 탄소수가 1~8개로 페닐기나 알킬기가 치환된 페닐기가 될 수 있다. 그리고 R5 = H 또는 X가 되고, X = F, Cl, Br 또는 I가 된다. R6 = H, 탄소수가 1~6개인 알킬기, 페닐기, 벤질기 또는 디페닐메틸기가 되고, R7 = H 또는 Me; R8 = H 또는 Me가 되고, 각각의 R은 서로 동일하거나 또는 서로 다른 구조를 가질 수 있다. 화학식 3에서 R1 내지 R8은 위의 화합물이 될 수 있고, R9 = H 또는 알릴기, 메틸기, 페닐기를 치환기로 갖는 알릴기가 될 수 있고, 예를 들어 화학식 1의 알릴기와 같고, (R9)n의 n은 0, 1 또는 2가 될 수 있다. R 1 =H, Me, CH 2 Cl or CH 2 Br in Formula 1; R 2 = H, Me, Ph, CH 2 Cl or CH 2 Br; R 3 = H, Me, CH 2 Cl or CH 2 Br; R 4 = H or Me; and X = Cl, Br or I. In Formula 2, Ar 1 = Benzene , alkylbenzene , halobenzene , biphenyl, fluorene, terphenylene , naphthalene, 1-methylnaphthalene, 2-methylnaphthalene, 1,2-dimethylnaphthalene, anthracene, anthrone, 2-(t-butyl)anthraene Quinone, 2-(t-butyl)anthracene, 9-methylanthracene, 9,10-dimethylanthracene , 9-benzylanthracene, 9,10-dibenzylanthracene, 9-(diphenylmethyl)anthracene, phenanthrene, biphenyl , diphenyl ether, diphenyl sulfide, pyrene, perylene. It may be tetracene or pentacene, and may be, for example, an aromatic compound having 1 to 8 rings or a phenyl group having 1 to 8 carbon atoms substituted with a phenyl group or an alkyl group. and R 5 = H or X, and X = F, Cl, Br or I. R 6 = H, an alkyl group having 1 to 6 carbon atoms, a phenyl group, a benzyl group or a diphenylmethyl group, R 7 = H or Me; R 8 = H or Me, and each R may have the same or different structures. In Formula 3, R 1 to R 8 may be the above compounds, and R 9 = H or an allyl group having an allyl group, a methyl group, or a phenyl group as a substituent, for example, is the same as the allyl group of Formula 1, (R 9 ) n of n can be 0, 1 or 2.

알릴아로마틱 화합물의 제조 과정에서 알루미늄, 보론, 철 또는 구리와 같은 금속 또는 금속 클로라이드의 루이스산 촉매를 사용하여 아로마틱 화합물과 알릴할라이드의 반응을 유도할 수 있다. 그러나 이와 같은 과정에서 알릴아로마틱 화합물이 아닌 할로알킬기가 치환된 아로마틱 화합물이 생성될 수 있다. 이에 비하여 알릴화 반응의 촉매로 유기물인 3차 유기포스핀 또는 중성인 4차 유기포스포늄 염을 사용되면 탈할로겐화수소C-C결합 반응이 유도되어 알릴아로마틱 화합물이 효과적으로 생성될 수 있고, 촉매가 쉽게 회수되어 재사용이 될 수 있다는 이점을 가진다. 본 발명에 따르면, 알릴할라이드의 끓는점이 반응 온도에 해당하는 200℃보다 낮으므로 상압에서 반응되기 어렵고, 높은 압력 반응에 사용되는 반응조가 사용되는 것이 유리하다. 고압 반응조에 화학식 1의 알릴할라이드 화합물과 화학식 2의 아로마틱 화합물 및 촉매에 해당하는 3차 유기포스핀 또는 4차 유기포스포늄 염이 화학식 1의 화합물 대비 1 ∼ 100 몰%, 바람직하게는 5 ∼ 20 몰% 가 투입될 수 있다. 반응조의 온도가 100 ∼ 250 ℃, 바람직하게는 150 ∼ 220 ℃가 되도록 가열될 수 있고, 이에 의하여 반응식 1에 따라 화학식 3과 같은 알릴아로마틱 화합물이 합성될 수 있다. 이러한 반응 과정에서 촉매로 사용하는 3차 유기포스핀은 반응 중에 알릴할라이드와 반응하여 4차 유기포스핀 클로라이드 염이 된다. 촉매로 사용하는 4차 유기포스포늄 염은 활성이 우수하고, 염 화합물이 되므로 반응물 또는 생성물과 물리적인 성질이 서로 다르므로 쉽게 분리되어 재사용될 수 있다. 그러므로 3차 유기포스핀 또는 4차 유기포스포늄 염이 촉매로 사용된 화학식 1의 알릴할라이드와 화학식 2의 아로마틱 화합물의 반응에 의하여 화학식 3의 알릴아로마틱 화합물을 합성하는 것이 유리하다. 반응 공정을 위하여 질소 대기 하에서 화학식 1의 알릴할라이드와 화학식 2의 아로마틱 화합물을 투입하고, 3차 유기포스핀이나 4차 유기포스포늄 염 촉매을 예를 들어 높은 압력에 견디는 스텐레스 관 소재의 된 반응조에 첨가될 수 있다. 이후 마개를 닫고 반응 온도까지 반응조를 가열할 수 있다. 적절한 반응을 유도하기 위하여 화학식 2의 아로마틱 화합물은 화학식 1의 알릴할라이드에 대하여 몰비로 1∼ 2배가 될 수 있다. 또한 3차 유기포스핀이나 4차 유기포스포늄 염 촉매는 화학식 1의 화합물에 대해 1 ∼ 100 몰%가 될 수 있고, 바람직하게 5 ∼ 20 몰%가 될 수 있다. 반응 용매는 반응물에 따라서 적절히 선택될 수 있고, 예를 들어 지방족 탄화수소와 같은 반응용매가 사용되거나, 이더(ether), 다이메톡시에탄(DME) 또는 THF와 같은 용매가 반응 용매로 될 수 있다. 선택적으로 반응 용매가 없는 상태에서 반응이 유도될 수 있다. 반응 온도는 100 ∼ 250 ℃, 바람직하게는 150 ∼ 220℃가 될 수 있고, 이러한 반응 온도에서 1 ∼ 48시간 동인 반응이 이루어지고 이후 반응이 완료되면 마개가 열려 할로겐화수소 기체가 배출될 수 있다. 그리고 반응조가 상압 또는 감압이 되어 증류 또는 재결정에 의하여 생성물이 분리되어 화학식 3의 화합물이 얻어질 수 있다. 고리형의 THF가 용매로 사용되면 부산물에 해당하는 HX에 의해 고리가 열리고 할로부틸알콜이 생성될 수 있고, 이와 같은 알코올의 축합반응으로 할로부틸이더가 생성되어 부산물에 해당하는 HX 기체가 제거될 수 있다. 화학식 3의 생성물이 생성되어 분리된 이후 촉매의 재활용을 위하여 생성물이 분리되고 남은 화합물이 별다른 공정이 추가되지 않고 촉매로 다시 사용될 수 있으므로 촉매로 사용된 4차 유기포스포늄 염이 간단하게 회수될 수 있다. 회수율은 사용량의 80 wt%의 수준이 될 수 있고, 경제적으로 매우 유리하다. 유기포스포늄 염은 실리콘수지, 실리카 또는 제올라이트에 고정화가 되어 사용되면 반응 완료 후 회수되어 재사용을 위하여 매우 편리하다는 장점을 가진다. In the process of preparing the allyl aromatic compound, a reaction between the aromatic compound and allyl halide may be induced by using a Lewis acid catalyst of a metal such as aluminum, boron, iron, or copper or a metal chloride. However, in this process, an aromatic compound substituted with a haloalkyl group, not an allylaromatic compound, may be generated. In contrast, when an organic tertiary organophosphine or a neutral quaternary organophosphonium salt is used as a catalyst for the allylation reaction, a dehydrohalogenation CC bonding reaction is induced, so that an allyl aromatic compound can be effectively produced, and the catalyst can be easily recovered It has the advantage that it can be reused. According to the present invention, since the boiling point of allyl halide is lower than 200° C. corresponding to the reaction temperature, it is difficult to react at normal pressure, and it is advantageous to use a reactor used for high pressure reaction. The tertiary organophosphine or quaternary organophosphonium salt corresponding to the allyl halide compound of Formula 1, the aromatic compound of Formula 2 and the catalyst in the high-pressure reactor is 1 to 100 mol%, preferably 5 to 20 mol%, compared to the compound of Formula 1 mole % may be added. The reactor may be heated to a temperature of 100 to 250 °C, preferably 150 to 220 °C, whereby an allyl aromatic compound such as Chemical Formula 3 according to Scheme 1 can be synthesized. In this reaction process, the tertiary organophosphine used as a catalyst reacts with allyl halide during the reaction to become a quaternary organophosphine chloride salt. The quaternary organophosphonium salt used as a catalyst has excellent activity and can be easily separated and reused because it is a salt compound and has different physical properties from reactants or products. Therefore, it is advantageous to synthesize the allyl aromatic compound of Formula 3 by the reaction of the aromatic compound of Formula 2 with the allyl halide of Formula 1 using a tertiary organophosphine or quaternary organophosphonium salt as a catalyst. For the reaction process, the allyl halide of Formula 1 and the aromatic compound of Formula 2 are added under a nitrogen atmosphere, and a tertiary organophosphine or quaternary organophosphonium salt catalyst is added to, for example, a stainless steel tube material that can withstand high pressure can be The stopper can then be closed and the reactor can be heated to the reaction temperature. In order to induce an appropriate reaction, the molar ratio of the aromatic compound of Formula 2 to the allyl halide of Formula 1 may be 1 to 2 times. In addition, the tertiary organophosphine or quaternary organophosphonium salt catalyst may be 1 to 100 mol%, preferably 5 to 20 mol%, based on the compound of Formula 1. The reaction solvent may be appropriately selected depending on the reactant, and for example, a reaction solvent such as an aliphatic hydrocarbon may be used, or a solvent such as ether, dimethoxyethane (DME) or THF may be used as the reaction solvent. Optionally, the reaction may be induced in the absence of a reaction solvent. The reaction temperature may be 100 to 250 °C, preferably 150 to 220 °C, and at this reaction temperature, the reaction takes place for 1 to 48 hours, and after the reaction is completed, the stopper is opened and hydrogen halide gas can be discharged. In addition, the reaction tank is at atmospheric pressure or reduced pressure, and the product is separated by distillation or recrystallization to obtain the compound of Formula 3. When cyclic THF is used as a solvent, the ring is opened by HX, which is a by-product, and halobutyl alcohol can be produced, and halobutyl ether is generated through the condensation reaction of the alcohol, and HX gas corresponding to the by-product is removed. can be After the product of Formula 3 is generated and separated, the product is separated for recycling the catalyst, and the remaining compound can be used again as a catalyst without any additional process, so the quaternary organophosphonium salt used as a catalyst can be simply recovered. have. The recovery rate can be at the level of 80 wt% of the amount used, and it is economically very advantageous. When the organic phosphonium salt is used after being immobilized on a silicone resin, silica or zeolite, it is recovered after completion of the reaction and has the advantage of being very convenient for reuse.

반응을 위한 화학식 1의의 알릴할라이드는 아래와 같은 화합물을 포함할 수 있다: The allyl halide of Formula 1 for the reaction may include the following compounds:

알릴 클로라이드, 알릴 브로마이드, 알릴 아오다이드, 3-클로로-1-부텐, 3-브로모-1-부텐, 3-아이오도-1-부텐, 1-클로로-2-부텐, 1-브로모-2-부텐, 1-아이오도-2-부텐, 3-클로로-2-메틸-1-프로펜, 3-브로모-2-메틸-1-프로펜, 3-아이오도-2-메틸-1-프로펜, (3-클로로-프로페닐)벤젠, (3-브로모-프로페닐)벤젠, (3-아이오도-프로페닐)벤젠, 1,4-디클로로-2-부텐, 1,4-디브로모-2-부텐. Allyl chloride, allyl bromide, allyl iodide, 3-chloro-1-butene, 3-bromo-1-butene, 3-iodo-1-butene, 1-chloro-2-butene, 1-bromo- 2-Butene, 1-iodo-2-butene, 3-chloro-2-methyl-1-propene, 3-bromo-2-methyl-1-propene, 3-iodo-2-methyl-1 -propene, (3-chloro-propenyl)benzene, (3-bromo-propenyl)benzene, (3-iodo-propenyl)benzene, 1,4-dichloro-2-butene, 1,4- Dibromo-2-butene.

이와 같은 화합물은 모두 상업적으로 이용 가능하거나 쉽게 합성될 수 있는 화합물이 된다. 화학식 2로 표시되는 화합물은 상업적으로 이용 가능하거나, 쉽게 합성이 될 수 있는 아래와 같은 화합물을 포함할 수 있다: All such compounds are commercially available or readily synthesized compounds. The compound represented by Formula 2 may include the following compounds that are commercially available or can be easily synthesized:

벤젠, 톨루엔, o-자일렌, m-자일렌, p-자일렌, 메시틸렌, 에틸벤젠, 프로필벤젠, n-부틸벤젠, 이소부틸벤젠, t-부틸벤젠, 1,2,4,5-테트라메틸벤젠, 플루오로벤젠, 브로모벤젠, 아이오도벤젠, 아니솔, 바이페닐, 플루오렌, o-터페닐렌, m-터페닐렌, p-터페닐렌, 나프탈렌, 1-메틸나프탈렌, 1-메틸-2-메틸나프탈렌, 바이페닐, 바이페닐이더, 바이페닐 설파이드, 안트라센, 9-브로모안트라센, 9-메틸안트라센, 9,10-디메틸안트라센, 피렌, 1,6-디메틸피렌, 2,7-디메틸피렌, 1,6-디페닐피렌, 2,7-디벤질피렌, 2,7-비스(디페닐메틸)피렌, 트리페닐렌, 퍼릴렌, 디메틸퍼릴렌, 테트라센, 펜타센. Benzene, toluene, o-xylene, m-xylene, p-xylene, mesitylene, ethylbenzene, propylbenzene, n-butylbenzene, isobutylbenzene, t-butylbenzene, 1,2,4,5- tetramethylbenzene, fluorobenzene, bromobenzene, iodobenzene, anisole, biphenyl, fluorene, o-terphenylene, m-terphenylene, p-terphenylene, naphthalene, 1-methylnaphthalene, 1-methyl-2-methylnaphthalene, biphenyl, biphenyl ether, biphenyl sulfide, anthracene, 9-bromoanthracene, 9-methylanthracene, 9,10-dimethylanthracene, pyrene, 1,6-dimethylpyrene, 2,7-dimethylpyrene, 1,6-diphenylpyrene, 2,7-dibenzylpyrene, 2,7-bis(diphenylmethyl)pyrene, triphenylene, perylene, dimethylperylene, tetracene, pentane sen.

화학식 1의 알릴 할라이드는 화학식 2의 아로마틱 화합물의 고리에 결합된 수소의 수만큼 치환될 수 있으므로 반응 몰 비율에 따라 다양한 형태의 생성물이 획득될 수 있다. 화학식 1의 알릴할라이드가 과량으로 사용되면 화학식 2의 아로마틱 화합물에서 다수 개의 알릴기가 치환될 수 있고, 적절한 양으로 사용되면 고리에 결합된 수소의 수만큼 알릴기가 치환된 화합물이 얻어질 수 있다. 고리가 두 개 이상인 아로마틱 화합물에 치환된 알릴기는 아로마틱 고리와 6각형의 고리를 형성할 수 있으므로 아로마틱 고리가 증가된 화합물이 얻어질 수 있다. 이에 비하여 화학식 2의 아로마틱 화합물을 알릴 할라이드에 대하여 과량으로 사용되면 알릴기 하나가 치환된 화합물이 주된 생성물로 얻어질 수 있다. Since the allyl halide of Formula 1 may be substituted as much as the number of hydrogens bonded to the ring of the aromatic compound of Formula 2, various types of products may be obtained depending on the reaction molar ratio. When the allyl halide of Formula 1 is used in excess, a plurality of allyl groups may be substituted in the aromatic compound of Formula 2, and when used in an appropriate amount, a compound in which allyl groups are substituted by the number of hydrogens bonded to the ring may be obtained. Since the allyl group substituted in the aromatic compound having two or more rings can form a hexagonal ring with the aromatic ring, a compound having an increased aromatic ring can be obtained. On the other hand, when the aromatic compound of Formula 2 is used in excess relative to the allyl halide, a compound in which one allyl group is substituted may be obtained as a main product.

촉매로 사용하는 3차 유기포스핀은 예를 들어 화학식 4로 표시될 수 있고, 4차 유기포스포늄 염은 화학식 5 또는화학식 6으로 표시될 수 있다. The tertiary organophosphine used as a catalyst may be, for example, represented by Chemical Formula 4, and the quaternary organophosphonium salt may be represented by Chemical Formula 5 or Chemical Formula 6.

화학식 4: Formula 4:

P(R")3,P(R") 3 ,

화학식 4에서 R"는 탄소 수가 1~12개의 알킬기 또는 알케닐기가 되면서 페닐기를 포함할 수 있다. 2개의 R"는 서로 공유 결합으로 연결되어 환형 구조를 가질 수 있고, 각각의 R"는 서로 동일하거나 또는 상이한 구조를 가질 수 있다. In Formula 4, R″ may include a phenyl group while being an alkyl or alkenyl group having 1 to 12 carbon atoms. Two R″ may be connected to each other by a covalent bond to have a cyclic structure, and each R″ may be the same as each other. or have a different structure.

화학식 5: Formula 5:

P(R")4X',P(R") 4 X',

화학식 5에서 X'= Cl, Br, I이며 R"는 화학식 4의 화합물과 동일하고, R"는 서로 공유결합으로 연결되어 환형 구조를 가질 수 있고, 각각의 R"는 서로 동일하거나 또는 상이한 구조를 가질 수 있다. In Formula 5, X′=Cl, Br, I, R″ is the same as the compound of Formula 4, R″ may be covalently linked to each other to have a cyclic structure, and each R″ has the same or different structure can have

화학식 6: Formula 6:

X'(R")3 P-Y-P(R")3X',X'(R") 3 PYP(R") 3 X',

화학식 6에서 X'와 R"는 각각 화학식 5의 화합물과 동일하고 Y= 탄소 수가 1~12가 되는 알킬렌 기; 방향족 기를 포함한 탄소 수가 1~12가 되는 알킬렌 기; 또는 방향족기가 될 수 있고, 2개의 R"는 서로 공유결합으로 연결되어 환형 구조를 가질 수 있고, 각각의 R"는 서로 동일하거나 또는 상이한 구조를 가질 수 있다. 촉매가 되는 3차 유기포스포핀은 트리메틸포스핀, 트리에틸포스핀, 트리부틸포스핀, 메틸디페닐포스핀, 트리사이클로헥실포스핀, 트리아이소프로필포스핀, 트리프로필포스핀, 디메틸페닐포스핀, 에틸디페닐포스핀, t-부틸디페닐포스핀, t-부틸디아이소프로필, 아이소프로필디페닐포스핀, 디사이클로헥실페닐포스핀, 벤질디페닐포스핀, 사이클로헥실디페닐포스핀, 트리사이클로펜틸포스핀, 디-t-부틸네오펜틸포스핀, 디-t-부틸페닐포스핀, 디-t-부틸메틸포스핀 또는 t-부틸디사이클로헥실포스핀과 같은 화합물을 포함할 수 있다. 4차 유기포스포늄 염은 예를 들어 벤질트리부틸포스포늄 클로라이드, 테트라부틸포스포늄 클로라이드, 테트라부틸포스포늄 브로마이드, 테트라부틸포스포늄 요오드, 테트라메틸포스포늄 브로마이드, 테트라에틸포스포늄 클로라이드, (4-에틸벤질)트리페닐포스포늄 클로라이드, 헥실트리페닐포스포늄 클로라이드, 벤질트리페닐포스늄 클로라이드, 테트라페닐포스포늄 클로라이드, 비스(벤질디메틸포스포늄 클로라이드)에탄, 비스(벤질디메틸포스포늄 클로라이드)부탄 또는 실리카나 실리콘수지, 실리콘 실세스쿠옥센 또는 유기폴리머에 고정화된 4차알킬포스포늄 클로라이드을 포함할 수 있다. 촉매로 사용된 4차 유기포스포늄 염은 반응 혼합물로부터의 회수가 용이하고, 예를 들어 반응 완료 후 반응생성물을 감압 증류하면 촉매가 잔류하여 간단하게 회수될 수 있다. 촉매는 처음 사용된 양에 대하여 80%의 수준까지 회수될 수 있고, 회수 촉매는 적당한 용매로 재결정 처리되어 재사용이 될 수 있다. 반응 과정에서 3차 유기포스핀이나 4차 유기포스포늄 염 촉매는 1 ∼ 100 몰%, 바람직하게 5 ∼ 20 몰%가 투입될 수 있고, 100 ∼ 250 ℃, 바람직하게 150 ∼ 220 ℃의 온도에서 반응이 되면 반응식 1의 화학식 3으로 표시되는 알릴아로마틱 화합물이 생성될 수 있다. 이와 같은 과정에서 촉매로 사용하는 3차 유기포스핀은 반응 과정에서 알릴할라이드와 반응하여 4차 유기포스핀 클로라이드 염으로 된다. 촉매로 사용하는 4차 유기포스포늄 염은 활성이 우수한 염에 해당하면서 반응물이나 생성물과 물리적인 성질이 서로 다르므로 쉽게 분리되어 재사용이 될 수 있다. 본 발명의 다른 적절한 실시 형태에 따르면, 화학식 1 및 화학식 2로 표시되는 화합물의 반응 온도는 10 ~ 250℃, 바람직하게 150 ~ 220℃가 되고, 1 ~ 48 시간 동안 반응이 진행될 수 있다. 반응을 위하여 3차 유기포스핀이나 4차 유기포스포늄 염 촉매는 1 내지 100 몰%, 바람직하게 5 내지 20 몰%의 범위로 투입될 수 있다. 반응을 위하여 용매는 별도로 첨가되지 않을 수 있고, 선택적으로 탄화수소나 다이메톡시에탄(DME)이 반응용매로 사용될 수 있다. 반응이 완료되면 상압 또는 감압 상태에서 증류되어 화학식 3으로 표시되는 화합물이 획득될 수 있다. 아래에서 본 발명에 따른 화합물의 생성을 위한 실시 예가 설명된다. In Formula 6, X' and R" are the same as in the compound of Formula 5, respectively, and Y = an alkylene group having 1 to 12 carbon atoms; an alkylene group having 1 to 12 carbon atoms including an aromatic group; or an aromatic group; , two R″ may be covalently linked to each other to have a cyclic structure, and each R″ may have the same or different structures. The tertiary organophosphine as a catalyst is trimethylphosphine, triethyl Phosphine, tributylphosphine, methyldiphenylphosphine, tricyclohexylphosphine, triisopropylphosphine, tripropylphosphine, dimethylphenylphosphine, ethyldiphenylphosphine, t-butyldiphenylphosphine, t-butyldiisopropyl, isopropyldiphenylphosphine, dicyclohexylphenylphosphine, benzyldiphenylphosphine, cyclohexyldiphenylphosphine, tricyclopentylphosphine, di-t-butylneopentylphosphine, di-t-butylphenylphosphine, di-t-butylmethylphosphine or t-butyldicyclohexylphosphine The quaternary organophosphonium salt is for example benzyltributylphosphonium Chloride, tetrabutylphosphonium chloride, tetrabutylphosphonium bromide, tetrabutylphosphonium iodine, tetramethylphosphonium bromide, tetraethylphosphonium chloride, (4-ethylbenzyl)triphenylphosphonium chloride, hexyltriphenylphosphonium chloride , benzyltriphenylphosphonium chloride, tetraphenylphosphonium chloride, bis(benzyldimethylphosphonium chloride)ethane, bis(benzyldimethylphosphonium chloride)butane or silica or silicone resin, silicone silsesquoxene or organic polymer immobilized on 4 The quaternary organophosphonium salt used as a catalyst can be easily recovered from the reaction mixture, for example, when the reaction product is distilled under reduced pressure after completion of the reaction, the catalyst remains and can be simply recovered. The catalyst can be recovered up to a level of 80% of the amount initially used, and the recovered catalyst can be reused by recrystallization with an appropriate solvent. In the course of the reaction, tertiary organophosphine or quaternary organophosphonium The salt catalyst is 1 to 100 mol%, preferably 5 to 20 mol% may be added, and when the reaction is carried out at a temperature of 100 to 250 °C, preferably 150 to 220 °C, an allyl aromatic compound represented by Chemical Formula 3 of Scheme 1 may be produced. In this process, the tertiary organophosphine used as a catalyst reacts with allyl halide in the reaction process to form a quaternary organophosphine chloride salt. The quaternary organophosphonium salt used as a catalyst corresponds to a salt with excellent activity and has different physical properties from reactants or products, so it can be easily separated and reused. According to another suitable embodiment of the present invention, the reaction temperature of the compounds represented by Chemical Formulas 1 and 2 is 10 to 250 °C, preferably 150 to 220 °C, and the reaction may proceed for 1 to 48 hours. For the reaction, the tertiary organophosphine or quaternary organophosphonium salt catalyst may be added in an amount of 1 to 100 mol%, preferably 5 to 20 mol%. For the reaction, a solvent may not be separately added, and optionally hydrocarbon or dimethoxyethane (DME) may be used as the reaction solvent. When the reaction is completed, the compound represented by Chemical Formula 3 may be obtained by distillation under normal or reduced pressure. Examples for the production of compounds according to the invention are described below.

실시 예Example

실시예 1: 알릴벤젠의 합성Example 1: Synthesis of allylbenzene

290ml 용량의 스테인리스관으로 된 고온, 고압 반응조에 벤젠 50g (0.64mol)과 알릴클로라이드 24.5g (0.32mol), 알릴클로라이드 몰 수의 10%에 해당하는 테트라부틸포스포늄클로라이드 9.4g (0.032mol)을 넣고 200℃에서 5시간 반응시켰다. 이 용액을 둥근바닥플라스크에 꺼내고 감압 증류를 통하여 알릴벤젠 18.7g (0.16mol, 수율 49.5%)을 얻었다. 얻어진 생성물은 300MHz 수소핵자기공명 분석결과, 3.3ppm (d, 2H)에서 C-CH 2 -C, 4.8-5.1ppm (m, 2H)에서 CH 2 =C, 5.9ppm (m, 1H)에서 C-CH=C, 7.1-7.3ppm (m, 5H)에서 Ph를 확인하였다.50 g (0.64 mol) of benzene, 24.5 g (0.32 mol) of allyl chloride, and 9.4 g (0.032 mol) of tetrabutylphosphonium chloride corresponding to 10% of the number of moles of allyl chloride were added to a high-temperature, high-pressure reactor with a stainless steel tube with a capacity of 290 ml. and reacted at 200°C for 5 hours. This solution was taken out in a round-bottom flask, and 18.7 g (0.16 mol, yield 49.5%) of allylbenzene was obtained through distillation under reduced pressure. As a result of 300 MHz hydrogen nuclear magnetic resonance analysis, the obtained product was C- CH 2 -C at 3.3 ppm (d, 2H), CH 2 =C at 4.8-5.1 ppm (m, 2H), and C at 5.9 ppm (m, 1H). - CH = C, Ph was confirmed at 7.1-7.3 ppm (m, 5H).

실시예 2: 1,3-다이페닐-1-프로펜의 합성Example 2: Synthesis of 1,3-diphenyl-1-propene

실시예 1과 같은 방법으로 벤젠 50g (0.64mol), 신나밀클로라이드 48.8g (0.32mol), 테트라부틸포스포늄클로라이드 9.4g (0.032mol)를 넣고 200℃에서 5시간 반응하여 1,3-다이페닐-1-프로펜 41.9g (0.22mol, 수율 67.4%)을 얻었다. 얻어진 생성물은 300MHz 수소핵자기공명 분석결과, 3.3ppm (d, 2H)에서 C-CH 2 -C, 6.3ppm (d, 1H)에서 C=CH-C, 6.7ppm (m, 1H)에서 C-CH=C, 7.2-7.3ppm (m, 10H)에서 Ph를 확인하였다.In the same manner as in Example 1, 50 g (0.64 mol) of benzene, 48.8 g (0.32 mol) of cinnamyl chloride, and 9.4 g (0.032 mol) of tetrabutylphosphonium chloride were added and reacted at 200° C. for 5 hours to 1,3-diphenyl -1-propene 41.9 g (0.22 mol, yield 67.4%) was obtained. As a result of 300 MHz hydrogen nuclear magnetic resonance analysis, the obtained product was C- CH 2 -C at 3.3 ppm (d, 2H), C= CH -C at 6.3 ppm (d, 1H), C- at 6.7 ppm (m, 1H) CH = C, Ph was confirmed at 7.2-7.3 ppm (m, 10H).

실시예 3: 1-알릴나프탈렌의 합성Example 3: Synthesis of 1-allylnaphthalene

실시예 1과 같은 방법으로 나프탈렌 50g (0.39mol), 알릴클로라이드 14.9g (0.20mol), 테트라부틸포스포늄클로라이드 5.7g (0.02mol), 데칸 60ml를 넣고 200℃ 6시간 반응하여 1-알릴나프탈렌 25.3g (0.15mol, 77.1%)을 얻었다. 얻어진 생성물은 300MHz 수소핵자기공명 분석결과, 3.7ppm (d, 2H)에서 C-CH 2 -C, 5.0ppm (m, 2H)에서 CH 2 =C, 6.3ppm (m, 1H)에서 C-CH=C, 7.1-7.8ppm (m, 7H)에서 Naph 피크를 확인하였다. 또한 부산물로 다이알릴나프탈렌과 다이알릴나프탈렌에서 수소가 빠지고 고리화된 화합물인 다이하이드로피렌이 생성된 것을 GC/MS를 분석하여 확인하였다.In the same manner as in Example 1, 50 g (0.39 mol) of naphthalene, 14.9 g (0.20 mol) of allyl chloride, 5.7 g (0.02 mol) of tetrabutylphosphonium chloride, and 60 ml of decane were added, and reacted at 200° C. for 6 hours, followed by 1-allylnaphthalene 25.3 g (0.15 mol, 77.1%) was obtained. As a result of 300 MHz hydrogen nuclear magnetic resonance analysis, the obtained product was C- CH 2 -C at 3.7 ppm (d, 2H), CH 2 =C at 5.0 ppm (m, 2H), C-CH at 6.3 ppm (m, 1H) =C, Naph peak was confirmed at 7.1-7.8 ppm (m, 7H). In addition, it was confirmed by GC/MS analysis that hydrogen was removed from diallylnaphthalene and diallylnaphthalene as by-products and dihydropyrene, a cyclized compound, was generated.

실시예 4: 1-(2-메틸알릴)나프탈렌의 합성Example 4: Synthesis of 1-(2-methylallyl)naphthalene

실시예 1과 같은 방법으로 나프탈렌 40g (0.31mol), 3-클로로-2-메틸-1-프로펜 14.1g (0.16mol), 테트라부틸포스포늄브로마이드 5.4g (0.016mol), 데칸 60ml를 넣고 200℃ 6시간 반응하여 1-(2-메틸알릴)나프탈렌 22.8g (0.12mol, 수율 80.2%)을 얻었다. 얻어진 생성물은 300MHz 수소핵자기공명 분석결과, 1.7ppm (s, 3H)에서 CH 3 -C, 3.7ppm (s, 2H)에서 C-CH 2 -C, 4.7ppm (m, 2H)에서 CH 2 =C, 7.1-7.8ppm (m, 7H)에서 Naph 피크를 확인하였다.In the same manner as in Example 1, 40 g (0.31 mol) of naphthalene, 14.1 g (0.16 mol) of 3-chloro-2-methyl-1-propene, 5.4 g (0.016 mol) of tetrabutylphosphonium bromide, and 60 ml of decane were added and 200 The reaction was carried out at ℃ for 6 hours to obtain 22.8 g (0.12 mol, yield 80.2%) of 1-(2-methylallyl)naphthalene. As a result of 300 MHz hydrogen nuclear magnetic resonance analysis, the obtained product was CH 3 -C at 1.7 ppm (s, 3H), C- CH 2 -C at 3.7 ppm (s, 2H), CH 2 = at 4.7 ppm (m, 2H) C, Naph peak was confirmed at 7.1-7.8 ppm (m, 7H).

실시예 5: 1-신나밀나프탈렌의 합성Example 5: Synthesis of 1-cinnamylnaphthalene

실시예 1과 같은 방법으로 나프탈렌 30g (0.23mol), 신나밀클로라이드 17.9g (0.12mol), 테트라부틸포스포늄브로마이드 4.1g (0.012mol), 데칸 60ml를 넣고 200℃ 6시간 반응하여 1-신나밀나프탈렌 20.4g (0.08mol, 수율 69.7%)을 얻었다. 얻어진 생성물은 300MHz 수소핵자기공명 분석결과, 3.7ppm (d, 2H)에서 C-CH 2 -C, 6.3ppm (d, 1H)에서 C=CH-C, 6.7ppm (m, 1H)에서 C-CH=C, 7.1-7.8ppm (m, 12H)에서 Naph 피크를 확인하였다.In the same manner as in Example 1, 30 g (0.23 mol) of naphthalene, 17.9 g (0.12 mol) of cinnamyl chloride, 4.1 g (0.012 mol) of tetrabutylphosphonium bromide, and 60 ml of decane were added, and reacted at 200° C. for 6 hours to react 1-cinnamyl. 20.4 g (0.08 mol, yield 69.7%) of naphthalene was obtained. As a result of 300 MHz hydrogen nuclear magnetic resonance analysis, the obtained product was C- CH 2 -C at 3.7 ppm (d, 2H), C= CH -C at 6.3 ppm (d, 1H), C- at 6.7 ppm (m, 1H) A Naph peak was identified at CH = C, 7.1-7.8 ppm (m, 12H).

실시예 6: 1-알릴-5-브로모나프탈렌의 합성Example 6: Synthesis of 1-allyl-5-bromonaphthalene

실시예 1과 같은 방법으로 1-브로모나프탈렌 50g (0.24mol), 알릴클로라이드 9.2g (0.12mol), 테트라부틸포스포늄클로라이드 3.5g (0.012mol), THF 50ml를 넣고 200℃ 6시간 반응하여 1-알릴-5-브로모나프탈렌 18.5g (0.07mol, 수율 62.3%)을 얻었다. 얻어진 생성물은 300MHz 수소핵자기공명 분석결과, 3.8ppm (d, 2H)에서 C-CH 2 -C, 5.0ppm (m, 2H)에서 CH 2 =C, 6.0ppm (m, 1H)에서 C=CH-C, 7.0-8.0ppm (m, 6H)에서 Naph 피크를 확인하였다.In the same manner as in Example 1, 50 g (0.24 mol) of 1-bromonaphthalene, 9.2 g (0.12 mol) of allyl chloride, 3.5 g (0.012 mol) of tetrabutylphosphonium chloride, and 50 ml of THF were added, and reacted at 200° C. for 6 hours. -Allyl-5-bromonaphthalene 18.5g (0.07mol, yield 62.3%) was obtained. As a result of 300 MHz hydrogen nuclear magnetic resonance analysis, the obtained product was C- CH 2 -C at 3.8 ppm (d, 2H), CH 2 =C at 5.0 ppm (m, 2H ), C= CH at 6.0 ppm (m, 1H) Naph peak was confirmed at -C, 7.0-8.0 ppm (m, 6H).

실시예 7: 1-브로모-5-(2-부테닐)나프탈렌의 합성Example 7: Synthesis of 1-bromo-5-(2-butenyl)naphthalene

실시예 1과 같은 방법으로 1-브로모나프탈렌 50g (0.24mol), 1-클로로-2부텐 10.9g (0.12mol), 테트라부틸포스포늄클로라이드 3.5g (0.012mol), THF 50ml를 넣고 200℃ 6시간 반응하여 1-브로모-5-(2-부테닐)나프탈렌 20.4g (0.08mol, 수율 65%)을 얻었다. 얻어진 생성물은 300MHz 수소핵자기공명 분석결과, 1.6ppm (d, 3H)에서 CH 3 -C, 3.8ppm (d, 2H)에서 C-CH 2 -C, 5.4ppm (m, 1H)에서 C-CH=C, 6.0ppm (m, 1H)에서 C=CH-C, 7.0-8.1ppm (m, 6H)에서 Naph 피크를 확인하였다.In the same manner as in Example 1, 50 g (0.24 mol) of 1-bromonaphthalene, 10.9 g (0.12 mol) of 1-chloro-2butene, 3.5 g (0.012 mol) of tetrabutylphosphonium chloride, and 50 ml of THF were added at 200°C 6 The reaction was conducted over time to obtain 20.4 g (0.08 mol, yield 65%) of 1-bromo-5-(2-butenyl)naphthalene. The obtained product 300MHz 1H magnetic resonance analysis, 1.6ppm (d, 3H) in CH 3 -C, 3.8ppm (d, 2H) C- CH 2 -C, 5.4ppm (m, 1H) from the C- CH A Naph peak was observed at =C, 6.0 ppm (m, 1H) at C = CH -C, 7.0-8.1 ppm (m, 6H).

실시예 8: 9-알릴안트라센의 합성Example 8: Synthesis of 9-allylanthracene

실시예 1과 같은 방법으로 안트라센 40g (0.22mol), 알릴클로라이드 8.6g (0.11mol), 테트라부틸포스포늄클로라이드 3.2g (0.011mol), THF 50ml를 넣고 200℃ 5시간 반응하여 9-알릴안트라센 14.9g (0.07mol, 수율 62.1%)을 얻었다. 얻어진 생성물은 300MHz 수소핵자기공명 분석결과, 3.8ppm (d, 2H)에서 Anth-CH 2 -C, 5.0ppm (m, 2H)에서 CH 2 =C, 6.0ppm (m, 1H)에서 C-CH=C, 7.5-8.3ppm (m, 9H)에서 Anth 피크를 확인하였다.In the same manner as in Example 1, 40 g (0.22 mol) of anthracene, 8.6 g (0.11 mol) of allyl chloride, 3.2 g (0.011 mol) of tetrabutylphosphonium chloride, and 50 ml of THF were added, and reacted at 200° C. for 5 hours to 14.9 9-allyl anthracene. g (0.07 mol, yield 62.1%) was obtained. The obtained product 300MHz 1H magnetic resonance analysis, 3.8ppm (d, 2H) CH 2 = C, 6.0ppm (m, 1H) In Anth- CH 2 -C, 5.0ppm (m , 2H) from the C- CH Anth peak was confirmed at =C, 7.5-8.3 ppm (m, 9H).

실시예 9: 9-(1-메틸-2-프로페닐)안트라센의 합성Example 9: Synthesis of 9-(1-methyl-2-propenyl)anthracene

실시예 1과 같은 방법으로 안트라센 40g (0.22mol), 3-클로로-1-부텐 10g (0.11mol), 테트라부틸포스포늄클로라이드 3.2g (0.011mol), THF 50ml를 넣고 200℃ 5시간 반응하여 9-(1-메틸-2-프로페닐)안트라센 17.8g (0.08mol, 수율 69.7%)을 얻었다. 얻어진 생성물은 300MHz 수소핵자기공명 분석결과, 1.4ppm (d, 3H)에서 CH 3 -C, 3.6ppm (m, 1H)에서 C-CH-C, 5.0ppm (m, 2H)에서 CH 2 =C, 6.3ppm (m, 1H)에서 C-CH=C, 7.5-8.3ppm (m, 9H)에서 Anth 피크를 확인하였다.In the same manner as in Example 1, 40 g (0.22 mol) of anthracene, 10 g (0.11 mol) of 3-chloro-1-butene, 3.2 g (0.011 mol) of tetrabutylphosphonium chloride, and 50 ml of THF were added, and reacted at 200° C. for 5 hours. 17.8 g (0.08 mol, yield 69.7%) of -(1-methyl-2-propenyl)anthracene was obtained. As a result of 300 MHz hydrogen nuclear magnetic resonance analysis, the obtained product was CH 3 -C at 1.4 ppm (d, 3H), C-CH -C at 3.6 ppm (m, 1H), and CH 2 = C at 5.0 ppm (m, 2H). , C-CH = C at 6.3 ppm (m, 1H ), Anth peak was confirmed at 7.5-8.3 ppm (m, 9H).

실시예 10: 9-신나밀안트라센의 합성Example 10: Synthesis of 9-cinnamylanthracene

실시예 1과 같은 방법으로 안트라센 40g (0.22mol), 신나밀클로라이드 16.8g (0.11mol), 테트라부틸포스포늄클로라이드 3.2g (0.011mol), THF 50ml를 넣고 200℃ 5시간 반응하여 9-신나밀안트라센 18.8g (0.06mol, 수율 58.2%)을 얻었다. 얻어진 생성물은 300MHz 수소핵자기공명 분석결과, 3.8ppm (d, 2H)에서 C-CH 2 -C, 6.3ppm (d, 1H)에서 C=CH-Ph, 6.7ppm (m, 1H)에서 C-CH=C, 7.2-7.3ppm (m, 5H)에서 Ph, 7.5-8.3ppm (m, 9H)에서 Anth 피크를 확인하였다.In the same manner as in Example 1, 40 g (0.22 mol) of anthracene, 16.8 g (0.11 mol) of cinnamyl chloride, 3.2 g (0.011 mol) of tetrabutylphosphonium chloride, and 50 ml of THF were added and reacted at 200° C. for 5 hours to react with 9-cinnamyl. Anthracene 18.8 g (0.06 mol, yield 58.2%) was obtained. As a result of 300 MHz hydrogen nuclear magnetic resonance analysis, the obtained product was C- CH 2 -C at 3.8 ppm (d, 2H), C= CH -Ph at 6.3 ppm (d, 1H), C- at 6.7 ppm (m, 1H) CH = C, Ph at 7.2-7.3 ppm (m, 5H ), Anth peak was confirmed at 7.5-8.3 ppm (m, 9H).

실시예 11: 디알릴안트라센의 합성Example 11: Synthesis of diallylanthracene

실시예 1과 같은 방법으로 안트라센 30g (0.17mol), 알릴클로라이드 38.63g (0.50mol), 테트라부틸포스포늄클로라이드 7.4g (0.025mol), THF 50ml를 넣고 200℃ 5시간 반응하여 디알릴안트라센 18.7g (0.07mol, 수율 43%)을 얻었다. In the same manner as in Example 1, 30 g (0.17 mol) of anthracene, 38.63 g (0.50 mol) of allyl chloride, 7.4 g (0.025 mol) of tetrabutylphosphonium chloride, and 50 ml of THF were added, and reacted at 200° C. for 5 hours to 18.7 g of diallylanthracene. (0.07 mol, yield 43%) was obtained.

얻어진 화합물은 GC/MS를 통하여 분석하였으며 이성질체들을 포함하고 있음을 확인하였다. 또한 고리화된 화합물인 디하이드로퍼릴렌이 생성된 것을 확인하였다.The obtained compound was analyzed through GC/MS and it was confirmed that it contained isomers. In addition, it was confirmed that dihydroperylene, a cyclized compound, was generated.

실시예 12: 3-알릴안트론의 합성Example 12: Synthesis of 3-allylanthrone

실시예 1과 같은 방법으로 안트론 30g (0.15mol), 알릴클로라이드 5.9g (0.08mol), 벤질트리페닐포니포니엄클로라이드 3.1g (0.008mol), DME 50ml를 넣고 200℃ 5시간 반응하여 3-알릴안트론 13.5g (0.06mol, 수율 72%)을 얻었다. 얻어진 생성물은 300MHz 수소핵자기공명 분석결과, 3.3ppm (d, 2H)에서 C-CH 2 -C, 4.4ppm (s, 2H)에서 Ph-CH 2 -Ph, 4.8-5.0ppm (m, 2H)에서 CH 2 =C, 6.0ppm (m, 1H)에서 C=CH-C, 7.4-8.4ppm (m, 7H)에서 Ph 피크를 확인하였다.In the same manner as in Example 1, 30 g (0.15 mol) of anthrone, 5.9 g (0.08 mol) of allyl chloride, 3.1 g (0.008 mol) of benzyl triphenyl phonium chloride, and 50 ml of DME were added, and reacted at 200 ° C. for 5 hours. Allylanthrone 13.5g (0.06mol, yield 72%) was obtained. The obtained product was obtained by 300 MHz hydrogen nuclear magnetic resonance analysis, C- CH 2 -C at 3.3 ppm (d, 2H), Ph- CH 2 -Ph at 4.4 ppm (s, 2H), 4.8-5.0 ppm (m, 2H) At CH 2 =C, 6.0 ppm (m, 1H) at C = CH -C, Ph peak was confirmed at 7.4-8.4 ppm (m, 7H).

실시예 13: 3,6-다이알릴안트론의 합성Example 13: Synthesis of 3,6-Diallylanthrone

실시예 1과 같은 방법으로 안트론 30g (0.15mol), 알릴클로라이드 35.5g (0.46mol), 벤질트리페닐포니포니엄클로라이드 6.2g (0.016mol), DME 30ml를 넣고 200℃ 7시간 반응하여 3,6-다이알릴안트론 22.5g (0.08mol, 수율 54.6%)을 얻었다. 얻어진 생성물은 300MHz 수소핵자기공명 분석결과, 3.3ppm (d, 4H)에서 C-CH 2 -C, 4.4ppm (s, 2H)에서 Ph-CH 2 -Ph, 5.0ppm (m, 4H)에서 CH 2 =C, 6.0ppm (m, 2H)에서 C=CH-C, 7.4-7.7ppm (m, 6H)에서 Ph 피크를 확인하였다.In the same manner as in Example 1, 30 g (0.15 mol) of anthrone, 35.5 g (0.46 mol) of allyl chloride, 6.2 g (0.016 mol) of benzyl triphenyl phonium chloride, and 30 ml of DME were added, and reacted at 200 ° C. for 7 hours 3, 22.5 g (0.08 mol, yield 54.6%) of 6-diallylanthrone was obtained. The obtained product 300MHz 1H magnetic resonance analysis, 3.3ppm (d, 4H) C- CH 2 -C, 4.4ppm (s, 2H) from Ph- CH 2 -Ph, 5.0ppm (m , 4H) in CH At 2 = C, 6.0 ppm (m, 2H), C = CH -C, Ph peak was confirmed at 7.4-7.7 ppm (m, 6H).

실시예 14: 3-(2-메틸알릴)안트론의 합성Example 14: Synthesis of 3-(2-methylallyl)anthrone

실시예 1과 같은 방법으로 안트론 30g (0.15mol), 3-클로로-2-메틸-프로펜 7.2g (0.08mol), 테트라부틸포스포늄클로라이드 2.4g (0.008mol), DME 40ml를 넣고 200℃ 5시간 반응하여 3-(2-메틸알릴)안트론 13.2g (0.05mol, 수율 66.2%)을 얻었다. 얻어진 생성물은 300MHz 수소핵자기공명 분석결과, 1.8ppm (s, 3H)에서 CH 3 -C, 3.2ppm (s, 2H)에서 C-CH 2 -C, 4.4ppm (s, 2H)에서 Ph-CH 2 -Ph, 5.0ppm (d, 2H)에서 CH 2 =C, 7.4-8.4ppm (m, 7H)에서 Ph 피크를 확인하였다.In the same manner as in Example 1, 30 g (0.15 mol) of anthrone, 7.2 g (0.08 mol) of 3-chloro-2-methyl-propene, 2.4 g (0.008 mol) of tetrabutylphosphonium chloride, and 40 ml of DME were added, and 200° C. After reaction for 5 hours, 13.2 g (0.05 mol, yield 66.2%) of 3-(2-methylallyl)anthrone was obtained. As a result of 300 MHz hydrogen nuclear magnetic resonance analysis, the obtained product was CH 3 -C at 1.8 ppm (s, 3H), C- CH 2 -C at 3.2 ppm (s, 2H), Ph- CH at 4.4 ppm (s, 2H) 2 -Ph, CH 2 =C at 5.0ppm (d, 2H ), Ph peak was confirmed at 7.4-8.4ppm (m, 7H).

실시예 15: 1-알릴피렌의 합성Example 15: Synthesis of 1-allylpyrene

실시예 1과 같은 방법으로 피렌 40g (0.19mol), 알릴클로라이드 7.6g (0.10mol), 테트라부틸포스포늄클로라이드 2.9g (0.01mol), THF 50ml를 넣고 200℃ 5시간 반응하여 1-알릴피렌 19.1g (0.08mol, 수율 78.8%)을 얻었다. 얻어진 생성물은 300MHz 수소핵자기공명 분석결과, 3.7ppm (d, 2H)에서 C-CH 2 -C, 4.8-5.0ppm (m, 2H)에서 CH 2 =C, 6.0ppm (m, 1H)에서 C=CH-C, 7.7-8.3ppm (m, 9H)에서 Pyrene 피크를 확인하였다.In the same manner as in Example 1, 40 g (0.19 mol) of pyrene, 7.6 g (0.10 mol) of allyl chloride, 2.9 g (0.01 mol) of tetrabutylphosphonium chloride, and 50 ml of THF were added, and reacted at 200° C. for 5 hours, followed by 1-allylpyrene 19.1 g (0.08 mol, yield 78.8%) was obtained. As a result of 300 MHz hydrogen nuclear magnetic resonance analysis, the obtained product was C- CH 2 -C at 3.7 ppm (d, 2H), CH 2 =C at 4.8-5.0 ppm (m, 2H), C at 6.0 ppm (m, 1H) = CH -C, Pyrene peak was confirmed at 7.7-8.3 ppm (m, 9H).

실시예 16: 2-(3부테닐)피렌의 합성Example 16: Synthesis of 2-(3-butenyl)pyrene

실시예 1과 같은 방법으로 피렌 40g (0.19mol), 3-클로로-1-부텐 9.1g (0.10mol), 테트라부틸포스포늄클로라이드 2.9g (0.01mol), THF 50ml를 넣고 200℃ 5시간 반응하여 1-(2-(3부테닐))피렌 19.2g (0.07mol, 수율 74.9%)을 얻었다. 얻어진 생성물은 300MHz 수소핵자기공명 분석결과, 1.4ppm (d, 3H)에서 CH 3 -C, 3.6ppm (m, 1H)에서 C-CH-C, 5.0ppm (m, 2H)에서 CH 2 =C, 6.3ppm (m, 1H)에서 C=CH-C, 7.7-8.3ppm (m, 9H)에서 Pyrene 피크를 확인하였다.In the same manner as in Example 1, 40 g (0.19 mol) of pyrene, 9.1 g (0.10 mol) of 3-chloro-1-butene, 2.9 g (0.01 mol) of tetrabutylphosphonium chloride, and 50 ml of THF were added and reacted at 200° C. for 5 hours. 1-(2-(3-butenyl))pyrene 19.2 g (0.07 mol, yield 74.9%) was obtained. As a result of 300 MHz hydrogen nuclear magnetic resonance analysis, the obtained product was CH 3 -C at 1.4 ppm (d, 3H), C-CH -C at 3.6 ppm (m, 1H), and CH 2 =C at 5.0 ppm (m, 2H). , C = CH -C at 6.3 ppm (m, 1H ), Pyrene peak was confirmed at 7.7-8.3 ppm (m, 9H).

실시예 17: 1-신나밀피렌의 합성Example 17: Synthesis of 1-cinnamylpyrene

실시예 1과 같은 방법으로 피렌 40g (0.19mol), 신나밀클로라이드 15.3g (0.10mol), 테트라부틸포스포늄클로라이드 2.9g (0.01mol), THF 50ml를 넣고 200℃ 5시간 반응하여 1-신나밀피렌 24.5g (0.08mol, 수율 77%)을 얻었다. 얻어진 생성물은 300MHz 수소핵자기공명 분석결과,3.8ppm (d, 2H)에서 C-CH 2 -C, 6.4-6.7ppm (m, 2H)에서 C-CH=C, 7.2-7.3ppm (m, 5H)에서 Ph, 7.7-8.3ppm (m, 9H)에서 Pyrene 피크를 확인하였다.In the same manner as in Example 1, 40 g (0.19 mol) of pyrene, 15.3 g (0.10 mol) of cinnamyl chloride, 2.9 g (0.01 mol) of tetrabutylphosphonium chloride, and 50 ml of THF were added and reacted at 200 ° C. for 5 hours to react 1-cinnamyl p. Rennes 24.5 g (0.08 mol, yield 77%) were obtained. As a result of 300 MHz hydrogen nuclear magnetic resonance analysis, the obtained product was C- CH 2 -C at 3.8 ppm (d, 2H), C- CH =C at 6.4-6.7 ppm (m, 2H), 7.2-7.3 ppm (m, 5H) ) at Ph , Pyrene peak was confirmed at 7.7-8.3 ppm (m, 9H).

실시예 18: 1-(2-메틸알릴)피렌의 합성Example 18: Synthesis of 1-(2-methylallyl)pyrene

실시예 1과 같은 방법으로 피렌 40g (0.19mol), 3-클로로-2메틸-1-프로펜 9.1g (0.10mol), 테트라부틸포스포늄클로라이드 2.9g (0.01mol), THF 50ml를 넣고 200℃ 5시간 반응하여 1-(2-메틸알릴)피렌 20.3g (0.08mol, 수율 79.2%)을 얻었다. 얻어진 생성물은 300MHz 수소핵자기공명 분석결과, 1.8ppm (s, 3H)에서 CH 3 -C, 3.7ppm (s, 2H)에서 C-CH 2 -C, 4.9-5.0ppm (d, 2H)에서 CH 2 =C, 7.7-8.3ppm (m, 9H)에서 Pyrene 피크를 확인하였다.In the same manner as in Example 1, 40 g (0.19 mol) of pyrene, 9.1 g (0.10 mol) of 3-chloro-2methyl-1-propene, 2.9 g (0.01 mol) of tetrabutylphosphonium chloride, and 50 ml of THF were added, and 200° C. After reaction for 5 hours, 20.3 g (0.08 mol, yield 79.2%) of 1-(2-methylallyl)pyrene was obtained. The obtained product 300MHz 1H magnetic resonance analysis, 1.8ppm (s, 3H) in CH 3 -C, 3.7ppm (s, 2H) CH at C- CH 2 -C, 4.9-5.0ppm (d , 2H) from 2 = C, Pyrene peak was confirmed at 7.7-8.3 ppm (m, 9H).

실시예 19: 1-(2-부테닐)피렌의 합성Example 19: Synthesis of 1-(2-butenyl)pyrene

실시예 1과 같은 방법으로 피렌 40g (0.19mol), 1-클로로-2-부텐 9.1g (0.10mol), 테트라부틸포스포늄클로라이드 2.9g (0.01mol), THF 50ml를 넣고 200℃ 5시간 반응하여 1-(2-부테닐)피렌 20.2g (0.08mol, 수율 78.9%)을 얻었다. 얻어진 생성물은 300MHz 수소핵자기공명 분석결과, 1.8ppm (d, 3H)에서 CH 3 -C, 3.7ppm (d, 2H)에서 C-CH 2 -C, 5.4ppm (m, 1H)에서 C-CH=C, 6.1ppm (m, 1H)에서 C=CH-C, 7.7-8.3ppm (m, 9H)에서 Pyrene 피크를 확인하였다.In the same manner as in Example 1, 40 g (0.19 mol) of pyrene, 9.1 g (0.10 mol) of 1-chloro-2-butene, 2.9 g (0.01 mol) of tetrabutylphosphonium chloride, and 50 ml of THF were added and reacted at 200° C. for 5 hours. 20.2 g (0.08 mol, yield 78.9%) of 1-(2-butenyl)pyrene was obtained. The obtained product 300MHz 1H magnetic resonance analysis, 1.8ppm (d, 3H) in CH 3 -C, 3.7ppm (d, 2H) C- CH 2 -C, 5.4ppm (m, 1H) from the C- CH =C, Pyrene peak was confirmed at 6.1ppm (m, 1H) at C= CH- C, 7.7-8.3ppm (m, 9H).

실시예 20: 2-(t-부틸)-10-알릴안트라센의 합성Example 20: Synthesis of 2-(t-butyl)-10-allylanthracene

실시예 1과 같은 방법으로 2-(t-부틸)안트라센 40g (0.17mol), 알릴클로라이드 6.5g (0.09mol), 테트라부틸포스포늄클로라이드 2.7g (0.009mol), THF 50ml를 넣고 200℃ 6시간 반응하여 2-(t-부틸)-10-알릴안트라센 17.5g (0.06mol, 수율 71%)을 얻었다. 얻어진 생성물은 300MHz 수소핵자기공명 분석결과, 1.5ppm (s, 9H)에서 CH 3 -C, 3.8ppm (d, 2H)에서 C-CH 2 -C, 4.8-5.0ppm (m, 2H)에서 CH 2 =C, 6.0ppm (m, 1H)에서 C-CH=C, 7.4-8.3ppm (m, 8H)에서 Anth 피크를 확인하였다.In the same manner as in Example 1, 40 g (0.17 mol) of 2-(t-butyl) anthracene, 6.5 g (0.09 mol) of allyl chloride, 2.7 g (0.009 mol) of tetrabutylphosphonium chloride, and 50 ml of THF were added, and 200° C. for 6 hours. By reaction, 17.5 g (0.06 mol, yield 71%) of 2-(t-butyl)-10-allylanthracene was obtained. The obtained product 300MHz 1H magnetic resonance analysis, 1.5ppm (s, 9H) in CH 3 -C, 3.8ppm (d, 2H) CH at C- CH 2 -C, 4.8-5.0ppm (m , 2H) from Anth peak was confirmed at 2 = C, 6.0 ppm (m, 1H) at C- CH = C, 7.4-8.3 ppm (m, 8H).

실시예 21: 2-(t-부틸)-10-(2-부테닐)안트라센의 합성Example 21: Synthesis of 2-(t-butyl)-10-(2-butenyl)anthracene

실시예 1과 같은 방법으로 2-(t-부틸)안트라센 40g (0.17mol), 1-클로로-2-부텐 8.1g (0.09mol), 테트라부틸포스포늄클로라이드 2.7g (0.009mol), THF 50ml를 넣고 200℃ 6시간 반응하여 2-(t-부틸)-10-(2-부테닐)안트라센 18.2g (0.06mol, 수율 70.2%)을 얻었다. 얻어진 생성물은 300MHz 수소핵자기공명 분석결과, 1.5ppm (s, 9H)에서 CH 3 -C, 1.7ppm (d, 1H)에서 CH 3 -C, 3.8ppm (d, 2H)에서 C-CH 2 -C, 5.4ppm (m, 1H)에서 C-CH=C, 6.1ppm (m, 1H)에서 C=CH-C, 7.4-8.3ppm (m, 8H)에서 Anth 피크를 확인하였다.In the same manner as in Example 1, 40 g (0.17 mol) of 2-(t-butyl) anthracene, 8.1 g (0.09 mol) of 1-chloro-2-butene, 2.7 g (0.009 mol) of tetrabutylphosphonium chloride, and 50 ml of THF were prepared. and reacted at 200° C. for 6 hours to obtain 18.2 g (0.06 mol, yield 70.2%) of 2-(t-butyl)-10-(2-butenyl)anthracene. The obtained product 300MHz 1H magnetic resonance analysis, 1.5ppm (s, 9H) in CH 3 -C, 1.7ppm (d, 1H) in CH 3 -C, 3.8ppm (d, 2H) C- CH 2 in the - Anth peaks were identified at C, C- CH =C at 5.4 ppm (m, 1H), C = CH- C at 6.1 ppm (m, 1H), and 7.4-8.3 ppm (m, 8H).

실시예 22: 10-알릴-9-메틸안트라센의 합성Example 22: Synthesis of 10-allyl-9-methylanthracene

실시예 1과 같은 방법으로 9-메틸안트라센 40g (0.20mol), 알릴클로라이드 8.0g (0.10mol), 테트라부틸포스포늄클로라이드 3.0g (0.01mol), THF 50ml를 넣고 200℃ 6시간 반응하여 10-알릴-9-메틸안트라센 18.7g (0.08mol, 수율 80%)을 얻었다. 얻어진 생성물은 300MHz 수소핵자기공명 분석결과, 2.7ppm (s, 3H)에서 C-CH 3 , 3.8ppm (d, 2H)에서 C-CH 2 -C, 4.8-5.0ppm (m, 2H)에서 CH 2 =C, 6.0ppm (m, 1H)에서 C=CH-C, 7.5-8.2ppm (m, 8H)에서 Anth피크를 확인하였다.In the same manner as in Example 1, 40 g (0.20 mol) of 9-methylanthracene, 8.0 g (0.10 mol) of allyl chloride, 3.0 g (0.01 mol) of tetrabutylphosphonium chloride, and 50 ml of THF were added, and reacted at 200 ° C. for 6 hours. 18.7 g (0.08 mol, yield 80%) of allyl-9-methylanthracene was obtained. The obtained product 300MHz 1H magnetic resonance analysis, 2.7ppm (s, 3H) C- CH 3, 3.8ppm (d, 2H) CH at C- CH 2 -C, 4.8-5.0ppm (m , 2H) from Anth peak was confirmed at 2 = C, 6.0 ppm (m, 1H) at C = CH -C, 7.5-8.2 ppm (m, 8H).

실시예 23: 10-신나밀-9-메틸안트라센의 합성Example 23: Synthesis of 10-cinnamyl-9-methylanthracene

실시예 1과 같은 방법으로 9-메틸안트라센 40g (0.20mol), 신나밀클로라이드 15.3g (0.10mol), 테트라부틸포스포늄클로라이드 3.0g (0.01mol), THF 50ml를 넣고 200℃ 6시간 반응하여 10-신나밀-9-메틸안트라센 21.2g (0.07mol, 수율 68.7%)을 얻었다. 얻어진 생성물은 300MHz 수소핵자기공명 분석결과, 2.7ppm (s, 3H)에서 C-CH 3 , 3.8ppm (d, 2H)에서 C-CH 2 -C, 6.4ppm (d, 1H)에서 C=CH-Ph, 6.7ppm (m, 1H)에서 C-CH=C, 7.2-7.3ppm (m, 5H)에서 Ph, 7.5-8.2ppm (m, 8H)에서 Anth 피크를 확인하였다.In the same manner as in Example 1, 40 g (0.20 mol) of 9-methylanthracene, 15.3 g (0.10 mol) of cinnamyl chloride, 3.0 g (0.01 mol) of tetrabutylphosphonium chloride, and 50 ml of THF were added, and reacted at 200° C. for 6 hours. -Cinnamyl-9-methylanthracene 21.2g (0.07mol, yield 68.7%) was obtained. As a result of 300 MHz hydrogen nuclear magnetic resonance analysis, the obtained product was C- CH 3 at 2.7 ppm (s, 3H), C-CH 2 -C at 3.8 ppm (d, 2H ), C= CH at 6.4 ppm (d, 1H) -Ph, C-CH = C at 6.7ppm (m, 1H), Ph at 7.2-7.3ppm (m, 5H ), Anth peak at 7.5-8.2ppm (m, 8H) was confirmed.

실시예 24: 1-알릴-4-페녹시이더의 합성Example 24: Synthesis of 1-allyl-4-phenoxyder

실시예 1과 같은 방법으로 다이페닐이더 60g (0.35mol), 알릴클로라이드 13.5g (0.18mol), 테트라부틸포스포늄클로라이드 5.2g (0.018mol)를 넣고 200℃ 7시간 반응하여 1-알릴-4페녹시이더 24.3g (0.12mol, 수율 64.2%)을 얻었다. 얻어진 생성물은 300MHz 수소핵자기공명 분석결과, 3.3ppm (d, 2H)에서 C-CH 2 -C, 5.0ppm (m, 2H)에서 CH 2 =C, 5.9ppm (m, 1H)에서 C=CH-C, 7.1-7.4ppm (m, 9H)에서 Ph 피크를 확인하였다.In the same manner as in Example 1, 60 g (0.35 mol) of diphenyl ether, 13.5 g (0.18 mol) of allyl chloride, and 5.2 g (0.018 mol) of tetrabutylphosphonium chloride were added and reacted at 200° C. for 7 hours to 1-allyl-4 24.3 g (0.12 mol, yield 64.2%) of phenoxyider was obtained. As a result of 300 MHz hydrogen nuclear magnetic resonance analysis, the obtained product was C- CH 2 -C at 3.3 ppm (d, 2H), CH 2 = C at 5.0 ppm (m, 2H ), C = CH at 5.9 ppm (m, 1H) A Ph peak was confirmed at -C, 7.1-7.4 ppm (m, 9H).

실시예 25: 1-(2-부테닐)-4-페녹시이더의 합성Example 25: Synthesis of 1-(2-butenyl)-4-phenoxyder

실시예 1과 같은 방법으로 다이페닐이더 60g (0.35mol), 1-클로로-2-부텐 16.3g (0.18mol), 테트라부틸포스포늄클로라이드 5.2g (0.018mol)를 넣고 200℃ 7시간 반응하여 1-(2-부테닐)-4-페녹시이더 24.3g (0.11mol, 수율 60.3%)을 얻었다. 얻어진 생성물은 300MHz 수소핵자기공명 분석결과, 1.7ppm (d, 3H)에서 CH 3 -C, 3.3ppm (d, 2H)에서 C-CH 2 -C, 5.4ppm (m, 1H)에서 C-CH=C, 6.1ppm (m, 1H)에서 C=CH-C, 7.1-7.4ppm (m, 9H)에서 Ph 피크를 확인하였다.In the same manner as in Example 1, 60 g (0.35 mol) of diphenyl ether, 16.3 g (0.18 mol) of 1-chloro-2-butene, and 5.2 g (0.018 mol) of tetrabutylphosphonium chloride were added and reacted at 200° C. for 7 hours. 1-(2-butenyl)-4-phenoxyider 24.3g (0.11mol, yield 60.3%) was obtained. The obtained product 300MHz 1H magnetic resonance analysis, 1.7ppm (d, 3H) in CH 3 -C, 3.3ppm (d, 2H) C- CH 2 -C, 5.4ppm (m, 1H) from the C- CH A Ph peak was observed at =C, 6.1 ppm (m, 1H) at C = CH -C, 7.1-7.4 ppm (m, 9H).

실시예 26: 2-(3-부테닐)-4-페녹시이더의 합성Example 26: Synthesis of 2-(3-butenyl)-4-phenoxyder

실시예 1과 같은 방법으로 다이페닐이더 60g (0.35mol), 1-클로로-2-부텐 16.3g (0.18mol), 테트라부틸포스포늄클로라이드 5.2g (0.018mol)를 넣고 200℃ 7시간 반응하여 1-(2-(3-부테닐))-4-페녹시이더 28.7g (0.13mol, 수율 71%)을 얻었다. 얻어진 생성물은 300MHz 수소핵자기공명 분석결과, 1.4ppm (d, 3H)에서 CH 3 -C, 3.6ppm (m, 1H)에서 C-CH-C, 5.0ppm (m, 2H)에서 CH 2 =C, 6.3ppm (m, 1H)에서 C=CH-C, 7.1-7.4ppm (m, 9H)에서 Ph 피크를 확인하였다.In the same manner as in Example 1, 60 g (0.35 mol) of diphenyl ether, 16.3 g (0.18 mol) of 1-chloro-2-butene, and 5.2 g (0.018 mol) of tetrabutylphosphonium chloride were added and reacted at 200° C. for 7 hours. 2-(2-(3-butenyl))-4-phenoxyider 28.7 g (0.13 mol, yield 71%) was obtained. As a result of 300 MHz hydrogen nuclear magnetic resonance analysis, the obtained product was CH 3 -C at 1.4 ppm (d, 3H), C-CH -C at 3.6 ppm (m, 1H), and CH 2 =C at 5.0 ppm (m, 2H). , C = CH -C at 6.3 ppm (m, 1H ), Ph peak was confirmed at 7.1-7.4 ppm (m, 9H).

위에서 본 발명은 제시된 실시 예를 참조하여 상세하게 설명이 되었지만 이 분야에서 통상의 지식을 가진 자는 제시된 실시 예를 참조하여 본 발명의 기술적 사상을 벗어나지 않는 범위에서 다양한 변형 및 수정 발명을 만들 수 있을 것이다. 본 발명은 이와 같은 변형 및 수정 발명에 의하여 제한되지 않으며 다만 아래에 첨부된 청구범위에 의하여 제한된다. Although the present invention has been described in detail above with reference to the presented embodiment, those skilled in the art will be able to make various modifications and modified inventions without departing from the technical spirit of the present invention with reference to the presented embodiment. . The present invention is not limited by such variations and modifications, but only by the claims appended hereto.

Claims (7)

화학식 4, 화학식 5 또는 화학식 6으로 표시되는 유기포스핀화합물을 촉매로 사용하여 화학식 1로 표시되는 알릴할라이드 화합물과 화학식 2로 표시되는 아로마틱 화합물의 반응에 의하여 탈할로겐화수소 C-C결합 반응으로 합성되는 화학식 3으로 표시되는 알릴아로마틱 화합물이 되고,
화학식 1
Figure 112021127857221-pat00012

화학식 2
Figure 112021127857221-pat00013

화학식 3:
Figure 112021127857221-pat00006
,
화학식 1, 2 및 3에서 R1= H, Me, CH2Cl 또는 CH2Br; R2= H, Me, Ph, CH2Cl 또는 CH2Br; R3= H, Me, CH2Cl 또는 CH2Br; R4= H 또는 Me; Ar1 = 벤젠, 알킬벤젠, 할로벤젠, 플루오렌, 터페닐렌, 나프탈렌, 1-메틸나프탈렌, 2-메틸나프탈렌, 1,2-디메틸나프탈렌, 안트라센, 안트론, 2-(t-부틸)안트라퀴논, 2-(t-부틸)안트라센, 9-메틸안트라센, 9,10-디메틸안트라센, 9-벤질안트라센, 9,10-디벤질안트라센, 9-(디페닐메틸)안트라센, 페난트렌, 바이페닐, 바이페닐이더, 바이페닐설파이드, 피렌, 퍼릴렌, 테트라센, 펜타센 또는 고리가 1~8인 아로마틱 화합물; R5 = H, X, 페닐기 또는 탄소수가 1~8개인 알킬기가 치환된 페닐기; X= F, Cl, Br 또는 I; R6 = H, 탄소수가 1~6개인 알킬기, 페닐기, 벤질기 또는 디페닐메틸기; R7= H 또는 Me; R8 = H 또는 Me; R9은 화학식 1로 표시되는 알릴할라이드 화합물의 알릴기가 되고, n은 0. 1, 또는 2가 되고,
화학식 4:
P(R")3,
화학식 5:
P(R")4X',
화학식 6:
X'(R")3 P-Y-P(R")3X',
화학식 4, 5 및 6에서 R”는 탄소 수가 1~12개의 알킬기; 탄소 수가 2~12개인 알케닐기; 또는 페닐기가 되고, 각각의 R”은 서로 같거나 상이하며, X'= Cl, Br 또는 I가 되고, Y는 탄소 수가 1~12가 되는 알킬렌기; 방향족 기를 포함한 탄소 수가 1~12가 되는 알킬렌 기; 또는 방향족기가 되며,
화학식 3의 화합물은 10-allyl-2-(tert-butyl)anthracene; 9-cinnamyl-10-methylanthracene; 10-(but-2-en-1-yl)-2-(tert-butyl)anthracene; 4-(but-2-en-1-yl)pyrene; 4-cinnamylpyrene; allylpentacene; diallylpentacene; allyltetracene; 또는 diallyltetracene인 것을 특징으로 하는 알릴아로마틱 화합물.
Chemical formula synthesized by dehydrohalogenation CC bonding reaction by reaction of an allyl halide compound represented by Formula 1 and an aromatic compound represented by Formula 2 using an organophosphine compound represented by Formula 4, Formula 5 or Formula 6 as a catalyst becomes an allyl aromatic compound represented by 3,
Formula 1
Figure 112021127857221-pat00012

Formula 2
Figure 112021127857221-pat00013

Formula 3:
Figure 112021127857221-pat00006
,
R 1 =H, Me, CH 2 Cl or CH 2 Br in formulas 1, 2 and 3; R 2 = H, Me, Ph, CH 2 Cl or CH 2 Br; R 3 = H, Me, CH 2 Cl or CH 2 Br; R 4 = H or Me; Ar 1 = benzene, alkylbenzene, halobenzene, fluorene, terphenylene, Naphthalene, 1-methylnaphthalene, 2-methylnaphthalene, 1,2-dimethylnaphthalene, anthracene, anthrone, 2-(t-butyl)anthraquinone, 2-(t-butyl)anthracene, 9-methylanthracene, 9, 10-dimethylanthracene, 9-benzylanthracene, 9,10-dibenzylanthracene, 9-(diphenylmethyl)anthracene, phenanthrene, biphenyl, biphenylether, biphenylsulfide, pyrene, perylene, tetracene, pentacene or a ring 1-8 aromatic compounds; R 5 = H, X, a phenyl group substituted with a phenyl group or an alkyl group having 1 to 8 carbon atoms; X=F, Cl, Br or I; R 6 = H, an alkyl group having 1 to 6 carbon atoms, a phenyl group, a benzyl group or a diphenylmethyl group; R 7 = H or Me; R 8 = H or Me; R 9 is an allyl group of the allyl halide compound represented by Formula 1, n is 0.1, or 2;
Formula 4:
P(R") 3 ,
Formula 5:
P(R") 4 X',
Formula 6:
X'(R") 3 PYP(R") 3 X',
In Formulas 4, 5 and 6, R” is an alkyl group having 1 to 12 carbon atoms; an alkenyl group having 2 to 12 carbon atoms; or a phenyl group, each R″ is the same as or different from each other, X′=Cl, Br or I, and Y is an alkylene group having 1 to 12 carbon atoms; an alkylene group having 1 to 12 carbon atoms including an aromatic group; or an aromatic group,
The compound of formula 3 is 10-allyl-2-(tert-butyl)anthracene; 9-cinnamyl-10-methylanthracene; 10-(but-2-en-1-yl)-2-(tert-butyl)anthracene; 4-(but-2-en-1-yl)pyrene; 4-cinnamylpyrene; allylpentacene; diallylpentacene; allyltetracene; Or allyl aromatic compound, characterized in that diallyltetracene.
화학식 4, 화학식 5 또는 화학식 6으로 표시되는 유기포스핀화합물을 촉매로 사용하여 화학식 1로 표시되는 알릴할라이드 화합물과 화학식 2로 표시되는 아로마틱 화합물의 반응에 의하여 탈할로겐화수소 C-C결합 반응으로 화학식 3으로 표시되는 알릴아로마틱 화합물을 생성시키고,
화학식 1:
Figure 112021045136286-pat00008

화학식 2:
Figure 112021045136286-pat00009

화학식 3:
Figure 112021045136286-pat00010
,
화학식 1, 2 및 3에서 R1= H, Me, CH2Cl 또는 CH2Br; R2= H, Me, Ph, CH2Cl 또는 CH2Br; R3= H, Me, CH2Cl 또는 CH2Br; R4= H 또는 Me; Ar1 = 벤젠, 알킬벤젠, 할로벤젠, 바이페닐, 플루오렌, 터페닐렌, 나프탈렌, 1-메틸나프탈렌, 2-메틸나프탈렌, 1,2-디메틸나프탈렌, 안트라센, 안트론, 2-(t-부틸)안트라퀴논, 2-(t-부틸)안트라센, 9-메틸안트라센, 9,10-디메틸안트라센, 9-벤질안트라센, 9,10-디벤질안트라센, 9-(디페닐메틸)안트라센, 페난트렌, 바이페닐이더, 바이페닐설파이드, 피렌, 퍼릴렌, 테트라센, 펜타센 또는 고리가 1~8인 아로마틱 화합물; R5 = H, X, 페닐기 또는 탄소수가 1~8개인 알킬기가 치환된 페닐기; X= F, Cl, Br 또는 I; R6 = H, 탄소수가 1~6개인 알킬기, 페닐기, 벤질기 또는 디페닐메틸기; R 7= H 또는 Me; R8 = H 또는 Me; R9는 화학식 1로 표시되는 알릴할라이드 화합물의 알릴기가 되고, n은 0, 1 또는 2가 되고,
화학식 4:
P(R")3,
화학식 5:
P(R")4X',
화학식 6:
X'(R")3 P-Y-P(R")3X',
화학식 4, 5 및 6에서 R”는 탄소 수가 1~12개의 알킬기; 탄소 수가 2~12개인 알케닐기; 또는 페닐기가 되고, 각각의 R”은 서로 같거나 상이하며, X'= Cl, Br 또는 I가 되고, Y는 탄소 수가 1~12가 되는 알킬렌기; 방향족 기를 포함한 탄소 수가 1~12가 되는 알킬렌 기; 또는 방향족기가 되는 알릴아로마틱 화합물의 제조 방법.
Formula 3 by reaction of an allyl halide compound represented by Formula 1 and an aromatic compound represented by Formula 2 using an organophosphine compound represented by Formula 4, Formula 5 or Formula 6 as a catalyst, as a CC bonding reaction of hydrogen halide to produce the allylaromatic compound shown,
Formula 1:
Figure 112021045136286-pat00008

Formula 2:
Figure 112021045136286-pat00009

Formula 3:
Figure 112021045136286-pat00010
,
R 1 =H, Me, CH 2 Cl or CH 2 Br in formulas 1, 2 and 3; R 2 = H, Me, Ph, CH 2 Cl or CH 2 Br; R 3 = H, Me, CH 2 Cl or CH 2 Br; R 4 = H or Me; Ar 1 = benzene, alkylbenzene, halobenzene, Biphenyl, fluorene, terphenylene , naphthalene, 1-methylnaphthalene, 2-methylnaphthalene, 1,2-dimethylnaphthalene, anthracene, anthrone, 2-(t-butyl)anthraquinone, 2-(t-butyl ) anthracene, 9-methylanthracene, 9,10-dimethylanthracene, 9-benzylanthracene, 9,10-dibenzylanthracene, 9-(diphenylmethyl)anthracene, phenanthrene, biphenylether, biphenylsulfide, pyrene, perylene, tetracene, pentacene or 1 to 8 rings phosphorus aromatic compounds; R 5 = H, X, a phenyl group substituted with a phenyl group or an alkyl group having 1 to 8 carbon atoms; X=F, Cl, Br or I; R 6 = H, an alkyl group having 1 to 6 carbon atoms, a phenyl group, a benzyl group or a diphenylmethyl group; R 7 = H or Me; R 8 = H or Me; R 9 is an allyl group of the allyl halide compound represented by Formula 1, n is 0, 1 or 2,
Formula 4:
P(R") 3 ,
Formula 5:
P(R") 4 X',
Formula 6:
X'(R") 3 PYP(R") 3 X',
In Formulas 4, 5 and 6, R” is an alkyl group having 1 to 12 carbon atoms; an alkenyl group having 2 to 12 carbon atoms; or a phenyl group, each R″ is the same as or different from each other, X′=Cl, Br or I, and Y is an alkylene group having 1 to 12 carbon atoms; an alkylene group having 1 to 12 carbon atoms including an aromatic group; Or a method for producing an allyl aromatic compound that becomes an aromatic group.
삭제delete 삭제delete 삭제delete 청구항 2에 있어서, 반응 온도는 100~250 ℃가 되는 것을 특징으로 하는 알릴아로마틱 화합물의 제조 방법. The method for producing an allyl aromatic compound according to claim 2, wherein the reaction temperature is 100 to 250 °C. 청구항 2에 있어서, 반응 용매는 지방족 탄화수소, 이더(ether), 다이메톡시에탄(DME) 또는 THF가 되거나, 용매가 없이 반응이 되는 것을 특징으로 하는 알릴아로마틱 화합물의 제조 방법.
The method according to claim 2, wherein the reaction solvent is an aliphatic hydrocarbon, ether, dimethoxyethane (DME), or THF, or the reaction is performed without a solvent.
KR1020190171734A 2019-12-20 2019-12-20 Allylarenes and a Method for Producing the Same KR102346347B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020190171734A KR102346347B1 (en) 2019-12-20 2019-12-20 Allylarenes and a Method for Producing the Same
US17/113,695 US11685702B2 (en) 2019-12-20 2020-12-07 Method for producing arene compounds and arene compounds produced by the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190171734A KR102346347B1 (en) 2019-12-20 2019-12-20 Allylarenes and a Method for Producing the Same

Publications (2)

Publication Number Publication Date
KR20210079688A KR20210079688A (en) 2021-06-30
KR102346347B1 true KR102346347B1 (en) 2022-01-03

Family

ID=76602066

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190171734A KR102346347B1 (en) 2019-12-20 2019-12-20 Allylarenes and a Method for Producing the Same

Country Status (1)

Country Link
KR (1) KR102346347B1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080281071A1 (en) * 2007-05-07 2008-11-13 Mihail Ionescu Cationic polymerization of biological oils
CN108628101A (en) * 2018-04-26 2018-10-09 儒芯微电子材料(上海)有限公司 Electron beam lithography glue composition and preparation method
CN110563531A (en) * 2019-08-27 2019-12-13 浙江工业大学 Synthetic method of 1, 2-disubstituted olefin compound

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3678122A (en) * 1970-10-05 1972-07-18 Universal Oil Prod Co Allylation or benzylation of aromatic compounds
JP7209588B2 (en) * 2019-06-04 2023-01-20 信越化学工業株式会社 Organic film forming composition, pattern forming method and polymer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080281071A1 (en) * 2007-05-07 2008-11-13 Mihail Ionescu Cationic polymerization of biological oils
CN108628101A (en) * 2018-04-26 2018-10-09 儒芯微电子材料(上海)有限公司 Electron beam lithography glue composition and preparation method
CN110563531A (en) * 2019-08-27 2019-12-13 浙江工业大学 Synthetic method of 1, 2-disubstituted olefin compound

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
A. Rinaldi et al, Synthesis of Indenes by Tandem Gold(I)-Catalyzed Claisen Rearrangement/Hydroarylation Reaction of Propargyl Vinyl Ethers, J. Org. Chem., May 6th, 2019, 84(10), pp.6298-6311 1부.*
L. Cornelissen et al, Copper-catalyzed Hiyama cross-coupling using vinylsilanes and benzylic electrophiles, Chem. Commun., June 4th, 2014, 50, pp.8018-8020 1부.*
Leiyang Lv et al, Direct dehydrogenative alkyl Heck-couplings of vinylarenes with umpolung aldehydes catalyzed by nickel, Nat. Commun., February 12th, 2019, 10, 715(2019), pp.1-8 1부.*
M. Elena de Orbe et al, Gold- or Indium-Catalyzed Cross-Coupling of Bromoalkynes with Allylsilanes through a Concealed Rearrangement, ACS Catal., July 15th, 2019, 9(9), pp.7817-7822 1부.*
R. Matsubara et al, Nickel-Catalyzed Heck-Type Reactions of Benzyl Chlorides and Simple Olefins, J. Am. Chem. Soc., November 8th, 2011, 133(47), pp.19020-19023 1부.*
미국 특허공보 US3678122호(1972.07.18.) 1부.*

Also Published As

Publication number Publication date
KR20210079688A (en) 2021-06-30

Similar Documents

Publication Publication Date Title
Haley et al. Macrocyclic Oligo (phenylacetylenes) and Oligo (phenyldiacetylenes)
KR20090066267A (en) Method for producing biphenyl derivative
CN103068227B (en) The process of efficient preparation of fullerynes and method
KR102346347B1 (en) Allylarenes and a Method for Producing the Same
CN107245083B (en) 2, 8, 9-trioxa-5-aza-1-germanium bicyclo [3.3.3] undecane compound and preparation method thereof
Fields et al. Cyclopropane chemistry. Part I. Thermal isomerisation of gem-dichlorocyclopropanes to olefins
KR102331357B1 (en) (arylmethyl)arenes and a production process thereof
KR102509228B1 (en) (ALKYL)ARENES AND A Method for Producing the Same
KR20080066746A (en) Process for production of biphenyl derivatives
JP2589108B2 (en) Method for synthesizing perfluoroalkanediene
JPH04282326A (en) Production of asymmetric tricyclic compound
US11685702B2 (en) Method for producing arene compounds and arene compounds produced by the same
Weidenbruch et al. Compounds of germanium and Tin, 18. Cleavage reactions of Hexa‐tert‐butylcyclotrigermane: Racemate versus conglomerate crystallization
Larsen et al. Thermodynamic stabilities of some cyclic halonium ions in magic acid
TWI829792B (en) Method for producing fluorinated aromatic secondary or tertiary amine compounds
US3646087A (en) Preparation of aminophenyltrialkoxy silanes
US3376347A (en) Mono-and di-c-halogenated meta-and paracarborane
Keglevich et al. A new approach to phosphinines by three-step aromatization of 1-ethoxy-1, 2-dihydrophosphinine 1-oxides
US7030260B2 (en) Preparation of mixed-halogen halo-silanes
Hlavatý et al. New synthesis of α, ω-diiodoalkynes and capped iodobutadiynes
JP3777428B2 (en) Triphenylene compound having silylethynyl group and process for producing the same
JP4544981B2 (en) Method for producing tetraarylphosphonium halide
JP2573521B2 (en) P-tert-butoxyphenylalkyl alcohol and method for producing the same
JPS58208295A (en) Manufacture of chloro-diphenyl-phosphane
JP4188060B2 (en) Method for producing 1-substituted phenyl-ω-bromoalkane

Legal Events

Date Code Title Description
AMND Amendment
E601 Decision to refuse application
X091 Application refused [patent]
AMND Amendment
E902 Notification of reason for refusal
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant