KR102342825B1 - 전자 장치, 그의 신호 처리 방법, 생체 신호 측정 시스템 및 비일시적 컴퓨터 판독가능 기록매체 - Google Patents

전자 장치, 그의 신호 처리 방법, 생체 신호 측정 시스템 및 비일시적 컴퓨터 판독가능 기록매체 Download PDF

Info

Publication number
KR102342825B1
KR102342825B1 KR1020150174160A KR20150174160A KR102342825B1 KR 102342825 B1 KR102342825 B1 KR 102342825B1 KR 1020150174160 A KR1020150174160 A KR 1020150174160A KR 20150174160 A KR20150174160 A KR 20150174160A KR 102342825 B1 KR102342825 B1 KR 102342825B1
Authority
KR
South Korea
Prior art keywords
biosignal
measured
signal
bio
electronic device
Prior art date
Application number
KR1020150174160A
Other languages
English (en)
Other versions
KR20170067458A (ko
Inventor
김형순
원광현
이민형
김도윤
김찬열
이재혁
조재걸
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Priority to KR1020150174160A priority Critical patent/KR102342825B1/ko
Priority to PCT/KR2016/011151 priority patent/WO2017099340A1/ko
Priority to US16/060,795 priority patent/US11363989B2/en
Publication of KR20170067458A publication Critical patent/KR20170067458A/ko
Application granted granted Critical
Publication of KR102342825B1 publication Critical patent/KR102342825B1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7232Signal processing specially adapted for physiological signals or for diagnostic purposes involving compression of the physiological signal, e.g. to extend the signal recording period
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1118Determining activity level
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1123Discriminating type of movement, e.g. walking or running
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0219Inertial sensors, e.g. accelerometers, gyroscopes, tilt switches
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/0205Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/02416Detecting, measuring or recording pulse rate or heart rate using photoplethysmograph signals, e.g. generated by infrared radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/332Portable devices specially adapted therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/346Analysis of electrocardiograms
    • A61B5/349Detecting specific parameters of the electrocardiograph cycle
    • A61B5/352Detecting R peaks, e.g. for synchronising diagnostic apparatus; Estimating R-R interval
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/369Electroencephalography [EEG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/389Electromyography [EMG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/398Electrooculography [EOG], e.g. detecting nystagmus; Electroretinography [ERG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4806Sleep evaluation
    • A61B5/4809Sleep detection, i.e. determining whether a subject is asleep or not
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6802Sensor mounted on worn items
    • A61B5/681Wristwatch-type devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7271Specific aspects of physiological measurement analysis
    • A61B5/7285Specific aspects of physiological measurement analysis for synchronising or triggering a physiological measurement or image acquisition with a physiological event or waveform, e.g. an ECG signal

Abstract

전자 장치, 그의 신호 처리 방법, 생체 신호 측정 시스템 및 비일시적 컴퓨터 판독가능 기록매체가 제공된다. 본 개시의 일 실시 예에 따른 전자 장치는, 사용자의 생체 신호를 측정하는 센서 및 측정된 생체 신호의 주기성을 판별하고, 판별된 주기성에 따라 측정된 생체 신호를 선택적으로 압축하는 프로세서를 포함할 수 있다.

Description

전자 장치, 그의 신호 처리 방법, 생체 신호 측정 시스템 및 비일시적 컴퓨터 판독가능 기록매체{ELECTRONIC APPARATUS, SIGNAL PROCESSING METHOD OF THEREOF, VITAL SIGNAL MEASURING SYSTEM, AND NON-TRANSITORY COMPUTER READABLE RECORDING MEDIUM}
본 발명은 전자 장치, 그의 신호 처리 방법, 생체 신호 측정 시스템 및 비일시적 컴퓨터 판독가능 기록매체에 관한 것으로, 더욱 구체적으로는, 측정된 생체 신호를 압축함으로써 효율성이 향상되는 전자 장치, 그의 신호 처리 방법, 생체 신호 측정 시스템 및 비일시적 컴퓨터 판독가능 기록매체에 관한 것이다.
전자 기술의 발전에 따라 생체 신호를 측정하는 기술 또한 발전하고 있다. 특히, 웨어러블 장치와 같이 일상적으로 사용자가 착용하는 전자 장치를 통해 사용자의 생체 신호를 연속적으로 측정하는 기술이 개발되고 있다.
다만, 생체 신호 측정 장치가 일상적으로 사용자의 생체 신호를 측정함에 따라, 생체 신호 데이터의 양이 폭발적으로 증가하고 있다. 또한, 생체 신호를 저장하거나 외부 장치로 전송할 때 데이터의 보안 문제 역시 대두하고 있다.
이에 따라, 생체 신호를 압축하는 방법에 대해 연구가 진행되었다. 하지만, 종래의 생체 신호 압축 방법은 단순히 압축 알고리즘을 제시한 것에 그쳤다는 한계점을 갖는다. 따라서, 압축 알고리즘의 구현에 대한 선제 조건을 판단하지 못하여, 오히려 압축 알고리즘을 적용함에 따라 데이터의 용량이 증가하는 문제점이 발생하였다.
본 개시의 목적은 생체 신호 및 사용자의 움직임에 따라 생체 신호를 압축할 것인지 판단하여 선택적으로 생체 신호를 압축하는 전자 장치, 그의 신호 처리 방법, 생체 신호 측정 시스템 및 비일시적 컴퓨터 판독가능 기록매체를 제공함에 있다.
상기 목적을 달성하기 위한 본 개시의 일 실시 예에 따른 전자 장치는, 사용자의 생체 신호를 측정하는 센서 및 상기 측정된 생체 신호의 주기성을 판별하고, 판별된 주기성에 따라 상기 측정된 생체 신호를 선택적으로 압축하는 프로세서를 포함할 수 있다.
그리고, 상기 사용자의 움직임 정도를 감지하는 움직임 센서를 더 포함하고, 상기 프로세서는, 상기 감지된 움직임 정도가 기설정된 임계 값 이하이고, 상기 측정된 생체 신호가 주기성을 갖는 경우, 상기 측정된 생체 신호를 압축할 수 있다.
또한, 상기 프로세서는, 상기 측정된 생체 신호로부터 복수의 피크들을 검출하고, 상기 검출된 복수의 피크들 사이의 간격에 기초하여 상기 생체 신호의 주기성을 판별할 수 있다.
그리고, 상기 프로세서는, 상기 측정된 생체 신호의 평균값을 이용하여 차분 신호를 생성하고, 상기 생성된 차분 신호 및 상기 생성된 차분 신호를 표현하기 위한 비트 수를 이용하여 상기 생체 신호를 압축할 수 있다.
또한, 상기 프로세서는, 기설정된 개수의 생체 신호가 측정되면, 상기 측정된 기설정된 개수의 생체 신호의 주기성을 판별할 수 있다.
그리고, 상기 프로세서는, 상기 압축된 생체 신호를 이용하여 압축 효율을 모니터링하고, 상기 압축 효율이 기설정된 레벨 이하이면, 상기 측정된 생체 신호의 압축을 중단할 수 있다.
또한, 외부 장치와 송수신하는 통신부를 더 포함하고, 상기 프로세서는, 상기 압축된 생체 신호를 전송하도록 상기 통신부를 제어할 수 있다.
그리고, 상기 압축된 생체 신호를 저장하는 저장부를 더 포함할 수 있다.
또한, 상기 생체 신호는 심전도(ECG), 뇌파(EEG), 근전도(EMG), 안전도(EOG), 광혈류량(PPG) 중 적어도 하나일 수 있다.
그리고, 상기 센서는, 상기 사용자의 복수 종류의 생체 신호를 측정하고, 상기 프로세서는, 상기 측정된 복수 종류의 생체 신호를 함께 압축할 수 있다.
한편, 상기 목적을 달성하기 위한 본 개시의 다른 실시 예에 따른 전자 장치는, 사용자의 생체 신호를 측정하는 센서, 사용자의 움직임 정도를 감지하는 움직임 센서 및 상기 감지된 움직임 정도가 기설정된 임계 값 이하이면, 상기 측정된 생체 신호를 압축하는 프로세서를 포함할 수 있다.
그리고, 상기 움직임 센서는 가속도 센서를 포함하고, 상기 가속도 센서에서 측정된 값을 기초로 상기 사용자의 상태를 수면 상태, 휴식 상태, 걷기 상태, 뛰기 상태 중 하나의 상태로 판별할 수 있다.
한편, 상기 목적을 달성하기 위한 본 개시의 일 실시 예에 따른 생체 신호 측정 시스템은, 사용자의 생체 신호 및 사용자의 움직임 상태를 측정하는 생체 신호 측정 장치 및 생체 신호를 분석하는 분석 장치를 포함하고, 상기 생체 신호 측정 장치는, 상기 측정된 생체 신호 및 움직임 상태에 기초하여 상기 측정된 생체 신호를 선택적으로 압축하여 상기 분석 장치로 전송하고, 상기 분석 장치는, 상기 전송된 생체 신호를 압축 해제하여 상기 측정된 생체 신호를 분석할 수 있다.
한편, 상기 목적을 달성하기 위한 본 개시의 일 실시 예에 따른 전자 장치의 신호 처리 방법은, 사용자의 생체 신호를 측정하는 단계, 상기 측정된 생체 신호의 주기성을 판별하는 단계 및 판별된 주기성에 따라 상기 측정된 생체 신호를 선택적으로 압축하는 단계를 포함할 수 있다.
그리고, 상기 사용자의 움직임 정도를 감지하는 단계를 더 포함하고, 상기 압축하는 단계는, 상기 감지된 움직임 정도가 기설정된 임계 값 이하이고, 상기 측정된 생체 신호가 주기성을 갖는 경우, 상기 측정된 생체 신호를 압축할 수 있다.
또한, 상기 주기성을 판별하는 단계는, 상기 측정된 생체 신호로부터 복수의 피크들을 검출하는 단계 및 상기 검출된 복수의 피크들 사이의 간격에 기초하여 상기 생체 신호의 주기성을 판별하는 단계를 포함할 수 있다.
그리고, 상기 선택적으로 압축하는 단계는, 상기 측정된 생체 신호의 평균값을 이용하여 차분 신호를 생성하는 단계 및 상기 생성된 차분 신호 및 상기 생성된 차분 신호를 표현하기 위한 비트 수를 이용하여 상기 생체 신호를 압축하는 단계를 포함할 수 있다.
한편, 상기 목적을 달성하기 위한 본 개시의 다른 실시 예에 따른 전자 장치의 신호 처리 방법은, 사용자의 생체 신호를 측정하는 단계, 상기 사용자의 움직임 정도를 감지하는 단계 및 상기 감지된 움직임 정도가 기설정된 임계 값 이하이면, 상기 측정된 생체 신호를 압축하는 단계를 포함할 수 있다.
그리고, 상기 사용자의 움직임 정도를 감지하는 단계는, 가속도 센서를 이용하여 상기 사용자의 움직임 정도를 측정하는 단계 및 상기 가속도 센서에서 측정된 값을 기초로 상기 사용자의 상태를 수면 상태, 휴식 상태, 걷기 상태, 뛰기 상채 중 하나의 상태로 판별하는 단계를 포함할 수 있다.
한편, 본 개시의 일 실시 예에 따른 전자 장치의 신호 처리 방법을 실행하기 위한 프로그램을 포함하는 비일시적 컴퓨터 판독가능 기록매체는, 사용자의 생체 신호를 측정하는 단계, 상기 측정된 생체 신호의 주기성을 판별하는 단계 및 판별된 주기성에 따라 상기 측정된 생체 신호를 선택적으로 압축하는 단계를 포함하는 전자 장치의 신호 처리 방법을 포함할 수 있다.
이상과 같은 본 개시의 다양한 실시 예에 따르면, 생체 신호 데이터의 압축 효율이 향상될 수 있다.
도 1은 본 개시의 일 실시 예에 따른 생체 신호 측정 시스템을 도시한 개념도,
도 2는 본 개시의 일 실시 예에 따른 전자 장치의 구성을 개략적으로 도시한 블럭도,
도 3은 본 개시의 일 실시 예에 따른 전자 장치의 구성을 상세히 설명하기 위한 블럭도,
도 4a 내지 도 4c는 생체 신호의 압축에 따른 데이터의 크기를 설명하기 위한 그래프,
도 5는 주기적인 생체 신호의 일 예를 설명하기 위한 심전도 그래프,
도 6은 복수의 피크들 간의 간격으로 생체 신호의 주기성을 판단하는 방법을 설명하기 위한 도면,
도 7은 본 개시의 일 실시 예에 따른 움직임 센서를 통해 판단할 수 있는 사용자의 상태를 도시한 개념도,
도 8은 본 개시의 일 실시 예에 따른 데이터 압축 방법을 설명하기 위한 도면,
도 9는 본 개시의 일 실시 예에 따른 분석 장치의 구성을 설명하기 위한 블럭도,
도 10은 본 개시의 일 실시 예에 따른 압축 데이터를 모니터링하는 것을 설명하기 위한 도면, 그리고,
도 11 내지 도 13은 본 개시의 다양한 실시 예에 따른 전자 장치의 신호 처리 방법을 설명하기 위한 흐름도이다.
이하에서는 본 개시의 바람직한 실시 예가 첨부된 도면을 참조하여 상세히 설명한다. 본 개시를 설명함에 있어서, 관련된 공지 기능 혹은 구성에 대한 구체적인 설명이 본 개시의 요지를 불필요하게 흐릴 수 있다고 판단된 경우 그 상세한 설명은 생략한다. 그리고 후술되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자 또는 관례 등에 따라 달라질 수 있다. 그러므로 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.
제1, 제2 등과 같이 서수를 포함하는 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 구성요소들은 용어들에 의해 한정되지는 않는다. 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다. 및/또는 이라는 용어는 복수의 관련된 항목들의 조합 또는 복수의 관련된 항목들 중의 어느 하나의 항목을 포함한다.
본 명세서에서 사용한 용어는 실시 예를 설명하기 위해 사용된 것으로, 본 개시를 제한 및/또는 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, 포함하다 또는 가지다 등의 용어는 명세서상에 기재된 특징, 숫자, 동작, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 동작, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
도 1은 본 개시의 일 실시 예에 따른 생체 신호 측정 시스템(1000)을 도시한 도면이다. 도 1을 참조하면, 생체 신호 측정 시스템(1000)은 생체 신호 측정 장치(100) 및 분석 장치(200)를 포함할 수 있다. 본 명세서에서는 생체 신호 측정 장치(100)를 전자 장치(100)로 기재할 수 있으며, 분석 장치(200)를 외부 장치(200)로 기재할 수 있음을 알려둔다.
본 개시의 일 실시 예에 따른 생체 신호 측정 장치(100)는 연속적으로 사용자의 생체 신호를 측정할 수 있다. 도 1의 실시 예에서 생체 신호 측정 장치(100)는 웨어러블 기기의 일종인 스마트 와치의 형태로 구현되었으나 이에 한정되지 않는다. 예를 들어, 생체 신호 측정 장치(100)는 패치, 안경, 모자, 머리띠, 이어폰, 헤드셋 등 다양한 형태로 구현될 수 있다. 그리고, 생체 신호 측정 장치(100)에서 측정 가능한 생체 신호의 예는 심전도(ECG, electrocardiogram), 뇌파(EEG, electroencephalography), 근전도(EMG, electromyography), 안전도(EOG, electrooculography), 광혈류량(PPG, photoplethsmography)을 들 수 있다. 하지만, 생체 신호 측정 장치(100)에서 측정 가능한 생체 신호가 위의 예들로 한정되는 것은 아니다.
본 개시의 일 실시 예에 따른 분석 장치(200)는 생체 신호 측정 장치(100)에서 측정된 생체 신호를 분석할 수 있다. 도 1의 실시 예에서 분석 장치(200)는 스마트폰으로 구현되었으나 이에 한정되지 않는다. 예를 들어, 분석 장치(200)는 타블렛, PC, 랩탑 등 다양한 형태로 구현될 수 있다.
본 개시의 일 실시 예에 따르면, 생체 신호 측정 장치(100)는 사용자의 생체 신호 및 움직임을 측정할 수 있다. 생체 신호 측정 장치(100)는 측정된 생체 신호 및 움직임 상태 중 적어도 하나에 기초하여 측정된 생체 신호를 압축할 것인지 판단할 수 있다. 예를 들어, 측정된 생체 신호가 주기적이거나 사용자의 움직임이 적은 경우에, 생체 신호 측정 장치(100)는 측정된 생체 신호를 압축할 수 있다. 비주기적 신호나 움직임이 많은 경우에 생체 신호 측정 장치(100)가 데이터 압축을 수행할 경우 압축 효율이 떨어지게 된다. 심지어, 특정 압축 알고리즘에서는 오히려 압축으로 데이터 양이 증가하는 문제점이 발견되었다. 생체 신호 측정 장치(100)의 압축 수행 판단에 관한 구체적인 기준은 후술하기로 한다. 이어서, 생체 신호 측정 장치(100)는 압축 또는 비압축된 생체 신호 데이터를 저장하거나 분석 장치(200)로 전송할 수 있다.
분석 장치(200)는 생체 신호 측정 장치(100)로부터 압축 또는 비압축된 생체 신호 데이터를 수신할 수 있다. 예를 들어, 분석 장치(200)는 생체 신호 측정 장치(100)로부터 압축된 생체 신호 데이터를 수신하여 압축 해제할 수 있다. 그리고, 분석 장치(200)는 압축 해제된 생체 신호 데이터를 후처리하거나 분석할 수 있다.
상술한 바와 같은 본 개시의 일 실시 예에 따른 생체 신호 측정 시스템(1000)에 따르면, 압축 효율을 증대시킴으로써 데이터의 저장 또는 전송량을 줄일 수 있다. 이에 따라, 전력 소모 감소, 데이터 전송 시간 단축, 필요 메모리 용량의 감소 등의 효과가 발생한다.
도 2는 본 개시의 일 실시 예에 따른 전자 장치(100)의 구성을 개략적으로 설명하기 위한 블럭도이다. 도 2를 참조하면, 전자 장치(100)는 센서(110) 및 프로세서(120)를 포함할 수 있다.
센서(110)는 사용자의 생체 신호를 측정할 수 있다. 센서(110)는 다양한 형태의 아날로그 전단(AFE, Analog Front End)으로 구현될 수 있다. 전자 장치(100)가 사용자의 다양한 신체 부위에 착용할 수 있는 형태로 구현될 수 있는바, 센서(110)는 전자 장치(100)를 착용한 사용자의 신체와 접촉하여 다양한 생체 신호를 측정할 수 있다.
프로세서(120)는 측정된 생체 신호의 주기성을 판별할 수 있다. 그리고, 프로세서(120)는 판별된 주기성에 따라 측정된 생체 신호를 선택적으로 압축할 수 있다. 예를 들어, 측정된 생체 신호가 주기적인 피크를 갖는 경우에 프로세서(120)는 측정된 생체 신호를 압축할 수 있다. 주기적인 신호를 압축하는 것이 비주기적 신호를 압축하는 것에 비해 데이터 압축 효율이 월등히 높기 때문이다.
생체 신호 중 주기적으로 피크 검출이 가능한 신호의 경우, 프로세서(120)는 측정된 생체 신호로부터 복수의 피크들을 검출하여 주기적인 신호인지 여부를 판단할 수 있다. 복수의 피크들 사이의 간격이 기설정된 범위 이내의 변동(fluctuation)만이 존재하는 경우, 프로세서(120)는 측정된 생체 신호가 주기적인 신호인 것으로 판단할 수 있다. 반대로 비주기적으로 피크가 검출되거나 피크를 검출할 수 없는 경우에, 프로세서(120)는 측정된 생체 신호가 비주기적인 신호인 것으로 판단할 수 있다.
측정된 생체 신호가 주기적인 신호인 것으로 판별된 경우, 프로세서(120)는 생체 신호를 압축할 수 있다. 그리고, 프로세서(120)는 압축된 생체 신호를 저장하거나 외부 장치(200)로 전송할 수 있다. 예를 들어, 프로세서(120)는 측정된 생체 신호의 평균 값을 이용하여 차분 신호를 생성할 수 있다. 그리고, 프로세서(120)는 생성된 차분 신호 및 상기 생성된 차분 신호를 표현하기 위한 비트 수를 이용하여 생체 신호를 압축할 수 있다.
이와 같이 본 개시의 일 실시 예에 따른 전자 장치(100)는 측정된 생체 신호 데이터 압축을 위한 선행 조건을 적용할 수 있다. 이에 따라, 데이터를 압축하는 것이 보다 효율적인 경우에만 데이터 압축을 수행하여, 압축 효율을 증대시키는 효과가 발생한다.
도 3은 본 개시의 일 실시 예에 따른 전자 장치(100)의 구성을 상세히 설명하기 위한 도면이다. 도 3을 참조하면 전자 장치(100)는 센서(110), 프로세서(120), 움직임 센서(130), 통신부(140), 저장부(150), 디스플레이(160), 알람부(170)를 포함할 수 있다.
센서(110)는 다양한 형태의 아날로그 전단으로 구현되어 복수 종류의 생체 신호를 측정할 수 있다. 센서(110)는 전자 장치(100)를 착용한 사용자의 신체와 접촉하여 다양한 생체 신호를 측정할 수 있다. 예를 들어, 센서(110)는 심전도(ECG), 뇌파(EEG), 근전도(EMG), 안전도(EOG), 광혈류량(PPG) 중 적어도 하나를 측정할 수 있다.
움직임 센서(130)는 사용자의 움직임 정도를 감지할 수 있다. 예를 들어, 감지된 사용자의 움직임 정도가 기설정된 임계 값 이하이면, 프로세서(120)는 센서(110)에서 측정된 생체 신호를 압축할 수 있다. 반대로, 감지된 사용자의 움직임 정도가 기설정된 임계 값 이상이면, 프로세서(120)는 센서(110)에서 측정된 생체 신호를 압축하지 않고 그대로 외부 장치(200)에 전송하거나 저장부(150)에 저장할 수 있다.
움직임 센서(130)는 사용자의 움직임 상태를 판별할 수 있다. 예를 들어, 움직임 센서(130)는 가속도 센서를 포함할 수 있다. 생체 신호의 특성상 사용자의 움직임이 많아지면, 생체 신호의 주기성이 떨어진다. 즉, 사용자가 제자리에 머물러 있을때에 주기적인 생체 신호로 판단된 경우라도, 사용자의 움직임이 많아지면 생체 신호의 주기성이 현격히 떨어지게 된다.
가속도 센서는 단위 시간에 대한 속도의 변화량을 감지한다. 가속도 센서는 3축으로 구현될 수 있다. 3축 가속도 센서로 구현된 경우에는 가속도 센서는 서로 다른 방향으로 배치되어 서로 직교하는 X, Y, Z축 가속도 센서를 구비한다.
가속도 센서는 X, Y, Z축 가속도 센서 각각의 출력값을 디지털 값으로 변환하여 전처리부로 제공한다. 이때 전처리부는 쵸핑회로, 증폭회로, 필터, 및 A/D 컨버터(A/D converter) 등을 포함할 수 있다. 이에 따라, 3축 가속도 센서로부터 출력된 전기적 신호를 쵸핑, 증폭, 필터링한 후, 디지털 전압값으로 변환한다.
움직임 센서(130)는 가속도 센서 이외에 각속도 센서, 지자기 센서 등을 더 포함할 수 있다. 복수의 종류의 센서에서 측정된 값을 조합함으로써, 움직임 센서(130)는 보다 정확히 사용자의 움직임 상태를 판별할 수 있다.
각속도 센서는 단위 시간 동안 전자 장치(100)의 기 설정된 방향의 변화량을 감지하여 각속도를 감지하는 구성이다. 각속도 센서는 3축을 갖는 자이로스코프가 사용될 수 있다.
지자기 센서는 자기장의 흐름을 검출하여 방위각을 탐지할 수 있는 센서이다. 지자기 센서는 전자 장치(100)의 방위좌표를 검출하게 되고, 방위좌표를 토대로 전자 장치(100)가 놓여진 방향을 검출할 수 있다.
지자기 센서는, 플럭스게이트(flux-gate) 등을 이용하여 지자기에 의해 유도되는 전압값을 측정하는 방식으로 지자기를 검출한다. 지자기 센서는 2축 또는 3축으로 구현될 수 있다. 이 경우, 각 축 지자기 센서에서 산출되는 지자기 출력값은 주변 자기장 크기에 따라 달라지므로, 지자기 출력값을 기 설정된 범위(예를 들어, -1 내지 1)내로 매핑시키는 정규화를 수행하는 것이 일반적이다. 정규화는 스케일 값 또는 오프셋 값과 같은 정규화 인자를 이용하여 수행한다. 정규화 인자를 연산하기 위해서는 먼저 지자기 센서를 수차례 회전시키면서 그 출력값을 산출한 후, 출력값 중 최대값 및 최소값을 검출하여야 한다. 정규화 인자를 이용하여 정규화된 값은 방위각 보정 작업에 사용된다.
통신부(140)는 유선 또는 무선으로 외부 장치(200)와 통신할 수 있다. 예를 들어, 통신부(140)는 압축된 생체 신호 데이터를 외부 장치(200)에 송신할 수 있다.
예를 들어, 통신부(140)는 무선 통신 방식으로 NFC(Near Field Communication), 무선 LAN(Wireless LAN), IR(InfraRed) 통신, Zigbee 통신, WiFi, 블루투스(Bluetooth) 등 다양한 방식을 이용할 수 있다. 그리고, 통신부(140)는 유선 통신 방식으로 HDMI(High Definition Multimedia Interface), LVDS(Low Voltage Differential Signaling), LAN(Local Area Network), USB(Universal Serial Bus) 등 다양한 방식을 이용할 수 있다.
또한, 통신부(140)는 의료 영상 정보 시스템(PACS)를 통해 연결된 병원 서버나 병원 내의 다른 의료 장치와 데이터를 송수신할 수도 있다. 또한, 통신부(140)는 의료용 디지털 영상 및 통신(DICOM, Digital Imaging and Communications in Medicine) 표준에 따라 데이터 통신을 할 수도 있다.
저장부(150)에는 측정된 생체 신호 또는 압축된 생체 신호가 저장될 수 있다. 또한, 저장부(150)는 전자 장치(100)를 구동하고 제어하는 다양한 데이터, 프로그램 또는 어플리케이션을 저장할 수 있다. 저장부(150)는 전자 장치(100)를 동작시키기 위해 필요한 각종 프로그램 등이 저장되는 저장매체로서, 플래시 메모리, 하드디스크 등으로 구현 가능하다. 예를 들어, 저장부(150)는 SD 카드의 형태로 구현될 수 있다.
그리고, 저장부(150)는 전자 장치(100)의 동작 수행을 위한 프로그램을 저장하기 위한 ROM, 전자 장치(100)의 동작 수행에 따른 데이터를 일시적으로 저장하기 위한 RAM 등을 구비할 수 있다. 또한, 각종 참조 데이터를 저장하기 위한 EEPROM(Electrically Erasable and Programmable ROM) 등을 더 구비할 수 있다.
디스플레이(160)는 측정된 생체 신호에 관한 화면을 표시할 수 있다. 예를 들어, 디스플레이(160)는 측정된 심전도 정보를 시간에 대한 그래프의 형태로 화면에 표시할 수 있다. 그리고, 디스플레이(160)는 측정된 생체 신호에 대한 추가 정보를 제공하는 UI를 표시할 수도 있다.
또한, 디스플레이(160)는 압축된 생체 신호를 이용하여 압축 효율을 모니터링할 수 있는 화면을 표시할 수 있다. 그리고, 디스플레이(160)는 압축 효율이 기설정된 레벨 이하일 때, 측정된 생체 신호의 압축을 중단하도록 제어할 수 있는 버튼을 GUI의 형태로 표시할 수도 있다.
디스플레이(160)는 터치패드와 함께 상호 레이어 구조를 이루는 터치 스크린의 형태로도 구현될 수 있으며, 터치 스크린은 터치 입력 위치, 면적, 터치 입력의 압력 등을 통해 사용자 명령을 입력받을 수 있다.
알람부(170)는 사용자에게 알람을 제공할 수 있다. 예를 들어, 알람부(170)는 사용자에게 시각 신호, 청각 신호, 촉각 신호 등을 이용하여 메시지를 제공할 수 있다. 알람부(170)에서 제공되는 메시지는 전자 장치(100)의 조작과 관련된 메시지, 생체 신호 측정 진행에 관련된 메시지, 생체 신호 분석 결과에 대한 메시지 등을 포함할 수 있다.
그 밖에 전자 장치(100)는 사용자 입력부(미도시), 무선 충전부(미도시) 등을 더 포함할 수 있다.
사용자 입력부는 사용자로부터 전자 장치(100)를 제어하기 위한 입력을 받을 수 있다. 예를 들어, 사용자 입력부는 키 패드, 마우스, 터치 패널, 터치 스크린, 트랙 볼, 조그 스위치 등으로 구현될 수 있다. 또한, 사용자 입력부는 음성 인식 센서, 지문 인식 센서, 모션 인식 센서 등으로 구현될 수도 있다.
무선 충전부는 자기 유도 방식 또는 자기 공진 방식을 이용하여 전자 장치(100)의 전원을 충전할 수 있다. 자기 유도 방식은 전자기 유도를 통해 전류를 흐르게 해 충전용 패드 1차 코일에서 발생한 자가장이 충전 대상 물체에 구비된 2차 코일에 유도되어 전류를 공급하는 기술이다. 자기 공진 방식은 충전 패드와 충전 대상 물체에 같은 주파수의 공진 코일을 탑재하고, 공진을 이용하여 전력을 주파수에 실어보내는 기술이다. 특히, 전자 장치(100)가 휴대용 장치로 구현된 경우에, 전자 장치(100)는 무선 충전부를 포함할 수 있다. 하지만, 휴대용 장치로 구현된 경우에도 유선 충전, 배터리를 이용한 전원 공급 등 다양한 방식으로 구현될 수 있는바, 전자 장치(100)의 전원 충전 방식이 무선 충전 방식으로 제한되는 것은 아니다.
프로세서(120)는 전자 장치(100)의 전반적인 구성을 제어할 수 있다. 프로세서(120)는 센서(110) 및 움직임 센서(130) 중 적어도 하나에서 측정된 정보를 바탕으로 생체 신호를 압축할 것인지 결정할 수 있다.
예를 들어, 프로세서(120)는 센서(110)에서 측정된 생체 신호로부터 복수의 피크들을 검출하고, 복수의 피크들이 일정 간격으로 발생되었는지 판단할 수 있다. 만일 복수의 피크들이 일정 간격으로 발생되는 주기성을 갖는 것으로 판단되면, 프로세서(120)는 측정된 생체 신호를 압축할 수 있다.
다른 예로, 프로세서(120)는 움직임 센서(130)에서 측정된 정보를 이용하여 사용자의 움직임 상태를 판별할 수 있다. 사용자의 움직임이 적은 상태로 판단되면, 프로세서(120)는 센서(110)에서 측정된 생체 신호를 압축할 수 있다.
이와 같이 프로세서(120)는 측정된 생체 정보를 모두 압축하는 것이 아닌 생체 정보의 질 및 사용자의 움직임 중 적어도 하나에 기초하여 압축을 수행할 것인지를 결정할 수 있다. 이러한 선택적 압축은 압축 효율에 직접적인 영향을 미친다.
도 4a 내지 도 4c는 생체 신호의 압축에 따른 데이터의 크기를 설명하기 위한 도면이다. 도 4a는 프로세서(120)가 압축하는 것으로 판단한 경우에 데이터를 압축한 결과에 대한 도면이다. 도 4b는 프로세서(120)가 압축하지 않는 것으로 판단한 경우에 데이터를 강제적으로 압축한 결과에 대한 도면이다. 그리고, 도 4c는 비압축 데이터를 도시한 도면이다. 도 4c를 참조하면 비압축의 경우 데이터의 크기가 16 bit임을 알 수 있다.
예를 들어, 프로세서(120)는 측정된 생체 신호가 주기적인 것으로 판단되면 생체 신호를 압축할 수 있다. 도 4a을 참조하면, 프로세서(120)는 16 bit의 데이터를 압축하여 5 ~ 16 bit의 크기를 갖는 데이터로 만들 수 있다.
도 4b는 측정된 생체 신호가 주기적이 아니거나, 사용자의 움직임이 많은 경우에 강제적으로 데이터를 압축한 결과를 나타낸다. 도 4b를 참조하면, 압축된 데이터의 크기는 12 ~ 19 bit임을 확인할 수 있다. 즉, 압축 효율이 현저히 낮거나, 오히려 데이터의 크기가 늘어난 것을 알 수 있다.
즉, 본 개시의 일 실시 예에 따른 전자 장치(100)와 같이 생체 신호를 선택적 압축하지 않을 경우, 압축에 따른 효과가 현저히 적게 나타나는 것을 확인할 수 있다. 프로세서(120)의 압축 여부 판단 및 압축 방법에 대해서는 아래에서 보다 구체적으로 설명하기로 한다.
본 개시의 다양한 실시 예에 따른 전자 장치(100)의 전술한 구성요소들 각각은 하나 또는 그 이상의 부품(component)으로 구성될 수 있으며, 해당 구성 요소의 명칭은 기기의 종류에 따라서 달라질 수 있다. 본 개시의 다양한 실시 예에 따른 전자 장치(100)는 전술한 구성요소 중 적어도 하나를 포함하여 구성될 수 있으며, 일부 구성요소가 생략되거나 또는 추가적인 다른 구성요소를 더 포함할 수 있다. 또한, 본 개시의 다양한 실시 예에 따른 전자 장치(100)의 구성 요소들 중 일부가 결합되어 하나의 개체(entity)로 구성됨으로써, 결합 되기 이전의 해당 구성 요소들의 기능을 동일하게 수행할 수 있다.
본 개시의 일 실시 예에 따르면 생체 신호 중 주기적으로 피크를 검출할 수 있는 신호의 경우에, 프로세서(120)는 주기적인 피크를 검출할 수 있는지에 따라 생체 신호 데이터를 압축할 것인지 판단할 수 있다. 생체 신호 중 주기적으로 피크를 검출할 수 있는 신호의 예로는 심전도(ECG), 광혈류량(PPG)가 있다.
도 5는 주기적인 생체 신호의 일 예인 심전도 신호를 도시한 도면이다. 심전도는 심장의 전기적 활동에 대한 기록이다. 심근이 매 심장 박동마다 탈분극(depolarization)을 하기 때문에, 센서(110)는 피부에서 미세한 전기 신호를 검출하여 증폭할 수 있다. 이와 같이 심장 박동 주기마다 피크를 검출할 수 있기 때문에 심전도는 대표적인 주기적 생체 신호에 해당한다.
도 5에 도시된 바와 같이 심전도 신호는 P파, QRS파, T파의 세 가지 파장으로 형성된다. P파는 심방이 탈분극할 때 발생하며, QRS파는 심실이 탈분극할 때 발생한다. 그리고, T파는 심실이 재분극(repolarization)할 때 발생한다. 심전도 신호에서 가장 큰 피크는 R 피크에 해당되기 때문에, R 피크들 사이의 간격으로 심장 주기가 판단될 수 있다. 이러한 R 피크들 사이의 간격을 RRI(R-R Interval)라고 부른다.
본 개시의 일 실시 예에 따르면, 프로세서(120)는 측정된 심전도 신호로부터 R 피크들을 검출할 수 있다. 그리고, 프로세서(120)는 검출된 R 피크들 사이의 간격(RRI) 값에 기초하여 주기적인 생체 신호인지를 판단할 수 있다.
만일 측정된 심전도 신호로부터 R 피크를 검출할 수 없는 경우나, 비주기적으로 R 피크들이 발생하는 경우에, 프로세서(120)는 측정된 심전도 신호를 압축하지 않을 수 있다. 반대로, 도 6과 같이 측정된 심전도 신호가 주기적으로 발생하는 경우, 프로세서(120)는 측정된 심전도 신호를 압축할 수 있다.
도 6을 살펴보면, 프로세서(120)는 측정된 생체 신호로부터 6개의 피크들을 검출할 수 있다. 그리고, 프로세서(120)는 각 피크들 사이의 간격(t1, t2, t3, t4, t5)을 측정할 수 있다. 예를 들어, 프로세서(120)는 피크들 사이의 간격이 15% 범위 이내에서 형성될 경우 주기적인 신호가 측정된 것으로 판단할 수 있다. 수학식 1과 같이 t1이 기준 시간 tref와 15% 이내로 차이가 날 경우, 프로세서(120)는 피크가 주기적인 것으로 판단할 수 있다.
Figure 112015120127788-pat00001
예를 들어, tref는 측정된 RRI들(t1, t2, t3, t4, t5)의 평균값으로 설정될 수 있다. 다른 예로, tref는 사용자에 의해 기설정된 값일 수도 있다.
본 개시의 일 실시 예에 따르면, 프로세서(120)는 기설정된 개수의 생체 신호가 측정되면, 측정된 기설정된 개수의 생체 신호마다 주기성을 판단할 수 있다. 도 6을 예로 들어 설명하면, 프로세서(120)는 6개의 피크가 검출되면, 6개의 피크들 사이의 5개의 RRI 값을 통해 생체 신호의 주기성을 판단할 수 있다. 그리고 프로세서(120)는 기설정된 개수마다 데이터 압축 여부를 결정하여 선택적으로 압축을 수행할 수 있다. 다른 실시 예에서, 프로세서(120)는 연속적으로 주기성을 판단하여 압축/비압축 판단이 달라지는 경우마다 데이터 압축을 수행할 수도 있다.
도 6에 도시된 심전도(ECG) 이외에 광혈류량(PPG)이 대표적인 주기적인 생체 신호에 해당한다. PPG는 광을 인체 특정 부위에 조사하여 조직에 흡수되거나 반사되는 정도를 측정함으로써 혈류를 측정하는 방법이다. 광을 조사하면 혈액 내 헤모글로빈 변화에 의해 빛의 투과 정도가 변하게 되며, 이러한 변화량은 혈류에 의한 것으로 볼 수 있다.
예를 들어, 센서(110)는 LED의 녹색 광을 이용하여 PPG를 측정할 수 있다. 센서(110)는 사용자의 특정 부위(예를 들어, 스마트 와치로 전자 장치(100)가 구현된 경우, 사용자의 손목)에 LED 녹색 광을 비치고, 광다이오드를 통해 녹색 광의 흡수량을 측정할 수 있다.
다른 방식으로, 센서(110)는 적색 광 또는 적외선을 이용하여 PPG를 측정할 수도 있다. 센서(110)는 적색 광 또는 적외선을 사용자의 특정 부위에 비추고, 광다이오드를 통해 적색 광 또는 적외선의 반사량을 측정할 수 있다.
상술한 심전도(ECG), 광혈류량(PPG) 이외에도 센서(110)는 다양한 종류의 생체 신호를 측정할 수 있다. 그리고, 프로세서(120)는 측정된 복수 종류의 생체 신호를 함께 압축할 수 있다.
본 개시의 일 실시 예에 따르면 프로세서(120)는 센서(110)에서 측정된 생체 신호 자체의 특성뿐 아니라, 움직임 센서(130)에서 측정된 사용자의 움직임에 따라 생체 신호 데이터를 압축할 것인지를 결정할 수 있다. 예를 들어, 움직임 센서(130)에서 감지된 사용자의 움직임 정도가 기설정된 임계 값 이하이면, 프로세서(120)는 센서(110)에서 측정된 생체 신호 데이터를 압축할 수 있다.
생체 신호의 특성상 사용자의 움직임이 많아지면 데이터의 반복성이 떨어지게 된다. 이러한 특성을 이용하여, 본 개시의 일 실시 예에 따른 전자 장치(100)는 가속도 센서와 같은 움직임 센서(130)를 이용하여 사용자의 움직임을 측정할 수 있다. 그리고, 프로세서(120)는 움직임 센서(130)에서 측정된 값을 이용하여 사용자의 움직임 상태를 파악할 수 있다. 사용자의 움직임 상태를 판단하는데 사용되는 알고리즘은 다양한 종류의 알고리즘이 사용될 수 있으며, 본 명세서에서는 그 종류를 한정하여 설명하지 않는다. 움직임 센서(130)의 데이터를 이용하여 사용자의 움직임 상태를 구분할 수 있는 알고리즘이라면 제한 없이 본 개시의 일 실시 예에 따른 전자 장치(100)에 적용 가능하다.
도 7은 가속도 센서를 이용하여 사용자의 움직임을 판단하는 것을 도시한 개념도이다. 본 개시의 일 실시 예에 따르면 움직임 센서(130)는 가속도 센서를 포함할 수 있다. 프로세서(120)는 가속도 센서에서 측정된 값을 기초로 사용자의 상태를 판단할 수 있다. 예를 들어, 프로세서(120)는 사용자의 상태를 수면 상태, 휴식 상태, 걷기 상태, 뛰기 상태 중 하나로 판별할 수 있다.
도 7의 좌측에 도시된 수면 상태 및 휴식 상태로 사용자의 상태가 판단되면, 프로세서(120)는 센서(110)에서 측정된 생체 신호를 압축할 수 있다. 움직임 정도가 적은 경우에는 생체 신호의 반복성이 유지될 가능성이 크기 때문이다. 예를 들어, 프로세서(120)는 기설정된 임계 값과 사용자의 움직임 정도를 비교하여 생체 신호 압축 여부를 결정할 수도 있다. 수면 상태 및 휴식 상태의 경우(기설정된 임계 값보다 사용자의 움직임 정도가 작은 경우), 프로세서(120)는 센서(110)에서 측정된 생체 신호를 압축할 수 있다.
반대로, 도 7의 우측에 도시된 걷기 상태 및 뛰기 상태로 사용자의 상태가 판단되면, 프로세서(120)는 센서(110)에서 측정된 생체 신호에 대한 압축을 진행하지 않을 수 있다. 프로세서(120)는 비압축 데이터 자체를 저장부(150)에 저장하거나, 통신부(140)를 제어하여 외부 장치(200)에 전송할 수 있다. 움직임 정도가 큰 경우에는 일반적으로 생체 신호의 반복성이 떨어지며, 센서(110)가 동잡음을 함께 측정할 가능성이 크기 때문이다.
본 개시의 다른 실시 예에 따른 전자 장치(100)는 생체 신호의 주기성 및 사용자의 움직임 정도를 모두 판단하여, 생체 신호의 압축 여부를 결정할 수 있다.
프로세서(120)는 센서(110)에서 측정된 생체 신호가 주기성을 갖는지 판단할 수 있다. 그리고, 프로세서(120)는 움직임 센서(130)에서 감지된 사용자의 움직임 정도를 기설정된 임계 값과 비교할 수 있다.
예를 들어, 측정된 생체 신호가 주기성을 갖는 동시에 사용자의 움직임 정도가 기설정된 임계 값 이하이면, 프로세서(120)는 센서(110)에서 측정된 생체 신호를 압축할 수 있다. 그 밖의 경우에, 프로세서(120)는 측정된 생체 신호에 대한 압축을 진행하지 않을 수 있다.
상술한 바와 같이 본 개시의 다양한 실시 예에 따른 전자 장치(100)는 측정한 생체 신호에 대한 압축 여부를 판단할 수 있다. 이하에서는 전자 장치(100)가 생체 신호에 대한 압축을 진행하는 것으로 판단한 경우에 데이터를 압축하는 방법의 일 예를 설명하기로 한다.
도 8은 본 개시의 일 실시 예에 따른 전자 장치(100)의 데이터 압축 방법을 설명하기 위한 도면이다. 도 8의 실시 예에서는 전자 장치(100)가 데이터를 압축하여 외부 장치(200)로 전송하고, 외부 장치(200)가 데이터를 복원하는 것으로 도시하였다. 하지만, 전자 장치(100) 내부에 데이터를 압축하여 저장하고, 저장된 데이터를 전자 장치(100)가 다시 복원하는 실시 예도 가능하다.
도 8을 참조하면, 프로세서(120)는 측정된 생체 신호 [82, 85, 85, 88]의 개수와 평균값을 계산하여 외부 장치(200)에 전송하도록 통신부(140)를 제어할 수 있다. 생체 신호의 개수는 4개이고 평균값은 85인바, 프로세서(120)는 이들을 2진수로 변환하여 [100][01010101]을 전송할 수 있다.
프로세서(120)가 생체 신호의 개수를 전송하는 이유는 평균값에 반영된 생체 신호가 무엇인지 알아야 하기 때문이다. 그리고, 프로세서(120)가 평균값을 전송하는 이유는 전송하는 차분값을 복원하기 위함이다.
그리고, 프로세서(120)는 측정된 생체 신호의 평균값을 이용하여 차분 신호를 생성할 수 있다. 도 8의 예에서, 프로세서(120)는 [82-85, 85-85, 85-85, 88-85] = [-3, 0, 0, 3]의 차분 신호를 생성할 수 있다.
프로세서(120)는 생성된 차분 신호를 표현하기 위해 사용되는 비트의 개수를 계산할 수 있다. 이는 차분 신호를 FLC(Fixed Length Code) 방식으로 전송하기 위함이다. VLC(Variable Length Code)방식과 비교할 때, FLC 방식은 각 데이터의 시작과 끝을 알 수 있다는 장점이 있다. 도 8의 예에서 프로세서(120)는 차분 신호를 표현하기 위해 사용되는 비트의 개수(FLC 길이)를 2로 계산할 수 있다.
프로세서(120)는 FLC 길이, 차분 신호의 크기, 차분 신호의 부호를 외부 장치(200)로 전송하도록 통신부(140)를 제어할 수 있다. 도 8의 예에서 FLC 길이는 2이고, 차분 신호의 크기는 [3, 0, 0, 3]이며, 차분 신호의 부호는 [-, 0, 0, +]이다. 그리고, 차분 신호가 0인 경우에는 부호에 해당하는 정보는 전송될 필요가 없다. 프로세서(120)는 각각을 2진수로 변환하여 [010][11000011][10]을 전송할 수 있다.
프로세서(120)는 상술한 방식을 통하여 생체 신호 데이터를 압축하고 복원할 수 있다. 다만, 상술한 알고리즘에 한정되어 생체 신호를 압축하거나 복원할 수 있는 것은 아니며, 도 8에 도시된 알고리즘은 본 개시의 일 실시 예에 따른 전자 장치(100)에 적용 가능한 하나의 예시에 해당할 뿐이다. 본 개시의 일 실시 예에 따른 전자 장치(100)는 상술한 기준에 따라 압축을 수행하는 것으로 결정되면, 다양한 방식의 압축 알고리즘을 이용하여 생체 신호 데이터를 압축할 수 있다.
프로세서(120)는 하나의 MCU와 같은 단일 구성요소로 구현될 수도 있고, 압축 수행 여부를 판단하는 구성요소와 압축을 수행하는 구성요소가 각각 별개의 칩으로 구현될 수도 있다.
도 9는 본 개시의 일 실시 예에 따른 외부 장치(200)의 구성을 설명하기 위한 블럭도이다. 도 9를 참조하면, 외부 장치(200)는 통신부(210) 및 프로세서(220)를 포함할 수 있다.
통신부(210)는 전자 장치(100)로부터 압축된 생체 신호 데이터 또는 비압축 생체 신호 데이터를 수신할 수 있다.
프로세서(220)는 통신부(210)를 통해 수신한 생체 신호 데이터를 후처리하고 분석할 수 있다. 통신부(210)에서 압축된 생체 신호 데이터를 수신한 경우, 프로세서(220)는 압축 해제하여 생체 신호 데이터를 복원할 수 있다. 이하에서는 도 8을 참조하여 프로세서(220)가 생체 신호 데이터를 복원하는 과정을 설명하기로 한다.
프로세서(220)는 전송받은 [100][01010101][010][11000011][10]을 이용하여 생체 신호를 복원할 수 있다. 도 8에서는 생체 신호의 개수, 평균값, FLC 길이, 차분 신호의 크기, 차분 신호의 부호 순서로 전달되는 것으로 기재하였으나, 이러한 순서에 한정되는 것은 아니다.
프로세서(220)는 [100]으로부터 생체 신호의 개수를 4개로 복원할 수 있다. 그리고, 프로세서(220)는 [01010101]로부터 생체 신호의 평균값을 85로 복원할 수 있다.
또한, 프로세서(220)는 FLC 길이인 [010]로부터 [11000011]을 2개씩 끊어 해석해야 함을 알 수 있다. 프로세서(220)는 차분 신호의 크기를 2 bit씩 해석하여 [3, 0, 0, 3] 값을 복원할 수 있다. 그리고, 프로세서(220)는 0이 아닌 값에 대해서는 추가적으로 부호에 해당하는 1 bit 정보를 해석할 수 있다. 이에 따라, 프로세서(220)는 차분 신호를 [-3, 0, 0, 3]으로 복원할 수 있다. 최종적으로, 프로세서(220)는 평균값과 차분 신호를 이용하여 [82, 85, 85, 88]과 같이 생체 신호를 복원할 수 있다.
도 10은 본 개시의 일 실시 예에 따른 전자 장치(100)가 압축 데이터를 모니터링하는 것을 설명하기 위한 도면이다.
프로세서(120)는 생체 신호 데이터의 크기를 실시간으로 모니터링할 수 있다. 이를 통해, 프로세서(120)는 압축 효율을 모니터링할 수 있다. 예를 들어, 프로세서(120)는 도 10과 같은 생체 신호 데이터의 크기, 압축 여부 등이 제공되는 GUI를 표시하도록 디스플레이(160)를 제어할 수 있다.
일 실시 예에서, 프로세서(120)는 모니터링된 압축 효율을 이용하여 압축 중단 여부를 결정할 수 있다. 프로세서(120)는 압축 효율이 기설정된 레벨 이하이면, 측정된 생체 신호의 압축을 중단할 수 있다.
다른 실시 예에서, 프로세서(120)는 모니터링된 압축 효율을 이용하여 압축 여부 판단 기준에 대한 피드백을 수행할 수도 있다. 예를 들어, 프로세서(120)는 압축 효율을 모니터링하여 복수의 피크들 사이의 간격이 일정한 것으로 판단하는데 사용되는 기설정된 범위를 조정할 수 있다.
상술한 바와 같은 다양한 실시 예에 따른 전자 장치(100)를 통하여, 생체 신호에 대한 데이터 압축이 효율적으로 이루어지는 구간을 판단할 수 있다. 이에 따라, 데이터 압축 효율이 증대될 수 있다. 데이터 압축 효율 증대에 따라, 데이터 전송 및 저장에 소요되는 전력 소모량이 감소하고, 전송 시간이 단축되며, 저장 메모리 용량이 감소되는 효과를 얻을 수 있다. 또한, 압축된 데이터를 저장하고 전송함에 따라, 생체 신호 데이터에 대한 보안 문제 역시 해결할 수 있다.
도 11 내지 도 13은 본 개시의 다양한 실시 예에 따른 전자 장치(100)의 신호 처리 방법을 설명하기 위한 흐름도이다.
도 11을 참조하면, 전자 장치(100)는 사용자의 생체 신호를 측정할 수 있다(S1110). 예를 들어, 전자 장치(100)는 다양한 종류의 아날로그 전단(AFE, Analog Front End)를 이용하여 사용자의 생체 신호를 측정할 수 있다. 측정 가능한 생체 신호의 예로는 심전도(ECG), 뇌파(EEG), 근전도(EMG), 안전도(EOG), 광혈류량(PPG)를 들 수 있다.
이어서, 전자 장치(100)는 측정된 생체 신호의 주기성을 판별할 수 있다(S1120). 예를 들어, 전자 장치(100)는 측정된 생체 신호로부터 복수의 피크를 검출하고, 검출된 피크들 사이의 간격이 기설정된 범위 이내에서 일정한지 판단할 수 있다. 반복적인 데이터의 경우 압축 효율이 높기 때문에, 전자 장치(100)는 측정된 생체 신호의 주기성을 판별하여 반복적인 데이터에 해당하는지 여부를 판단할수 있다.
전자 장치(100)는 판별된 주기성에 따라 측정된 생체 신호를 선택적으로 압축할 수 있다(S1130). 만일 측정된 생체 신호가 주기적인 신호인 것으로 판별되면, 전자 장치(100)는 측정된 생체 신호에 대한 압축 과정을 진행할 수 있다. 반대로 측정된 생체 신호가 비주기적인 것으로 판별되면, 전자 장치(100)는 측정된 생체 신호를 비압축 상태 그래도 저장하거나 외부 장치(200)로 전송할 수 있다.
도 12는 본 개시의 일 실시 예에 따른 전자 장치(100)의 신호 처리 방법을 설명하기 위한 흐름도이다. 도 12의 실시 예는 측정된 생체 신호의 주기성을 판단하여 생체 신호 압축 여부를 판단하는 방법을 도시하고 있다.
도 12를 참조하면, 전자 장치(100)는 사용자의 생체 신호를 측정할 수 있다(S1210). 그리고, 전자 장치(100)는 측정된 사용자의 생체 신호로부터 복수의 피크를 검출할 수 있다(S1220). 만일 피크 검출이 불가능한 경우에 전자 장치(100)는 측정된 생체 신호를 비압축 상태 그대로 저장하거나 외부 장치(200)에 전송할 수 있다.
복수의 피크가 검출된 경우에도, 전자 장치(100)는 검출된 복수의 피크들 사이의 간격에 기초하여 생체 신호의 주기성을 판별할 수 있다. 전자 장치(100)는 복수의 피크들 사이의 간격이 기설정된 범위 이내인지 판단할 수 있다(S1230). 예를 들어, 복수의 피크들 사이의 간격이 기준 간격 값과 15 % 이내로 차이가 날 경우, 전자 장치(100)는 측정된 생체 신호가 주기적인 것으로 판단할 수 있다. 기준 간격 값은 측정된 피크들 사이의 간격의 평균 값이거나 기설정된 값일 수 있다. 그리고, 전자 장치(100)는 압축 효율을 모니터링하여 기설정된 기준 값 또는 기설정된 범위(예를 들어 15 %)를 조정할 수 있다.
만일 복수의 피크들 사이의 간격이 기설정된 범위 이내이면(S1230-Y), 전자 장치(100)는 측정된 생체 신호를 압축할 수 있다(S1240). 전자 장치(100)는 다양한 압축 알고리즘을 이용하여 측정된 생체 신호를 압축할 수 있다. 또한, 전자 장치(100)는 압축을 수행하여 암호화 과정을 추가적으로 수행할 수도 있다. 그리고, 전자 장치(100)는 압축된 생체 신호 데이터를 저장하거나 전송할 수 있다(S1250).
예를 들어, 전자 장치(100)는 측정된 생체 신호의 개수, 평균값, 차분 신호의 값을 이용하여 측정된 생체 신호를 압축할 수 있다. 전자 장치(100)는 측정된 생체 신호의 평균값을 이용하여 차분 신호를 생성할 수 있다. 그리고, 전자 장치(100)는 생성된 차분 신호, 생성된 차분 신호를 표현하기 위한 비트 수를 이용하여 측정된 생체 신호를 압축할 수 있다.
만일 복수의 피크들 사이의 간격이 기설정된 범위를 벗어나면(S1230-N), 전자 장치(100)는 측정된 생체 신호를 비압축 상태로 저장하거나 전송할 수 있다(S1250).
도 13은 본 개시의 일 실시 예에 따른 전자 장치(100)의 신호 처리 방법을 설명하기 위한 흐름도이다. 도 13의 실시 예는 전자 장치(100)의 움직임 정도로부터 사용자의 움직임 상태를 판별하고, 판별된 움직임 상태에 기초하여 생체 신호 압축 여부를 판단하는 방법을 도시하고 있다.
도 13을 참조하면, 전자 장치(100)는 사용자의 생체 신호를 측정할 수 있다(S1310). 그리고, 전자 장치(100)는 추가적으로 사용자의 움직임 정도를 측정할 수 있다(S1320). 예를 들어, 전자 장치(100)는 가속도 센서를 이용하여 전자 장치(100)의 움직임 정도를 측정함으로써, 전자 장치(100)의 사용자의 움직임 정도를 측정할 수 있다.
전자 장치(100)는 다양한 알고리즘을 이용하여 사용자의 움직임 상태를 판단할 수 있다. 전자 장치(100)는 가속도 센서에서 측정된 값을 기초로 사용자의 상태를 수면 상태, 휴식 상태, 걷기 상태, 뛰기 상태 중 하나의 상태로 판별할 수 있다. 전자 장치(100)는 가속도 센서 이외에도 측정된 생체 신호를 조합하여 사용자의 상태를 판별할 수도 있다. 예를 들어, 가속도 센서에서 측정된 값과 뇌파의 측정 값을 조합하여 전자 장치(100)는 사용자가 수면 상태에 있음을 판단할 수 있다.
도 13의 실시 예에서, 전자 장치(100)는 측정된 움직임 정도에 따라 생체 신호의 압축 여부를 결정할 수 있다(S1330). 측정된 움직임 정도가 기설정된 레벨 이상이면(S1330-Y), 전자 장치(100)는 비압축 상태로 측정된 생체 신호를 저장 또는 전송할 수 있다(S1350). 일반적으로 움직임 정도가 큰 경우에 생체 신호는 반복적인 데이터 형태를 갖지 못한다. 데이터가 반복적이지 않을 경우 압축을 수행하더라도 압축 효율이 극히 낮으며, 일부의 경우에 오히려 데이터 크기가 증가하는 문제점이 발생한다.
만일 측정된 움직임 정도가 기설정된 레벨 이하이면(S1330-N), 전자 장치(100)는 측정된 생체 신호를 압축할 수 있다(S1340). 예를 들어, 전자 장치(100)는 측정된 생체 신호의 개수 및 평균값을 계산할 수 있다. 그리고, 전자 장치(100)는 평균값을 이용하여 측정된 생체 신호로부터 차분 신호를 생성할 수 있다. 전자 장치(100)는 차분 신호를 표현하기 위한 비트 수, 차분 신호의 크기, 차분 신호의 부호를 계산할 수 있다. 전자 장치(100)는 생체 신호의 개수, 평균값, 차분 신호를 표현하기 위한 비트 수, 차분 신호의 크기, 차분 신호의 부호를 저장 또는 전송하는 방식으로 생체 신호 데이터를 압축할 수 있다.
마지막으로 전자 장치(100)는 압축된 생체 신호 데이터 또는 비압축된 생체 신호 데이터를 저장하거나 외부 장치(200)에 전송할 수 있다(S1350). 이때, 전자 장치(100)는 보안을 위하여 암호화 과정을 추가적으로 수행할 수도 있다.
전자 장치(100)는 저장된 생체 정보를 필요에 따라 복원하여 분석할 수 있다. 또는, 전자 장치(100)로부터 수신한 생체 정보를 외부 장치(200)에서 복원하고 후처리하여 분석할 수도 있다.
상술한 바와 같은 본 개시의 다양한 실시 예에 따른 전자 장치(100)의 신호 처리 방법에 의하여, 생체 신호 데이터가 선택적으로 압축될 수 있다. 이러한 선택적 압축으로 인하여 압축 효율의 증대 효과가 발생하게 된다.
상기에서 설명된 방법들은 다양한 컴퓨터 수단을 통하여 수행될 수 있는 프로그램 명령 형태로 구현되어 컴퓨터 판독 가능 매체에 기록될 수 있다. 상기 컴퓨터 판독 가능 매체는 프로그램 명령, 데이터 파일, 데이터 구조 등을 단독으로 또는 조합하여 포함할 수 있다. 상기 매체에 기록되는 프로그램 명령은 본 발명을 위하여 특별히 설계되고 구성된 것들이거나 컴퓨터 소프트웨어 당업자에게 공지되어 사용 가능한 것일 수도 있다. 컴퓨터 판독 가능 기록 매체의 예에는 하드 디스크, 플로피 디스크 및 자기 테이프와 같은 자기 매체(magnetic media), CD-ROM, DVD와 같은 광 기록 매체(optical media), 플롭티컬 디스크(floptical disk)와 같은 자기-광 매체(magneto-optical media), 및 롬(ROM), 램(RAM), 플래시 메모리 등과 같은 프로그램 명령을 저장하고 수행하도록 특별히 구성된 하드웨어 장치가 포함된다. 프로그램 명령의 예에는 컴파일러에 의해 만들어지는 것과 같은 기계어 코드뿐만 아니라 인터프리터 등을 사용해서 컴퓨터에 의해서 실행될 수 있는 고급 언어 코드를 포함한다. 상기의 하드웨어 장치는 본 발명의 동작을 수행하기 위해 하나 이상의 소프트웨어 모듈로서 작동하도록 구성될 수 있으며, 그 역도 마찬가지이다.
이상과 같이 본 개시는 비록 한정된 실시 예와 도면에 의해 설명되었으나, 본 개시는 상기의 실시 예에 한정되는 것은 아니며, 본 개시가 속하는 분야에서 통상의 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다. 그러므로, 본 개시의 범위는 설명된 실시 예에 국한되어 정해져서는 아니 되며, 후술하는 특허청구범위뿐 아니라 이 특허청구범위와 균등한 것들에 의해 정해져야 한다.
100: 전자 장치 110: 센서
120: 프로세서 130: 움직임 센서
140: 통신부 150: 저장부
160: 디스플레이 170: 알람부

Claims (20)

  1. 전자 장치에 있어서,
    사용자의 생체 신호를 측정하는 센서;
    상기 사용자의 움직임 정도를 감지하는 움직임 센서; 및
    상기 측정된 생체 신호의 주기성을 판별하고, 상기 감지된 움직임 정도가 기설정된 임계 값 이하이고 상기 측정된 생체 신호가 주기성을 갖는 경우, 상기 측정된 생체 신호를 압축하고, 상기 감지된 움직임 정도가 상기 기설정된 임계 값보다 크거나 상기 측정된 생체 신호가 주기성을 갖지 않는 경우, 상기 측정된 생체 신호를 압축하지 않는 프로세서;를 포함하는 전자 장치.
  2. 삭제
  3. 제1항에 있어서,
    상기 프로세서는,
    상기 측정된 생체 신호로부터 복수의 피크들을 검출하고, 상기 검출된 복수의 피크들 사이의 간격에 기초하여 상기 생체 신호의 주기성을 판별하는 전자 장치.
  4. 제1항에 있어서,
    상기 프로세서는,
    상기 측정된 생체 신호의 평균값을 이용하여 차분 신호를 생성하고, 상기 생성된 차분 신호 및 상기 생성된 차분 신호를 표현하기 위한 비트 수를 이용하여 상기 생체 신호를 압축하는 전자 장치.
  5. 제1항에 있어서,
    상기 프로세서는,
    기설정된 개수의 생체 신호가 측정되면, 상기 측정된 기설정된 개수의 생체 신호의 주기성을 판별하는 전자 장치.
  6. 제1항에 있어서,
    상기 프로세서는,
    상기 압축된 생체 신호를 이용하여 압축 효율을 모니터링하고, 상기 압축 효율이 기설정된 레벨 이하이면, 상기 측정된 생체 신호의 압축을 중단하는 전자 장치.
  7. 제1항에 있어서,
    외부 장치와 송수신하는 통신부;를 더 포함하고,
    상기 프로세서는,
    상기 압축된 생체 신호를 전송하도록 상기 통신부를 제어하는 전자 장치.
  8. 제1항에 있어서,
    상기 압축된 생체 신호를 저장하는 저장부;를 더 포함하는 전자 장치.
  9. 제1항에 있어서,
    상기 생체 신호는 심전도(ECG), 뇌파(EEG), 근전도(EMG), 안전도(EOG), 광혈류량(PPG) 중 적어도 하나인 전자 장치.
  10. 제1항에 있어서,
    상기 센서는,
    상기 사용자의 복수 종류의 생체 신호를 측정하고,
    상기 프로세서는,
    상기 측정된 복수 종류의 생체 신호를 함께 압축하는 전자 장치.
  11. 삭제
  12. 삭제
  13. 생체 신호 측정 시스템에 있어서,
    사용자의 생체 신호 및 사용자의 움직임 상태를 측정하는 생체 신호 측정 장치; 및
    생체 신호를 분석하는 분석 장치;를 포함하고,
    상기 생체 신호 측정 장치는,
    상기 측정된 생체 신호 및 움직임 상태에 기초하여 상기 감지된 움직임 정도가 기설정된 임계 값 이하이고 상기 측정된 생체 신호가 주기성을 갖는 경우, 상기 측정된 생체 신호를 압축하여 상기 분석 장치로 전송하고, 상기 감지된 움직임 정도가 상기 기설정된 임계 값보다 크거나 상기 측정된 생체 신호가 주기성을 갖지 않는 경우, 상기 측정된 생체 신호를 압축하지 않고 상기 분석 장치로 전송하고,
    상기 분석 장치는,
    상기 전송된 생체 신호를 압축 해제하여 상기 측정된 생체 신호를 분석하는 생체 신호 측정 시스템.
  14. 전자 장치의 신호 처리 방법에 있어서,
    사용자의 생체 신호를 측정하는 단계;
    상기 사용자의 움직임 정도를 감지하는 단계;
    상기 측정된 생체 신호의 주기성을 판별하는 단계; 및
    상기 측정된 생체 신호의 주기성 및 상기 감지된 움직임 정도에 기초하여 상기 측정된 생체 신호를 선택적으로 압축하는 단계;를 포함하며,
    상기 선택적으로 압축하는 단계는,
    상기 감지된 움직임 정도가 기설정된 임계 값 이하이고 상기 측정된 생체 신호가 주기성을 갖는 경우, 상기 측정된 생체 신호를 압축하고, 상기 감지된 움직임 정도가 상기 기설정된 임계 값보다 크거나 상기 측정된 생체 신호가 주기성을 갖지 않는 경우, 상기 측정된 생체 신호를 압축하지 않는 신호 처리 방법.
  15. 삭제
  16. 제14항에 있어서,
    상기 주기성을 판별하는 단계는,
    상기 측정된 생체 신호로부터 복수의 피크들을 검출하는 단계; 및
    상기 검출된 복수의 피크들 사이의 간격에 기초하여 상기 생체 신호의 주기성을 판별하는 단계;를 포함하는 신호 처리 방법.
  17. 제14항에 있어서,
    상기 선택적으로 압축하는 단계는,
    상기 측정된 생체 신호의 평균값을 이용하여 차분 신호를 생성하는 단계; 및
    상기 생성된 차분 신호 및 상기 생성된 차분 신호를 표현하기 위한 비트 수를 이용하여 상기 생체 신호를 압축하는 단계;를 포함하는 신호 처리 방법.
  18. 삭제
  19. 삭제
  20. 전자 장치의 신호 처리 방법을 실행하기 위한 프로그램을 포함하는 비일시적 컴퓨터 판독가능 기록매체에 있어서,
    전자 장치의 신호 처리 방법은,
    사용자의 생체 신호를 측정하는 단계;
    상기 사용자의 움직임 정도를 감지하는 단계;
    상기 측정된 생체 신호의 주기성을 판별하는 단계; 및
    상기 감지된 움직임 정도가 기설정된 임계 값 이하이고 상기 측정된 생체 신호가 주기성을 갖는 경우, 상기 측정된 생체 신호를 압축하고, 상기 감지된 움직임 정도가 상기 기설정된 임계 값보다 크거나 상기 측정된 생체 신호가 주기성을 갖지 않는 경우, 상기 측정된 생체 신호를 압축하지 않는 단계;를 포함하는 비일시적 컴퓨터 판독가능 기록매체.
KR1020150174160A 2015-12-08 2015-12-08 전자 장치, 그의 신호 처리 방법, 생체 신호 측정 시스템 및 비일시적 컴퓨터 판독가능 기록매체 KR102342825B1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020150174160A KR102342825B1 (ko) 2015-12-08 2015-12-08 전자 장치, 그의 신호 처리 방법, 생체 신호 측정 시스템 및 비일시적 컴퓨터 판독가능 기록매체
PCT/KR2016/011151 WO2017099340A1 (ko) 2015-12-08 2016-10-06 전자 장치, 그의 신호 처리 방법, 생체 신호 측정 시스템 및 비일시적 컴퓨터 판독가능 기록매체
US16/060,795 US11363989B2 (en) 2015-12-08 2016-10-06 Electronic device, signal processing method thereof, biological signal measurement system, and non-transitory computer readable recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020150174160A KR102342825B1 (ko) 2015-12-08 2015-12-08 전자 장치, 그의 신호 처리 방법, 생체 신호 측정 시스템 및 비일시적 컴퓨터 판독가능 기록매체

Publications (2)

Publication Number Publication Date
KR20170067458A KR20170067458A (ko) 2017-06-16
KR102342825B1 true KR102342825B1 (ko) 2021-12-23

Family

ID=59013344

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020150174160A KR102342825B1 (ko) 2015-12-08 2015-12-08 전자 장치, 그의 신호 처리 방법, 생체 신호 측정 시스템 및 비일시적 컴퓨터 판독가능 기록매체

Country Status (3)

Country Link
US (1) US11363989B2 (ko)
KR (1) KR102342825B1 (ko)
WO (1) WO2017099340A1 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102503149B1 (ko) * 2017-11-30 2023-02-24 주식회사 라이프사이언스테크놀로지 생체정보 측정 장치 및 방법
CN108338778A (zh) * 2018-02-12 2018-07-31 东莞市华睿电子科技有限公司 一种用户睡眠状态检测方法
JP2020156827A (ja) * 2019-03-27 2020-10-01 Tdk株式会社 生体信号測定部位出力装置、生体信号測定装置および情報端末装置
KR102371912B1 (ko) * 2019-12-04 2022-03-08 서희정 애완동물용 다기능 웨어러블 디바이스

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140005988A1 (en) 2009-11-03 2014-01-02 Marina Brockway Physiological signal denoising
WO2014138414A1 (en) * 2013-03-06 2014-09-12 Simon Adam J Form factors for the multi-modal physiological assessment of brain health
US20150005655A1 (en) * 2012-02-08 2015-01-01 Kyushu Institute Of Technology Biological information processing device, biological information processing system, biological information compression method, and biological information compression processing program
US20150169462A1 (en) 2012-07-05 2015-06-18 Blancco Oy Ltd Apparatus, a system, a method and a computer program for erasing data stored on a storage device

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3035684B2 (ja) 1993-02-19 2000-04-24 日本光電工業株式会社 生体信号処理装置
US5442351A (en) * 1993-09-20 1995-08-15 Harley Street Software Ltd. Data compression method and apparatus for waveforms having recurring features
FR2722041B1 (fr) * 1994-06-30 1998-01-02 Samsung Electronics Co Ltd Decodeur de huffman
US6922584B2 (en) * 2000-11-28 2005-07-26 Medtronic, Inc. Method and apparatus for discrimination atrial fibrillation using ventricular rate detection
JP4985052B2 (ja) 2007-04-02 2012-07-25 パナソニック株式会社 超音波診断装置および超音波診断装置の制御方法
KR100967994B1 (ko) * 2008-02-18 2010-07-07 연세대학교 산학협력단 주기성을 갖는 생체 신호 데이터의 실시간 압축 전송 및저장 방법과 이를 위한 심혈관 시스템
KR101016630B1 (ko) 2008-12-26 2011-02-23 경북대학교 산학협력단 심전도 신호 압축 방법 및 장치
JP2010269082A (ja) 2009-05-25 2010-12-02 Olympus Corp 医療用無線テレメータ装置
GB2471903A (en) * 2009-07-17 2011-01-19 Sharp Kk Sleep management system for monitoring sleep quality and making recommendations for improvement
KR101201679B1 (ko) 2011-02-14 2012-11-15 한국철도기술연구원 상하치별차법에 의한 데이터 축소 방법 및 그 방법에 의한 차량의 준실시간 결함 감시 방법
JP5672604B2 (ja) 2011-02-16 2015-02-18 公立大学法人首都大学東京 身体情報測定装置及び身体情報測定プログラム
KR20120113530A (ko) * 2011-04-05 2012-10-15 삼성전자주식회사 생체 신호의 피크 검출 방법 및 장치
US9364160B2 (en) 2012-03-28 2016-06-14 Qualcomm Incorporated Systems and methods for ECG monitoring
KR20150103568A (ko) * 2014-03-03 2015-09-11 김성훈 웨어러블 센싱 디바이스 및 이를 이용한 생체 신호 데이터 모니터링/응급 상황 감지 방법
US20150289823A1 (en) * 2014-04-10 2015-10-15 Dexcom, Inc. Glycemic urgency assessment and alerts interface
US11207021B2 (en) * 2016-09-06 2021-12-28 Fitbit, Inc Methods and systems for labeling sleep states

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140005988A1 (en) 2009-11-03 2014-01-02 Marina Brockway Physiological signal denoising
US20150005655A1 (en) * 2012-02-08 2015-01-01 Kyushu Institute Of Technology Biological information processing device, biological information processing system, biological information compression method, and biological information compression processing program
US20150169462A1 (en) 2012-07-05 2015-06-18 Blancco Oy Ltd Apparatus, a system, a method and a computer program for erasing data stored on a storage device
WO2014138414A1 (en) * 2013-03-06 2014-09-12 Simon Adam J Form factors for the multi-modal physiological assessment of brain health
US20160015289A1 (en) * 2013-03-06 2016-01-21 Adam J. Simon Form factors for the multi-modal physiological assessment of brain health

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
M. Sabarimalai Manikandana, et. al, Wavelet-based electrocardiogram signal compression methods and their performances: A prospective review, Biomedical Signal Processing and Control 14 73~107 (2014)*

Also Published As

Publication number Publication date
KR20170067458A (ko) 2017-06-16
US20180360388A1 (en) 2018-12-20
WO2017099340A1 (ko) 2017-06-15
US11363989B2 (en) 2022-06-21

Similar Documents

Publication Publication Date Title
US9955895B2 (en) Wearable head-mounted, glass-style computing devices with EOG acquisition and analysis for human-computer interfaces
KR102635868B1 (ko) 전자 장치 및 그의 제어방법
TWI602544B (zh) Biological signal measuring system, biological information measuring device and change method of biological information extraction algorithm
US9874862B2 (en) Method and device to monitor and analyze biosignal of user
KR102342825B1 (ko) 전자 장치, 그의 신호 처리 방법, 생체 신호 측정 시스템 및 비일시적 컴퓨터 판독가능 기록매체
US10441180B2 (en) Episodical and continuous ECG monitoring
CN101272733B (zh) 监控方法和设备
US10368765B2 (en) Wearable apparatus for ECG signal acquisition
KR20160044811A (ko) 생체 신호를 모니터링하는 웨어러블 센서 및 웨어러블 장치를 이용하여 생체 신호를 모니터링하는 방법
KR102518671B1 (ko) 전자장치 및 그 제어방법
EP3135187B1 (en) Touch panel apparatus for sensing a biosignal and method of acquiring information about respiration of user using the same
EP3632309B1 (en) Apparatus and method for estimating analyte concentration
JP7108023B2 (ja) 心拍検出デバイス並びに関連するシステム及び方法
Lin et al. Wearable, multimodal, biosignal acquisition system for potential critical and emergency applications
KR101930337B1 (ko) 전자기기 및 그 제어방법
KR102193558B1 (ko) 생체 신호를 측정하기 위한 방법, 시스템 및 비일시성의 컴퓨터 판독 가능한 기록 매체
TWI642405B (zh) 移動電子設備、檢測系統以及生理特徵的檢測方法
KR20200088700A (ko) 생체정보 추정 장치 및 방법
EP3991640B1 (en) Method of determining regularity of bio-signal, apparatus and method for estimating bio-information
WO2019224113A1 (en) Measuring movement in a subject
CN111012322A (zh) 用于估计血压的设备
LU502982B1 (en) Portable emotion perception device
KR20210156706A (ko) 혈압 추정 모델 생성 장치 및 방법, 혈압 추정 장치
KR20220026997A (ko) 생체정보 추정 실패 예측 방법 및 생체정보 추정 장치
Malche et al. Research Article Artificial Intelligence of Things-(AIoT-) Based Patient Activity Tracking System for Remote Patient Monitoring

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant