KR102334955B1 - Poly(2-Methacryloyloxyethyl Phosphorylcholine)-Functionalized Hydrogel and Lens Using the Same - Google Patents

Poly(2-Methacryloyloxyethyl Phosphorylcholine)-Functionalized Hydrogel and Lens Using the Same Download PDF

Info

Publication number
KR102334955B1
KR102334955B1 KR1020190170393A KR20190170393A KR102334955B1 KR 102334955 B1 KR102334955 B1 KR 102334955B1 KR 1020190170393 A KR1020190170393 A KR 1020190170393A KR 20190170393 A KR20190170393 A KR 20190170393A KR 102334955 B1 KR102334955 B1 KR 102334955B1
Authority
KR
South Korea
Prior art keywords
hydrogel
hema
poly
modified
mpc
Prior art date
Application number
KR1020190170393A
Other languages
Korean (ko)
Other versions
KR20210079434A (en
Inventor
박민수
Original Assignee
주식회사 더원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 더원 filed Critical 주식회사 더원
Priority to KR1020190170393A priority Critical patent/KR102334955B1/en
Publication of KR20210079434A publication Critical patent/KR20210079434A/en
Application granted granted Critical
Publication of KR102334955B1 publication Critical patent/KR102334955B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • B29D11/00038Production of contact lenses
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/28Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/04Contact lenses for the eyes

Abstract

본 발명은 폴리하이드록시에틸메타크릴레이트(poly(hydroxyethylmethacrylate, p(HEMA))를 주재료로 하는 하이드로겔의 표면을 폴리(2-메타크릴로일옥시에틸 포스포릴콜린)(p(MPC))로 개질한 하이드로겔 및 상기 하이드로겔로 이루어진 렌즈에 관한 것으로서, 하이드로겔의 표면을 p(MPC)로 개질함으로써 단백질과 박테리아의 흡착을 저감시켜 방오성을 향상시키며 방오성이 우수한 하이드로겔 렌즈를 제조할 수 있다.In the present invention, the surface of a hydrogel using poly(hydroxyethylmethacrylate, p(HEMA)) as a main material is poly(2-methacryloyloxyethyl phosphorylcholine)(p(MPC)). It relates to a modified hydrogel and a lens composed of the hydrogel, and by modifying the surface of the hydrogel to p (MPC), it is possible to reduce the adsorption of proteins and bacteria to improve antifouling properties and to produce a hydrogel lens with excellent antifouling properties. .

Description

폴리(2-메타크릴로일옥시에틸 포스포릴콜린)로 개질된 하이드로겔 및 상기 하이드로겔로 이루어진 렌즈.{Poly(2-Methacryloyloxyethyl Phosphorylcholine)-Functionalized Hydrogel and Lens Using the Same} Poly(2-Methacryloyloxyethyl Phosphorylcholine)-Functionalized Hydrogel and Lens Using the Same}

본 발명은 폴리(2-메타크릴로일옥시에틸 포스포릴콜린)(p(MPC))로 개질된 하이드로겔 및 상기 하이드로겔로 이루어진 하이드로겔 렌즈에 관한 것으로, 더욱 상세하게는 p(MPC)를 사용하여 하이드로겔의 표면에 기능성을 부여함으로써 단백질 및 박테리아의 흡착을 저감시킬 수 있는 하이드로겔 및 이러한 하이드로겔을 이용하여 제조된 방오성이 향상된 하이드로겔 렌즈에 관한 것이다.The present invention relates to a hydrogel modified with poly(2-methacryloyloxyethyl phosphorylcholine) (p(MPC)) and a hydrogel lens composed of the hydrogel, more particularly, p(MPC) It relates to a hydrogel capable of reducing the adsorption of proteins and bacteria by giving functionality to the surface of the hydrogel using the hydrogel, and to a hydrogel lens with improved antifouling properties manufactured using the hydrogel.

최근 다양한 형태의 생체 적합성 및 안티바이오파울링(antibiofouling) 특성을 가진 기능성 바이오물질이 개발되고 있다. 특히, 바이오물질을 바이오의학이나 산업에 적용하기 위하여 이를 하이드로겔로 제조하면 3차원 네트워크 구조의 소수성 고분자 네트워크가 다량의 물과 생물학적 유체를 포집할 수 있게 되므로 유용하다. 특히, 폴리(2-하이드록시에틸 메타크릴레이트)(p(HEMA))로 이루어진 하이드로겔은 요도 카테터, 신경조직 디바이스, 치과용 접착제, 삽입 약물 전달 시스템, 콘텍트렌즈, 인공수정체 등의 바이오의학 물질로 이용되고 있다.Recently, functional biomaterials having various types of biocompatibility and antibiofouling properties have been developed. In particular, when biomaterials are prepared as hydrogels to be applied to biomedicine or industry, the hydrophobic polymer network having a three-dimensional network structure is useful because it is possible to capture a large amount of water and biological fluid. In particular, hydrogels made of poly(2-hydroxyethyl methacrylate) (p(HEMA)) are biomedical materials such as urinary catheters, neural tissue devices, dental adhesives, implantable drug delivery systems, contact lenses, and intraocular lenses. is being used as

이러한 종래의 하이드로겔은 단백질과 다른 파울런트(foulant)를 부착하여 삽입용 바이오물질로 사용이 곤란한 문제점이 있다. 단백질과 바이오분자의 흡착은 염증, 혈액응고, 생체막 형성, 세포부착, 박테리아 부착, 박테리아 감염 등 원하지 않는 다양한 생물학적 반응을 일으키기 때문이다. 따라서 비특이성의 단백질 흡착과 박테리아 부착 및 군체 형성을 막을 수 있는 새로운 형태의 바이오물질에 대한 개발이 요구되고 있다.This conventional hydrogel has a problem in that it is difficult to use as a biomaterial for insertion by attaching a protein and other foulants. This is because the adsorption of proteins and biomolecules causes various unwanted biological reactions such as inflammation, blood coagulation, biofilm formation, cell adhesion, bacterial adhesion, and bacterial infection. Therefore, there is a demand for the development of a new type of biomaterial capable of preventing non-specific protein adsorption, bacterial adhesion, and colony formation.

이러한 요구에 따라 폴리에틸렌글리콜(PEG), 폴리사카라이드, 생체모방형 양쪽성 이온 고분자 등을 2차 소수성 고분자로하여 표면 개질을 하는 연구들이 진행되고 있다. 이러한 고분자들 중 폴리(2-메타크릴로일옥시에틸 포스포릴콜린)(p(MPC))는 방오성 바이오물질로서 효과가 우수할 것으로 예상된다. 세포막 외표면은 인지질, 특히, 포스파티딜콜린이 풍부하기 때문에 MPC를 함유하는 고분자 물질은 방오제로서 유용할 것으로 기대된다.According to this demand, studies on surface modification using polyethylene glycol (PEG), polysaccharides, biomimetic zwitterionic polymers, etc. as secondary hydrophobic polymers are being conducted. Among these polymers, poly(2-methacryloyloxyethyl phosphorylcholine) (p(MPC)) is expected to have an excellent effect as an antifouling biomaterial. Since the cell membrane outer surface is rich in phospholipids, in particular, phosphatidylcholine, a polymer material containing MPC is expected to be useful as an antifouling agent.

본 발명은 상기와 같은 종래기술을 감안하여 안출된 것으로서, p(MPC)로 표면 개질된 하이드로겔을 제공하는 것을 그 목적으로 한다.The present invention has been devised in view of the prior art as described above, and an object of the present invention is to provide a hydrogel surface-modified with p(MPC).

특히, 단백질과 박테리아의 흡착을 저감시킴으로써 방오성이 향상된 하이드로겔을 제공하는 것을 그 목적으로 한다.In particular, an object of the present invention is to provide a hydrogel with improved antifouling properties by reducing the adsorption of proteins and bacteria.

또한, 상기 하이드로겔을 성형함으로써 얻어지는 하이드로겔 콘택트 렌즈를 제공하는 것을 그 목적으로 한다.Another object of the present invention is to provide a hydrogel contact lens obtained by molding the hydrogel.

상기와 같은 과제를 해결하기 위한 본 발명의 폴리(2-메타크릴로일옥시에틸 포스포릴콜린)로 개질된 하이드로겔은 폴리하이드록시에틸메타크릴레이트 (poly(hydroxyethylmethacrylate, p(HEMA))를 주재료로 하는 하이드로겔의 표면을 폴리(2-메타크릴로일옥시에틸 포스포릴콜린)(p(MPC))로 개질한 것을 특징으로 한다.The hydrogel modified with poly(2-methacryloyloxyethyl phosphorylcholine) of the present invention for solving the above problems is poly(hydroxyethylmethacrylate, p(HEMA)) as the main material It is characterized in that the surface of the hydrogel to be modified with poly (2-methacryloyloxyethyl phosphorylcholine) (p (MPC)).

이때, 상기 p(HEMA) 하이드로겔은 에틸렌글리콜 디메타크릴레이트(EGDMA) 및 아조비스이소부티로니트릴(AIBN)를 하이드록시에틸메타크릴레이트(HEMA) 단량체에 용해시켜 혼합액을 제조하는 단계, 상기 혼합액을 몰드에 주입하고 가열하여 고분자를 제조하는 단계, 상기 고분자를 세척하여 하이드로겔을 제조하는 단계를 포함하여 제조되는 것일 수 있다.At this time, the p (HEMA) hydrogel is prepared by dissolving ethylene glycol dimethacrylate (EGDMA) and azobisisobutyronitrile (AIBN) in hydroxyethyl methacrylate (HEMA) monomer to prepare a mixed solution, the It may be prepared by injecting the mixture into a mold and heating to prepare a polymer, and washing the polymer to prepare a hydrogel.

또한, 본 발명에 따른 하이드로겔 콘텍트 렌즈는 상기 폴리(2-메타크릴로일옥시에틸 포스포릴콜린)로 개질된 하이드로겔을 성형하여 제조된 하이드로겔 콘택트 렌즈인 것을 특징으로 한다.In addition, the hydrogel contact lens according to the present invention is characterized in that it is a hydrogel contact lens manufactured by molding the hydrogel modified with the poly(2-methacryloyloxyethyl phosphorylcholine).

본 발명에 따른 p(MPC)로 표면 개질된 하이드로겔은 하이드로겔의 표면을 p(MPC)로 개질함으로써 단백질과 박테리아의 흡착을 저감시켜 방오성을 향상시키는 효과를 나타낸다.The hydrogel surface-modified with p(MPC) according to the present invention exhibits the effect of improving antifouling properties by reducing the adsorption of proteins and bacteria by modifying the surface of the hydrogel with p(MPC).

또한, 상기 하이드로겔을 이용하여 하이드로겔 렌즈를 제조함으로써 방오성이 우수한 렌즈를 제공하는 효과를 나타낸다.In addition, by manufacturing a hydrogel lens using the hydrogel, it exhibits the effect of providing a lens excellent in antifouling properties.

도 1은 본 발명에 따른 표면 개질된 하이드로겔을 제조하는 과정을 나타낸 모식도이다.
도 2는 하이드로겔 시료의 투과도를 측정한 결과이다.
도 3은 하이드로겔 시료에 대한 접촉각 시험 결과로서 p(HEMA)(a), 실시예 1(b), 실시예 2(c), 실시예 3(d)의 측정 결과이다.
도 4는 하이드로겔 시료에 대한 단백질 흡착 시험 결과로서 렌즈당 흡착된 단백질 함량(a) 및 상대 단백질 흡착률(b)을 나타낸 결과이다.
도 5는 실시예 3의 시료에 대한 박테리아 흡착 시험 결과이다.
1 is a schematic diagram showing a process for preparing a surface-modified hydrogel according to the present invention.
2 is a result of measuring the permeability of the hydrogel sample.
Figure 3 is a contact angle test results for the hydrogel sample p (HEMA) (a), Example 1 (b), Example 2 (c), Example 3 (d) is the measurement result.
4 is a result showing the protein adsorption per lens (a) and the relative protein adsorption rate (b) as the protein adsorption test results for the hydrogel sample.
5 is a result of a bacterial adsorption test for the sample of Example 3.

이하, 본 발명에 따른 바람직한 실시예를 상세하게 설명한다. 그러나, 이하의 실시예는 이 기술 분야에서 통상적인 지식을 가진 자에게 본 발명이 충분히 이해되도록 제공되는 것으로서 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 다음에 기술되는 실시예에 한정되는 것은 아니다.Hereinafter, preferred embodiments according to the present invention will be described in detail. However, the following examples are provided so that those of ordinary skill in the art can fully understand the present invention, and can be modified in various other forms, and the scope of the present invention is limited to the examples described below it is not going to be

본 발명에 따른 폴리(2-메타크릴로일옥시에틸 포스포릴콜린)로 개질된 하이드로겔은 폴리하이드록시에틸메타크릴레이트 (poly(hydroxyethylmethacrylate, p(HEMA))를 주재료로 하는 하이드로겔의 표면을 폴리(2-메타크릴로일옥시에틸 포스포릴콜린)(p(MPC))로 개질한 것을 특징으로 한다.The hydrogel modified with poly(2-methacryloyloxyethyl phosphorylcholine) according to the present invention is the surface of the hydrogel using poly(hydroxyethylmethacrylate, p(HEMA)) as a main material. It is characterized in that it is modified with poly(2-methacryloyloxyethyl phosphorylcholine) (p(MPC)).

상기 하이드로겔을 구성하는 p(HEMA)를 주재료로 하는 하이드로겔은 에틸렌글리콜 디메타크릴레이트(EGDMA) 및 아조비스이소부티로니트릴(AIBN)를 하이드록시에틸메타크릴레이트(HEMA) 단량체에 용해시켜 혼합액을 제조하는 단계, 상기 혼합액을 몰드에 주입하고 가열하여 고분자를 제조하는 단계, 상기 고분자를 세척하여 하이드로겔을 제조하는 단계를 포함하여 제조될 수 있다.The hydrogel containing p (HEMA) constituting the hydrogel as a main material is obtained by dissolving ethylene glycol dimethacrylate (EGDMA) and azobisisobutyronitrile (AIBN) in a hydroxyethyl methacrylate (HEMA) monomer. It may be prepared including preparing a mixture, injecting the mixture into a mold and heating to prepare a polymer, and washing the polymer to prepare a hydrogel.

이를 구체적으로 설명하면, 먼저 HEMA 단량체를 진공증류한 후 사용한다. EGDMA 0.04 중량부 및 AIBN 0.04 중량부를 HEMA 9.92 중량부에 녹인 후 30분 간 혼합하였다. 얻어진 혼합물을 사각형 몰드에 주입하고 밀봉한 후 이를 90℃에서 5시간 동안 두어 반응시킴으로써 고분자를 얻었다. 이를 실온으로 냉각한 후 몰드에서 상기 고분자를 꺼내어 미반응 단량체와 반응물을 완전히 제거하기 위하여 400㎖의 증류수에 두고 투석 과정을 거쳤다. 투석은 2일에 걸쳐 증류수를 1일 3회 바꾸면서 수행하였다. 이를 통해 육각형의 하이드로겔(10×10×2.4㎜)을 얻었고, 이를 끓는 물에 15분간 둔 후 40℃에서 하룻밤 건조하여 p(HEMA)를 주재료로 하는 하이드로겔을 얻었다.To explain this in detail, the HEMA monomer is first used after vacuum distillation. 0.04 parts by weight of EGDMA and 0.04 parts by weight of AIBN were dissolved in 9.92 parts by weight of HEMA and mixed for 30 minutes. A polymer was obtained by pouring the resulting mixture into a square mold, sealing it, and placing it at 90° C. for 5 hours to react. After cooling to room temperature, the polymer was taken out from the mold, and placed in 400 ml of distilled water to completely remove unreacted monomers and reactants, and dialysis was performed. Dialysis was performed while changing distilled water 3 times a day over 2 days. Through this, a hexagonal hydrogel (10 × 10 × 2.4 mm) was obtained, which was placed in boiling water for 15 minutes and dried overnight at 40° C. to obtain a hydrogel containing p (HEMA) as a main material.

상기와 같은 방법으로 제조된 하이드로겔의 표면을 개질함으로써 본 발명에서 목적하는 p(MPC)로 개질된 하이드로겔을 얻을 수 있다.By modifying the surface of the hydrogel prepared by the above method, it is possible to obtain a hydrogel modified with the desired p(MPC) in the present invention.

이를 위하여 p(HEMA)를 주재료로 하는 p(HEMA) 하이드로겔을 벤조페논 용액에 함침하고 건조하여 벤조페논이 흡착된 p(HEMA) 하이드로겔을 제조한 후, 상기 벤조페논이 흡착된 p(HEMA) 하이드로겔을 2-메타크릴로일옥시에틸 포스포릴콜린(MPC) 용액에 함침하여 함침액을 제조한다. 상기 함침액에 자외선을 조사하면 표면 개질된 하이드로겔을 얻을 수 있으며, 이후, 상기 표면 개질된 하이드로겔을 세척함으로써 본 발명에서 목적하는 p(MPC)로 개질된 하이드로겔을 얻을 수 있다.To this end, p(HEMA) hydrogel containing p(HEMA) as a main material was impregnated with benzophenone solution and dried to prepare p(HEMA) hydrogel to which benzophenone was adsorbed, and then p(HEMA) to which benzophenone was adsorbed. ) The hydrogel is impregnated with 2-methacryloyloxyethyl phosphorylcholine (MPC) solution to prepare an impregnation solution. By irradiating ultraviolet light to the impregnation solution, a surface-modified hydrogel can be obtained, and then, by washing the surface-modified hydrogel, a hydrogel modified with p (MPC) as desired in the present invention can be obtained.

이를 구체적으로 설명하면, p(HEMA) 하이드로겔을 아세톤에 벤조페논을 10㎎/㎖의 함량으로 용해한 용액에 1분 간 함침하고 1시간 동안 진공건조하여 벤조페논이 흡착된 p(HEMA) 하이드로겔을 제조하였다. 이어서, 상기 벤조페논이 흡착된 p(HEMA) 하이드로겔을 MPC 수용액에 함침하였다. MPC 수용액의 농도는 0.1 내지 0.5M일 수 있다. 이후, 상기 함침된 하이드로겔에 15분 동안 UV-B를 조사하고 얻어진 생성물을 아세톤과 물로 세척하여 미반응 단량체, 과량의 벤조페논 및 부생성물인 벤조피나콜을 제거하였다. 또한, 공유결합을 형성하지 않은 고분자와 과량의 아세톤을 추가적으로 제거하기 위하여 표면 개질된 하이드로겔을 하룻밤 증류수에 담그어 처리하였다.Specifically, the p(HEMA) hydrogel was impregnated in a solution of 10 mg/ml of benzophenone in acetone for 1 minute and vacuum dried for 1 hour to adsorb the benzophenone p(HEMA) hydrogel. was prepared. Then, the benzophenone adsorbed p (HEMA) hydrogel was impregnated in the MPC aqueous solution. The concentration of the MPC aqueous solution may be 0.1 to 0.5M. Thereafter, the impregnated hydrogel was irradiated with UV-B for 15 minutes, and the obtained product was washed with acetone and water to remove unreacted monomers, excess benzophenone, and by-product benzopinacol. In addition, the surface-modified hydrogel was treated by immersing it in distilled water overnight in order to additionally remove the polymer that did not form a covalent bond and excess acetone.

표면 개질된 하이드로겔의 물성은 다음과 같이 측정하였다.The physical properties of the surface-modified hydrogel were measured as follows.

표면 개질된 하이드로겔의 투과도를 측정하기 위하여 하이드로겔의 평균 두께가 2.4㎜인 시료를 제조하여 UV 분광기(UV-1650PC spectrophotometer, Shimadzu)를 사용하여 측정하였다. 측정은 실온에서 300 내지 700㎚의 파장영역에 대해 수행하였으며, 각 시료에 대해 4차례 반복측정하여 평균값을 구하였다.In order to measure the transmittance of the surface-modified hydrogel, a sample having an average thickness of the hydrogel of 2.4 mm was prepared and measured using a UV spectrometer (UV-1650PC spectrophotometer, Shimadzu). The measurement was performed in a wavelength range of 300 to 700 nm at room temperature, and the average value was obtained by repeating measurement 4 times for each sample.

또한, 표면 개질된 하이드로겔의 평형 팽창 비율(equilibrium swelling ratio, ESR)을 실온에서 중량 측정으로 구하였다. 표면 개질된 하이드로겔 시료를 완전히 건조한 후 측정하였다. 완전히 건조된 하이드로겔을 PBS 완충용액(pH 7.4)을 사용하여 24시간 동안 정치하여 평형 상태로 만들었다. 이후 PBS 완충용액을 제거하고 잔존 수분을 제거하였으며, 팽창된 하이드로겔의 중량을 측정하였다. ESR은 아래 식에 따라 계산되었다.In addition, the equilibrium swelling ratio (ESR) of the surface-modified hydrogel was determined gravimetrically at room temperature. The surface-modified hydrogel sample was completely dried and then measured. The completely dried hydrogel was allowed to stand for 24 hours using PBS buffer (pH 7.4) to equilibrate. Thereafter, the PBS buffer was removed, the remaining moisture was removed, and the weight of the expanded hydrogel was measured. ESR was calculated according to the equation below.

ESR (%) = [(Ws - Wd)/Wd] × 100ESR (%) = [(Ws - Wd)/Wd] × 100

상기 식에서 Ws 및 Wd는 평형 상태의 하이드로겔 중량 및 건조 상태의 하이드로겔 중량이다.Wherein Ws and Wd are the hydrogel weight in the equilibrium state and the hydrogel weight in the dry state.

또한, 표면 개질된 하이드로겔의 접촉각을 측정하기 위하여 시료를 접촉각 측정기(DSA100, Kruss GmbH)를 사용하여 측정하였다. 4.5㎕의 물을 하이드로겔 시료의 표면에 적하한 후 정접촉각을 측정했다. 10회 측정에 따른 평균값으로 접촉각을 구하였다.In addition, in order to measure the contact angle of the surface-modified hydrogel, the sample was measured using a contact angle meter (DSA100, Kruss GmbH). After 4.5 μl of water was dropped on the surface of the hydrogel sample, the static contact angle was measured. The contact angle was obtained as an average value of 10 measurements.

또한, 표면 개질된 하이드로겔의 단백질 탈착 성능을 평가하기 위하여 표면 개질된 하이드로겔을 주형에 투입하여 하이드로겔 렌즈를 제조하여 시료로 사용하였다. 시료는 10㎖의 PBS(pH 7.4)에 함침하였다. 이후 실온에서 150rpm의 속도로 24시간 동안 항온진탕기로 배양하였다. PBS에 함유된 3.88g/ℓ의 소혈청알부민(BSA)을 함유하는 인공 눈물 용액과 계란 흰자 리소자임 1.2g/ℓ을 준비하고 시료에 10㎖의 인공 눈물을 투입한 후 37℃ 150rpm에서 12시간 동안 배양하였다. 시료를 PBS로 세정한 후 결합하지 않은 단백질을 제거하였고, 아세토니트릴/물 1:1(v/v)에 0.1% 트리플루오로아세트산를 함유하는 추출용매에 담그고 실온 암실에서 24시간 동안 배양했다. 추출 용액을 이동상을 사용하여 1/10로 희석한 후 분석하였다. HPLC(Azura) 측정으로 렌즈에서 탈착된 단백질 함량을 정량하였다. 약 20ℓ의 혼합 용액을 C18 컬럼(LUNA-C18, 4.6 × 250 ㎜, 5 ㎛; Phenomenex, Torrance)에 주입하고 isocratic 이동상을 사용하여 분리하였고, 0.1% 트리플로오로아세트산 및 50% 물을 함유하는 50% 아세토니트릴 혼합물을 얻었다. 런타임은 20분, 유속은 1.0㎖/min이었으며, 220㎚의 UV 검출기(DAD 2.1L, Azura)를 사용하였다.In addition, in order to evaluate the protein desorption performance of the surface-modified hydrogel, the surface-modified hydrogel was put into a mold to prepare a hydrogel lens and used as a sample. The sample was immersed in 10 ml of PBS (pH 7.4). Thereafter, the cells were incubated at room temperature at a speed of 150 rpm for 24 hours on a constant-temperature shaker. An artificial tear solution containing 3.88 g/L bovine serum albumin (BSA) contained in PBS and 1.2 g/L egg white lysozyme were prepared, 10 ml of artificial tears were added to the sample, and then at 37° C. at 150 rpm for 12 hours. cultured. After washing the sample with PBS, unbound proteins were removed, immersed in an extraction solvent containing 0.1% trifluoroacetic acid in acetonitrile/water 1:1 (v/v), and incubated at room temperature in the dark for 24 hours. The extraction solution was diluted 1/10 using the mobile phase and then analyzed. The protein content desorbed from the lens was quantified by HPLC (Azura) measurement. About 20 liters of the mixed solution was injected into a C18 column (LUNA-C18, 4.6 × 250 mm, 5 μm; Phenomenex, Torrance) and separated using an isocratic mobile phase, 50 containing 0.1% trifluoroacetic acid and 50% water. % acetonitrile mixture was obtained. The runtime was 20 minutes, the flow rate was 1.0 ml/min, and a 220 nm UV detector (DAD 2.1L, Azura) was used.

또한, 표면 개질된 하이드로겔의 박테리아 탈착 성능을 평가하기 위하여 하이드로겔 렌즈를 시료로 하여 분석하였다. 모든 시료는 70% 에탄올 용액에 두었으며 1일 간 증류수에 둔 후 박테리아 탈착 시험을 실시하였다. Mueller-Hinton 배지 용액은 E. coli를 배양하여 얻었으며, 약 1㎖의 E. coli 저장액을 50㎖의 21g/ℓ Mueller-Hinton 배지 용액으로 살균했고 37℃에서 6시간 동안 배양했다.In addition, in order to evaluate the bacterial desorption performance of the surface-modified hydrogel, the hydrogel lens was analyzed as a sample. All samples were placed in a 70% ethanol solution and placed in distilled water for 1 day, followed by a bacterial desorption test. Mueller-Hinton medium solution was obtained by culturing E. coli, about 1 ml of E. coli stock solution was sterilized with 50 ml of 21 g/L Mueller-Hinton medium solution, and cultured at 37° C. for 6 hours.

이후, 약 2㎖의 배양된 E. coli 용액을 400㎖의 살균된 Mueller-Hinton 배지 용액에 접종했고, 37℃에서 12시간 동안 항온진탕기로 배양했다. 배양 후, E. coli 용액을 1ℓ 비이커로 옮기고 시료를 용기에 두고 박테리아 용액에 함침했다. 시료를 실온에서 회전진탕기에 두고 박테리아가 시료의 표면에 접촉하게 했다. 6시간 배양한 후 시료는 증류수로 세정했고 20㎖의 살균된 Mueller-Hinton 배지 용액에 두고 회전진탕기를 사용하여 37℃에서 150rpm으로 처리하였다. 이후 약 1㎖의 배지 시료를 취하여 595㎚의 파장에서 UV 분광기(TU-1800, Korea)를 사용하여 흡광도를 측정하였다.Then, about 2 ml of the cultured E. coli solution was inoculated into 400 ml of sterile Mueller-Hinton medium solution, and incubated at 37° C. for 12 hours on a thermostat. After incubation, the E. coli solution was transferred to a 1 L beaker and the sample was placed in a container and impregnated with the bacterial solution. The samples were placed on a rotary shaker at room temperature and bacteria were allowed to contact the surface of the samples. After incubation for 6 hours, the sample was washed with distilled water, placed in 20 ml of sterilized Mueller-Hinton medium solution, and treated at 37° C. at 150 rpm using a rotary shaker. Then, about 1 ml of a medium sample was taken and absorbance was measured at a wavelength of 595 nm using a UV spectrometer (TU-1800, Korea).

상기 물성을 측정하기 위하여 표면 개질된 하이드로겔 시료를 제조하였으며, 이는 도 1과 같은 3단계의 과정을 통해 제조되었다. HEMA 단량체를 전술한 바와 같이 EGDMA 및 AIBN을 가교제 및 프리라디칼 공급원으로 사용하여 중합하였다. 다음 두 단계에서는 광증감제로 벤조페논을 사용하여 흡착하는 과정이며 MPC 단량체를 하이드로겔 표면에서 UV 유도 프리라디칼 중합하여 흡착시켰다. 표면 개질은 수용액 환경에서 MPC 단량체의 농도를 0.10M(실시예 1), 0.25M(실시예 2), 0.50M(실시예 3)로 달리하여 시료를 제조하였다.In order to measure the physical properties, a surface-modified hydrogel sample was prepared, which was prepared through a three-step process as shown in FIG. 1 . HEMA monomers were polymerized as described above using EGDMA and AIBN as crosslinkers and free radical sources. The next two steps are adsorption processes using benzophenone as a photosensitizer, and the MPC monomer was adsorbed by UV-induced free radical polymerization on the hydrogel surface. For surface modification, samples were prepared by varying the concentration of the MPC monomer in an aqueous environment to 0.10M (Example 1), 0.25M (Example 2), and 0.50M (Example 3).

표 1은 표면 개질된 하이드로겔의 성질을 나타낸 것이다.Table 1 shows the properties of the surface-modified hydrogel.

공역 p(MPC)의 함량
(μmol/㎠ )
Content of conjugated p(MPC)
(μmol/cm2)
평형팽창비율(%)Equilibrium expansion ratio (%) 접촉각(°)Contact angle (°)
p(HEMA)p(HEMA) -- 60.1±1.160.1±1.1 78.6±9.678.6±9.6 실시예 1Example 1 18.0±1.218.0±1.2 61.0±2.961.0±2.9 74.7±9.774.7±9.7 실시예 2Example 2 21.8±0.521.8±0.5 61.6±1.061.6±1.0 65.0±4.765.0±4.7 실시예 3Example 3 24.1±1.824.1±1.8 68.3±1.368.3±1.3 59.2±7.059.2±7.0

표 1을 참조하면 MPC의 양이 증가할수록 하이드로겔 표면에 흡착된 p(MPC)의 양이 증가하는 것을 알 수 있다. 또한, 하이드로겔 표면에 대한 p(MPC)의 양은 실시예 1 내지 3에 대하여 각각 24.0, 21.8, 및 18.0μmol/㎠ 으로 추산되었다. Referring to Table 1, it can be seen that as the amount of MPC increases, the amount of p(MPC) adsorbed to the hydrogel surface increases. In addition, the amount of p(MPC) on the hydrogel surface was estimated to be 24.0, 21.8, and 18.0 μmol/cm 2 for Examples 1 to 3, respectively.

표면 개질에 따른 효과를 실온에서 PBS 배지에 대해 평형 팽창 비율(ESR)을 측정함으로써 평가하였다. 높은 평형 수분 함량은 하이드로겔의 주요한 특성이며 하이드로겔 팽창에 영향을 미치는 요인이다. 표 1의 결과에서와 같이 ESR은 MPC의 양의 증가에 따라 증가하는 경향을 나타내었다. p(HEMA) 하이드로겔의 ESR은 60.1%였는데, p(MPC)로 표면 개질되면 61.0에서 68.3%까지 증가하는 것으로 나타났다.The effect of surface modification was evaluated by measuring the equilibrium swelling ratio (ESR) for PBS medium at room temperature. High equilibrium water content is a major characteristic of hydrogels and is a factor influencing hydrogel swelling. As shown in the results of Table 1, ESR showed a tendency to increase with the increase in the amount of MPC. The ESR of the p(HEMA) hydrogel was 60.1%, and when the surface was modified with p(MPC), it was found to increase from 61.0 to 68.3%.

또한, 상기 표면 개질된 하이드로겔로 제조된 렌즈의 광학 투과도를 평가하였는데, 그 결과, 도 2에서와 같이 모든 하이드로겔 시료에 대해 94% 이상의 높은 투과도를 나타내었다. 이는 콘택트 렌즈에서 요구되는 투과도(92%)를 충족시키는 결과이다. 또한, 높은 투과도는 p(MPC)로 표면 개질된 p(HEMA) 하이드로겔이 불투명하거나 상분리되지 않음을 시사하는 결과이기도 하다. 이는 HEMA 및 EGDMA를 포함하는 단량체 용액에 대한 MPC의 높은 혼화성 때문이기도 하다.In addition, the optical transmittance of the lens prepared from the surface-modified hydrogel was evaluated, and as a result, it exhibited a high transmittance of 94% or more for all hydrogel samples as in FIG. 2 . This is the result of meeting the transmittance (92%) required for contact lenses. In addition, the high permeability is also a result suggesting that the p(HEMA) hydrogel surface-modified with p(MPC) is not opaque or phase-separated. This is also due to the high miscibility of MPC with monomer solutions containing HEMA and EGDMA.

또한, 접촉각을 측정하여 표면 젖음성을 평가하였고, 그 결과는 표 1 및 도 3과 같다. 표면 개질된 하이드로겔은 쌍성 이온성 및 친수성 MPC 성분을 가지고 있으며, MPC 양의 증가와 함께 접촉각이 감소하며 표면 젖음성이 향상되는 결과를 나타내었다. 상대적으로 높은 78.6°의 접촉각이 p(HEMA) 하이드로겔 시료에서 관찰되었는데, MPC 양이 증가함에 따라 74.7, 65.0, 59.2°로 접촉각이 감소하는 결과를 확인하였다. 이러한 표면 젖음성의 향상은 MPC에서 포스포릴콜린기의 이온 수화에 따른 것이다.In addition, the surface wettability was evaluated by measuring the contact angle, and the results are shown in Table 1 and FIG. 3 . The surface-modified hydrogel has zwitterionic and hydrophilic MPC components, and the contact angle decreases with an increase in the amount of MPC, and the surface wettability is improved. A relatively high contact angle of 78.6° was observed in the p(HEMA) hydrogel sample, and it was confirmed that the contact angle decreased to 74.7, 65.0, and 59.2° as the amount of MPC increased. This improvement in surface wettability is due to ion hydration of phosphorylcholine groups in MPC.

또한, 표면 방오성을 평가하기 위하여 단백질 및 박테리아 탈착 시험을 실시하였다. In addition, protein and bacterial desorption tests were performed to evaluate the surface antifouling properties.

단백질 탈착은 다양한 요인에 의한 것으로서, 위상배치, 단백질 구조, 크기, 전하 등의 영향을 받는다. 따라서 BSA 및 라이소자임의 2가지 단백질 모델의 흡착을 고려하여 시험하였다. Protein desorption is due to various factors, and is affected by topology, protein structure, size, charge, and the like. Therefore, the adsorption of two protein models, BSA and lysozyme, was considered and tested.

그 결과는 도 4와 같으며, MPC의 함량이 증가함에 따라 렌즈당 BSA 흡착량이 3.13, 2.54, 2.51g으로 증가하는 것으로 나타났다. 표면 개질하지 않은 하이드로겔 렌즈가 7.55g인 것과 비교하면, 이러한 결과는 BSA 흡착이 59, 66, 및 67% 감소하는 것을 시사하는 것이다. 또한, 표면 개질에 의해 라이소자임 흡착이 감소하는 것으로 나타났다. 표면 개질하지 않은 하이드로겔 렌즈에 대한 라이소자임 흡착량이 3.87g인 것에 대해 표면 개질된 하이드로겔 렌즈의 경우 흡착량이 1.02 내지 1.05g인 것으로 나타나 대략 73 내지 74%의 라이소자임 흡착율의 감소를 확인하였다.The results are as shown in FIG. 4, and it was found that the amount of BSA adsorbed per lens increased to 3.13, 2.54, and 2.51 g as the MPC content increased. Compared with the unmodified hydrogel lens at 7.55 g, these results suggest 59, 66, and 67% reduction in BSA adsorption. In addition, it was shown that lysozyme adsorption was reduced by the surface modification. In the case of the surface-modified hydrogel lens, the adsorption amount of the lysozyme for the hydrogel lens that is not surface-modified was 3.87 g compared to the adsorption amount of 1.02 to 1.05 g.

다만, 실시예 2와 3에서 BSA 및 라이소자임의 흡착량이 거의 동일하였으며, 이로부터 최적의 표면 개질을 위해서는 0.25M의 MPC 단량체로 표면 개질하는 것이 적합하며, 이를 통해 최적의 표면 방오성을 얻을 수 있는 것으로 나타났다. 단백질 흡착에 대한 저항성은 포스포릴콜린 부분과 주위의 물의 상호작용에 의한 것이며, 기재에 대해 자유로운 물의 함량에 따라 포스포릴콜린기 주변의 수화층의 밀도가 정해지며 이를 통해 단백질 흡착을 저해하는 일종의 방어막을 형성하는 것으로 생각된다.However, in Examples 2 and 3, the adsorption amount of BSA and lysozyme was almost the same, and from this, for optimal surface modification, it is suitable to surface-modify the surface with 0.25 M MPC monomer, and through this, it is possible to obtain optimal surface antifouling properties. appear. The resistance to protein adsorption is due to the interaction between the phosphorylcholine moiety and the surrounding water, and the density of the hydration layer around the phosphorylcholine group is determined according to the content of free water on the substrate, and through this, a kind of barrier that inhibits protein adsorption. is thought to form

또한, 박테리아 흡착 시험을 위하여 그람-음성 E. Coli를 사용하여 실험을 실시하였다. 하이드로겔 시료는 박테리아 현탁액에 함침하였고 37℃에서 배양한 후 이를 꺼내어 살균 배지에 다시 함침하였다. 이후 박테리아의 함량을 미리 설정된 시간 간격으로 1에서 24시간 동안 측정하였다. 측정은 UV 분광기를 이용하여 광학 밀도를 구함으로서 실시하였다.In addition, an experiment was conducted using Gram-negative E. coli for the bacterial adsorption test. The hydrogel sample was impregnated in the bacterial suspension and incubated at 37°C, which was then taken out and re-impregnated in the sterile medium. Thereafter, the content of bacteria was measured for 1 to 24 hours at preset time intervals. The measurement was performed by obtaining the optical density using a UV spectrometer.

실시예 3의 시료에 대한 시험 결과는 도 5와 같은데, 표면 개질된 하이드로겔을 포함하는 현탁액은 대조군에 비해 낮은 박테리아 흡착을 나타내었다. 즉, 대조군에 비해 박테리아 흡착량이 10 내지 73% 감소하는 결과를 얻었다.The test results for the sample of Example 3 are the same as in FIG. 5, and the suspension including the surface-modified hydrogel exhibited low bacterial adsorption compared to the control. That is, the result was obtained that the amount of bacterial adsorption decreased by 10 to 73% compared to the control.

단백질 탈착 결과와 마찬가지로 박테리아에 대해서도 흡착률 감소의 결과를 얻었으며, 이는 하이드로겔 표면의 수화층 밀도가 높아지기 때문인 것으로 생각되었다. Similar to the protein desorption result, a decrease in the adsorption rate was also obtained for bacteria, which was thought to be due to the increased density of the hydration layer on the hydrogel surface.

이와 같은 결과로부터 본 발명에 따른 폴리(2-메타크릴로일옥시에틸 포스포릴콜린)로 표면 개질된 하이드로겔은 단백질 및 박테리아의 흡착에 대한 높은 저항성을 나타내며, 이로 인해 우수한 방오성을 나타내는 것을 확인하였다. 또한, 이러한 표면 개질된 하이드로겔을 성형하여 콘택트 렌즈를 제조하면 상기 하이드로겔의 특성으로 말미암아 방오성 및 항균성이 향상되며, 안구의 감염을 방지하고 이를 통해 콘택트 렌즈 착용시 발생할 수 있는 안구질환을 저감 및 예방할 수 있을 것으로 기대된다.From these results, it was confirmed that the hydrogel surface-modified with poly(2-methacryloyloxyethyl phosphorylcholine) according to the present invention exhibits high resistance to adsorption of proteins and bacteria, thereby exhibiting excellent antifouling properties. . In addition, when a contact lens is manufactured by molding such a surface-modified hydrogel, antifouling and antibacterial properties are improved due to the characteristics of the hydrogel, and it prevents eye infection and thereby reduces eye diseases that may occur when wearing contact lenses. It is expected to be preventable.

이상과 같이 본 발명의 바람직한 실시예를 들어 상세하게 설명하였으나, 본 발명은 상기 실시예에 한정되는 것은 아니며, 본 발명의 기술적 사상의 범위 내에서 당해 분야에서 통상의 지식을 가진 자에 의하여 여러 가지 변형이 가능하다.As described above, preferred embodiments of the present invention have been described in detail, but the present invention is not limited to the above embodiments, and various methods can be made by those of ordinary skill in the art within the scope of the technical spirit of the present invention. Transformation is possible.

Claims (3)

폴리하이드록시에틸메타크릴레이트(poly(hydroxyethylmethacrylate, p(HEMA))를 포함하는 하이드로겔의 표면을 폴리(2-메타크릴로일옥시에틸 포스포릴콜린)(p(MPC))로 개질하는 것을 특징으로 하는 폴리(2-메타크릴로일옥시에틸 포스포릴콜린)로 개질된 하이드로겔로서,
상기 p(HEMA) 하이드로겔은,
에틸렌글리콜 디메타크릴레이트(EGDMA) 및 아조비스이소부티로니트릴(AIBN)를 하이드록시에틸메타크릴레이트(HEMA) 단량체에 용해시켜 혼합액을 제조하는 단계;
상기 혼합액을 몰드에 주입하고 가열하여 고분자를 제조하는 단계;
상기 고분자를 세척하여 하이드로겔을 제조하는 단계;
를 포함하여 제조되며,
상기 개질은,
상기 p(HEMA) 하이드로겔을 벤조페논 용액에 함침하고 건조하여 벤조페논이 흡착된 p(HEMA) 하이드로겔을 제조하는 단계;
상기 벤조페논이 흡착된 p(HEMA) 하이드로겔을 MPC 용액에 함침하여 함침액을 제조하는 단계;
상기 함침액에 자외선을 조사하는 단계;
를 포함하여 제조되는 것을 특징으로 하는 폴리(2-메타크릴로일옥시에틸 포스포릴콜린)로 개질된 하이드로겔.
Characterized in modifying the surface of a hydrogel containing poly(hydroxyethylmethacrylate, p(HEMA)) with poly(2-methacryloyloxyethyl phosphorylcholine)(p(MPC)) As a hydrogel modified with poly (2-methacryloyloxyethyl phosphorylcholine),
The p (HEMA) hydrogel is,
Dissolving ethylene glycol dimethacrylate (EGDMA) and azobisisobutyronitrile (AIBN) in hydroxyethyl methacrylate (HEMA) monomer to prepare a mixed solution;
preparing a polymer by injecting the mixture into a mold and heating;
washing the polymer to prepare a hydrogel;
Manufactured including
The modification is
impregnating the p(HEMA) hydrogel in a benzophenone solution and drying to prepare a p(HEMA) hydrogel to which benzophenone is adsorbed;
preparing an impregnation solution by impregnating the benzophenone-adsorbed p (HEMA) hydrogel in an MPC solution;
irradiating ultraviolet rays to the impregnating liquid;
A hydrogel modified with poly (2-methacryloyloxyethyl phosphorylcholine), characterized in that it is prepared including a.
삭제delete 청구항 1의 폴리(2-메타크릴로일옥시에틸 포스포릴콜린)로 개질된 하이드로겔로 형성되는 것을 특징으로 하는 하이드로겔 콘텍트 렌즈.A hydrogel contact lens, characterized in that it is formed of a hydrogel modified with the poly(2-methacryloyloxyethyl phosphorylcholine) of claim 1.
KR1020190170393A 2019-12-19 2019-12-19 Poly(2-Methacryloyloxyethyl Phosphorylcholine)-Functionalized Hydrogel and Lens Using the Same KR102334955B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190170393A KR102334955B1 (en) 2019-12-19 2019-12-19 Poly(2-Methacryloyloxyethyl Phosphorylcholine)-Functionalized Hydrogel and Lens Using the Same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190170393A KR102334955B1 (en) 2019-12-19 2019-12-19 Poly(2-Methacryloyloxyethyl Phosphorylcholine)-Functionalized Hydrogel and Lens Using the Same

Publications (2)

Publication Number Publication Date
KR20210079434A KR20210079434A (en) 2021-06-30
KR102334955B1 true KR102334955B1 (en) 2021-12-06

Family

ID=76602434

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190170393A KR102334955B1 (en) 2019-12-19 2019-12-19 Poly(2-Methacryloyloxyethyl Phosphorylcholine)-Functionalized Hydrogel and Lens Using the Same

Country Status (1)

Country Link
KR (1) KR102334955B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100664903B1 (en) * 2005-11-28 2007-01-04 주식회사 티씨 싸이언스 Method for preparing protein resistant and eye compatible soft contact lens

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070022027A (en) * 2004-05-24 2007-02-23 가부시키가이샤 시세이도 Ocular lens material and method for producing same
RS52882B (en) * 2010-07-30 2014-02-28 Novartis Ag Silicone hydrogel lenses with water-rich surfaces
MY184638A (en) * 2015-12-15 2021-04-13 Alcon Inc Method for applying stable coating on silicone hydrogel contact lenses
KR101820710B1 (en) * 2016-06-27 2018-03-08 (주)지오메디칼 Hydrogel contact lens having high water content and inhibiting protein adsorption and method for preparing the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100664903B1 (en) * 2005-11-28 2007-01-04 주식회사 티씨 싸이언스 Method for preparing protein resistant and eye compatible soft contact lens

Also Published As

Publication number Publication date
KR20210079434A (en) 2021-06-30

Similar Documents

Publication Publication Date Title
Yazdi et al. Hydrogel membranes: A review
Erathodiyil et al. Zwitterionic polymers and hydrogels for antibiofouling applications in implantable devices
Alves et al. Surface modification of polyurethane films by plasma and ultraviolet light to improve haemocompatibility for artificial heart valves
Rodrigues et al. The influence of preparation conditions on the characteristics of chitosan‐alginate dressings for skin lesions
Hsiue et al. Surface characterization and biological properties study of silicone rubber membrane grafted with phospholipid as biomaterial via plasma induced graft copolymerization
Wu et al. Importance of zwitterionic incorporation into polymethacrylate-based hydrogels for simultaneously improving optical transparency, oxygen permeability, and antifouling properties
CN108473632B (en) Polymeric compositions
CN102770407A (en) Crosslinked zwitterionic hydrogels
He et al. A versatile approach towards multi-functional surfaces via covalently attaching hydrogel thin layers
EP0425485A4 (en) Preparation of polymeric surfaces
Ma et al. Increased protein sorption in poly (acrylic acid)-containing films through incorporation of comb-like polymers and film adsorption at low pH and high ionic strength
Liao et al. Aminomalononitrile-assisted multifunctional antibacterial coatings
WO1993021970A1 (en) Method of reducing microorganism adhesion
JP2010264244A (en) Silk medical device containing antimicrobial agent and method of manufacture thereof
Lin et al. Plasma initiated graft polymerization of 2-methacryloyloxyethyl phosphorylcholine on silicone elastomer surfaces to enhance bio (hemo) compatibility
CN113713183A (en) Biomedical coating with excellent long-acting anticoagulation, antibiosis and anti-fouling performances and preparation method thereof
CN104190274A (en) Antibacterial polyvinylidene fluoride membrane and preparation method thereof
US20060193894A1 (en) Methods for providing biomedical devices with hydrophilic antimicrobial coatings
Wang et al. Thermoresponsive antibacterial surfaces switching from bacterial adhesion to bacterial repulsion
Chan et al. Calcium cross-linked zwitterionic hydrogels as antifouling materials
KR102334955B1 (en) Poly(2-Methacryloyloxyethyl Phosphorylcholine)-Functionalized Hydrogel and Lens Using the Same
Eldin et al. Wound dressing membranes based on chitosan: Preparation, characterization and biomedical evaluation
Lee et al. Applications of ophthalmic biomaterials embedded with fucoidan
Nho et al. Preparation and characterization of PVA/PVP/glycerin/antibacterial agent hydrogels using γ-irradiation followed by freeze-thawing
Vales et al. Protein Adsorption and Bacterial Adhesion Resistance of Cross‐linked Copolymer Hydrogels Based on Poly (2‐methacryloyloxyethyl phosphorylcholine) and Poly (2‐hydroxyethyl methacrylate)

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant