KR102334142B1 - A method for preparing biomass-based absorbent for removing radionuclides or heavy-metal, a absorbent thereby, and a use of the same - Google Patents

A method for preparing biomass-based absorbent for removing radionuclides or heavy-metal, a absorbent thereby, and a use of the same Download PDF

Info

Publication number
KR102334142B1
KR102334142B1 KR1020200106374A KR20200106374A KR102334142B1 KR 102334142 B1 KR102334142 B1 KR 102334142B1 KR 1020200106374 A KR1020200106374 A KR 1020200106374A KR 20200106374 A KR20200106374 A KR 20200106374A KR 102334142 B1 KR102334142 B1 KR 102334142B1
Authority
KR
South Korea
Prior art keywords
biomass
adsorbent
present
biochar
hours
Prior art date
Application number
KR1020200106374A
Other languages
Korean (ko)
Inventor
전강민
신재관
이용구
김상원
곽진우
손창길
Original Assignee
강원대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 강원대학교 산학협력단 filed Critical 강원대학교 산학협력단
Priority to KR1020200106374A priority Critical patent/KR102334142B1/en
Application granted granted Critical
Publication of KR102334142B1 publication Critical patent/KR102334142B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3071Washing or leaching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3078Thermal treatment, e.g. calcining or pyrolizing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3085Chemical treatments not covered by groups B01J20/3007 - B01J20/3078
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/58Treatment of water, waste water, or sewage by removing specified dissolved compounds
    • C02F1/62Heavy metal compounds
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/04Treating liquids
    • G21F9/06Processing
    • G21F9/12Processing by absorption; by adsorption; by ion-exchange

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

The present invention relates to a preparation method of a biomass-based adsorbent for removing a radionuclide or a heavy metal, a biomass-based adsorbent prepared thereby, and a method for removing a radionuclide or a heavy metal from a target object using the adsorbent. The preparation method of a biomass-based adsorbent for removing a radionuclide or a heavy metal comprises the steps of: a) washing biomass with water and drying the same so as to carbonize the biomass; and b) reforming the carbide obtained in step (a) through an alkali oxidation method.

Description

방사성 핵종 또는 중금속 제거를 위한 바이오매스 기반 흡착제 제조방법, 그 방법에 의하여 제조된 흡착제 및 그 흡착제의 용도{A METHOD FOR PREPARING BIOMASS-BASED ABSORBENT FOR REMOVING RADIONUCLIDES OR HEAVY-METAL, A ABSORBENT THEREBY, AND A USE OF THE SAME}A method for manufacturing a biomass-based adsorbent for the removal of radionuclides or heavy metals, an adsorbent prepared by the method, and the use of the adsorbent OF THE SAME}

본 발명은 방사성 핵종 또는 중금속 제거를 위한 바이오매스 기반 흡착제 제조방법, 그 방법에 의하여 제조된 흡착제 및 그 흡착제의 용도에 관한 것이다.The present invention relates to a method for manufacturing a biomass-based adsorbent for removing radionuclides or heavy metals, an adsorbent prepared by the method, and use of the adsorbent.

원자력발전소는 원자로계통수 및 2차계통수의 수질정화를 위하여 상당량의 이온교환수지를 주기적으로 사용하며, 연구소 및 대학교의 실험실에서도 방사성 오염물질의 정화를 위하여 이온교환수지를 사용하고 있다.Nuclear power plants regularly use a significant amount of ion exchange resin to purify reactor system water and secondary system water, and research institutes and university laboratories also use ion exchange resin to purify radioactive contaminants.

이러한 정화과정에서 발생되는 폐수지 중 방사능 준위가 비교적 낮은 폐수지로는 터빈복수계통의 응축수 정화과정에서 발생되는 CPP(Condensate Polishing Plant) 폐수지와 증기발생기 취출수계통의 정화시 발생하는 BD(Blowdown) 폐수지가 있으며 방사능준위가 약간 높은 폐수지로는 액체폐기물처리계통(Liquid Radwaste System, LRS)에서의 액체폐기물 정화과정에서 발생하는 폐수지가 있다. Among the waste resins generated in the purification process, the waste resin with a relatively low radioactivity level is the CPP (Condensate Polishing Plant) waste resin generated during the condensate purification process of the turbine condensate system and the BD (Blowdown) generated during the purification of the steam generator discharge water system. There is a waste resin, and as a waste resin with a slightly higher radioactivity level, there is a waste resin generated during the liquid waste purification process in the Liquid Radwaste System (LRS).

통상적으로 호기당 년간 약 5,000∼7,000ℓ 정도의 폐수지가 발생되고 있으며 이렇게 발생되는 폐수지는 방사능 준위에 따라 마대나 탄소강 드럼에 담아 영구처분을 위해 발전소 내에 임시로 보관하고 있다.In general, about 5,000 to 7,000 liters of waste resin is generated per unit per year, and the generated waste resin is placed in sacks or carbon steel drums depending on the level of radioactivity and temporarily stored in the power plant for permanent disposal.

통상적으로 원자력발전소에서 발생되는 폐수지는 방사능이 미량이라도 검출될 경우, 전량 안정화시켜서 드럼에 담아 방사성폐기물 처분장으로 보낸다. 이러한 방사성폐기물은 자체처분이 가능한 방사능 준위까지 방사능을 낮추지 않으면 일반폐기물로 분류하여 처리하는 것은 불가능하다. 특히, 증기발생기 세관의 누설이 있을 경우, 증기발생기 2차측의 취출수계통의 정화시에 발생되는 폐수지는 반감기가 긴 방사성탄소(14C)와, 방사성세슘(137Cs) 및 방사성코발트(60Co)와 같은 방사성핵종으로 오염되며, 이렇게 오염된 폐수지는 장기간 보관하여도 방사능이 완전히 소멸되지 않기 때문에 일반폐기물로 분류하여 처리할 수 없다.In the case of detection of even trace amounts of radioactivity in waste resins generated from nuclear power plants, the entire amount is stabilized, put in drums, and sent to a radioactive waste disposal site. It is impossible to classify such radioactive waste as general waste unless the radioactivity is lowered to the level of radioactivity that can be disposed of by itself. In particular, if there is a leak in the tube of the steam generator, the waste resin generated during the purification of the extraction water system on the secondary side of the steam generator is radiocarbon (14C) with a long half-life, radioactive cesium (137Cs), and radioactive cobalt (60Co). It is contaminated with radionuclides, and since the radioactivity does not disappear completely even after long-term storage, the contaminated waste resin cannot be classified as general waste and treated.

이온교환수지는 기계적 강도나 화학적 저항성이 우수한 고분자 중합체로 제조되며 그 표면의 관능기가 방사성핵종과 치환되어 이온교환형태로 잔류하고 있기 때문에 수지에 부착된 방사성핵종을 분리하여 추출하는 것이 매우 어렵다. 따라서 이렇게 오염된 폐수지로부터 자체처분이 가능할 정도로 방사성핵종을 분리 추출하여 제거하는 기술의 개발은 방사성폐기물의 감용 및 처분비용의 절감 차원에서 매우 중요하다.Ion exchange resins are made of high molecular weight polymers with excellent mechanical strength or chemical resistance, and since functional groups on the surface are replaced with radionuclides and remain in ion exchange form, it is very difficult to separate and extract radionuclides attached to the resin. Therefore, it is very important to develop a technology to separate and extract radionuclides to the extent that they can be disposed of on their own from such polluted waste resins in terms of reduction of radioactive waste and reduction of disposal costs.

또한 우리 주변에는 다양한 환경에서 많은 오염물질이 함유된 폐수가 발생되고 있고, 이런 폐수를 수계(水系)로 그대로 방류하게 되면 하천과 바다가 오염되어 사람들은 오염된 생활환경에 노출되며, 생태계 파괴가 일어나기 때문에 정화과정을 거친 폐수를 방류하여야 한다. 이와 같은 오염물질과 유기물을 함유한 폐수를 정화하기 위해서 수처리 분야는 지속적으로 발전되고 있으나 수처리 과정의 편리성과 경제성 및 환경 친화적인 개념과 그 적용은 미비한 상황이다. In addition, wastewater containing many pollutants is generated in various environments around us, and if such wastewater is discharged into the water system as it is, rivers and seas are polluted, exposing people to the polluted living environment, and destroying the ecosystem. Therefore, the wastewater that has undergone the purification process must be discharged. In order to purify wastewater containing such pollutants and organic matter, the field of water treatment has been continuously developed, but the concept of convenience, economy, and environment-friendly water treatment process and its application are insufficient.

따라서, 유기물을 생분해하는 미생물을 찾고, 간이 수처리 시설물에 대응할 수 있는 기술이 필요한 실정이다.Therefore, there is a need for a technology capable of finding microorganisms that biodegrade organic matter and responding to simple water treatment facilities.

기존의 오폐수의 정화기술 분야에서 잘 알려진 기술은 "활성슬러지법"과 그 개량법이다. 이 기술은 1913년에 영국에서 개발된 개량법이 나오면서 전 세계로 알려지면서 생활폐수를 비롯하여 유기성 폐수처리에 큰 기여를 하였다. A well-known technology in the field of existing wastewater purification technology is the "activated sludge method" and its improvement method. This technology became known all over the world when the improved method developed in England came out in 1913, and made a great contribution to organic wastewater treatment including domestic wastewater.

그러나 이 기술은 초기 투자액, 관리유지비가 많이 들고, 운영 기술이 어려워 전문지식을 요하며, 특히 대량의 슬러지가 발생함으로써 그 처리에 문제점을 가지고 있다.However, this technology requires a lot of initial investment, management and maintenance costs, and requires specialized knowledge due to difficult operation technology. In particular, it has a problem in its treatment because a large amount of sludge is generated.

종래의 폐수를 정화하는 선행기술로, 한국등록특허 제10-1367642호에서는 오폐수 발생원으로부터 공급되는 오폐수를 공급받아 그 오폐수에 포함된 부유물질을 제거하는 부유물질 제거기와, 상기 부유물질 제거기를 거쳐 배출되는 오폐수를 정화처리하는 반응조를 구비한다. 상기 반응조에는 5~20㎛의 원적외선을 조사하면서 가열하여 다공의 표면적이 10㎡/g 이상으로 된 2~10mm의 목재 칩이 충진되고, 특히, 상기 부유물질 제거기는 상기 오폐수 발생원과 상기 반응조 사이에 개재되는 임시 저장탱크와, 상기 임시 저장탱크 내에 일단이 위치하고 타단은 상기 임시 저장탱크의 외부로 연장되어 상기 일단 위치보다 더 높은 위치에 있도록 설치되는 컨베이어와, 상기 컨베이어의 양단에 회전 가능하게 체결되는 거름망으로 이루어진 벨트를 포함하고, 상기 오폐수 발생원으로부터 상기 임시 저장탱크 내에 유입되는 오폐수는 상기 벨트 영역을 거쳐 유입되도록 구성된 오폐수 정화장치가 공시되어 있다.As a prior art for purifying wastewater in the prior art, in Korean Patent No. 10-1367642, a suspended matter remover that receives wastewater supplied from a wastewater generator and removes suspended matter contained in the wastewater, and the suspended matter remover is discharged A reaction tank for purifying wastewater is provided. The reaction tank is filled with wood chips of 2 to 10 mm with a porous surface area of 10 m 2 /g or more by heating while irradiating 5 to 20 μm of far-infrared rays. An interposed temporary storage tank, a conveyor having one end positioned within the temporary storage tank and the other end extending outside the temporary storage tank to be installed at a higher position than the one end position, and rotatably fastened to both ends of the conveyor There is disclosed a wastewater purification device including a belt made of a sieve, and configured such that the wastewater flowing into the temporary storage tank from the wastewater generator flows through the belt region.

본 발명은 상기의 문제점을 해결하고, 상기의 필요성에 의하여 안출된 것으로서 본 발명의 목적은 방사성 핵종 또는 중금속 제거를 위한 바이오매스 기반 흡착제 제조방법을 제공하는 것이다. The present invention solves the above problems, and an object of the present invention is to provide a method for manufacturing a biomass-based adsorbent for removing radionuclides or heavy metals as devised by the above necessity.

본 발명의 다른 목적은 방사성 핵종 및/또는 수계오염 물질 제거를 위한 방법을 제공하는 것이다. Another object of the present invention is to provide a method for the removal of radionuclides and/or waterborne contaminants.

상기의 목적을 달성하기 위하여 본 발명은 a) 바이오매스를 수세하고, 건조하여 탄화하는 단계; 및 In order to achieve the above object, the present invention comprises the steps of: a) washing biomass with water, drying and carbonizing; and

b) 상기 탄화물을 알칼리 산화법을 통해 개질하는 단계를 포함하는 방사성 핵종 또는 중금속 제거를 위한 바이오매스 기반 흡착제 제조방법을 제공한다.It provides a method for preparing a biomass-based adsorbent for removing radionuclides or heavy metals, comprising the step of b) reforming the carbide through an alkali oxidation method.

본 발명의 일 구현예에 있어서, In one embodiment of the present invention,

상기 바이오매스는 호두 껍질, 볏집, 톱밥, 커피박, 쌀겨, 고추대, 유기성 슬러지, 과일 껍질, 임업 부산물, 또는 산림 부산물인 것이 바람직하나 이에 한정되지 아니한다.The biomass is preferably walnut shell, rice bran, sawdust, coffee gourd, rice bran, red pepper stem, organic sludge, fruit peel, forestry by-product, or forest by-product, but is not limited thereto.

본 발명의 다른 구현예에 있어서, In another embodiment of the present invention,

상기 a)의 탄화 단계는 바이오매스를 전기로에 넣고 0.1~2 L 질소 가스/분 하에서 1~20℃/분으로 300~900℃까지 승온시킨 후 300~900℃에서 0.5~6 시간 동안 유지시키고 방냉하는 단계를 포함하는 것이 바람직하나 이에 한정되지 아니한다In the carbonization step of a), the biomass is put into an electric furnace, heated to 300-900°C at 1-20°C/min under 0.1-2 L nitrogen gas/min, and then maintained at 300-900°C for 0.5-6 hours and allowed to cool It is preferable to include the step of, but is not limited thereto

본 발명의 또 다른 구현예에 있어서, In another embodiment of the present invention,

상기 b) 단계는 상기 a) 단계에서 얻은 탄화물과 알카리 산화 용액(pH 8 이상, 산화제와 수산화물의 혼합액)를 1:1~1:500(w/v)의 비로 혼합하여 0 초과 24시간 이내 동안 처리하는 단계를 포함하는 것이 바람직하나 이에 한정되지 아니한다.In step b), the carbide obtained in step a) and the alkali oxidation solution (pH 8 or higher, a mixture of oxidizing agent and hydroxide) are mixed in a ratio of 1:1 to 1:500 (w/v) for more than 0 and within 24 hours. It is preferable to include the step of processing, but is not limited thereto.

본 발명의 또 다른 구현예에 있어서, In another embodiment of the present invention,

상기에서 사용된 산화제는 과산화수소수, 오존, 또는 과산화수소 및 오존의 혼합인 것이 바람직하나 이에 한정되지 아니한다.The oxidizing agent used in the above is preferably hydrogen peroxide, ozone, or a mixture of hydrogen peroxide and ozone, but is not limited thereto.

본 발명의 또 다른 구현예에 있어서, In another embodiment of the present invention,

상기에서 사용된 수산화물은 NaOH, KOH, Ca(OH)2, 또는 Mg(OH)2인 것이 바람직하나 이에 한정되지 아니한다.The hydroxide used in the above is preferably NaOH, KOH, Ca(OH) 2 , or Mg(OH) 2 , but is not limited thereto.

또 본 발명은 상기 본 발명의 방법에 의하여 제조된 바이오매스 기반 흡착제를 제공한다.In addition, the present invention provides a biomass-based adsorbent prepared by the method of the present invention.

또한 본 발명은 상기 본 발명의 바이오매스 기반 흡착제를 포함하는 방사성 핵종 제거용 키트를 제공한다.The present invention also provides a kit for removing radionuclides comprising the biomass-based adsorbent of the present invention.

또한 본 발명은 상기 본 발명의 바이오매스 기반 흡착제를 포함하는 중금속 제거용 키트를 제공한다.The present invention also provides a kit for removing heavy metals comprising the biomass-based adsorbent of the present invention.

또한 본 발명은 상기 본 발명의 바이오매스 기반 흡착제를 방사성 핵종 또는 중금속을 포함한 대상에 처리하여 해당 대상에서 방사성 핵종 또는 중금속을 제거하는 방법을 제공한다.In addition, the present invention provides a method for removing radionuclides or heavy metals from the target by treating the biomass-based adsorbent of the present invention to a target containing a radionuclide or a heavy metal.

본 발명의 일 구현예에 있어서, In one embodiment of the present invention,

상기 흡착제 투여량은 0.001 ~ 50 g/L인 것이 바람직하나 이에 한정되지 아니한다.The adsorbent dosage is preferably 0.001 ~ 50 g / L, but is not limited thereto.

본 발명의 다른 구현예에 있어서, In another embodiment of the present invention,

상기 제거 대상의 농도는 10g/L 미만인 것이 바람직하나 이에 한정되지 아니한다.The concentration of the target to be removed is preferably less than 10 g/L, but is not limited thereto.

이하 본 발명을 설명한다.Hereinafter, the present invention will be described.

본 발명은 방사성 핵종제거를 위해 다양한 바이오매스를 기반으로 하여 매우 간단한 열분해 과정을 통해 바이오차를 생산 및 알칼리 산화제를 통해 개질하는 방법을 제공한다. The present invention provides a method for producing biochar through a very simple pyrolysis process based on various biomass and reforming it through an alkali oxidizing agent for the removal of radionuclides.

본 발명의 바이오매스 기반 흡착제 제조방법은 The biomass-based adsorbent manufacturing method of the present invention is

도 1에 자세하게 기재되어 있지만, 간략하게 요약하면, Although detailed in Figure 1, in brief summary,

a) 다양한 바이오매스 (호두껍질, 볏집, 톱밥, 커피박, 쌀겨, 고추대, 유기성 슬러지, 과일껍질, 임업부산물, 산림부산물 등)을 수세하고, 건조하여 탄화하는 단계; b) 상기 탄화물을 알칼리 산화법을 통해 개질하는 단계를 주요 단계로 포함한다.a) washing various biomass (walnut shells, rice bran, sawdust, coffee gourd, rice bran, red pepper cod, organic sludge, fruit shells, forestry by-products, forest by-products, etc.), drying, and carbonizing; b) reforming the carbide through alkali oxidation as a major step.

상기 탄화 단계는 건조된 바이오매스를 전기로에 넣고 0.1~2 L 질소 가스/분 하에서 1~20℃/분으로 300~900℃까지 승온시킨 뒤 300~900℃에서 0.5~6 시간 동안 유지시키고 방냉하는 단계를 포함한다.The carbonization step is to put the dried biomass in an electric furnace and raise the temperature to 300-900°C at 1-20°C/min under 0.1-2 L nitrogen gas/min, then maintain at 300-900°C for 0.5-6 hours and allow to cool includes steps.

상기 b) 단계는 상기 a) 단계에서 얻은 탄화물과 알카리 산화 용액(pH 8 이상, 산화제와 수산화물의 혼합액)를 1:1~1:500(w/v)의 비로 혼합하여 0 초과 24시간 이내 동안 후처리하는 단계를 포함한다.In step b), the carbide obtained in step a) and the alkali oxidation solution (pH 8 or higher, a mixture of oxidizing agent and hydroxide) are mixed in a ratio of 1:1 to 1:500 (w/v) for more than 0 and within 24 hours. post-processing.

상기 b) 단계에서 사용된 산화제는 과산화수소수, 오존, 과산화수소 및 오존인 것이 바람직하나 이에 한정되지 아니하며,The oxidizing agent used in step b) is preferably hydrogen peroxide, ozone, hydrogen peroxide and ozone, but is not limited thereto,

상기 b) 단계에서 사용된 수산화물은 NaOH, KOH, Ca(OH)2, 또는 Mg(OH)2인 것이 바람직하나 이에 한정되지 아니한다.The hydroxide used in step b) is preferably NaOH, KOH, Ca(OH) 2 , or Mg(OH) 2 , but is not limited thereto.

상기 b) 단계에서 사용된 알카리 용액의 농도는 0 초과 5M 이하의 농도로 사용하였다.The concentration of the alkali solution used in step b) was used at a concentration of more than 0 and less than or equal to 5M.

또한 본 발명의 제조방법은 상기 b) 단계 후에 상기 후처리된 것을 세척하고 건조하여 80~625 메쉬 체를 통하여 그 메쉬 체를 통과한 것들만 선별하는 공정을 추가로 포함할 수 있다.In addition, the manufacturing method of the present invention may further include a process of selecting only those that have passed through the mesh sieve through an 80-625 mesh sieve by washing and drying the post-processed ones after step b).

본 발명의 상기 바이오매스 기반 흡착제 제조방법에 의하여 제조된 바이오매스 기반 흡착제를 이용하여 방사성 핵종 및 수계오염물질 제거방법은 도 2에 자세하게 설명하였다. A method for removing radionuclides and water-based pollutants using the biomass-based adsorbent prepared by the biomass-based adsorbent manufacturing method of the present invention is described in detail in FIG. 2 .

요약하면, to summarize,

a) 본 발명의 바이오매스 기반 흡착제 제조방법에 의하여 제조된 바이오매스 기반 흡착제 투입량 (0.001 ~ 50 g/L)이고; a) a biomass-based adsorbent input amount (0.001-50 g/L) prepared by the biomass-based adsorbent manufacturing method of the present invention;

b) 처리용액의 pH (3 ~ 11); b) the pH of the treatment solution (3 to 11);

c) 처리용액의 온도 (5 ~ 45℃); c) the temperature of the treatment solution (5 ~ 45 ℃);

d) 흡착시간 (0 초과 144 시간); d) adsorption time (more than 0 144 hours);

e) 제거대상 물질의 농도 (< 10 g/L); e) concentration of material to be removed (< 10 g/L);

f) 교반 RPM (50 ~ 300); f) stirring RPM (50 to 300);

g) 대상물질: 유기물질 (미량오염물질, 염료, 자연유기물질 등), 무기물질 (중금속 등), 방사성 핵종(세슘, 스트론튬, 우라늄, 토튬, 요오드 등)이다.g) Target substances: organic substances (trace pollutants, dyes, natural organic substances, etc.), inorganic substances (heavy metals, etc.), and radionuclides (cesium, strontium, uranium, totium, iodine, etc.).

본 발명을 통하여 알 수 있는 바와 같이, 본 발명의 방사성 핵종 및 수계오염물질 제거를 위한 바이오차 제조방법은 원료를 탄화한 후 산화제를 통해 매우 손쉽게 개질함으로써 간단하며 용이한 바이오매스 기반 흡착제를 제조할 수 있으며, 또한, 기존의 산화방법으로는 개질할 수 없던 커피박 바이오차를 효과적으로 변형시킬 수 있다는 새로운 알칼리 산화법을 포함하고 있다.As can be seen from the present invention, the biochar manufacturing method for the removal of radionuclides and water-based contaminants of the present invention can produce a simple and easy biomass-based adsorbent by carbonizing a raw material and then reforming it very easily with an oxidizing agent. In addition, it includes a new alkali oxidation method that can effectively transform coffee bean bio-cha, which cannot be reformed by conventional oxidation methods.

또한 기존 수처리 과정의 적용되는 흡착제인 활성탄은 수중의 무기 또는 유기물질 제거, 토양의 무기물질 제거, 건설자제 특성 향상을 위한 복합재료, 대기오염 개선에도 이용되므로 이과 같은 분야에서 적용이 가능하며, 방사성 핵종을 효과적으로 제거할 수 있기 때문에 시장성은 매우 높다고 판단된다.In addition, activated carbon, which is an adsorbent applied to the existing water treatment process, can be applied in such fields as it is used for the removal of inorganic or organic substances in water, the removal of inorganic substances from the soil, composite materials for improving construction properties, and air pollution improvement. Since it can effectively remove nuclides, the marketability is judged to be very high.

도 1은 바이오매스 기반 흡착제 제조과정을 나타낸 그림,
도 2는 바이오매스 기반 흡착제를 통한 방사성 핵종 및 수계오염물질 제거방법을 나타낸 그림,
도 3은 본 발명의 커피박 기반 흡착제를 통한 스트론튬 제거 실험 결과를 나타낸 그림으로,
그림에서 S-Biochar: 커피박을 0.25 L/min의 질소조건 하에서 분당10도씩 승온하여 500도에서 2시간 열분해여 생성된 흡착제,
S-HP-Biochar: 2g의 S-Biochar를 200 mL의 15% 과산화수소를 24시간 혼합하여 생성된 흡착제,
S-AO-Biochar: 2g의 S-Biochar를 200 mL의 1M 수산화나트륨과 0.125 mM 오존을 24시간 혼합하여 생성된 흡착제,
S-AHP-Biochar: 2g의 S-Biochar를 200 mL의 15% 과산화수소와 1M 수산화나트륨과 24시간 혼합하여 생성된 흡착제, 및
S-AAO-Biochar: 2g의 S-Biochar를 200 mL의 7.5% 과산화수소, 1M 수산화나트륨과 0.125 mM 오존을 24시간 혼합하여 생성된 흡착제,
도 4는 커피박 기반 흡착제를 통한 중금속 제거 실험 결과를 나타낸 그림,
그림에서 S-Biochar: 커피박을 0.25 L/min의 질소조건 하에서 분당10도씩 승온하여 500도에서 2시간 열분해여 생성된 흡착제,
S-HP-Biochar: 2g의 S-Biochar를 200 mL의 15% 과산화수소를 24시간 혼합하여 생성된 흡착제, 및
S-AHP-Biochar: 2g의 S-Biochar를 200 mL의 15% 과산화수소와 1M 수산화나트륨과 24시간 혼합하여 생성된 흡착제
1 is a diagram showing a biomass-based adsorbent manufacturing process;
Figure 2 is a figure showing a method of removing radionuclides and water-based pollutants through a biomass-based adsorbent;
3 is a diagram showing the results of a strontium removal experiment using the coffee leaf-based adsorbent of the present invention;
In the figure, S-Biochar: An adsorbent produced by thermal decomposition at 500°C for 2 hours by raising the temperature at 10°C per minute under the nitrogen condition of 0.25 L/min.
S-HP-Biochar: adsorbent produced by mixing 2 g of S-Biochar with 200 mL of 15% hydrogen peroxide for 24 hours;
S-AO-Biochar: adsorbent produced by mixing 2 g of S-Biochar with 200 mL of 1M sodium hydroxide and 0.125 mM ozone for 24 hours;
S-AHP-Biochar: adsorbent produced by mixing 2 g of S-Biochar with 200 mL of 15% hydrogen peroxide and 1 M sodium hydroxide for 24 hours, and
S-AAO-Biochar: adsorbent produced by mixing 2 g of S-Biochar with 200 mL of 7.5% hydrogen peroxide, 1 M sodium hydroxide and 0.125 mM ozone for 24 hours;
Figure 4 is a figure showing the results of heavy metal removal experiments through the coffee grounds-based adsorbent,
In the figure, S-Biochar: An adsorbent produced by thermal decomposition at 500°C for 2 hours by raising the temperature at 10°C per minute under the nitrogen condition of 0.25 L/min.
S-HP-Biochar: adsorbent produced by mixing 2 g of S-Biochar with 200 mL of 15% hydrogen peroxide for 24 hours, and
S-AHP-Biochar: adsorbent produced by mixing 2 g of S-Biochar with 200 mL of 15% hydrogen peroxide and 1 M sodium hydroxide for 24 hours

이하, 비한정적인 실시예를 통하여 본 발명을 더욱 상세하게 설명한다. 단 하기 실시예는 본 발명을 예시하기 위한 의도로 기재한 것으로서 본 발명의 범위는 하기 실시예에 의하여 제한되는 것으로 해석되지 아니한다.Hereinafter, the present invention will be described in more detail through non-limiting examples. However, the following examples are intended to illustrate the present invention, and the scope of the present invention is not to be construed as being limited by the following examples.

실시예 1: 바이오매스 기반 흡착제 제조Example 1: Preparation of biomass-based adsorbent

본 발명의 바이오매스 기반 흡착제 제조 방법은 도 1에 상세하게 기재되어 있다.The method for preparing the biomass-based adsorbent of the present invention is described in detail in FIG. 1 .

주요 공정은 The main process is

a) 다양한 바이오매스 (호두껍질, 볏집, 톱밥, 커피박, 쌀겨, 고추대, 유기성 슬러지, 과일껍질, 임업부산물, 산림부산물 등)을 수세하고, 건조하여 탄화하는 단계; b) 상기 탄화물을 알칼리 산화법을 통해 개질하는 단계를 포함한다.a) washing various biomass (walnut shells, rice bran, sawdust, coffee gourd, rice bran, red pepper cod, organic sludge, fruit shells, forestry by-products, forest by-products, etc.), drying, and carbonizing; b) reforming the carbide through alkali oxidation.

실제 제조예에서 In the actual production example

상기 a) 단계에 대해서는 커피박을 0.25 L/min의 질소조건 하에서 분당 10℃씩 승온하여 500℃에서 2시간 열분해하였고,For step a), the coffee foil was pyrolyzed at 500 °C for 2 hours by increasing the temperature at 10 °C per minute under nitrogen conditions of 0.25 L/min,

상기 b) 단계에 대해서는 상기 a) 단계에서 얻어진 열분해 산물 2g을 200 mL의 15% 과산화수소와 1M 수산화나트륨과 24시간 혼합하여 수행하거나,For step b), 2 g of the thermal decomposition product obtained in step a) was mixed with 200 mL of 15% hydrogen peroxide and 1M sodium hydroxide for 24 hours, or

상기 a) 단계에서 얻어진 열분해 산물 2g을 200 mL의 1M 수산화나트륨과 0.125 mM 오존을 24시간 혼합하여 수행하거나,2 g of the thermal decomposition product obtained in step a) was mixed with 200 mL of 1M sodium hydroxide and 0.125 mM ozone for 24 hours, or

상기 a) 단계에서 얻어진 열분해 산물 2g을 200 mL의 7.5% 과산화수소, 1M 수산화나트륨과 0.125 mM 오존을 24시간 혼합하여 수행하였다. 2 g of the thermal decomposition product obtained in step a) was mixed with 200 mL of 7.5% hydrogen peroxide, 1 M sodium hydroxide and 0.125 mM ozone for 24 hours.

실시예 2: 바이오매스 기반 흡착제를 통한 방사성 핵종 및 수계오염물질 제거방법Example 2: Method of removing radionuclides and water-based pollutants using biomass-based adsorbent

바이오매스 기반 흡착제를 통한 방사성 핵종 및 수계오염물질 제거방법은 도 2에 상세하게 기재되어 있다.A method of removing radionuclides and water-based pollutants through a biomass-based adsorbent is described in detail in FIG. 2 .

이를 상술하면,To elaborate on this,

상기 실시예 1에 의하여 제조된 흡착제를 0.001 ~ 50 g/L 투입하였으며; 0.001-50 g/L of the adsorbent prepared in Example 1 was added;

이 때 처리용액의 pH는 3 ~ 11이었고; At this time, the pH of the treatment solution was 3 to 11;

c) 처리용액의 온도는 5 ~ 45℃이었고; c) the temperature of the treatment solution was 5 to 45 °C;

d) 흡착제와 대상 물질의 흡착 시간은 0 초과 144 시간 사이었으며; d) the adsorption time of the adsorbent to the target material was between 0 and 144 hours;

e) 제거대상 물질의 농도 (< 10 g/L)이었으며; e) the concentration of the material to be removed (<10 g/L);

f) 교반 RPM (50 ~ 300)이었고; f) stirring RPM (50-300);

g) 대상물질: 유기물질 (미량오염물질, 염료, 자연유기물질 등), g) Target substances: organic substances (trace pollutants, dyes, natural organic substances, etc.),

무기물질 (중금속 등), inorganic substances (heavy metals, etc.),

방사성 핵종(세슘, 스트론튬, 우라늄, 토튬, 요오드 등)이었다.They were radionuclides (cesium, strontium, uranium, totium, iodine, etc.).

상기 실시예 2와 관련하여 커피박 기반 흡착제를 통한 스트론튬 제거 실험을 수행한 결과를 도 3에 도시하였다.In relation to Example 2, the results of the strontium removal experiment performed using the coffee bean-based adsorbent are shown in FIG. 3 .

도 3에서 수행한 실험의 조건은 하기와 같다.The conditions of the experiment performed in FIG. 3 are as follows.

흡착제 용량 = 0.3 g/L, Adsorbent capacity = 0.3 g/L,

용액 pH = 5, solution pH = 5,

용액 온도 = 25 ℃, solution temperature = 25 ° C,

교반 속도 = 150 rpm, agitation speed = 150 rpm;

strontium ion의 초기 농도 = 5 mg/L, Initial concentration of strontium ion = 5 mg/L,

접촉 시간 = 24 hcontact time = 24 h

도 3에서 알 수 있는 바와 같이, As can be seen in Figure 3,

방사성 스트론튬이온의 제거의 경우, For the removal of radioactive strontium ions,

기존의 산화방법인 15% 과산화수소만(S-HP-Biochar)을 이용하여 개질하였을 때는 기존의 커피박 바이오차(S-Biochar)와 미비한 차이를 보였지만, When reforming using only 15% hydrogen peroxide (S-HP-Biochar), which is the existing oxidation method, there was a slight difference from the existing coffee bean biochar (S-Biochar),

AO (alkali ozonation), AHP (alkali hydroperoxide), 및 AAO (alklai advanced oxidation)은 우수한 효과를 보이는 것으로 보아 알칼리 산화개질법은 매우 효과적인 것을 알 수 있었다.AO (alkali ozonation), AHP (alkali hydroperoxide), and AAO (alklai advanced oxidation) showed excellent effects, indicating that the alkali oxidation reforming method was very effective.

상기 실시예 2와 관련하여 커피박 기반 흡착제를 통한 중금속 제거 실험을 수행한 결과를 도 4에 도시하였다.4 shows the results of a heavy metal removal experiment using a coffee bean-based adsorbent in relation to Example 2 above.

도 4에서 수행한 실험의 조건은 하기와 같다.The conditions of the experiment performed in FIG. 4 are as follows.

흡착제 용량 = 0.3 g/L, Adsorbent capacity = 0.3 g/L,

용액 pH = 5, solution pH = 5,

용액 온도 = 25 ℃, solution temperature = 25 ° C,

교반 속도 = 150 rpm, agitation speed = 150 rpm;

각 중금속의 초기 농도 = 30μM, Initial concentration of each heavy metal = 30 μM,

접촉 시간 = 24 h이었다.Contact time = 24 h.

도 4에서 알 수 있는 바와 같이, As can be seen in Figure 4,

중금속 이온의 제거의 경우, 기존의 산화방법인 15% 과산화수소만(S-HP-Biochar)을 이용하여 개질하였을 때는 기존의 커피박 바이오차(S-Biochar)와 미비한 차이를 보였지만, 15% 과산화수소와 1 M 수산화나트륨 혼합액으로 후처리한 흡착제 (S-AHP-Biochar)의 성능이 가장 우세한 것으로 보아 알칼리 산화법은 효과적인 것을 알 수 있었다.In the case of removal of heavy metal ions, when reforming using only 15% hydrogen peroxide (S-HP-Biochar), which is the existing oxidation method, there was a slight difference from the existing coffee bean biochar (S-Biochar), but 15% hydrogen peroxide and As the performance of the adsorbent (S-AHP-Biochar) post-treated with 1 M sodium hydroxide mixture was the most dominant, it was found that the alkali oxidation method was effective.

Claims (12)

a) 커피박을 수세하고, 건조하여 탄화하는 단계; 및
b) 2g의 상기 a) 탄화물을 200 mL의 7.5% 과산화수소, 1M 수산화나트륨과 0.125 mM 오존을 24시간 혼합하는 단계를 포함하는 스트론튬 제거를 위한 흡착제 제조방법.
a) washing the coffee grounds with water, drying and carbonizing; and
b) A method for preparing an adsorbent for strontium removal, comprising mixing 2 g of the a) carbide with 200 mL of 7.5% hydrogen peroxide, 1 M sodium hydroxide and 0.125 mM ozone for 24 hours.
삭제delete 제 1항에 있어서,
상기 a) 단계는 커피박을 0.25 L/min의 질소조건 하에서 분당 10℃씩 승온하여 500℃에서 2시간 열분해하는 것을 특징으로 하는 스트론튬 제거를 위한 흡착제 제조방법.
The method of claim 1,
Step a) is a method for producing an adsorbent for strontium removal, characterized in that the coffee grounds are heated at a rate of 10° C. per minute under nitrogen conditions of 0.25 L/min and thermally decomposed at 500° C. for 2 hours.
삭제delete 삭제delete 삭제delete 제1항 및 제3항 중 어느 한 항의 방법에 의하여 제조된 스트론튬 제거를 위한 흡착제.An adsorbent for strontium removal prepared by the method of any one of claims 1 and 3. 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete
KR1020200106374A 2020-08-24 2020-08-24 A method for preparing biomass-based absorbent for removing radionuclides or heavy-metal, a absorbent thereby, and a use of the same KR102334142B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200106374A KR102334142B1 (en) 2020-08-24 2020-08-24 A method for preparing biomass-based absorbent for removing radionuclides or heavy-metal, a absorbent thereby, and a use of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200106374A KR102334142B1 (en) 2020-08-24 2020-08-24 A method for preparing biomass-based absorbent for removing radionuclides or heavy-metal, a absorbent thereby, and a use of the same

Publications (1)

Publication Number Publication Date
KR102334142B1 true KR102334142B1 (en) 2021-12-01

Family

ID=78899890

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200106374A KR102334142B1 (en) 2020-08-24 2020-08-24 A method for preparing biomass-based absorbent for removing radionuclides or heavy-metal, a absorbent thereby, and a use of the same

Country Status (1)

Country Link
KR (1) KR102334142B1 (en)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Environmental Science and Pollution Research (2019) 26* *

Similar Documents

Publication Publication Date Title
Vijayaraghavan et al. Characterization and evaluation of reactive dye adsorption onto Biochar Derived from Turbinaria conoides Biomass
He et al. Novel insights into the mechanism of periodate activation by heterogeneous ultrasonic-enhanced sludge biochar: Relevance for efficient degradation of levofloxacin
Nayagam et al. Utilization of shell-based agricultural waste adsorbents for removing dyes: A review
Ren et al. Ibuprofen degradation using a Co-doped carbon matrix derived from peat as a peroxymonosulphate activator
US10662095B2 (en) Ozone-photocatalysis reactor and water treatment method
CN106045002A (en) Method for degrading organic substances or ammonia nitrogen by catalyzing persulfate through sludge biochar
Devi et al. Improvement in performance of sludge-based adsorbents by controlling key parameters by activation/modification: A critical review
Amibo et al. Novel lanthanum doped magnetic teff straw biochar nanocomposite and optimization its efficacy of defluoridation of groundwater using RSM: a case study of hawassa city, Ethiopia
Pan et al. In-situ Cu-doped carbon-supported catalysts applied for high-salinity polycarbonate plant wastewater treatment and a coupling application
Kannaujiya et al. Experimental investigations of hazardous leather industry dye (Acid Yellow 2GL) removal from simulated wastewater using a promising integrated approach
Xu et al. Facile-prepared Fe/Mn co-doped biochar is an efficient catalyst for mediating the degradation of aqueous ibuprofen via catalytic ozonation
Kumar et al. Treatment of coke oven wastewater using ozone with hydrogen peroxide and activated carbon
Zhou et al. Self-floating Ti3C2 MXene-coated polyurethane sponge with excellent photothermal conversion performance for peroxydisulfate activation and clean water production
Yang et al. Fabrication of developed porous carbon derived from bluecoke powder by microwave-assisted KOH activation for simulative organic wastewater treatment
Marrakchi et al. Copyrolysis of microalga Chlorella sp. and alkali lignin with potassium carbonate impregnation for synergistic Bisphenol A plasticizer adsorption
Chowdhury et al. Review of renewable biosorbent from coir pith waste for textile effluent treatment
Das et al. A review of activated carbon to counteract the effect of iron toxicity on the environment
KR102334142B1 (en) A method for preparing biomass-based absorbent for removing radionuclides or heavy-metal, a absorbent thereby, and a use of the same
Ravindiran et al. Experimental investigation on reactive orange 16 removal using waste biomass of Ulva prolifera
Kulkarni et al. Sustainable wastewater management via biochar derived from industrial sewage sludge
Joyce Feasibility of granular, activated-carbon adsorption for waste-water renovation
CN208448988U (en) VOC exhaust treatment system
JP6431888B2 (en) Method and apparatus for treating waste ion exchange resin containing radionuclide
Singh et al. Integrating ultrasound with activated carbon prepared from mangosteen fruit peel for reactive black 5 removal.
Singh Utilization of nanoparticle-loaded adsorbable materials for leachate treatment

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant