KR102331249B1 - Complex composition for differentiation of periodontal ligament cells to cementoblast - Google Patents

Complex composition for differentiation of periodontal ligament cells to cementoblast Download PDF

Info

Publication number
KR102331249B1
KR102331249B1 KR1020200075852A KR20200075852A KR102331249B1 KR 102331249 B1 KR102331249 B1 KR 102331249B1 KR 1020200075852 A KR1020200075852 A KR 1020200075852A KR 20200075852 A KR20200075852 A KR 20200075852A KR 102331249 B1 KR102331249 B1 KR 102331249B1
Authority
KR
South Korea
Prior art keywords
cells
periodontal ligament
tgf
ascorbic acid
bmp
Prior art date
Application number
KR1020200075852A
Other languages
Korean (ko)
Inventor
장영주
Original Assignee
단국대학교 천안캠퍼스 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 단국대학교 천안캠퍼스 산학협력단 filed Critical 단국대학교 천안캠퍼스 산학협력단
Priority to KR1020200075852A priority Critical patent/KR102331249B1/en
Application granted granted Critical
Publication of KR102331249B1 publication Critical patent/KR102331249B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0652Cells of skeletal and connective tissues; Mesenchyme
    • C12N5/0654Osteocytes, Osteoblasts, Odontocytes; Bones, Teeth
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2500/00Specific components of cell culture medium
    • C12N2500/30Organic components
    • C12N2500/38Vitamins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/155Bone morphogenic proteins [BMP]; Osteogenins; Osteogenic factor; Bone inducing factor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/70Enzymes
    • C12N2501/72Transferases (EC 2.)
    • C12N2501/727Kinases (EC 2.7.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2506/00Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
    • C12N2506/13Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from connective tissue cells, from mesenchymal cells
    • C12N2506/1346Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from connective tissue cells, from mesenchymal cells from mesenchymal stem cells
    • C12N2506/1361Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from connective tissue cells, from mesenchymal cells from mesenchymal stem cells from dental pulp or dental follicle stem cells

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Rheumatology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Materials For Medical Uses (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The present invention relates to a complex composition for inducing periodontal ligament cell differentiation including a transforming growth factor-beta (TGF-β) active receptor-like kinase (ALK) 5 inhibitor, bone morphogenetic protein-7 (BMP-7), and ascorbic acid. According to the present invention, periodontal ligament cells are isolated from human adult-derived periodontal ligament tissues and the isolated periodontal ligament cells are treated with the transforming growth factor-beta (TGF-β) active receptor-like kinase (ALK) 5 inhibitor, bone morphogenetic protein-7 (BMP-7), and ascorbic acid. Accordingly, compared to the existing differentiation method, differentiation of periodontal ligament cells to target cells, cementoblast, can be effective induced, and the crypt cells necessary for the successful regeneration of periodontal tissues are secured, and thus can be used to study cretaceous formation and regeneration and to discover surface expression markers specific therefor.

Description

치주인대세포의 백악모세포로의 분화 유도용 복합 조성물{Complex composition for differentiation of periodontal ligament cells to cementoblast}Complex composition for differentiation of periodontal ligament cells into cementoblasts {Complex composition for differentiation of periodontal ligament cells to cementoblast}

본 발명은 TGF-β (transforming growth factor-beta) 수용체 ALK (activin receptor-like kinase) 5 억제제, BMP-7(bone morphogenetic protein-7) 및 아스코르브산(Ascorbic acid)을 포함하는 치주인대세포의 백악모세포로의 분화 유도용 조성물에 관한 것이다.The present invention relates to periodontal ligament cells comprising a transforming growth factor-beta (TGF-β) receptor activin receptor-like kinase (ALK) 5 inhibitor, bone morphogenetic protein-7 (BMP-7) and ascorbic acid. It relates to a composition for inducing differentiation into parent cells.

치주조직은 치아를 지지하고 감싸는 조직으로 치근 백악질과 치주인대, 치조골 및 치은을 포함하고 있다. 치아의 소실을 방지하기 위한 치주조직의 재생은 복잡한 과정이며, 2가지 경조직인 백악질과 치조골, 2가지 연조직인 치주인대와 치은조직이 모두 적절하게 만들어져야 한다. 이 중 백악질은 치조골에 치아의 위치를 잡아주는 중요한 조직이기 때문에 백악질의 치아 부착 및 재생에 대한 관심이 높아짐과 동시에 백악질 형성과 재생에 관한 연구의 필요성도 증대되고 있으나 치아 발생과정 후기단계에 형성되는 치근 백악질의 발생기전에 대한 이해는 아직 많이 부족한 상태이다. 특히 백악질 형성 및 재생 연구에 있어 가장 큰 어려움은 백악질의 특이적 표지인자가 없기 때문에 백악모세포의 기원과 성질에 대한 이해가 부족하다는 점이다. 또한 백악질을 형성하는 세포인 백악모세포의 기원에 대하여 아직까지 많은 논란이 있다. Periodontal tissue is a tissue that supports and surrounds the teeth, and includes the root cementum, periodontal ligament, alveolar bone, and gingiva. Periodontal tissue regeneration to prevent tooth loss is a complex process, and two hard tissues, cementum and alveolar bone, and two soft tissues, periodontal ligament and gingival tissue, must all be properly made. Among these, cementum is an important tissue that holds the position of teeth in the alveolar bone, so interest in tooth attachment and regeneration of cementum is increasing, and the need for research on the formation and regeneration of cementum is increasing. The understanding of the mechanism of root cementum is still lacking. In particular, the biggest difficulty in the study of cretaceous formation and regeneration is the lack of understanding of the origin and properties of cretaceous cells because there are no specific markers of the cementum. In addition, there are still many controversies about the origin of cretaceous cells, cells that form the cementum.

일반적으로 치아는 치관이 완전히 형성된 후 치관과 함께 발육을 시작하고 구강으로 분출하며, 그 후 뿌리쪽으로 발육한다. 치아발육을 초래하는 구조는 치경고리(cervical loop) 라고 하는 법랑기관의 목 부분으로 법랑상피로 구성된 두 겹의 주변 구조이다. 치경고리는 새로 완성된 치관으로부터 자라서 상피근초 (Hertwig's root sheath)를 형성하며, 치아뿌리의 형태를 만들고 뿌리상아질 형성(root dentin formation)을 유도하여 치관상아질과 연결된다. 뿌리상아질의 형성이 완성되면 상피근초 (Hertwig's root sheath)는 붕괴되고, 붕괴된 후 이 세포들은 Malassez 상피잔여 (epithelial rests of malassez)가 되며, 이후 새로 형성된 뿌리상아질면에 접촉하면서 상피-간엽 전이(epithelial-mesenchymal transition) 과정을 통하여 백악모세포(cementoblast)로 분화한다. 백악모세포는 뿌리상아질에 닿게 되면 백악바탕질(cementoid)을 축적하여 백악질을 형성하게 되는 것으로 알려져 있다. In general, after the crown is completely formed, the tooth begins to develop together with the crown, erupts into the oral cavity, and then develops toward the root. The structure that causes tooth growth is the neck part of the enamel organ called the cervical loop, which is a two-layered surrounding structure composed of enamel epithelium. The alveolar rings grow from the newly completed crown to form Hertwig's root sheath, form the shape of the tooth root, and induce root dentin formation to connect with the crown dentin. When the formation of root dentin is completed, Hertwig's root sheath is disintegrated, and after the collapse, these cells become epithelial rests of malassez, and thereafter, the epithelial-mesenchymal transition (epithelial-mesenchymal transition) in contact with the newly formed root dentin surface. It differentiates into cementoblasts through the epithelial-mesenchymal transition process. Cretaceous cells are known to form cementum by accumulating cementoid when they come into contact with the root dentin.

이처럼 백악질을 생성하는 중요한 역할을 하는 백악모세포를 배양하기 위해서는 상피근초 (Hertwig's root sheath) 세포 및 Malassez 상피잔여 (epithelial rests of malassez) 세포를 이용해야 하나, 이들 세포를 추출하기 어렵고, 얻을 수 있는 세포의 양도 매우 제한적이므로, 백악모 세포에 대한 연구 및 백악모세포를 이용한 조직 재생에 커다란 기술적 한계점이 있다. In order to culture the cretaceous cells, which play an important role in generating the cementum, epithelial root sheath cells and Malassez epithelial rests of malassez cells should be used, but it is difficult to extract these cells, and cells that can be obtained Since the amount of chemotherapy is very limited, there is a great technical limitation in the study of cretaceous cells and tissue regeneration using cretaceous cells.

이에 본 발명자들은 인간 성체 치주 인대 조직으로부터 치주 인대세포를 분리하고, 이를 백악모 세포로 분화시킬 수 있는 최적의 분화 방법에 대하여 연구한 결과, TGF-β (transforming growth factor-beta) 수용체 ALK (activin receptor-like kinase) 5 억제제, BMP-7(bone morphogenetic protein-7) 및 아스코르브산(Ascorbic acid)을 복합 이용하는 경우, 치주 인대세포를 백악모세포로 효과적으로 분화시킬 수 있음을 확인하고 본 발명을 완성하였다. Accordingly, the present inventors isolated periodontal ligament cells from adult human periodontal ligament tissue and studied the optimal differentiation method for differentiating them into cretaceous cells. As a result, the TGF-β (transforming growth factor-beta) receptor ALK (activin) When a receptor-like kinase) 5 inhibitor, BMP-7 (bone morphogenetic protein-7) and ascorbic acid are used in combination, it was confirmed that periodontal ligament cells can be effectively differentiated into cetinoblasts, and the present invention has been completed. .

따라서 본 발명의 목적은 TGF-β (transforming growth factor-beta) 수용체 ALK (activin receptor-like kinase) 5 억제제, BMP-7(bone morphogenetic protein-7) 및 아스코르브산(Ascorbic acid)을 포함하는 치주인대세포의 백악모세포로의 분화 유도용 조성물, 배지 조성물, 키트 및 이를 이용한 분화 유도 방법을 제공하는 것이다.Therefore, an object of the present invention is a periodontal ligament comprising a transforming growth factor-beta (TGF-β) receptor activin receptor-like kinase (ALK) 5 inhibitor, bone morphogenetic protein-7 (BMP-7) and ascorbic acid. To provide a composition, a medium composition, a kit for inducing differentiation of cells into chorionic cells, and a method for inducing differentiation using the same.

상기 목적을 달성하기 위하여, 본 발명은 TGF-β (transforming growth factor-beta) 수용체 ALK (activin receptor-like kinase) 5 억제제, BMP-7(bone morphogenetic protein-7) 및 아스코르브산(Ascorbic acid)을 포함하는 치주인대세포의 백악모세포로의 분화 유도용 조성물을 제공한다. In order to achieve the above object, the present invention TGF-β (transforming growth factor-beta) receptor ALK (activin receptor-like kinase) 5 inhibitor, BMP-7 (bone morphogenetic protein-7) and ascorbic acid (Ascorbic acid) It provides a composition for inducing differentiation of periodontal ligament cells into chorionic cells, comprising.

또한, 본 발명은 TGF-β (transforming growth factor-beta) 수용체 ALK (activin receptor-like kinase) 5 억제제, BMP-7 및 아스코르브산(Ascorbic acid)을 포함하는 치주인대세포의 백악모세포로의 분화 유도용 배지 조성물을 제공한다. In addition, the present invention is a TGF-β (transforming growth factor-beta) receptor ALK (activin receptor-like kinase) 5 inhibitor, BMP-7, and ascorbic acid (Ascorbic acid) containing periodontal ligament cells to induce differentiation into cetinoblasts. A medium composition for use is provided.

또한, 본 발명은 TGF-β (transforming growth factor-beta) 수용체 ALK (activin receptor-like kinase) 5 억제제, BMP-7 및 아스코르브산(Ascorbic acid)을 포함하는 치주인대세포의 백악모세포로의 분화 유도용 키트를 제공한다. In addition, the present invention is a TGF-β (transforming growth factor-beta) receptor ALK (activin receptor-like kinase) 5 inhibitor, BMP-7, and ascorbic acid (Ascorbic acid) containing periodontal ligament cells to induce differentiation into cetinoblasts. kits are provided for

치주 인대세포에 TGF-β (transforming growth factor-beta) 수용체 ALK (activin receptor-like kinase) 5 억제제, BMP-7 및 아스코르브산(Ascorbic acid)을 in vitro 처리하는 단계;를 포함하는, 치주인대세포의 백악모세포로의 분화 유도 방법을 제공한다. Periodontal ligament cells comprising the; TGF-β (transforming growth factor-beta) receptor ALK (activin receptor-like kinase) 5 inhibitor, BMP-7 and ascorbic acid (Ascorbic acid) in vitro treatment in periodontal ligament cells; It provides a method for inducing differentiation into cretaceous cells.

본 발명에 따르면, 인간의 성체 치주 인대 조직에서 치주 인대 세포를 분리하고 이에 TGF-β (transforming growth factor-beta) 수용체 ALK (activin receptor-like kinase) 5 억제제, BMP-7 및 아스코르브산(Ascorbic acid)을 처리함으로써, 치주 인대 세포를 목적 세포인 백악모세포로 기존의 분화 방법과 비교하여 현저히 효과적으로 분화 유도 할 수 있으며, 치주 조직의 성공적 재생에 필요한 백악모세포를 확보함으로써 백악질 형성, 재생 연구 및 이에 특이적인 표면 발현 마커를 발굴하는데 이용할 수 있다. According to the present invention, periodontal ligament cells are isolated from human adult periodontal ligament tissue, and thus TGF-β (transforming growth factor-beta) receptor ALK (activin receptor-like kinase) 5 inhibitor, BMP-7 and ascorbic acid (Ascorbic acid) ), it is possible to induce the differentiation of periodontal ligament cells into a target cell, a chorionic cell, compared to the existing differentiation method, and to secure the cementum cells necessary for the successful regeneration of periodontal tissue, thereby conducting a study on the formation and regeneration of the periodontal ligament. It can be used to discover specific surface expression markers.

도 1은 TGF-β1, SB431542, BMP-7 및/또는 아스코르브산을 처리한 후의 hPDLC의 형태 변화를 동일 실험을 2회 진행하여 위상차 현미경으로 각각 확인한 결과를 나타낸 도이다. (TGF: 10 ng/ml TGF-β1, BMP7: 100 ng/ml BMP-7, SB: 10 μM TGF-β 수용체 억제제 SB431542, Vit c: 100 μM 아스코르브산)
도 2는 TGF-β1, SB431542, BMP-7 및/또는 아스코르브산 처리에 따른 CAP(Cementum attachment protein) 및 CEMP1(Cementum protein 1) 발현을 RT-qPCR 분석을 통해 확인한 결과를 나타낸 도이다. (TGF: 10 ng/ml TGF-β1, B7: 100 ng/ml BMP-7, VtC: 100 μM 아스코르브산, SB: 10 μM TGF-β 수용체 억제제 SB431542, B/C: 100 ng/ml BMP-7 및 100 μM 아스코르브산 복합 처리, B/SB: 100 ng/ml BMP-7 및 10 μM TGF-β 수용체 억제제 SB431542 복합처리, C/SB: 100 μM 아스코르브산 및 10 μM TGF-β 수용체 억제제 SB431542 복합처리, B/C/SB: 100 ng/ml BMP-7, 100 μM 아스코르브산 및 10 μM TGF-β 수용체 억제제 SB431542 복합처리)
도 3은 TGF-β1, SB431542, BMP-7 및/또는 아스코르브산 처리에 따른 CAP(Cementum attachment protein) 및 CEMP1(Cementum protein 1) 발현을 RT-qPCR 분석을 통해 확인한 결과를 나타낸 도이다. (TGF: 10 ng/ml TGF-β1, B7: 100 ng/ml BMP-7, VtC: 100 μM 아스코르브산, SB: 10 μM TGF-β 수용체 억제제 SB431542, B/C: 100 ng/ml BMP-7 및 100 μM 아스코르브산 복합 처리, B/SB: 100 ng/ml BMP-7 및 10 μM TGF-β 수용체 억제제 SB431542 복합처리, C/SB: 100 μM 아스코르브산 및 10 μM TGF-β 수용체 억제제 SB431542 복합처리, B/C/SB: 100 ng/ml BMP-7, 100 μM 아스코르브산 및 10 μM TGF-β 수용체 억제제 SB431542 복합처리)
도 4는 TGF-β1, SB431542, BMP-7 및/또는 아스코르브산 처리에 따른 SCX, PLAP-1 및 OPN 발현을 RT-qPCR 분석을 통해 확인한 결과를 나타낸 도이다. (TGF: 10 ng/ml TGF-β1, B7: 100 ng/ml BMP-7, VtC: 100 μM 아스코르브산, SB: 10 μM TGF-β 수용체 억제제 SB431542, B/C: 100 ng/ml BMP-7 및 100 μM 아스코르브산 복합 처리, B/SB: 100 ng/ml BMP-7 및 10 μM TGF-β 수용체 억제제 SB431542 복합처리, C/SB: 100 μM 아스코르브산 및 10 μM TGF-β 수용체 억제제 SB431542 복합처리, B/C/SB: 100 ng/ml BMP-7, 100 μM 아스코르브산 및 10 μM TGF-β 수용체 억제제 SB431542 복합처리)
도 5는 TGF-β1, SB431542, BMP-7 및/또는 아스코르브산 처리에 따른 OSX 및 BSP 발현을 RT-qPCR 분석을 통해 확인한 결과를 나타낸 도이다. (TGF: 10 ng/ml TGF-β1, B7: 100 ng/ml BMP-7, VtC: 100 μM 아스코르브산, SB: 10 μM TGF-β 수용체 억제제 SB431542, B/C: 100 ng/ml BMP-7 및 100 μM 아스코르브산 복합 처리, B/SB: 100 ng/ml BMP-7 및 10 μM TGF-β 수용체 억제제 SB431542 복합처리, C/SB: 100 μM 아스코르브산 및 10 μM TGF-β 수용체 억제제 SB431542 복합처리, B/C/SB: 100 ng/ml BMP-7, 100 μM 아스코르브산 및 10 μM TGF-β 수용체 억제제 SB431542 복합처리)
1 is a diagram showing the results of confirming the shape change of hPDLC after treatment with TGF-β1, SB431542, BMP-7 and/or ascorbic acid by performing the same experiment twice and using a phase-contrast microscope. (TGF: 10 ng/ml TGF-β1, BMP7: 100 ng/ml BMP-7, SB: 10 μM TGF-β receptor inhibitor SB431542, Vit c: 100 μM ascorbic acid)
2 is a view showing the results of confirming the expression of CAP (Cementum attachment protein) and CEMP1 (Cementum protein 1) according to TGF-β1, SB431542, BMP-7 and/or ascorbic acid treatment through RT-qPCR analysis. (TGF: 10 ng/ml TGF-β1, B7: 100 ng/ml BMP-7, VtC: 100 μM ascorbic acid, SB: 10 μM TGF-β receptor inhibitor SB431542, B/C: 100 ng/ml BMP-7 and 100 μM ascorbic acid combined treatment, B/SB: 100 ng/ml BMP-7 and 10 μM TGF-β receptor inhibitor SB431542 combined treatment, C/SB: 100 μM ascorbic acid and 10 μM TGF-β receptor inhibitor SB431542 combined treatment , B/C/SB: 100 ng/ml BMP-7, 100 μM ascorbic acid and 10 μM TGF-β receptor inhibitor SB431542 combined treatment)
3 is a view showing the results of confirming the expression of CAP (Cementum attachment protein) and CEMP1 (Cementum protein 1) according to TGF-β1, SB431542, BMP-7 and/or ascorbic acid treatment through RT-qPCR analysis. (TGF: 10 ng/ml TGF-β1, B7: 100 ng/ml BMP-7, VtC: 100 μM ascorbic acid, SB: 10 μM TGF-β receptor inhibitor SB431542, B/C: 100 ng/ml BMP-7 and 100 μM ascorbic acid combined treatment, B/SB: 100 ng/ml BMP-7 and 10 μM TGF-β receptor inhibitor SB431542 combined treatment, C/SB: 100 μM ascorbic acid and 10 μM TGF-β receptor inhibitor SB431542 combined treatment , B/C/SB: 100 ng/ml BMP-7, 100 μM ascorbic acid and 10 μM TGF-β receptor inhibitor SB431542 combined treatment)
4 is a view showing the results of confirming the expression of SCX, PLAP-1 and OPN according to TGF-β1, SB431542, BMP-7 and / or ascorbic acid treatment through RT-qPCR analysis. (TGF: 10 ng/ml TGF-β1, B7: 100 ng/ml BMP-7, VtC: 100 μM ascorbic acid, SB: 10 μM TGF-β receptor inhibitor SB431542, B/C: 100 ng/ml BMP-7 and 100 μM ascorbic acid combined treatment, B/SB: 100 ng/ml BMP-7 and 10 μM TGF-β receptor inhibitor SB431542 combined treatment, C/SB: 100 μM ascorbic acid and 10 μM TGF-β receptor inhibitor SB431542 combined treatment , B/C/SB: 100 ng/ml BMP-7, 100 μM ascorbic acid and 10 μM TGF-β receptor inhibitor SB431542 combined treatment)
5 is a view showing the results of confirming the expression of OSX and BSP according to TGF-β1, SB431542, BMP-7 and / or ascorbic acid treatment through RT-qPCR analysis. (TGF: 10 ng/ml TGF-β1, B7: 100 ng/ml BMP-7, VtC: 100 μM ascorbic acid, SB: 10 μM TGF-β receptor inhibitor SB431542, B/C: 100 ng/ml BMP-7 and 100 μM ascorbic acid combined treatment, B/SB: 100 ng/ml BMP-7 and 10 μM TGF-β receptor inhibitor SB431542 combined treatment, C/SB: 100 μM ascorbic acid and 10 μM TGF-β receptor inhibitor SB431542 combined treatment , B/C/SB: 100 ng/ml BMP-7, 100 μM ascorbic acid and 10 μM TGF-β receptor inhibitor SB431542 combined treatment)

이하 본 발명을 상세히 설명한다. Hereinafter, the present invention will be described in detail.

본 발명은 TGF-β (transforming growth factor-beta) 수용체 ALK (activin receptor-like kinase) 5 억제제, BMP-7(bone morphogenetic protein-7) 및 아스코르브산을 포함하는 치주인대세포의 백악모세포로의 분화 유도용 조성물을 제공한다. The present invention is a TGF-β (transforming growth factor-beta) receptor ALK (activin receptor-like kinase) 5 inhibitor, BMP-7 (bone morphogenetic protein-7), and the differentiation of periodontal ligament cells containing ascorbic acid into cerebroblasts A composition for induction is provided.

본 발명의 TGF-β 수용체 ALK5 억제제는, TGF-β 수용체 ALK5를 억제할 수 있는 물질을 제한없이 포함할 수 있으며, 바람직하게는 A-83-01 또는 SB431542 일 수 있다.The TGF-β receptor ALK5 inhibitor of the present invention may include, without limitation, a substance capable of inhibiting the TGF-β receptor ALK5, preferably A-83-01 or SB431542.

본 발명에 있어 “A-83-01 ((3-(6-메틸-2-피리디닐)-N-페닐-4-(4-퀴놀리닐)-1H-피라졸-1-카르보티오아미드)” 및 “SB431542 (4-(5-벤졸[1,3]디옥솔-5-일-4-피리딘-2-일-1H-이미다졸-2-일)-벤즈아미드)” 는 TGFβ 수용체 (ALK5) 및 Activin 수용체 (ALK4/7) 의 저해제 (즉 TGFβR 저해제) 로서 공지된 화합물이다.In the present invention, “A-83-01 ((3-(6-methyl-2-pyridinyl)-N-phenyl-4-(4-quinolinyl)-1H-pyrazole-1-carbothioamide )” and “SB431542 (4-(5-Benzol[1,3]dioxol-5-yl-4-pyridin-2-yl-1H-imidazol-2-yl)-benzamide)” are TGFβ receptors ( ALK5) and Activin receptors (ALK4/7) (ie TGFβR inhibitors).

구체적으로 본 발명에 있어, “SB431542” 은 TGF-β 수용체 Alk5 (Activin Receptor-Like Kinase-5)의 억제제이며, C22H16N4O3의 화학식 및 384.4의 분자량을 갖는 물질을 의미하고, 본원 발명에서 목적하는 TGF-β 수용체 ALK5 억제를 통해 치주 인대세포를 백악모세포로 분화를 유도하는 물질이라면 SB431542의 유도체 역시 본 발명의 범주에 포함될 수 있다. Specifically, in the present invention, “SB431542” is an inhibitor of TGF-β receptor Alk5 (Activin Receptor-Like Kinase-5), C 22 H 16 N 4 O 3 Means a material having a chemical formula and a molecular weight of 384.4, In the present invention, a derivative of SB431542 may also be included in the scope of the present invention as long as it is a substance that induces differentiation of periodontal ligament cells into chorionic cells through inhibition of TGF-β receptor ALK5, as desired in the present invention.

본 발명의 TGF-β 수용체 ALK5 억제제는 0.1 내지 30 μM, 1 내지 20μM, 가장 바람직하게는 5 내지 10μM로 치은 상피세포에 처리될 수 있다. The TGF-β receptor ALK5 inhibitor of the present invention may be treated to gingival epithelial cells at 0.1 to 30 μM, 1 to 20 μM, and most preferably 5 to 10 μM.

본 발명의 BMP-7은 골 형성 단백질로서, 상기 BMP-7은 10 내지 200ng/ml, 바람직하게는 50 내지 150ng/ml, 더욱 바람직하게는 100ng/ml로 치은 상피 세포에 처리될 수 있다. BMP-7 of the present invention is a bone morphogenetic protein, and the BMP-7 may be treated in gingival epithelial cells at 10 to 200 ng/ml, preferably 50 to 150 ng/ml, more preferably 100 ng/ml.

본 발명의 아스코르브산은 비타민의 일종으로서, "Ascorbic acid", "아스코브산", "비타민C" 및 "vit C" 등의 용어와 상호 교환적으로 사용될 수 있다. 상기 아스코르브산은 10 내지 300μM, 바람직하게는 50 내지 200μM, 더욱 바람직하게는 100μM로 치은 상피세포에 처리될 수 있으나 이에 제한되지 않는다. Ascorbic acid of the present invention is a kind of vitamin, and may be used interchangeably with terms such as "Ascorbic acid", "ascorbic acid", "vitamin C" and "vit C". The ascorbic acid may be treated in gingival epithelial cells at 10 to 300 μM, preferably 50 to 200 μM, more preferably 100 μM, but is not limited thereto.

본 발명의 TGF-β 수용체 ALK5 억제제, BMP-7 및 아스코르브산을 이용하면, 치주 인대세포에서 CEMP1 (cementum protein 1) 및 CAP (cementum attachment protein) 와 같은 마커의 발현이 증대된 백아모세포로의 분화를 효과적으로 유도할 수 있다. Using the TGF-β receptor ALK5 inhibitor, BMP-7 and ascorbic acid of the present invention, differentiation into leukoblasts with increased expression of markers such as CEMP1 (cementum protein 1) and CAP (cementum attachment protein) in periodontal ligament cells can be effectively induced.

본 발명은 성체 치주 인대 조직으로부터 유래된 치주인대세포를 백악모세포로 효과적으로 분화 유도할 수 있다. 따라서 본 발명의 재료가 되는 치주 인대세포는 인간으로부터 분리된 성체 치주 인대 조직 유래일 수 있다. 이에 따라 본 발명은 상피근초 세포나 Malassez 상피 잔여 세포를 이용하여 백악모세포를 배양하는 방법이 가지고 있었던 추출의 곤란성, 제한적인 세포 수득량의 문제점을 극복하고 인간 조직으로부터 효과적으로 목적하는 백악모세포를 대량 수득할 수 있다. The present invention can effectively induce the differentiation of periodontal ligament cells derived from adult periodontal ligament tissue into cetinoblasts. Therefore, the periodontal ligament cells used as the material of the present invention may be derived from adult periodontal ligament tissues isolated from humans. Accordingly, the present invention overcomes the difficulties of extraction and the limited cell yield of the method of culturing cetaceous cells using epithelial root sheath cells or Malassez residual epithelial cells, and effectively obtains a large amount of desired cetaceous cells from human tissue. can do.

따라서 본 발명에서 치주 인대세포는 동물, 바람직하게는 포유동물, 보다 바람직하게는 인간 유래의 세포일 수 있고 자가 (autologous), 동종 (allogenic), 이종(xenogenic) 세포일 수 있다. Accordingly, in the present invention, the periodontal ligament cells may be cells derived from animals, preferably mammals, more preferably humans, and may be autologous, allogenic, or xenogenic cells.

본 발명에 있어, 용어 “백악모세포 (cementoblast)”는 “백악전구세포”와 상호 교환적으로 사용될 수 있으며, 백악질로 분화될 수 있는 백악질 특이적인 전구세포를 의미한다. In the present invention, the term “cementoblast” can be used interchangeably with “creativity progenitor cell”, and refers to a cretaceous-specific progenitor cell that can be differentiated into cementum.

“백악질(Cementum)” 은 치아의 경조직 중 하나로 뼈와 유사한 미네랄화된 조직이나 뼈보다 훨씬 천천히 축적되며 혈관계 또는 신경 분포를 가지지 않고 리모델링 과정을 거치지 않는다는 점에서 뼈와는 상호 상이한 조직임이 알려져 있다. 또한 백악질은 치조골과 달리 골모세포에서 형성되지 않으며, 백악모세포가 뼈세포가 아닌 백악세포를 거쳐 백악질을 형성한다는 점에서 골의 발생과 유사한 치조골과도 구별된다. 따라서 백악질은 일반적인 미네랄화된 조직 중의 하나이나 골이나 치조골의 미네랄화와는 구별되어야 한다. “Cementum” is one of the hard tissues of teeth, and it is known to be a different tissue from bone in that it accumulates much more slowly than bone or mineralized tissue similar to bone, has no vascular system or innervation, and does not undergo remodeling. In addition, the cementum is not formed in osteoblasts, unlike alveolar bone, and is distinguished from alveolar bone, similar to the development of bone, in that the cretaceous cells form the cementum through cretaceous cells, not bone cells. Therefore, the cementum is one of the general mineralized tissues, but it must be distinguished from the mineralization of bone or alveolar bone.

본 발명에 따라 분화 유도된 백악모세포는 백악모세포 마커의 발현이 증가한 것을 특징으로 할 수 있으며, 바람직하게는 CEMP1 (cementum protein 1) 및 CAP (cementum attachment protein) 와 같은 마커의 발현이 증대된 것을 특징으로 할 수 있다. Cretaceous cells induced to differentiate according to the present invention may be characterized in that the expression of the cettoblast marker is increased, preferably, the expression of markers such as CEMP1 (cementum protein 1) and CAP (cementum attachment protein) is increased. can be done with

본 발명의 치주인대세포의 분리방법은 성체 인간 치주 조직으로부터 치주 인대세포를 분리하는 당 분야에 널리 알려진 방법을 제한없이 사용할 수 있으며, 본 발명의 치주 인대세포는 이와 같이 직접 분리하거나 또는 구입하여 사용할 수 있다. The method for isolating periodontal ligament cells of the present invention can be used without limitation, a method widely known in the art for isolating periodontal ligament cells from adult human periodontal tissue, and the periodontal ligament cells of the present invention can be directly isolated or purchased and used in this way. can

본 발명의 조성물은 배지를 포함할 수 있으며, 본 발명은 TGF-β (transforming growth factor-beta) 수용체 ALK (activin receptor-like kinase) 5 억제제, BMP-7 및 아스코르브산을 포함하는 치주인대세포의 백악모세포로의 분화 유도용 배지 조성물을 제공한다. The composition of the present invention may include a medium, and the present invention relates to periodontal ligament cells comprising a transforming growth factor-beta (TGF-β) receptor activin receptor-like kinase (ALK) 5 inhibitor, BMP-7 and ascorbic acid. Provided is a medium composition for inducing differentiation into crypt cells.

용어, 배지는 생체 외에서 세포의 배양에 적절한 당 분야에서 사용되는 통상의 배지를 모두 포함한다. 세포의 종류에 따라 배지와 배양 조건을 선택할 수 있다. 배양에 사용되는 배지는 DMEM (Dulbecco's Modified Eagle's Medium), MEM(Minimal essential Medium), BME(Basal Medium Eagle), RPMI1640, F-10, F-12, α-MEM(α-Minimal essential Medium), GMEM(Glasgow's Minimal essential Medium), Iscove's Modified Dulbecco's Medium 배지 등이 있으나, 이에 한정되는 것은 아니다. As used herein, the term medium includes all mediums conventionally used in the art suitable for culturing cells in vitro. Depending on the type of cell, the medium and culture conditions can be selected. The medium used for culture is DMEM (Dulbecco's Modified Eagle's Medium), MEM (Minimal essential Medium), BME (Basal Medium Eagle), RPMI1640, F-10, F-12, α-MEM (α-Minimal essential Medium), GMEM (Glasgow's Minimal essential Medium), Iscove's Modified Dulbecco's Medium medium, etc., but is not limited thereto.

본 발명의 조성물은 TGF-β 수용체 ALK5 억제제, BMP-7 및 아스코르브산 외에도 치주인대세포를 백악모세포로 분화 유도할 수 있는 성분을 추가적으로 더 포함할 수 있다. In addition to the TGF-β receptor ALK5 inhibitor, BMP-7, and ascorbic acid, the composition of the present invention may further include a component capable of inducing differentiation of periodontal ligament cells into cerebroblasts.

또한, 본 발명은 TGF-β (transforming growth factor-beta) 수용체 ALK (activin receptor-like kinase) 5 억제제, BMP-7 및 아스코르브산을 포함하는 치주인대세포의 백악모세포로의 분화 유도용 키트를 제공한다. In addition, the present invention provides a kit for inducing differentiation of periodontal ligament cells into cerebral blast cells, comprising a transforming growth factor-beta (TGF-β) receptor activin receptor-like kinase (ALK) 5 inhibitor, BMP-7 and ascorbic acid. do.

상기 키트는 상기한 것에 한정되는 것은 아니며, 다른 시약이나 기구를 포함할 수 있다. 예를 들면, 대상 세포를 배양하기 위한 배양 플레이트나 백악모세포로의 분화 상태를 평가 가능한 시약(예를 들면, 알리자린 레드 등)을 포함할 수 있고, 배양하는 대상이 되는 치주 인대세포를 구비하고 있을 수도 있다.The kit is not limited to the above, and may include other reagents or instruments. For example, it may contain a culture plate for culturing the target cells or a reagent capable of evaluating the differentiation status into chorionic cells (eg, alizarin red, etc.), and may contain periodontal ligament cells to be cultured. may be

본 발명에 따른 키트의 제공형태는 분화 유도 배지용 첨가제, 또는 TGF-β 수용체 ALK5 억제제, 예컨대 SB431542 또는 A-83-01, BMP-7 및 아스코르브산 또는 사이토카인, 인지질, 또는 기초 배지와 그 외의 시약 모두를 적절한 용량 및/또는 형태로 함유한 하나의 용기일 수 있거나, 각각 다른 용기에 의해 제공할 수 있다. The provided form of the kit according to the present invention is an additive for a differentiation induction medium, or a TGF-β receptor ALK5 inhibitor, such as SB431542 or A-83-01, BMP-7 and ascorbic acid or cytokines, phospholipids, or a basal medium and others. It may be one container that contains all of the reagents in appropriate doses and/or forms, or may be provided by different containers.

본 발명에 따른 키트는 상술한 본 발명에 따른 방법을 실시하기 위한 순서 등을 기재한 설명서를 포함할 수 있다.The kit according to the present invention may include instructions describing the procedure for carrying out the above-described method according to the present invention.

또한, 본 발명은 치주 인대세포에 TGF-β (transforming growth factor-beta) 수용체 ALK (activin receptor-like kinase) 5 억제제, BMP-7 및 아스코르브산을 in vitro 처리하는 단계;를 포함하는, 치주인대세포의 백악모세포로의 분화 유도 방법을 제공한다. In addition, the present invention is a periodontal ligament comprising the; TGF-β (transforming growth factor-beta) receptor ALK (activin receptor-like kinase) 5 inhibitor, BMP-7 and ascorbic acid to periodontal ligament cells in vitro treatment; Provided is a method for inducing differentiation of a cell into a cretaceous cell.

본 발명의 분화방법에 따라 인비트로에서 분화된 백악모세포는 분리된 후 그 자체로 사용되거나 또는 유세포분석기 등을 이용한 분리방법을 통해 분리된 후, 치아재생용 세포치료제, 또는 약학적 조성물의 유효성분으로 사용될 수 있다. Cretaceous cells differentiated in vitro according to the differentiation method of the present invention are used as such after being separated or separated through a separation method using a flow cytometer, etc. can be used as

상기 “세포치료제” 란 세포와 조직의 기능을 복원시키기 위하여 살아있는 자가 (autologous), 동종 (allogenic), 이종 (xenogenic) 세포를 체외에서 증식 또는 선별하거나 기타 방법으로 세포의 생물학적 특성을 변화시키는 등의 일련의 방법을 통하여 치료, 진단 및 예방의 목적으로 사용되는 의약품을 말한다.The term “cell therapy product” means proliferating or selecting living autologous, allogenic, or xenogenic cells in vitro or changing the biological properties of cells in other ways in order to restore the functions of cells and tissues. It refers to drugs used for the purpose of treatment, diagnosis and prevention through a series of methods.

본 발명에 따른 세포치료제 또는 약학적 조성물의 백악질 재생 효과를 통해, 다양한 치주 질환, 예컨대 치주염의 치료가 가능하다. Through the cementum regeneration effect of the cell therapy agent or pharmaceutical composition according to the present invention, it is possible to treat various periodontal diseases, such as periodontitis.

본 발명의 TGF-β 수용체 ALK5 억제제, BMP-7 및 아스코르브산은 치주 인대 세포에 5일 내지 20일, 바람직하게는 7일 내지 14일 동안 처리됨으로써 백악모세포로의 분화를 촉진할 수 있다. The TGF-β receptor ALK5 inhibitor of the present invention, BMP-7, and ascorbic acid can promote differentiation into cetinoblasts by treating periodontal ligament cells for 5 to 20 days, preferably 7 to 14 days.

상기 TGF-β 수용체 ALK5 억제제는 0.1 내지 30 μM 처리될 수 있고, 바람직하게는 1 내지 20μM 처리될 수 있고, 더욱 바람직하게는 5 내지 10μM 처리될 수 있다. 또한, 상기 BMP-7은 10 내지 200ng/ml로 처리될 수 있고, 바람직하게는 50 내지 150ng/ml로 처리될 수 있고, 더욱 바람직하게는 100ng/ml로 처리될 수 있다. 상기 아스코르브산은 10 내지 300μM로 처리될 수 있고, 바람직하게는 50 내지 200μM로 처리될 수 있고, 더욱 바람직하게는 100μM로 처리될 수 있으나 이에 제한되지 않는다. The TGF-β receptor ALK5 inhibitor may be treated with 0.1 to 30 μM, preferably from 1 to 20 μM, and more preferably from 5 to 10 μM. In addition, the BMP-7 may be treated at 10 to 200 ng/ml, preferably at 50 to 150 ng/ml, more preferably at 100 ng/ml. The ascorbic acid may be treated at 10 to 300 μM, preferably at 50 to 200 μM, more preferably at 100 μM, but is not limited thereto.

본 명세서에서 달리 정의되지 않은 용어들은 본 발명이 속하는 기술분야에서 통상적으로 사용되는 의미를 갖는 것이다.Terms not otherwise defined herein have meanings commonly used in the art to which the present invention pertains.

이하, 본 발명을 실시예에 의해 상세히 설명한다. 단, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 내용이 하기 실시예에 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail by way of Examples. However, the following examples are merely illustrative of the present invention, and the content of the present invention is not limited to the following examples.

실시예 1. SB431542, BMP-7 및 아스코르브산Example 1. SB431542, BMP-7 and ascorbic acid 처리에 의한 백악모세포 분화 유도 확인Confirmation of Cretaceous Cell Differentiation Induction by Treatment

성체 치주인대 조직으로부터 일차 배양한 치주인대세포로부터 백악모세포로 세포 분화를 유도할 수 있는 조건을 확인하기 위한 실험을 수행하였다. 본 발명에서 수행된 실험의 P-값은 SPSS 소프트웨어를 이용한 일원 분산 분석을 통해 계산하였다. 0.05 이하의 P-값을 통계적으로 유의한 것으로 간주하였다.An experiment was performed to confirm the conditions for inducing cell differentiation from periodontal ligament cells cultured primarily from adult periodontal ligament tissues to cetacean cells. The P -values of the experiments performed in the present invention were calculated through one-way ANOVA using SPSS software. P -values of 0.05 or less were considered statistically significant.

1.1 세포 분리, 배양 및 형태학적 변화 확인 1.1 Cell Isolation, Culture and Confirmation of Morphological Changes

인간 치주인대세포 (human periodontal ligament cells, hPDLCs)의 일차 배양을 위하여, 단국대학과 치과병원의 IRB의 승인된 가이드라인에 따라 19 세 내지 23세의 환자로부터 3번째 어금니를 얻었다. 인간 치주인대 조직을 치근 표면으로부터 분리하였고, 이를 3mg/mL의 I형 콜라게나아제 (Millpore) 및 4mg/mL 디스파아제 (sigma) 로 처리하여 37℃으로 1시간 동안 효소적으로 소화시켰다. 20 % FBS 및 1% 항생제를 포함하는 α-MEM (HyClone) 배지를 이용하여 세포 상청액을 5% CO2 가 보충된 가습화된 대기 및 37℃ 조건에서 배양하였다. For the primary culture of human periodontal ligament cells (hPDLCs), third molars were obtained from patients aged 19 to 23 years according to the guidelines approved by the IRB of Dankook University and Dental Hospital. Human periodontal ligament tissue was isolated from the root surface, which was treated with 3 mg/mL type I collagenase (Millpore) and 4 mg/mL dispase (sigma) and enzymatically digested at 37° C. for 1 hour. Cell supernatant was cultured in a humidified atmosphere supplemented with 5% CO2 and 37°C conditions using α-MEM (HyClone) medium containing 20% FBS and 1% antibiotics.

이후 hPDLC를 4 x 104 세포 밀도로 6웰 플레이트에 분주하여 5% FBS를 포함하는 α-MEM 배지에서 배양하였으며, 이후 사이토카인 또는 억제제를 다음과 같은 조건으로 단독 또는 조합하여 처리하였다: 10 ng/ml TGF-β1 (Sino Biological), 100 ng/ml BMP-7 (Prospec), 10 μM TGF-β 수용체 억제제SB431542 (TOCRIS), 100 μM 아스코르브산 (sigma). 상기 사이토카인 또는 억제제는 hPDLC의 2번째 subculture의 초기 세대에 9일동안 격일로 배지를 교환하면서 처리하였다. Thereafter, hPDLCs were aliquoted in a 6-well plate at a density of 4 x 10 4 cells and cultured in α-MEM medium containing 5% FBS, and then treated with cytokines or inhibitors alone or in combination under the following conditions: 10 ng /ml TGF-β1 (Sino Biological), 100 ng/ml BMP-7 (Prospec), 10 μM TGF-β receptor inhibitor SB431542 (TOCRIS), 100 μM ascorbic acid (sigma). The cytokines or inhibitors were treated in the initial generation of the second subculture of hPDLC, changing the medium every other day for 9 days.

그 후 위상차 현미경으로 9일동안 hPDLC의 모양을 관찰하였으며, 그 결과를 도 1에 나타내었다. Thereafter, the shape of hPDLC was observed with a phase contrast microscope for 9 days, and the results are shown in FIG. 1 .

도 1에 나타낸 바와 같이, 10 ng/ml TGF-β1을 처리한 세포와 미처리된 hPDLC사이에는 뚜렷한 차이가 보이지 않았으나, SB431542, BMP-7 및 아스코르브산이 복합 처리된 처리된 hPDLC에서는 미네랄이 뭉친 것과 같은 부분이 보이는 등 형태적인 뚜렷한 차이가 발견되었다.As shown in FIG. 1 , there was no significant difference between cells treated with 10 ng/ml TGF-β1 and untreated hPDLC, but in hPDLC treated with SB431542, BMP-7, and ascorbic acid, it was found that minerals were agglomerated. There were clear morphological differences, such as visible parts.

1.2. 유전자 발현 변화 확인 1.2. Check for gene expression changes

1.1에서 분리 및 배양된 hPDLC를 4 x 104 세포 밀도로 6웰 플레이트에 분주하여 5% FBS를 포함하는 α-MEM 배지에서 배양하였다. 이후 사이토카인 또는 억제제를 단독 또는 조합하여 처리하였다: 10 ng/ml TGF-β1 (Sino Biological), 100 ng/ml BMP7 (Prospec), 10μM SB431542 (TOCRIS). 9일 후, Easy-SpinTM Total RNA extraction Kit (iNtRON)를 이용하여 세포로부터 총 RNA를 얻었으며, ReverTra Ace qPCR RT Master MixTM (TOYOBO)를 이용하여 이로부터 cDNA를 역전사하였고, RT-qPCR은 iTaq™ Universal SYBR™ Green Supermix (Bio-Rad) system을 이용하여 StepOnTM system (Applied Biosystems) 기기에서 수행한 후 정량화하였다. 각각의 유전자에 대한 프라이머는 하기 표 1에 나타내었다.The hPDLC isolated and cultured in 1.1 was aliquoted in a 6-well plate at a density of 4 x 10 4 cells and cultured in α-MEM medium containing 5% FBS. Then, cytokines or inhibitors were treated alone or in combination: 10 ng/ml TGF-β1 (Sino Biological), 100 ng/ml BMP7 (Prospec), 10 μM SB431542 (TOCRIS). After 9 days, total RNA was obtained from the cells using Easy-SpinTM Total RNA extraction Kit (iNtRON), cDNA was reverse transcribed therefrom using ReverTra Ace qPCR RT Master MixTM (TOYOBO), and RT-qPCR was performed using iTaqTM Quantification was performed after performing on a StepOn™ system (Applied Biosystems) instrument using a Universal SYBR™ Green Supermix (Bio-Rad) system. Primers for each gene are shown in Table 1 below.

GeneGene Primer sequencePrimer sequence Cementum protein 1 (CEMP1)Cementum protein 1 (CEMP1) Forward
Reverse
Forward
Reverse
5'- GATCAGCATCCTGCTCATGTT-3'
5'-AGCCAAATGACCCTTCCATTC-3'
5'-GATCAGCATCCTGCTCATGTT-3'
5'-AGCCAAATGACCCTTCCATTC-3'
Cementum attachment protein (CAP)Cementum attachment protein (CAP) Forward
Reverse
Forward
Reverse
5'-TCCAGACATTTGCCTTGCTT-3'
5'-TTACAGCAATAGAAAAACAGCATG-3'
5'-TCCAGACATTTGCCTTGCTT-3'
5'-TTACAGCAATAGAAAAACAGCATG-3'
Scleraxis (SCX)Scleraxis (SCX) ForwardReverseForwardReverse 5'-AGAAAGTTGAGCAAGGACC-3'
5'-CTGTCTGTACGTCCGTCT-3'
5'-AGAAAGTTGAGCAAGGACC-3'
5'-CTGTCTGTACGTCCGTCT-3'
Periodontal ligament-associated protein-1 (PLAP-1)Periodontal ligament-associated protein-1 (PLAP-1) Forward
Reverse
Forward
Reverse
5'-TTGACCTCAGTCCCAACCAA-3'
5'-TCGTTAGCTTGTTGTTGTTCAG-3'
5'-TTGACCTCAGTCCCAACCAA-3'
5'-TCGTTAGCTTGTTGTTGTTCAG-3'
Bone sialoprotein (BSP)Bone sialoprotein (BSP) ForwardReverseForwardReverse 5'-TACCGAGCCTATGAAGATGA-3'
5'-CTTCCTGAGTTGAACTTCGA-3'
5'-TACCGAGCCTATGAAGATGA-3'
5'-CTTCCTGAGTTGAACTTCGA-3'
Osterix (OSX)Osterix (OSX) ForwardReverseForwardReverse 5′-GAAGGGAGTGGTGGAGCCAAAC-3'
5′-ATTAGGGCAGTCGCAGGAGGAG-3'
5'-GAAGGGAGTGGTGGAGCCAAAC-3'
5'-ATTAGGGCAGTCGCAGGAGGAG-3'
Osteopontin (OPN)Osteopontin (OPN) ForwardReverseForwardReverse 5'-GTGGGAAGGACAGTTATGAA-3'
5'-CTGACTTTGGAAAGTTCCTG-3'
5'-GTGGGAAGGACAGTTATGAA-3'
5'-CTGACTTTGGAAAGTTCCTG-3'
GAPDHGAPDH Forward
Reverse
Forward
Reverse
5'-GTATGACAACAGCCTCAAGAT-3'
5'-CCTTCCACGATACCAAAGTT-3'
5'-GTATGACAACAGCCTCAAGAT-3'
5'-CCTTCCACGATACCAAAGTT-3'

GAPDH을 표준화 대조군 유전자로 사용하였다. PCR 동안 해리곡선은 65℃ 내지 95℃ 범위에서 형성하였고, qPCR은 다음과 같은 조건으로 수행하였다: 95℃에서 1분간 1사이클, 95℃에서 15초간 40 사이클 및 60℃에서 1분. CT(threshold cycle)를 얻었으며, 각각의 표적 유전자에 대하여 상대적 비교를 수행하였다.GAPDH was used as a standardized control gene. Dissociation curves during PCR were formed in the range of 65°C to 95°C, and qPCR was performed under the following conditions: 1 cycle at 95°C for 1 minute, 40 cycles at 95°C for 15 seconds, and 1 minute at 60°C. CT (threshold cycle) was obtained, and relative comparison was performed for each target gene.

1.2.1 CAP 및 CEMP1 유전자 발현 확인1.2.1 Confirmation of CAP and CEMP1 gene expression

실시예 1.2의 방법으로 2번의 실험을 수행하여 CAP 및 CEMP1 유전자 발현의 변화를 측정한 결과를 도 2 및 도 3에 나타내었다. The results of measuring changes in CAP and CEMP1 gene expression by performing two experiments in the method of Example 1.2 are shown in FIGS. 2 and 3 .

도 2 및 도 3에 나타낸 바와 같이, mRNA수준에서 SB431542, BMP-7 및 아스코르브산의 복합 효과가 뚜렷하게 관찰되었다. As shown in FIGS. 2 and 3 , the combined effect of SB431542, BMP-7 and ascorbic acid at the mRNA level was clearly observed.

보다 구체적으로, CAP 및 CEMP1은 백악모 분화에 관여하는 마커로 알려져 있으며, 도 2에서 나타낸 바와 같이, SB431542, BMP-7 및 아스코르브산을 배지에 복합 처리하였을 때, cementum attachment protein (CAP) 및 cementum protein 1 (CEMP1)의 발현은 대조군 대비 약 4.42배 및 7.5배 증가하였다. 더욱이 SB431542, BMP-7 또는 아스코르브산을 단독으로 처리하거나, 두 가지 구성을 선택하여 함께 처리한 조합의 경우보다도 SB431542, BMP-7 및 아스코르브산 구성을 모두 처리하였을 때 가장 높은 CAP 및 CEMP1 발현을 확인하였다. More specifically, CAP and CEMP1 are known as markers involved in the differentiation of cementum, and, as shown in FIG. 2, when SB431542, BMP-7 and ascorbic acid were complexly treated in the medium, cementum attachment protein (CAP) and cementum The expression of protein 1 (CEMP1) was increased by about 4.42-fold and 7.5-fold compared to the control group. Furthermore, the highest expression of CAP and CEMP1 was confirmed when SB431542, BMP-7, and ascorbic acid were treated together, compared to the case of a combination of SB431542, BMP-7, or ascorbic acid alone, or when both components were treated together. did.

마찬가지로 도 3에서도 SB431542, BMP-7 및 아스코르브산을 배지에 복합 처리하였을 때, cementum attachment protein (CAP) 및 cementum protein 1 (CEMP1)의 발현은 대조군 대비 약 3.52배 및 3.47배 증가하였다. 더욱이 SB431542, BMP-7 또는 아스코르브산을 단독으로 처리하거나, 두 가지 구성을 선택하여 함께 처리한 조합의 경우보다도 SB431542, BMP-7 및 아스코르브산 구성을 모두 처리하였을 때 가장 높은 CAP 및 CEMP1 발현을 확인하였다. Similarly in FIG. 3, when SB431542, BMP-7 and ascorbic acid were complexly treated in the medium, the expression of cementum attachment protein (CAP) and cementum protein 1 (CEMP1) was increased by about 3.52 times and 3.47 times compared to the control group. Furthermore, the highest expression of CAP and CEMP1 was confirmed when SB431542, BMP-7, and ascorbic acid were treated together, compared to the case of a combination of SB431542, BMP-7, or ascorbic acid alone, or when both components were treated together. did.

이는 SB431542, BMP-7 및 아스코르브산의 복합처리가 TGF-β 경로의 억제 및 백악질 형성 (cementogenesis)의 촉진에 SB431542, BMP-7 및 아스코르브산을 포함하는 어떠한 조합보다 현저한 효과가 있음을 보여주는 결과이다.This is a result showing that the combined treatment of SB431542, BMP-7 and ascorbic acid has a more significant effect than any combination containing SB431542, BMP-7 and ascorbic acid on the inhibition of the TGF-β pathway and promotion of cementogenesis. .

1.2.2 SCX, PLAP-1, OPN, OSX 및 BSP 발현 확인1.2.2 Confirmation of SCX, PLAP-1, OPN, OSX and BSP expression

인대 전구 특이적 전사인자인 SCX, peridontal ligament associates protein으로서 석회화 분화에서는 발현되지 않는 것으로 알려진 PLAP-1, 치주 인대 세포에서의 인대 마커인 OPN, 뼈와 상아질 형성시 세포 분화를 조절하는 것으로 알려진 OSX 및 골원성 마커인 BSP의 발현을 확인하고 그 결과를 도 4 및 도 5에 나타내었다. SCX, PLAP-1 및 OPN은 백악질 분화에 있어서 음성 마커이며, OSX 및 BSP는 백악질 분화의 마커로 알려져 있다. SCX, a ligament progenitor-specific transcription factor, PLAP-1, a peridontal ligament associates protein, which is known not to be expressed in calcification, OPN, a ligament marker in periodontal ligament cells, OSX, which is known to regulate cell differentiation during bone and dentin formation, and Expression of the osteogenic marker BSP was confirmed, and the results are shown in FIGS. 4 and 5 . SCX, PLAP-1 and OPN are negative markers of Cretaceous differentiation, and OSX and BSP are known markers of Cretaceous differentiation.

도 4에 나타낸 것과 같이, SCX 및 PLAP-1은 SB431542, BMP-7 및 아스코르브산 구성을 모두 처리하였을 때 대조군에 비해 낮은 발현을 보였으며, OPN은 TGF 처리군에 비해 감소된 발현을 보임을 확인하였다. 한편 SCX, PLAP-1 및 OPN은 백악질 분화의 음성 마커인바, SB431542, BMP-7 및 아스코르브산 단독 또는 2종 복합 처리에 의해서도 감소 경향을 나타낼 것으로 예상되었으나, 실제 관찰한 결과는 일관된 경향을 나타내지 않았다. 그러나, 본 발명의 SB431542, BMP-7 및 아스코르브산 구성을 모두 처리한 경우에는 음성 마커에서 모두 일관된 발현 감소를 관찰할 수 있었다. As shown in Figure 4, SCX and PLAP-1 showed low expression compared to the control group when all of the SB431542, BMP-7 and ascorbic acid components were treated, OPN showed reduced expression compared to the TGF treatment group did. Meanwhile, SCX, PLAP-1 and OPN, which are negative markers of chalky differentiation, were expected to show a decreasing trend even when SB431542, BMP-7 and ascorbic acid were treated alone or in combination of two types, but the observed results did not show a consistent trend. . However, when all of the SB431542, BMP-7 and ascorbic acid components of the present invention were treated, a consistent decrease in expression was observed in all negative markers.

도 5에 나타낸 것과 같이, OSX 및 BSP는 SB431542, BMP-7 또는 아스코르브산을 단독으로 처리하거나, 2종을 선택하여 함께 처리한 조합의 경우보다도 SB431542, BMP-7 및 아스코르브산 구성을 모두 처리하였을 때 가장 높은 발현을 확인하였다. 또한, OSX 및 BSP는 백악질 분화의 마커로서 B431542, BMP-7 및 아스코르브산 단독 또는 2종 복합 처리에 의해서도 증가 경향을 나타낼 것으로 예상되었으나, 실제 관찰한 결과는 일관된 경향을 나타내지 않았다. 그러나, 본 발명의 SB431542, BMP-7 및 아스코르브산을 모두 처리한 경우에는 모두 명확한 발현 증가를 관찰할 수 있었다. As shown in FIG. 5, OSX and BSP were treated with both SB431542, BMP-7, and ascorbic acid components than in the case of SB431542, BMP-7, or ascorbic acid alone, or a combination of two selected and treated together. The highest expression was confirmed when In addition, OSX and BSP, as markers of chalky differentiation, were expected to show an increase trend even when B431542, BMP-7 and ascorbic acid were treated alone or in combination of two types, but the observed results did not show a consistent trend. However, when all of SB431542, BMP-7, and ascorbic acid of the present invention were treated, a clear increase in expression was observed.

상기와 같은 결과를 통해, SB431542, BMP-7, 아스코르브산은 이들의 단독 또는 조합에 따라 매우 상이한 분화 패턴을 유도할 수 있음을 확인하였고, SB431542, BMP-7 및 아스코르브산의 조합은 다른 조합과 달리 일관된 치주인대세포의 백악모세포로의 분화를 유도할 수 있음을 확인하였다.Through the above results, it was confirmed that SB431542, BMP-7, and ascorbic acid can induce very different differentiation patterns depending on either alone or in combination. It was confirmed that it can induce the consistent differentiation of periodontal ligament cells into chorionic cells.

비록 본 발명이 상기에 언급된 바람직한 실시예로서 설명되었으나, 발명의 요지와 범위로부터 벗어남이 없이 다양한 수정이나 변형을 하는 것이 가능하다. 또한 첨부된 청구 범위는 본 발명의 요지에 속하는 이러한 수정이나 변형을 포함한다. Although the present invention has been described as the preferred embodiment mentioned above, it is possible to make various modifications and variations without departing from the spirit and scope of the invention. It is also intended that the appended claims cover such modifications and variations as fall within the scope of the present invention.

Claims (12)

TGF-β (transforming growth factor-beta) 수용체 ALK (activin receptor-like kinase) 5 억제제, BMP-7(bone morphogenetic protein-7) 및 아스코르브산을 포함하는 치주인대세포의 백악모세포로의 분화 유도용 조성물.
A composition for inducing differentiation of periodontal ligament cells into ceretoblasts, comprising a transforming growth factor-beta (TGF-β) receptor activin receptor-like kinase (ALK) 5 inhibitor, bone morphogenetic protein-7 (BMP-7) and ascorbic acid .
제 1항에 있어서, 상기 TGF-β 수용체 ALK5 억제제는 SB431542인 것을 특징으로 하는, 치주인대세포의 백악모세포로의 분화 유도용 조성물.
According to claim 1, wherein the TGF-β receptor ALK5 inhibitor is SB431542, characterized in that, the composition for inducing differentiation of periodontal ligament cells into nephroblasts.
제1항에 있어서, 상기 TGF-β 수용체 ALK5 억제제는 0.1 내지 30 μM 로 포함되는 것을 특징으로 하는, 치주인대세포의 백악모세포로의 분화 유도용 조성물.
According to claim 1, wherein the TGF-β receptor ALK5 inhibitor is characterized in that it is contained in 0.1 to 30 μM, the composition for inducing differentiation of periodontal ligament cells into nephroblasts.
제 1항에 있어서, 상기 BMP-7은 10 내지 200ng/ml로 포함되는 것을 특징으로 하는, 치주인대세포의 백악모세포로의 분화 유도용 조성물.
According to claim 1, wherein the BMP-7 is characterized in that contained in the 10 to 200ng / ml, the composition for inducing differentiation of periodontal ligament cells into chorionic cells.
제 1항에 있어서, 상기 아스코르브산은 10 내지 300μM로 포함되는 것을 특징으로 하는, 치주인대세포의 백악모세포로의 분화 유도용 조성물.
[Claim 2] The composition for inducing differentiation of periodontal ligament cells into chorionic cells according to claim 1, wherein the ascorbic acid is contained in an amount of 10 to 300 μM.
제1항에 있어서, 상기 TGF-β 수용체 ALK5 억제제, BMP-7 및 아스코르브산은 CEMP1 (cementum protein 1) 및 CAP (cementum attachment protein)의 발현을 증가시키는 것을 특징으로 하는, 치주인대세포의 백악모세포로의 분화 유도용 조성물.
According to claim 1, wherein the TGF-β receptor ALK5 inhibitor, BMP-7, and ascorbic acid is characterized in that to increase the expression of CEMP1 (cementum protein 1) and CAP (cementum attachment protein), periodontal ligament cells to the ceticular cell composition for inducing differentiation.
제1항에 있어서, 상기 치주인대세포는 성체 치주 인대 조직에서 유래된 것을 특징으로 하는, 치주인대세포의 백악모세포로의 분화 유도용 조성물.
According to claim 1, wherein the periodontal ligament cells are characterized in that derived from adult periodontal ligament tissue, the composition for inducing differentiation of periodontal ligament cells into cetinoblasts.
제 1항에 있어서, 상기 치주인대세포는 인간 치주 인대 조직에서 유래된 것을 특징으로 하는, 치주인대세포의 백악모세포로의 분화 유도용 조성물.
According to claim 1, wherein the periodontal ligament cells are characterized in that derived from human periodontal ligament tissue, the composition for inducing differentiation of periodontal ligament cells into cetinoblasts.
TGF-β (transforming growth factor-beta) 수용체 ALK (activin receptor-like kinase) 5 억제제, BMP-7 및 아스코르브산을 포함하는 치주인대세포의 백악모세포로의 분화 유도용 배지 조성물.
A medium composition for inducing differentiation of periodontal ligament cells into cerebral cells, comprising a transforming growth factor-beta (TGF-β) receptor activin receptor-like kinase (ALK) 5 inhibitor, BMP-7 and ascorbic acid.
TGF-β (transforming growth factor-beta) 수용체 ALK (activin receptor-like kinase) 5 억제제, BMP-7 및 아스코르브산을 포함하는 치주인대세포의 백악모세포로의 분화 유도용 키트.
A kit for inducing differentiation of periodontal ligament cells into cerebral blast cells, comprising a transforming growth factor-beta (TGF-β) receptor activin receptor-like kinase (ALK) 5 inhibitor, BMP-7 and ascorbic acid.
치주 인대세포에 TGF-β (transforming growth factor-beta) 수용체 ALK (activin receptor-like kinase) 5 억제제, BMP-7 및 아스코르브산을 in vitro 처리하는 단계;를 포함하는, 치주인대세포의 백악모세포로의 분화 유도 방법.
Periodontal ligament cells including the; TGF-β (transforming growth factor-beta) receptor ALK (activin receptor-like kinase) 5 inhibitor, BMP-7 and ascorbic acid in vitro treatment; of differentiation induction method.
제 11항에 있어서, 상기 처리는 7일 내지 14일 동안 수행되는, 치주인대세포의 백악모세포로의 분화 유도 방법.

The method of claim 11 , wherein the treatment is performed for 7 to 14 days.

KR1020200075852A 2020-06-22 2020-06-22 Complex composition for differentiation of periodontal ligament cells to cementoblast KR102331249B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200075852A KR102331249B1 (en) 2020-06-22 2020-06-22 Complex composition for differentiation of periodontal ligament cells to cementoblast

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200075852A KR102331249B1 (en) 2020-06-22 2020-06-22 Complex composition for differentiation of periodontal ligament cells to cementoblast

Publications (1)

Publication Number Publication Date
KR102331249B1 true KR102331249B1 (en) 2021-11-24

Family

ID=78748051

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200075852A KR102331249B1 (en) 2020-06-22 2020-06-22 Complex composition for differentiation of periodontal ligament cells to cementoblast

Country Status (1)

Country Link
KR (1) KR102331249B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190116651A (en) * 2018-04-05 2019-10-15 단국대학교 천안캠퍼스 산학협력단 Composition for differentiation of periodontal ligament cells to Cementoblast

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190116651A (en) * 2018-04-05 2019-10-15 단국대학교 천안캠퍼스 산학협력단 Composition for differentiation of periodontal ligament cells to Cementoblast

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Cell Biol Int. 36(2):129-36 (2012.02.) *
J Periodontol (2010) 81:1663-1674 *
PLoS One. 10(5):e0125590 (2015.05.13.) *

Similar Documents

Publication Publication Date Title
Gan et al. Dental tissue-derived human mesenchymal stem cells and their potential in therapeutic application
Hu et al. Stem cell‐based tooth and periodontal regeneration
Zhuang et al. Exosomes derived from stem cells from the apical papilla promote dentine-pulp complex regeneration by inducing specific dentinogenesis
Sanz et al. Mesenchymal stem cells from the oral cavity and their potential value in tissue engineering
Grimm et al. Translational research: palatal-derived ecto-mesenchymal stem cells from human palate: a new hope for alveolar bone and cranio-facial bone reconstruction
Catón et al. Future dentistry: cell therapy meets tooth and periodontal repair and regeneration
Huang et al. Rho/Rho-associated protein kinase signaling pathway‑mediated downregulation of runt-related transcription factor 2 expression promotes the differentiation of dental pulp stem cells into odontoblasts
Tziafas et al. Differentiation potential of dental papilla, dental pulp, and apical papilla progenitor cells
Zhu et al. Biological properties of modified bioactive glass on dental pulp cells
Sonoda et al. Interferon-gamma improves impaired dentinogenic and immunosuppressive functions of irreversible pulpitis-derived human dental pulp stem cells
Jiang et al. Postnatal epithelium and mesenchyme stem/progenitor cells in bioengineered amelogenesis and dentinogenesis
Eslaminejad et al. Odontogenic differentiation of dental pulp-derived stem cells on tricalcium phosphate scaffolds
KR101904767B1 (en) Composition for differentiation of dental pulp stem cells to odontoblasts
Nagata et al. Unveiling diversity of stem cells in dental pulp and apical papilla using mouse genetic models: a literature review
Huang et al. Effects of total flavonoids from Drynaria fortunei on the proliferation and osteogenic differentiation of rat dental pulp stem cells
Cristaldi et al. Growth and osteogenic differentiation of discarded gingiva-derived mesenchymal stem cells on a commercial scaffold
Han et al. Guiding lineage specific differentiation of SHED for target tissue/organ regeneration
Bakhtiar et al. Potential of treated dentin matrix xenograft for dentin-pulp tissue engineering
Cruz et al. Adipose‐derived stem cells incorporated into platelet‐rich plasma improved bone regeneration and maturation in vivo
Mert et al. Comparative analysis of proliferative and multilineage differentiation potential of human periodontal ligament stem cells from maxillary and mandibular molars
KR102331249B1 (en) Complex composition for differentiation of periodontal ligament cells to cementoblast
KR102041910B1 (en) Composition for differentiation of periodontal ligament cells to Cementoblast
Okić-Đorđević et al. Dental mesenchymal stromal/stem cells in different microenvironments—implications in regenerative therapy
Ebadi et al. Isolation and characterization of apical papilla cells from root end of human third molar and their differentiation into cementoblast cells: an in vitro study
Ma et al. Effect of 1, 25-dihydroxyvitamin D3 on stem cells from human apical papilla: Adhesion, spreading, proliferation, and osteogenic differentiation

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant