KR102329436B1 - An magnetic powder and a method of producing of the same - Google Patents
An magnetic powder and a method of producing of the same Download PDFInfo
- Publication number
- KR102329436B1 KR102329436B1 KR1020190133659A KR20190133659A KR102329436B1 KR 102329436 B1 KR102329436 B1 KR 102329436B1 KR 1020190133659 A KR1020190133659 A KR 1020190133659A KR 20190133659 A KR20190133659 A KR 20190133659A KR 102329436 B1 KR102329436 B1 KR 102329436B1
- Authority
- KR
- South Korea
- Prior art keywords
- iron oxide
- iron
- precursor
- powder
- silica
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 41
- 239000006247 magnetic powder Substances 0.000 title claims description 38
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 claims abstract description 409
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 172
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 112
- 239000000377 silicon dioxide Substances 0.000 claims abstract description 85
- 239000002245 particle Substances 0.000 claims abstract description 68
- 239000011159 matrix material Substances 0.000 claims abstract description 25
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 12
- 239000000843 powder Substances 0.000 abstract description 86
- 239000002243 precursor Substances 0.000 abstract description 63
- 239000012692 Fe precursor Substances 0.000 abstract description 44
- 238000004519 manufacturing process Methods 0.000 abstract description 31
- 229910052742 iron Inorganic materials 0.000 abstract description 29
- 239000002131 composite material Substances 0.000 abstract description 21
- 238000005507 spraying Methods 0.000 abstract description 11
- 238000001035 drying Methods 0.000 abstract description 8
- 235000013980 iron oxide Nutrition 0.000 description 199
- 238000010438 heat treatment Methods 0.000 description 41
- 239000000243 solution Substances 0.000 description 31
- 229910000859 α-Fe Inorganic materials 0.000 description 25
- 239000000693 micelle Substances 0.000 description 17
- VBMVTYDPPZVILR-UHFFFAOYSA-N iron(2+);oxygen(2-) Chemical class [O-2].[Fe+2] VBMVTYDPPZVILR-UHFFFAOYSA-N 0.000 description 15
- 238000003980 solgel method Methods 0.000 description 13
- -1 iron ions Chemical class 0.000 description 11
- 239000013078 crystal Substances 0.000 description 10
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 9
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 8
- 239000000463 material Substances 0.000 description 7
- 239000002904 solvent Substances 0.000 description 7
- 239000007921 spray Substances 0.000 description 7
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 6
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- 238000005245 sintering Methods 0.000 description 6
- 238000005406 washing Methods 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 5
- LZZYPRNAOMGNLH-UHFFFAOYSA-M Cetrimonium bromide Chemical compound [Br-].CCCCCCCCCCCCCCCC[N+](C)(C)C LZZYPRNAOMGNLH-UHFFFAOYSA-M 0.000 description 5
- 239000011230 binding agent Substances 0.000 description 5
- 235000019441 ethanol Nutrition 0.000 description 5
- 229910001172 neodymium magnet Inorganic materials 0.000 description 5
- 238000007796 conventional method Methods 0.000 description 4
- 239000012153 distilled water Substances 0.000 description 4
- 238000000465 moulding Methods 0.000 description 4
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 3
- 229910004298 SiO 2 Inorganic materials 0.000 description 3
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 229910001566 austenite Inorganic materials 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000002105 nanoparticle Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- 239000004115 Sodium Silicate Substances 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Natural products CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 2
- QJVKUMXDEUEQLH-UHFFFAOYSA-N [B].[Fe].[Nd] Chemical compound [B].[Fe].[Nd] QJVKUMXDEUEQLH-UHFFFAOYSA-N 0.000 description 2
- DKPFZGUDAPQIHT-UHFFFAOYSA-N butyl acetate Chemical compound CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 229910052736 halogen Inorganic materials 0.000 description 2
- 229910017053 inorganic salt Inorganic materials 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 239000011259 mixed solution Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000002114 nanocomposite Substances 0.000 description 2
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 2
- 229910052911 sodium silicate Inorganic materials 0.000 description 2
- 238000002490 spark plasma sintering Methods 0.000 description 2
- 238000001694 spray drying Methods 0.000 description 2
- LFQCEHFDDXELDD-UHFFFAOYSA-N tetramethyl orthosilicate Chemical compound CO[Si](OC)(OC)OC LFQCEHFDDXELDD-UHFFFAOYSA-N 0.000 description 2
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- 229910016870 Fe(NO3)3-9H2O Inorganic materials 0.000 description 1
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 1
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 229910000828 alnico Inorganic materials 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000000748 compression moulding Methods 0.000 description 1
- 239000011258 core-shell material Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 150000004677 hydrates Chemical class 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 150000002505 iron Chemical class 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 230000005415 magnetization Effects 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 125000003944 tolyl group Chemical group 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/10—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure
- H01F1/11—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles
- H01F1/113—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles in a bonding agent
- H01F1/117—Flexible bodies
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/113—Silicon oxides; Hydrates thereof
- C01B33/12—Silica; Hydrates thereof, e.g. lepidoic silicic acid
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G49/00—Compounds of iron
- C01G49/02—Oxides; Hydroxides
- C01G49/06—Ferric oxide [Fe2O3]
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/64—Nanometer sized, i.e. from 1-100 nanometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/42—Magnetic properties
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Compounds Of Iron (AREA)
Abstract
본 발명은 철 전구체 및 실리카 전구체를 포함하는 전구체 용액을 준비하는 단계; 상기 전구체 용액을 분무하여, 철/실리카 전구체 액적을 형성하는 단계; 상기 철/실리카 전구체 액적을 건조하여, 실리카 전구체 매트릭스 내에 철 전구체 입자가 내재된 철/실리카 전구체 입자를 제조하는 단계; 및 상기 철/실리카 전구체 입자를 열처리 하여, 실리카 매트릭스 내에 산화철 입자가 내재된 산화철/실리카 복합 분말을 제조하는 단계를 포함하는 자성 분말의 제조방법 및 이의 방법에 의해 제조된 자성 분말에 관한 것으로, 희토류 원소를 이용하지 않는 산화철 자성 분말 및 이의 제조방법을 제공할 수 있다.The present invention comprises the steps of preparing a precursor solution comprising an iron precursor and a silica precursor; spraying the precursor solution to form iron/silica precursor droplets; drying the iron/silica precursor droplets to prepare iron/silica precursor particles in which iron precursor particles are embedded in a silica precursor matrix; and heat-treating the iron/silica precursor particles to prepare an iron oxide/silica composite powder having iron oxide particles embedded in a silica matrix. It is possible to provide a magnetic iron oxide powder that does not use an element and a method for manufacturing the same.
Description
본 발명은 산화철 자성 분말 및 이의 제조방법에 관한 것으로서, 더욱 상세하게는 희토류 원소를 이용하지 않는 산화철 자성 분말 및 이의 제조방법에 관한 것이다.The present invention relates to a magnetic iron oxide powder and a method for manufacturing the same, and more particularly, to a magnetic iron oxide powder not using a rare earth element and a method for manufacturing the same.
일반적으로 영구자석은 외부인가 자장을 제거하여도 재료 내에서 자장을 보유하는 재료로써, 모터, 제네레이터 및 전자기기 등에 필수적으로 사용된다.In general, a permanent magnet is a material that retains a magnetic field in the material even when an externally applied magnetic field is removed, and is essentially used in motors, generators, and electronic devices.
특히 부가가치가 높고 여러산업에서 응용되는 비디오레코더, 컴퓨터 디스크드라이브, 전기모터 등에 적용되는 영구자석은 최종제품의 품질과 성능에 결정적인 영향을 미치게 된다.In particular, permanent magnets that have high added value and are applied to video recorders, computer disk drives, and electric motors applied in various industries have a decisive influence on the quality and performance of the final product.
종래 영구자석을 제조하는 합금으로는 Alnico계 및 Ferrite계가 주종을 이루며 사용되어 왔으나 최근에는 전자, 통신, 기계부품의 소형화 및 고성능화가 추진됨에 따라 자기적 특성이 우수한 네오디뮴-철-붕소(Nd-Fe-B)계 재료가 자석에 널리 사용되고 있다.Conventionally, Alnico-based and Ferrite-based alloys have been mainly used as alloys for manufacturing permanent magnets. -B)-based materials are widely used in magnets.
상기 네오디뮴-철-붕소(Nd-Fe-B)계 자석은 1982년 일본의 스미토모 특수 금속에서 개발하여 상업화한 자석으로 최대 자기 에너지가 가장 큰 강력한 영구 자석이다. The neodymium-iron-boron (Nd-Fe-B) magnet was developed and commercialized by Sumitomo Special Metals in Japan in 1982, and is a powerful permanent magnet with the largest magnetic energy.
하지만, 상기 네오디뮴-철-붕소(Nd-Fe-B)계 자석은 네오디뮴과 같은 희토류 원소를 포함하고 있다.However, the neodymium-iron-boron (Nd-Fe-B)-based magnet contains rare earth elements such as neodymium.
이러한, 희토류 원소들은 상대적으로 공급량이 적어서 가격 상승 및/또는 미래에 공급량 부족에 직면할 수 있으며, 또한, 희토류 원소들을 포함하는 많은 영구자석들은 제조비용이 많이 소요된다. Such rare earth elements may face a price increase and/or a supply shortage in the future due to a relatively small supply, and also, many permanent magnets including rare earth elements require a high manufacturing cost.
예를 들어, NdFeB 및 페라이트 자석 제조 공정은 일반적으로 재료 분쇄, 재료 압축, 및 1000℃를 상회하는 온도에서 소결하는 공정을 포함하며, 이들 모든 공정은 영구 자석들의 제조비용을 높이는 데에 기여한다. 또한, 희토류 원소를 채굴하기 위해서는 환경을 상당히 손상시켜야만 한다.For example, the manufacturing process of NdFeB and ferrite magnets generally includes material pulverization, material compression, and sintering at a temperature exceeding 1000°C, all of which contribute to increasing the manufacturing cost of permanent magnets. In addition, mining of rare earth elements requires considerable damage to the environment.
따라서, 이러한 희토류 원소를 포함하는 영구자석을 대체할 수 있는 자성 재료가 필요한 실정이며, 최근에 있어서는 자성 분말의 새로운 고성능화가 요구되어 지고있다.Therefore, there is a need for a magnetic material that can replace a permanent magnet containing such a rare earth element, and in recent years, a new high-performance magnetic powder is required.
이러한 고성능화의 수단으로서 자화가 높은 연자성상과 보자력이 높은 경자성상이 동일 조직 내에 균일하게 분포함과 동시에, 교환 상호작용에 의해 양자가 자기적으로 결합한 나노 복합재료 자성 분말이 주목되어 있다.As a means for such high performance, a magnetic nanocomposite material in which a soft magnetic phase with high magnetization and a hard magnetic phase with high coercivity are uniformly distributed in the same structure, and magnetically coupled to each other by an exchange interaction is attracting attention.
예를 들면, 일본공개특허 특개2008-117855호(이하, "특허문헌 1"이라 함.)에는 Nd2Fe14B화 합물의 경자성상을 코어로 하고, Fe의 연자성상을 쉘로 하는 코어 쉘 구조를 가지는 나노 복합재료 자석이 개시되어 있다. For example, Japanese Patent Laid-Open No. 2008-117855 (hereinafter referred to as "Patent Document 1") has a core-shell structure in which the hard magnetic phase of Nd 2 Fe 14 B compound is used as the core and the soft magnetic phase of Fe is used as the shell. Disclosed is a nanocomposite magnet having a.
하지만, 특허문헌 1에 개시되어 있는 기술은 경자성상에 희토류 원소인 Nd를 이용하고 있다.However, the technique disclosed in Patent Document 1 uses Nd, which is a rare earth element, for the hard magnetic phase.
즉, 상술한 바와 같이, 희토류 원소는 고가임과 동시에, 공급이 불안정하게 될 우려가 있으므로, 가능한 한 희토류 원소의 사용을 억제하는 것이 필요한 실정이다.That is, as described above, rare earth elements are expensive and there is a possibility that supply may become unstable. Therefore, it is necessary to suppress the use of rare earth elements as much as possible.
본 발명은 상기와 같은 문제점을 해결하기 위한 것으로, 희토류 원소를 이용하지 않는 산화철 자성 분말 및 이의 제조방법을 제공하는 것을 기술적 과제로 한다.The present invention is to solve the above problems, and an object of the present invention is to provide a magnetic iron oxide powder that does not use rare earth elements and a method for manufacturing the same.
상기 지적된 문제점을 해결하기 위해서 본 발명은 실리카 매트릭스; 및 상기 실리카 매트릭스 내에 내재된 산화철 입자를 포함하며, 상기 산화철 입자는 경자성 산화철 입자를 포함하며, 상기 경자성 산화철 입자는 ε-Fe2O3인 것을 특징으로 하는 자성 분말을 제공한다.In order to solve the above-mentioned problems, the present invention provides a silica matrix; and iron oxide particles embedded in the silica matrix, wherein the iron oxide particles include hard magnetic iron oxide particles, and the hard magnetic iron oxide particles are ε-Fe 2 O 3 .
또한, 본 발명은 상기 산화철 중 상기 경자성 산화철 입자의 비율은 70 내지 100%에 해당하고, 상기 산화철 중 경자성 산화철을 제외한 나머지 산화철의 비율은 0 또는 0을 초과하고 30% 미만에 해당하며, 상기 나머지 산화철은 α-Fe2O3인 것을 특징으로 하는 자성 분말을 제공한다.Further, in the present invention, the ratio of the hard magnetic iron oxide particles in the iron oxide corresponds to 70 to 100%, and the ratio of the remaining iron oxide other than the hard magnetic iron oxide in the iron oxide is 0 or more than 0 and less than 30%, The remaining iron oxide provides a magnetic powder, characterized in that α-Fe 2 O 3.
또한, 본 발명은 상기 산화철 입자의 직경은 20 내지 45nm인 것을 특징으로 하는 자성 분말을 제공한다.In addition, the present invention provides a magnetic powder, characterized in that the iron oxide particles have a diameter of 20 to 45 nm.
또한, 본 발명은 상기 산화철 입자는 경자성 산화철 입자를 포함하며, 상기 경자성 산화철 입자는 ε-Fe2O3인 것을 특징으로 하는 자성 분말을 제공한다.The present invention also provides a magnetic powder, wherein the iron oxide particles include hard magnetic iron oxide particles, and the hard magnetic iron oxide particles are ε-Fe 2 O 3 .
또한, 본 발명은 상기 산화철 입자 중 상기 경자성 산화철 입자의 비율은 70 내지 100%에 해당하고, 상기 산화철 입자 중 경자성 산화철을 제외한 나머지 산화철의 비율은 0 또는 0을 초과하고 30% 미만에 해당하며, 상기 나머지 산화철은 α-Fe2O3인 것을 특징으로 하는 자성 분말을 제공한다.In the present invention, the ratio of the hard magnetic iron oxide particles among the iron oxide particles is 70 to 100%, and the ratio of the remaining iron oxides other than the hard magnetic iron oxide among the iron oxide particles is 0 or more than 0 and less than 30% And, the remaining iron oxide is α-Fe 2 O 3 It provides a magnetic powder, characterized in that.
또한, 본 발명은 상기 산화철 입자의 직경은 20 내지 45nm인 것을 특징으로 하는 자성 분말을 제공한다.In addition, the present invention provides a magnetic powder, characterized in that the iron oxide particles have a diameter of 20 to 45 nm.
또한, 본 발명은 철 전구체 및 실리카 전구체를 포함하는 전구체 용액을 준비하는 단계; 상기 전구체 용액을 분무하여, 철/실리카 전구체 액적을 형성하는 단계; 상기 철/실리카 전구체 액적을 건조하여, 철/실리카 전구체 입자를 제조하는 단계; 및 상기 철/실리카 전구체 입자를 열처리 하여, 실리카 매트릭스 내에 산화철 입자가 내재된 산화철/실리카 복합 분말을 제조하는 단계를 포함하는 자성 분말의 제조방법을 제공한다.In addition, the present invention comprises the steps of preparing a precursor solution comprising an iron precursor and a silica precursor; spraying the precursor solution to form iron/silica precursor droplets; drying the iron/silica precursor droplets to prepare iron/silica precursor particles; and heat-treating the iron/silica precursor particles to prepare an iron oxide/silica composite powder having iron oxide particles embedded in a silica matrix.
또한, 본 발명은 워싱공정을 통해, 상기 산화철/실리카 복합 분말의 상기 실리카 매트릭스를 제거하여 산화철 분말을 제조하는 단계를 더 포함하는 자성 분말의 제조방법을 제공한다.In addition, the present invention provides a method for producing a magnetic powder further comprising the step of preparing an iron oxide powder by removing the silica matrix of the iron oxide/silica composite powder through a washing process.
또한, 본 발명은 상기 열처리의 온도는 1120 내지 1210℃인 것을 특징으로 하는 자성 분말의 제조방법을 제공한다.In addition, the present invention provides a method for producing a magnetic powder, characterized in that the temperature of the heat treatment is 1120 to 1210 ℃.
또한, 본 발명은 상기 열처리의 온도는 1150 내지 1180℃인 것을 특징으로 하는 자성 분말의 제조방법을 제공한다.In addition, the present invention provides a method for producing a magnetic powder, characterized in that the temperature of the heat treatment is 1150 to 1180 ℃.
또한, 본 발명은 상기 전구체 용액에서의 상기 철 전구체의 농도는, 실리카 전구체 1mol% 대비 15 내지 60 mol%인 것을 특징으로 하는 자성 분말의 제조방법을 제공한다.In addition, the present invention provides a method for producing a magnetic powder, characterized in that the concentration of the iron precursor in the precursor solution is 15 to 60 mol% relative to 1 mol% of the silica precursor.
따라서, 본 발명에서는 희토류 원소를 이용하지 않는 산화철 자성 분말 및 이의 제조방법을 제공할 수 있다.Accordingly, in the present invention, it is possible to provide a magnetic iron oxide powder that does not use a rare earth element and a method for manufacturing the same.
또한, 본 발명에서는 전구체 용액을 분무하여 액적을 형성한후, 건조공정 및 열처리공정을 진행하여, ε-Fe2O3의 경자성 산화철을 제조할 수 있으므로, 단시간 및 간단한 공정에 의하여, ε-Fe2O3 분말을 제조할 수 있다.In addition, in the present invention, after forming droplets by spraying the precursor solution, a drying process and a heat treatment process are performed to prepare ε-Fe 2 O 3 hard magnetic iron oxide, so by a short time and a simple process, ε- Fe 2 O 3 powder can be prepared.
도 1은 본 발명에 따른 산화철 자성 분말을 제조하는 방법을 설명하기 위한 흐름도이다.
도 2는 본 발명에 따른 산화철 자성 분말을 제조하는 방법을 설명하기 위한 개략적인 모식도이다.
도 3은 본 발명에 따른 철/실리카 전구체 입자를 도시하는 실사진이다.
도 4는 본 발명에 따른 산화철/실리카 복합 분말을 도시하는 실사진이다.
도 5는 본 발명에 따른 산화철 분말을 도시하는 실사진이다.
도 6은 본 발명에 따라 제조된 분말의 철 전구체의 농도의 변화에 따른 보자력 결과 및 역마이셀법/졸겔법에 따라 제조된 분말에 따른 보자력 결과를 도시하는 그래프이다.
도 7은 본 발명에 따라 제조된 분말의 철 전구체의 열처리시의 온도의 변화에 XRD 그래프이다.
도 8은 본 발명에 따라 제조된 분말의 철 전구체의 농도의 변화에 따른 분말의 입도 변화를 도시하는 그래프이다.
도 9는 본 발명에 따라 제조된 분말의 철 전구체의 농도의 변화에 따른 분말의 입도를 도시하는 실사진이다.1 is a flowchart for explaining a method of manufacturing an iron oxide magnetic powder according to the present invention.
Figure 2 is a schematic schematic diagram for explaining a method for producing a magnetic iron oxide powder according to the present invention.
3 is an actual photograph showing iron/silica precursor particles according to the present invention.
Figure 4 is an actual photograph showing the iron oxide / silica composite powder according to the present invention.
5 is a real photograph showing an iron oxide powder according to the present invention.
6 is a graph showing a coercive force result according to a change in the concentration of an iron precursor in a powder prepared according to the present invention and a coercive force result according to a powder prepared according to a reverse micelle method/sol-gel method.
7 is an XRD graph of the change in temperature during heat treatment of a powdery iron precursor prepared according to the present invention.
8 is a graph showing the change in the particle size of the powder according to the change in the concentration of the iron precursor of the powder prepared according to the present invention.
9 is an actual photograph showing the particle size of the powder according to the change in the concentration of the iron precursor of the powder prepared according to the present invention.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다.Advantages and features of the present invention and methods of achieving them will become apparent with reference to the embodiments described below in detail in conjunction with the accompanying drawings. However, the present invention is not limited to the embodiments disclosed below, but will be implemented in a variety of different forms, and only these embodiments allow the disclosure of the present invention to be complete, and common knowledge in the technical field to which the present invention belongs It is provided to fully inform the possessor of the scope of the invention, and the present invention is only defined by the scope of the claims.
아래 첨부된 도면을 참조하여 본 발명의 실시를 위한 구체적인 내용을 상세히 설명한다. 도면에 관계없이 동일한 부재번호는 동일한 구성요소를 지칭하며, "및/또는"은 언급된 아이템들의 각각 및 하나 이상의 모든 조합을 포함한다.Detailed contents for carrying out the present invention will be described in detail with reference to the accompanying drawings below. Regardless of the drawings, like reference numbers refer to like elements, and "and/or" includes each and every combination of one or more of the recited items.
비록 제1, 제2 등이 다양한 구성요소들을 서술하기 위해서 사용되나, 이들 구성요소들은 이들 용어에 의해 제한되지 않음은 물론이다. 이들 용어들은 단지 하나의 구성요소를 다른 구성요소와 구별하기 위하여 사용하는 것이다. 따라서, 이하에서 언급되는 제1 구성요소는 본 발명의 기술적 사상 내에서 제2 구성요소일 수도 있음은 물론이다.Although the first, second, etc. are used to describe various elements, these elements are not limited by these terms, of course. These terms are only used to distinguish one component from another. Accordingly, it goes without saying that the first component mentioned below may be the second component within the spirit of the present invention.
본 명세서에서 사용된 용어는 실시예들을 설명하기 위한 것이며 본 발명을 제한하고자 하는 것은 아니다. 본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함한다. 명세서에서 사용되는 "포함한다(comprises)" 및/또는 "포함하는(comprising)"은 언급된 구성요소 외에 하나 이상의 다른 구성요소의 존재 또는 추가를 배제하지 않는다.The terminology used herein is for the purpose of describing the embodiments and is not intended to limit the present invention. As used herein, the singular also includes the plural unless specifically stated otherwise in the phrase. As used herein, “comprises” and/or “comprising” does not exclude the presence or addition of one or more other components in addition to the stated components.
다른 정의가 없다면, 본 명세서에서 사용되는 모든 용어(기술 및 과학적 용어를 포함)는 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 공통적으로 이해될 수 있는 의미로 사용될 수 있을 것이다. 또 일반적으로 사용되는 사전에 정의되어 있는 용어들은 명백하게 특별히 정의되어 있지 않는 한 이상적으로 또는 과도하게 해석되지 않는다.Unless otherwise defined, all terms (including technical and scientific terms) used herein may be used with the meaning commonly understood by those of ordinary skill in the art to which the present invention belongs. In addition, terms defined in a commonly used dictionary are not to be interpreted ideally or excessively unless clearly defined in particular.
공간적으로 상대적인 용어인 "아래(below)", "아래(beneath)", "하부(lower)", "위(above)", "상부(upper)" 등은 도면에 도시되어 있는 바와 같이 하나의 구성 요소와 다른 구성 요소들과의 상관관계를 용이하게 기술하기 위해 사용될 수 있다. 공간적으로 상대적인 용어는 도면에 도시되어 있는 방향에 더하여 사용시 또는 동작시 구성요소들의 서로 다른 방향을 포함하는 용어로 이해되어야 한다. 예를 들면, 도면에 도시되어 있는 구성요소를 뒤집을 경우, 다른 구성요소의 "아래(below)" 또는 "아래(beneath)"로 기술된 구성요소는 다른 구성요소의 "위(above)"에 놓여질 수 있다. 따라서, 예시적인 용어인 "아래"는 아래와 위의 방향을 모두 포함할 수 있다. 구성요소는 다른 방향으로도 배향될 수 있고, 이에 따라 공간적으로 상대적인 용어들은 배향에 따라 해석될 수 있다.Spatially relative terms "below", "beneath", "lower", "above", "upper", etc. It can be used to easily describe the correlation between a component and other components. A spatially relative term should be understood as a term that includes different directions of components during use or operation in addition to the directions shown in the drawings. For example, when a component shown in the drawings is turned over, a component described as “beneath” or “beneath” of another component may be placed “above” of the other component. can Accordingly, the exemplary term “below” may include both directions below and above. Components may also be oriented in other orientations, and thus spatially relative terms may be interpreted according to orientation.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.
도 1은 본 발명에 따른 산화철 자성 분말을 제조하는 방법을 설명하기 위한 흐름도이고, 도 2는 본 발명에 따른 산화철 자성 분말을 제조하는 방법을 설명하기 위한 개략적인 모식도이다.1 is a flowchart for explaining a method for manufacturing an iron oxide magnetic powder according to the present invention, Figure 2 is a schematic diagram for explaining a method for manufacturing an iron oxide magnetic powder according to the present invention.
먼저, 도 1 및 도 2를 참조하면, 본 발명에 따른 산화철 자성 분말을 제조하는 방법은, 철 전구체 및 실리카 전구체를 포함하는 전구체 용액(110)을 준비하는 단계를 포함한다(S110).First, referring to FIGS. 1 and 2 , the method of manufacturing an iron oxide magnetic powder according to the present invention includes preparing a
보다 구체적으로, 상기 철 전구체는 2가 또는 3가의 철 염으로 물에 녹아 이온화 될 수 있는 물질이면 제한이 없으나, 구체적으로 2가 또는 3가의 철이온을 포함하는 무기염일 수 있으며, 더욱 구체적으로는 2가 또는 3가의 철이온을 포함하는 할로겐염일 수 있다. More specifically, the iron precursor is not limited as long as it is a divalent or trivalent iron salt and can be ionized by dissolving in water. Specifically, the iron precursor may be an inorganic salt containing divalent or trivalent iron ions, and more specifically It may be a halogen salt containing a divalent or trivalent iron ion.
보다 구체적으로, 2가 또는 3가의 철이온을 포함하는 무기염이라 함은 FeCl2, FeCl3, FeBr2, FeBr3, FeI2, FeI3, Fe(NO3)2, Fe(NO3)3 및 이들의 수화물에서 선택되는 하나 또는 둘 이상일 수 있으며, 2가 또는 3가의 철이온을 포함하는 할로겐염이라 함은 FeCl2, FeCl3, FeBr2, FeBr3, FeI2 및 FeI3에서 선택되는 하나 또는 둘 이상일 수 있다. More specifically, the inorganic salt containing a divalent or trivalent iron ion is FeCl 2 , FeCl 3 , FeBr 2 , FeBr 3 , FeI 2 , FeI 3 , Fe(NO 3 ) 2 , Fe(NO 3 ) 3 and one or two or more selected from hydrates thereof, and the halogen salt containing a divalent or trivalent iron ion is one selected from FeCl 2 , FeCl 3 , FeBr 2 , FeBr 3 , FeI 2 and FeI 3 . or two or more.
이때, 본 발명에서 상기 철 전구체의 농도는, 상기 실리카 전구체 1mol% 대비 15 내지 60 mol%인 것이 바람직하며, 상기 철 전구체의 농도는, 상기 실리카 전구체 1mol% 대비 40 내지 60 mol%인 것이 더욱 바람직하다. 이에 대해서는 후술하기로 한다.In this case, in the present invention, the concentration of the iron precursor is preferably 15 to 60 mol% relative to 1 mol% of the silica precursor, and the concentration of the iron precursor is more preferably 40 to 60 mol% compared to 1 mol% of the silica precursor do. This will be described later.
또한, 상기 실리카 전구체는 TEOS(tetraethylorthosilicate), Sodium Silicate 및 TMOS (tetramethylorthosilicate) 중에서 선택되는 1종 이상일 수 있으며, 다만, 본 발명에서 상기 실리카 전구체의 종류를 제한하는 것은 아니다.In addition, the silica precursor may be at least one selected from tetraethylorthosilicate (TEOS), sodium silicate, and tetramethylorthosilicate (TMOS), but the type of the silica precursor is not limited in the present invention.
한편, 철 전구체 및 실리카 전구체를 포함하는 상기 전구체 용액(110)에서 사용되는 용매는, 상기 전구체가 용해될 수 있는 용매라면 특별히 제한이 없으며, 일례로 상기 용매는 증류수일 수 있으며, 또는, 메탄올, 에탄올, 이소프로필알콜 등의 알코올계일 수 있다.On the other hand, the solvent used in the
또한, 상기 용매는 톨루엔, 사이클로헥산, 아세톤, 메틸에틸케톤, 메틸이소부틸케톤, 에틸아세테이트, n-부틸아세테이트, 세룰솔브아세테이트, 염화메틸렌, 메틸에틸케톤, 디클로로메탄, 크실렌, 스타이렌으로 이루어지는 군에서 선택되는 적어도 어느 하나 일 수 있다.In addition, the solvent is toluene, cyclohexane, acetone, methyl ethyl ketone, methyl isobutyl ketone, ethyl acetate, n-butyl acetate, cerulsolve acetate, methylene chloride, methyl ethyl ketone, dichloromethane, xylene, the group consisting of styrene It may be at least any one selected from.
다음으로, 도 1 및 도 2를 참조하면, 본 발명에 따른 산화철 자성 분말을 제조하는 방법은, 상기 전구체 용액(110)을 분무하여, 철/실리카 전구체 액적(120)을 형성하는 단계를 포함한다(S120).Next, referring to FIGS. 1 and 2 , the method of manufacturing the iron oxide magnetic powder according to the present invention includes the step of spraying the
보다 구체적으로, 상기 전구체 용액을 스프레이 장치(10)를 통해 분무함으로써 상기 철/실리카 전구체 액적(120)을 형성할 수 있으며, 상기 분무 공정은 공지된 스프레이법을 통해 진행할 수 있으며, 상기 스프레이법은 당업계에서 자명한 공정이므로, 이하 구체적인 설명은 생략하기로 한다.More specifically, the iron/
다음으로, 도 1 및 도 2를 참조하면, 본 발명에 따른 산화철 자성 분말을 제조하는 방법은, 상기 철/실리카 전구체 액적(120)을 건조하여, 실리카 전구체 매트릭스 내에 철 전구체 입자가 내재된 철/실리카 전구체 입자(130)를 제조하는 단계를 포함한다(S130).Next, referring to FIGS. 1 and 2 , in the method of manufacturing the iron oxide magnetic powder according to the present invention, the iron/
보다 구체적으로, 상기 철/실리카 전구체 액적(120)을 건조하는 것은 110 내지 130℃의 온도에서 진행될 수 있다.More specifically, drying the iron/
예를 들어, 상술한 S120 단계의, 상기 전구체 용액(110)을 분무하여, 철/실리카 전구체 액적(120)을 형성하는 단계에서의 스프레이 장치(10)의 인렛(Inlet)에서의 온도범위는 180 내지 220℃에 해당할 수 있다.For example, the temperature range at the inlet of the
또한, 상기 스프레이 장치(10)의 아웃렛(Outlet)에서의 온도범위는 110 내지 130℃의 온도를 유지함으로써, 상기 스프레이 장치(10)로부터 상기 철/실리카 전구체 액적(120)이 토출됨과 동시에 상기 철/실리카 전구체 액적(120)이 순간 건조되어, 철/실리카 전구체 입자(130)가 형성될 수 있다.In addition, the temperature range at the outlet of the
이때, 상기 철/실리카 전구체 액적(120) 내에서의 용매의 순간기화로 인한 공간적 제한효과에 의하여, 나노 나이즈의 철 전구체 입자가 형성되며, 결국, 실리카 전구체 매트릭스 내에 나노 사이즈의 철 전구체 입자가 내재된 철/실리카 전구체 입자(130)를 제조할 수 있으며, 상기 철/실리카 전구체 입자(130)의 크기는 0.1 ~ 10㎛일 수 있다.At this time, nano-sized iron precursor particles are formed due to the spatial limitation effect due to the instantaneous vaporization of the solvent in the iron/
도 3은 본 발명에 따른 철/실리카 전구체 입자를 도시하는 실사진이다.3 is an actual photograph showing iron/silica precursor particles according to the present invention.
도 3을 참조하면, 본 발명에 따른 철/실리카 전구체 입자(130)는, 실리카 전구체 매트릭스 내에 철 전구체 입자가 내재된 염 분말의 형태로 형성된다.Referring to FIG. 3 , the iron/
다음으로, 도 1 및 도 2를 참조하면, 본 발명에 따른 산화철 자성 분말을 제조하는 방법은, 상기 철/실리카 전구체 입자(130)를 열처리하여, 실리카 매트릭스 내에 산화철 입자가 내재된 산화철/실리카 복합 분말(140)을 제조하는 단계를 포함한다(S140).Next, referring to FIGS. 1 and 2 , in the method of manufacturing the iron oxide magnetic powder according to the present invention, the iron/
이때, 본 발명에서 상기 산화철/실리카 복합 분말(140)에서의 상기 산화철은 경자성 산화철을 포함하는 것을 특징으로 하며, 보다 구체적으로, 상기 경자성 산화철은 ε-Fe2O3에 해당한다.In this case, in the present invention, the iron oxide in the iron oxide/
일반적으로, α-Fe2O3의 경우 비자성성 산화철로 분류되며, γ-Fe2O3의 경우 경자성 산화철로 분류된다.In general, α-Fe 2 O 3 is classified as nonmagnetic iron oxide, and γ-Fe 2 O 3 is classified as hard magnetic iron oxide.
또한, 일반적으로, ε 결정상은 초고보자력(Hc ~ 20kOe)를 나타내는 것으로 알려져 있으며, 따라서, 본 발명에서는, 상기 산화철/실리카 복합 분말(140)에서의 상기 산화철이 ε-Fe2O3의 경자성 산화철을 포함하기 때문에, 초고보자력 특성을 갖는 경자성 산화철 분말을 제조할 수 있다.In addition, in general, it is known that the ε crystal phase exhibits an ultra-high coercive force (Hc ~ 20 kOe), and therefore, in the present invention, the iron oxide in the iron oxide/
한편, 경자성 산화철 분말인 ε-Fe2O3의 제조방법으로, 철 전구체를 micelle 에 가두고(역마이셀법), sol-gel 법(졸겔법)을 통하여 실리카 매트릭스를 만들어서 ε-Fe2O3의 분말을 제조하는 것이 알려져 있다. On the other hand, as a method for producing ε-Fe 2 O 3 , which is a hard magnetic iron oxide powder, an iron precursor is confined in a micelle (reverse micelle method), and a silica matrix is made through the sol-gel method (sol-gel method) to produce ε-Fe 2 O It is known to prepare 3 powders.
즉, 알려진 ε-Fe2O3 분말은 역마이셀법 및 졸겔법을 이용하여 제조되고 있다.That is, the known ε-Fe 2 O 3 powder is manufactured using the reverse micelle method and the sol-gel method.
하지만, 이러한 역마이셀법 및 졸겔법을 이용한 ε-Fe2O3 분말의 제조방법은, 장시간동안 진행되어야 하는 다단계 공정에 해당하여, 실제 상업적 생산측면에서는 비효율적인 공정에 해당한다. However, the method for producing ε-Fe 2 O 3 powder using the reverse micelle method and the sol-gel method corresponds to a multi-step process that must be carried out for a long time, and thus corresponds to an inefficient process in terms of actual commercial production.
따라서, 단시간 및 간단한 공정에 의하여, ε-Fe2O3 분말을 제조하는 공정이 필요한 실정이며, 본 발명에서는 전구체 용액을 분무하여 액적을 형성한후, 건조공정 및 열처리공정을 진행하여, ε-Fe2O3의 경자성 산화철을 제조할 수 있으므로, 단시간 및 간단한 공정에 의하여, ε-Fe2O3 분말을 제조할 수 있다. Therefore, a process for producing ε-Fe 2 O 3 powder by a short time and simple process is required, and in the present invention, the precursor solution is sprayed to form droplets, followed by a drying process and a heat treatment process, ε- it is possible to prepare a hard magnetic iron oxide Fe 2 O 3, by a short and simple step, it is possible to manufacture the ε-Fe 2 O 3 powder.
이때, 본 발명에서 상기 열처리의 온도는 1120 내지 1210℃인 것이 바람직하며, 상기 열처리의 온도는 1150 내지 1180℃인 것이 더욱 바람직하다.At this time, the temperature of the heat treatment in the present invention is preferably 1120 to 1210 ℃, more preferably the temperature of the heat treatment is 1150 to 1180 ℃.
이러한 열처리 온도의 임계적 의의에 대해서는 후술하기로 한다.The critical significance of the heat treatment temperature will be described later.
한편, 상술한 바와 같은 열처리에 의하여, ε 결정상이 구현되며, 따라서, ε-Fe2O3 분말의 비율은 상술한 열처리 온도에 의해 달라지게 된다.On the other hand, by the heat treatment as described above, the ε crystal phase is implemented, and therefore, the ratio of the ε-Fe 2 O 3 powder varies depending on the heat treatment temperature described above.
즉, 열처리의 조건에 따라, γ 결정상이 ε 결정상으로 구현되며, 또한, ε 결정상은 α 결정상으로 구현되므로, 결국, 열처리의 조건에 따라, γ-Fe2O3이 ε-Fe2O3으로 구현되고, ε-Fe2O3이 α-Fe2O3로 구현되므로, 따라서, 열처리의 온도는 매우 중요하다고 할 수 있다.That is, according to the conditions of heat treatment are implemented for the γ crystalline ε crystal phase, and, ε crystal phase is the α are implemented with the crystal phase, in the end, according to the conditions of heat treatment, the γ-Fe 2 O 3 is ε-Fe 2 O 3 is implemented, and ε-Fe 2 O 3 is implemented as α-Fe 2 O 3 , so the temperature of the heat treatment is very important.
본 발명에서는, 상기 산화철/실리카 복합 분말(140)에 있어서, 상기 열처리 온도에 따라, 상기 산화철 중 경자성 산화철, 즉, ε-Fe2O3의 비율은 70 내지 100%에 해당하며, 상기 산화철 중 경자성 산화철을 제외한 나머지 산화철의 비율은 0 또는 0을 초과하고 30% 미만에 해당하며, 이때, 상기 나머지 산화철은 α-Fe2O3일 수 있다. In the present invention, in the iron oxide /
도 4는 본 발명에 따른 산화철/실리카 복합 분말을 도시하는 실사진이다.Figure 4 is an actual photograph showing the iron oxide / silica composite powder according to the present invention.
도 4를 참조하면, 본 발명에 따른 산화철/실리카 복합 분말(140)은, 실리카(141) 매트릭스 내에 나노 사이즈의 산화철 입자(142)가 내재되어 형성되어 있음을 확인할 수 있다.Referring to FIG. 4 , it can be confirmed that the iron oxide/
이하, 실리카 매트릭스 내에 산화철 입자가 내재된 산화철/실리카 복합 분말(140)은 ε-Fe2O3@SiO2로 표현될 수 있다.Hereinafter, the iron oxide/
다음으로, 도 1 및 도 2를 참조하면, 본 발명에 따른 산화철 자성 분말을 제조하는 방법은, 워싱공정을 통해, 상기 산화철/실리카 복합 분말(140)의 상기 실리카 매트릭스를 제거하여 산화철 분말(150)을 제조하는 단계를 포함한다(S150).Next, referring to FIGS. 1 and 2 , in the method for manufacturing the iron oxide magnetic powder according to the present invention, the silica matrix of the iron oxide/
본 발명에서는, 상술한 S140 단계의 산화철/실리카 복합 분말(140)을 통해서도 자성분말을 구현할 수 있으나, 필요에 의하여, 상기 산화철/실리카 복합 분말(140)에서의 실리카 매트릭스를 제거하여 산화철 분말을 제조함으로써, 상기 산화철 분말을 자성분말로 구현할 수 있다.In the present invention, although the magnetic powder may be implemented through the iron oxide/
이때, 상기 실리카(SiO2) 매트릭스를 제거하는 것은, 상기 산화철/실리카 복합 분말(140), 즉, ε-Fe2O3@SiO2를 NaOH 용액에서 에칭(ecthing)을 진행한 후, 유기물 제거를 위해 증류수, Acetone, Ethyl alcohol 등을 통해 워싱공정을 진행함으로써, 매트릭스인 SiO2가 제거된 ε-Fe2O3 분말을 제조할 수 있다.At this time, to remove the silica (SiO 2 ) matrix, the iron oxide /
또한, S150 단계의 상기 산화철 분말(150) 중 경자성 산화철, 즉, ε-Fe2O3의 비율은 70 내지 100%에 해당하며, 상기 산화철 중 경자성 산화철을 제외한 나머지 산화철의 비율은 0 또는 0을 초과하고 30% 미만에 해당하며, 이때, 상기 나머지 산화철은 α-Fe2O3일 수 있다. In addition, the ratio of hard magnetic iron oxide, that is, ε-Fe 2 O 3 in the
도 5는 본 발명에 따른 산화철 분말을 도시하는 실사진이다.5 is a real photograph showing an iron oxide powder according to the present invention.
도 5를 참조하면, 본 발명에 따른 산화철 분말(150)은, 워싱공정에 의해 실리카 매트릭스가 제거된 상태를 나타내고 있으며, 이때, 본 발명에 따른 산화철 분말(150)의 산화철 입자의 직경은 20 내지 45nm에 해당할 수 있으며, 더욱 바람직하게는, 산화철 분말(150)의 산화철 입자의 직경은 30 내지 45nm에 해당할 수 있다.5, the
이상과 같은 본 발명에 따른 자성 분말은 다음과 같이 정의될 수 있다.The magnetic powder according to the present invention as described above may be defined as follows.
먼저, 상술한 도 4에서와 같이, 본 발명에 따른 자성 분말(140)은 실리카 매트릭스(141); 및 상기 실리카 매트릭스(141) 내에 내재(embed)된 산화철 입자(142)를 포함하며, 이때, 상기 산화철 입자는 경자성 산화철 입자를 포함하며, 상기 경자성 산화철 입자는 ε-Fe2O3에 해당한다.First, as in FIG. 4 described above, the
이때, 본 발명에서 상기 실리카 매트릭스는 비정질 실리카에 해당한다.In this case, in the present invention, the silica matrix corresponds to amorphous silica.
또한, 상술한 도 5에서와 같이, 워싱공정에 의해 실리카 매트릭스가 제거된 경우, 본 발명에 따른 자성 분말(150)은, 산화철 입자(142)를 포함하며, 이때, 상기 산화철 입자는 경자성 산화철 입자를 포함하며, 상기 경자성 산화철 입자는 ε-Fe2O3에 해당한다.5, when the silica matrix is removed by the washing process, the
또한, 본 발명에 따른 산화철 입자의 직경은 20 내지 45nm에 해당할 수 있으며, 더욱 바람직하게는, 산화철 입자의 직경은 30 내지 45nm에 해당할 수 있다.In addition, the diameter of the iron oxide particles according to the present invention may correspond to 20 to 45 nm, more preferably, the diameter of the iron oxide particles may correspond to 30 to 45 nm.
또한, 상기 산화철/실리카 복합 분말(140)에 있어서, 상기 산화철 중 경자성 산화철, 즉, ε-Fe2O3의 비율은 70 내지 100%에 해당하며, 상기 산화철 중 경자성 산화철을 제외한 나머지 산화철의 비율은 0 또는 0을 초과하고 30% 미만에 해당하며, 이때, 상기 나머지 산화철은 α-Fe2O3일 수 있다. In addition, in the iron oxide/
또한, 더욱 바람직하게는, 상기 산화철/실리카 복합 분말(140)에 있어서, 상기 산화철 중 경자성 산화철, 즉, ε-Fe2O3의 비율은 70 내지 100%에 해당하며, 상기 산화철 중 경자성 산화철을 제외한 나머지 산화철의 비율은 0 또는 0을 초과하고 30% 미만에 해당하며, 이때, 상기 나머지 산화철은 α-Fe2O3일 수 있다. Also, more preferably, in the iron oxide/
또한, S150 단계의 상기 산화철 분말(150) 중 경자성 산화철, 즉, ε-Fe2O3의 비율은 60 내지 100%에 해당하며, 상기 산화철 중 경자성 산화철을 제외한 나머지 산화철의 비율은 0 또는 0을 초과하고 40% 미만에 해당하며, 이때, 상기 나머지 산화철은 α-Fe2O3일 수 있다. In addition, the ratio of hard magnetic iron oxide, that is, ε-Fe 2 O 3 in the
또한, 더욱 바람직하게는, S150 단계의 상기 산화철 분말(150) 중 경자성 산화철, 즉, ε-Fe2O3의 비율은 70 내지 100%에 해당하며, 상기 산화철 중 경자성 산화철을 제외한 나머지 산화철의 비율은 0 또는 0을 초과하고 30% 미만에 해당하며, 이때, 상기 나머지 산화철은 α-Fe2O3일 수 있다. In addition, more preferably, the ratio of hard magnetic iron oxide, that is, ε-Fe 2 O 3 in the
한편, 상술한 바와 같은 본 발명에 따른 자성 분말을 원하는 형상으로 성형하여 소결하거나, 또는, 수지 등의 바인더로 결합하여, 영구 자석을 제조할 수 있다.On the other hand, the magnetic powder according to the present invention as described above may be molded into a desired shape and sintered, or combined with a binder such as a resin, to manufacture a permanent magnet.
예를 들어, 소결 자석은 상기 자성 분말을 원하는 형상으로 성형하고 얻어진 성형체를 불활성 분위기 또는 진공 중에서 열처리함으로써, 소결자석을 얻을 수 있고, 또한, 플라스마 활성화 소결(PAS:Plasma Activated Sintering), 또는 방전 플라스마 소결(SPS:Spark Plasma Sintering)로 성형체를 소결함으로써도 소결자석을 얻을 수 있으며, 또한 자장 중에서 성형함으로써, 이방성 소결자석을 제조할 수 있다.For example, the sintered magnet can be obtained by molding the magnetic powder into a desired shape and heat-treating the obtained molded body in an inert atmosphere or vacuum, and also, plasma activated sintering (PAS: Plasma Activated Sintering), or discharge plasma A sintered magnet can also be obtained by sintering a molded body by sintering (SPS: Spark Plasma Sintering), and by molding in a magnetic field, an anisotropic sintered magnet can be manufactured.
또한, 본드 자석은 상기 자성 분말과 결합제(바인더)를 배합하고 성형함으로써 본드 자석을 얻을 수 있다. Further, the bonded magnet can be obtained by mixing the magnetic powder and the binder (binder) and molding the bonded magnet.
이때, 상기 결합제로서는 열가소성 수지, 열경화성 수지 등의 수지 재료, 또는 Al, Pb, Sn, Zn, Mg 등의 저융점 금속, 혹은 이들의 저융점 금속으로 구성되는 합금 등을 이용할 수 있다. In this case, as the binder, a resin material such as a thermoplastic resin or a thermosetting resin, a low-melting metal such as Al, Pb, Sn, Zn, or Mg, or an alloy composed of these low-melting metals can be used.
또한, 자성 분말과 결합제와의 혼합물을 압축 성형하거나 사출 성형함으로써 자성 분말을 원하는 형상으로 성형할 수 있으며, 또한, 상기 자성 분말을 자장 중에서 성형함으로써, 이방성 본드 자석을 제조할 수 있다.In addition, the magnetic powder can be molded into a desired shape by compression molding or injection molding a mixture of the magnetic powder and the binder, and an anisotropic bonded magnet can be manufactured by molding the magnetic powder in a magnetic field.
이하에서는 본 발명에 따른 실험예를 통해 본 발명을 설명하기로 하며, 다만, 하기 실험예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실험예에 제한되는 것은 아니다.Hereinafter, the present invention will be described through experimental examples according to the present invention. However, the following experimental examples are merely illustrative of the present invention, and the content of the present invention is not limited to the following experimental examples.
[본 발명에 따른ε-Fe[ε-Fe according to the present invention 22 OO 33 분말의 제조] Preparation of powder]
경자성 산화철(ε-Fe2O3) 분말을 제조하기 위하여, 철 전구체와 물 및 저가 알코올 용매를 포함한 용액에 TEOS 또는 Sodium silicate 등의 실리카 전구체 용액을 포함시킨 전구체 용액을 사용하여 분무건조를 하였다.In order to prepare hard magnetic iron oxide (ε-Fe 2 O 3 ) powder, spray-drying was performed using a precursor solution containing a silica precursor solution such as TEOS or sodium silicate in a solution containing an iron precursor, water, and a low-cost alcohol solvent. .
상기의 전구체 화합물을 용매에 용해시켜 형성된 분무용액의 농도는 분무건조 공정에 적용되어 원하는 크기의 입자를 형성할 수 있다면, 특별한 제한이 없다.The concentration of the spray solution formed by dissolving the precursor compound in a solvent is not particularly limited as long as it can be applied to a spray drying process to form particles of a desired size.
다만, 분무용액의 농도가 포화 용해도 이상인 경우, 균일한 전구체 용액이 만들어지지 않기 때문에, 원하는 조성의 응집체 구조 합성이 불가능하다. 따라서 본 발명에서 분무용액의 농도는 응집체를 구성하는 각 성분들의 용해도가 허락하는 농도 범위, 즉 포화 용해도 내에서 적절히 조절할 수 있다. However, when the concentration of the spray solution is higher than the saturated solubility, since a uniform precursor solution is not made, it is impossible to synthesize the aggregate structure of the desired composition. Therefore, in the present invention, the concentration of the spray solution can be appropriately adjusted within the concentration range allowed by the solubility of each component constituting the aggregate, that is, within the saturated solubility.
상기 전구체 용액을 분무하여 건조하는 방법으로 철/실리카 전구체 입자를 제조하며, 분무장치의 inlet 온도는 200도, outlet 온도는 110도 이상을 유지하였다.The iron/silica precursor particles were prepared by spraying and drying the precursor solution, and the inlet temperature of the spraying device was maintained at 200 degrees and the outlet temperature at 110 degrees or more.
이때, 액적의 건조속도를 조정하기 위하여, 용액공급속도, 열풍용량, 고형분 농도 및 알코올 농도를 변화시킬 수 있으며, 철/실리카 전구체입자를 제조하였다.At this time, in order to adjust the drying rate of the droplets, the solution supply rate, the hot air capacity, the solid content concentration and the alcohol concentration may be changed, and iron/silica precursor particles were prepared.
이후 수거된 분말을 1120 내지 1210℃에서 4시간 동안 air 하에서 열처리를 하여, 경자성 산화철/실리카 복합 자성분말을 수득하였다.Thereafter, the collected powder was heat-treated at 1120 to 1210° C. under air for 4 hours to obtain a hard magnetic iron oxide/silica composite magnetic powder.
이후, 매트릭스인 실리카 제거를 위하여 NaOH용액에 넣고 70°C의 온도에서 ecthing 및 워싱을 하여 경자성 산화철 분말을 수득하였다.Thereafter, in order to remove silica as a matrix, it was placed in a NaOH solution and ecthing and washing were performed at a temperature of 70°C to obtain a hard magnetic iron oxide powder.
[역마이셀법 및 졸겔법을 이용한ε-Fe[ε-Fe using the reverse micelle method and the sol-gel method 22 OO 33 분말의 제조] Preparation of powder]
오일 (1-butanol+n-octane) 용액에 증류수, Fe(NO3)3·9H2O, Ba(NO3)2 용액을 주입 한 후, 계면활성제인 CTAB(Hexadecyltrimethylammonium bromide)를 넣고 약 30분 동안 교반하여 CTAB을 용해시켜, 역미셸 용액 1을 만들어 주고, 이에 증류수와 NH4OH의 혼합 용액을 주입한 후 CTAB 을 넣고 30분 동안 교반하여 CTAB을 용해시켜, 역미셸 용액 2 를 제조하였다. Distilled water, Fe(NO 3 ) 3 9H 2 O, Ba(NO 3 ) 2 solution was injected into the oil (1-butanol+n-octane) solution, and then CTAB (Hexadecyltrimethylammonium bromide), a surfactant, was added for about 30 minutes. By stirring for a while, CTAB was dissolved to make reverse micelle solution 1, and a mixed solution of distilled water and NH 4 OH was injected thereto, then CTAB was added and stirred for 30 minutes to dissolve CTAB, thereby preparing
역미셸 1 용액에 역미셸 2 용액을 천천히 주입시켜주고 30분간 교반시켜 준 뒤, 혼합 용액에 실리카 전구체용액을 주입해주고 24 시간동안 교반을 해준다. 교반 후 용액을 원심분리 하여 침전물을 chloroform 과 methyl alcohol로 워싱을 해 준 뒤 80°C의 오븐에서 건조를 시켜 준다.After slowly injecting the
건조된 분말을 소결로에서 1150 ℃에서 4시간 동안 air 하에서 열처리를 시켜준다. 열처리 이후에 경자성 산화철/실리카 복합 자성분말을 얻을 수 있고, 실리카 제거를 위하여 NaOH용액에 넣고 70°C의 온도에서 ecthing 및 워싱을 하여 경자성산화철 분말을 수득하였다.The dried powder is heat-treated in a sintering furnace at 1150 °C for 4 hours under air. After the heat treatment, a hard magnetic iron oxide/silica composite magnetic powder can be obtained, and to remove silica, it was put in a NaOH solution and ecthing and washed at a temperature of 70°C to obtain a hard magnetic iron oxide powder.
이하에서는, 본 발명에 따라 제조된 분말의, 철 전구체의 농도 및 열처리 조건에 따른 결과를 설명하기로 한다.Hereinafter, the results according to the concentration of the iron precursor and the heat treatment conditions of the powder prepared according to the present invention will be described.
하기 표 1은 본 발명에 따라 제조된 분말의 철 전구체의 농도의 변화에 따른 결정상의 변화 결과 및 역마이셀법/졸겔법에 따라 제조된 분말에 따른 결정상의 변화 결과를 도시하는 표이다. 한편, 하기 표 1에서 철 전구체의 농도는, 실리카 전구체 1mol% 대비 철 전구체의 농도를 의미한다.Table 1 below is a table showing the result of the change of the crystalline phase according to the change of the concentration of the iron precursor of the powder prepared according to the present invention and the result of the change of the crystalline phase according to the powder prepared according to the reverse micelle method/sol-gel method. Meanwhile, in Table 1 below, the concentration of the iron precursor refers to the concentration of the iron precursor relative to 1 mol% of the silica precursor.
상기 표 1을 참조하면, 열처리시의 온도가 1180℃인 경우, 기존방법, 즉, 역마이셀법/졸겔법에 따라 제조된 분말의 경우, 경자성 산화철 상인 ε-Fe2O3 은 나타나지 않았으며, 비자성 산화철 상인 α-Fe2O3의 비율은 11.4% 임을 확인할 수 있다.Referring to Table 1, when the temperature during the heat treatment was 1180 ° C., in the case of the powder prepared according to the conventional method, that is, the reverse micelle method / sol-gel method, the hard magnetic iron oxide phase ε-Fe 2 O 3 did not appear. , it can be seen that the ratio of α-Fe 2 O 3 , which is a non-magnetic iron oxide phase, is 11.4%.
하지만, 열처리시의 온도가 1180℃인 경우에 있어서, 철 전구체의 농도가 15mol%인 경우에는, 산화철 중 경자성 산화철, 즉, ε-Fe2O3의 비율은 64.9%에 해당하며, 상기 산화철 중 경자성 산화철을 제외한 나머지 산화철, 즉, α-Fe2O3의 비율은 35.1%에 해당함을 확인할 수 있다.However, when the temperature during the heat treatment is 1180° C., when the concentration of the iron precursor is 15 mol%, the ratio of the hard magnetic iron oxide in the iron oxide, that is, ε-Fe 2 O 3 corresponds to 64.9%, and the iron oxide It can be seen that the ratio of the remaining iron oxides except for the medium hard magnetic iron oxide, that is, α-Fe 2 O 3 corresponds to 35.1%.
또한, 열처리시의 온도가 1180℃인 경우에 있어서, 철 전구체의 농도가 40mol%인 경우에는, 산화철 중 경자성 산화철, 즉, ε-Fe2O3의 비율은 83.5%에 해당하며, 상기 산화철 중 경자성 산화철을 제외한 나머지 산화철, 즉, α-Fe2O3의 비율은 16.3%에 해당함을 확인할 수 있다.In addition, when the temperature during the heat treatment is 1180° C., when the concentration of the iron precursor is 40 mol%, the ratio of the hard magnetic iron oxide in the iron oxide, that is, ε-Fe 2 O 3 corresponds to 83.5%, and the iron oxide It can be seen that the ratio of the remaining iron oxides except for the medium hard magnetic iron oxide, that is, α-Fe 2 O 3 corresponds to 16.3%.
또한, 열처리시의 온도가 1180℃인 경우에 있어서, 철 전구체의 농도가 60mol%인 경우에는, 산화철 중 경자성 산화철, 즉, ε-Fe2O3의 비율은 70.4%에 해당하며, 상기 산화철 중 경자성 산화철을 제외한 나머지 산화철, 즉, α-Fe2O3의 비율은 29.6%에 해당함을 확인할 수 있다.In addition, when the temperature during the heat treatment is 1180° C., when the concentration of the iron precursor is 60 mol%, the ratio of hard magnetic iron oxide in the iron oxide, that is, ε-Fe 2 O 3 corresponds to 70.4%, and the iron oxide It can be confirmed that the remaining iron oxide excluding the heavy magnetic iron oxide, ie, α-Fe 2 O 3 , corresponds to 29.6%.
또한, 열처리시의 온도가 1180℃인 경우에 있어서, 철 전구체의 농도가 80mol%인 경우에는, 산화철 중 경자성 산화철, 즉, ε-Fe2O3의 비율은 28.7%에 해당하며, 상기 산화철 중 경자성 산화철을 제외한 나머지 산화철, 즉, α-Fe2O3의 비율은 71.3%에 해당함을 확인할 수 있다.In addition, when the temperature during the heat treatment is 1180° C., when the concentration of the iron precursor is 80 mol%, the ratio of the hard magnetic iron oxide in the iron oxide, that is, ε-Fe 2 O 3 corresponds to 28.7%, and the iron oxide It can be seen that the ratio of the remaining iron oxides except for the medium hard magnetic iron oxide, that is, α-Fe 2 O 3 corresponds to 71.3%.
결국, 동일온도로 열처리를 하는 경우라 하더라도, 기존방법인 역마이셀법/졸겔법에 따라 제조된 분말의 경자성 산화철 상인, ε-Fe2O3가 형성되지 않음을 확인할 수 있다.As a result, even in the case of heat treatment at the same temperature, it can be confirmed that ε-Fe 2 O 3 , a hard magnetic iron oxide phase of the powder prepared according to the existing method, the reverse micelle method/sol-gel method, is not formed.
도 6은 본 발명에 따라 제조된 분말의 철 전구체의 농도의 변화에 따른 보자력 결과 및 역마이셀법/졸겔법에 따라 제조된 분말에 따른 보자력 결과를 도시하는 그래프이다. 이때, 도 6에서의 조건은 표 1에서의 조건과 동일하다.6 is a graph showing a coercive force result according to a change in the concentration of an iron precursor in a powder prepared according to the present invention and a coercive force result according to a powder prepared according to a reverse micelle method/sol-gel method. At this time, the conditions in FIG. 6 are the same as those in Table 1.
도 6을 참조하면, 열처리시의 온도가 1180℃인 경우, 기존방법, 즉, 역마이셀법/졸겔법에 따라 제조된 분말의 경우, 보자력 값이 거의 발현되지 않음을 확인할 수 있다.Referring to FIG. 6 , when the heat treatment temperature is 1180° C., it can be seen that the coercive force value is hardly expressed in the case of the powder prepared according to the conventional method, that is, the reverse micelle method/sol-gel method.
하지만, 열처리시의 온도가 1180℃인 경우에 있어서, 철 전구체의 농도가 15mol%인 경우에는, 보자력 값이 기존방법에 비하여 상승함을 확인할 수 있으며, 또한, 열처리시의 온도가 1180℃인 경우에 있어서, 철 전구체의 농도가 각각 40mol% 및 60mol%인 경우에는, 보자력 값이 기존방법에 비하여 크게 상승함을 확인할 수 있다.However, when the temperature during heat treatment is 1180°C, when the concentration of the iron precursor is 15 mol%, it can be confirmed that the coercive force value is increased compared to the conventional method, and when the temperature during heat treatment is 1180°C In the case where the concentration of the iron precursor is 40 mol% and 60 mol%, respectively, it can be seen that the coercive force value is significantly increased compared to the conventional method.
따라서, 본 발명에서 상기 철 전구체의 농도는, 실리카 전구체 1mol% 대비 15 내지 60 mol%인 것이 바람직하며, 상기 철 전구체의 농도는, 실리카 전구체 1mol% 대비 40 내지 60 mol%인 것이 더욱 바람직하다.Therefore, in the present invention, the concentration of the iron precursor is preferably 15 to 60 mol% relative to 1 mol% of the silica precursor, and more preferably, the concentration of the iron precursor is 40 to 60 mol% compared to 1 mol% of the silica precursor.
하기 표 2는 본 발명에 따라 제조된 분말의 철 전구체의 열처리 시의 온도 변화에 따른 결정상의 변화 결과를 도시하는 표이다.Table 2 below is a table showing the results of the crystal phase change according to the temperature change during the heat treatment of the iron precursor of the powder prepared according to the present invention.
또한, 도 7은 본 발명에 따라 제조된 분말의 철 전구체의 열처리시의 온도의 변화에 XRD 그래프이다. 이때, 도 7에서의 조건은 표 2에서의 조건과 동일하다.In addition, Figure 7 is an XRD graph of the change in temperature during the heat treatment of the iron precursor of the powder prepared according to the present invention. In this case, the conditions in FIG. 7 are the same as the conditions in Table 2.
상기 표 2 및 도 7을 참조하면, 상기 철 전구체의 농도는 40 mol%인 경우에 있어서, 열처리시의 온도가 1120℃인 경우에는, 산화철 중 경자성 산화철, 즉, ε-Fe2O3의 비율은 71.2%에 해당하며, 상기 산화철 중 경자성 산화철을 제외한 나머지 산화철, 즉, α-Fe2O3의 비율은 28.8%에 해당함을 확인할 수 있다.Referring to Tables 2 and 7, in the case where the concentration of the iron precursor is 40 mol%, when the temperature during the heat treatment is 1120° C., the hard magnetic iron oxide among iron oxides, that is, ε-Fe 2 O 3 The ratio corresponds to 71.2%, and it can be seen that the ratio of the remaining iron oxides except for the hard magnetic iron oxide among the iron oxides, that is, α-Fe 2 O 3 corresponds to 28.8%.
또한, 상기 철 전구체의 농도는 40 mol%인 경우에 있어서, 열처리시의 온도가 1150℃인 경우에는, 산화철 중 경자성 산화철, 즉, ε-Fe2O3의 비율은 100%에 해당하며, 상기 산화철 중 경자성 산화철을 제외한 나머지 산화철의 비율은 0%에 해당함을 확인할 수 있다.In addition, when the concentration of the iron precursor is 40 mol%, when the temperature during heat treatment is 1150 ° C., the ratio of hard magnetic iron oxide in iron oxide, that is, ε-Fe 2 O 3 corresponds to 100%, It can be seen that the ratio of the remaining iron oxides other than the hard magnetic iron oxide among the iron oxides corresponds to 0%.
또한, 상기 철 전구체의 농도는 40 mol%인 경우에 있어서, 열처리시의 온도가 1180℃인 경우에는, 산화철 중 경자성 산화철, 즉, ε-Fe2O3의 비율은 83.5%에 해당하며, 상기 산화철 중 경자성 산화철을 제외한 나머지 산화철, 즉, α-Fe2O3의 비율은 16.3%에 해당함을 확인할 수 있다.In addition, when the concentration of the iron precursor is 40 mol%, when the temperature during heat treatment is 1180 ° C., the ratio of hard magnetic iron oxide, that is, ε-Fe 2 O 3 in iron oxide is 83.5%, Among the iron oxides, it can be seen that the ratio of the remaining iron oxides except for the hard magnetic iron oxide, that is, α-Fe 2 O 3 corresponds to 16.3%.
또한, 상기 철 전구체의 농도는 40 mol%인 경우에 있어서, 열처리시의 온도가 1210℃인 경우에는, 산화철 중 경자성 산화철, 즉, ε-Fe2O3의 비율은 66.0%에 해당하며, 상기 산화철 중 경자성 산화철을 제외한 나머지 산화철, 즉, α-Fe2O3의 비율은 34.0%에 해당함을 확인할 수 있다.In addition, when the concentration of the iron precursor is 40 mol%, when the temperature during heat treatment is 1210 ° C., the ratio of hard magnetic iron oxide in iron oxide, that is, ε-Fe 2 O 3 corresponds to 66.0%, It can be seen that the ratio of the remaining iron oxides other than the hard magnetic iron oxide, ie, α-Fe 2 O 3 among the iron oxides corresponds to 34.0%.
따라서, 본 발명에서 상기 열처리의 온도는 1120 내지 1210℃인 것이 바람직하며, 상기 열처리의 온도는 1150 내지 1180℃인 것이 더욱 바람직하다.Therefore, the temperature of the heat treatment in the present invention is preferably 1120 to 1210 ℃, more preferably the temperature of the heat treatment is 1150 to 1180 ℃.
이상과 같은 결과에 따라, 상술한 바와 같은 열처리에 의하여, ε 결정상이 구현되며, 따라서, ε-Fe2O3 분말의 비율은 상술한 열처리 온도에 의해 달라지게 된다.According to the above results, by the heat treatment as described above, the ε crystal phase is implemented, and therefore, the ratio of the ε-Fe 2 O 3 powder varies depending on the heat treatment temperature described above.
즉, 열처리의 조건에 따라, γ 결정상이 ε 결정상으로 구현되며, 또한, ε 결정상은 α 결정상으로 구현되므로, 결국, 열처리의 조건에 따라, γ-Fe2O3이 ε-Fe2O3으로 구현되고, ε-Fe2O3이 α-Fe2O3로 구현되므로, 따라서, 열처리의 온도는 매우 중요하다고 할 수 있다.That is, according to the conditions of heat treatment are implemented for the γ crystalline ε crystal phase, and, ε crystal phase is the α are implemented with the crystal phase, in the end, according to the conditions of heat treatment, the γ-Fe 2 O 3 is ε-Fe 2 O 3 is implemented, and ε-Fe 2 O 3 is implemented as α-Fe 2 O 3 , so the temperature of the heat treatment is very important.
한편, 상술한 바와 같은 표 1, 표 2, 도 6 및 도 7의 결과에 따라, 상기 산화철/실리카 복합 분말(140)에 있어서, 상기 산화철 중 경자성 산화철, 즉, ε-Fe2O3의 비율은 60 내지 100%에 해당하며, 상기 산화철 중 경자성 산화철을 제외한 나머지 산화철의 비율은 0 또는 0을 초과하고 40% 미만에 해당하며, 이때, 상기 나머지 산화철은 α-Fe2O3일 수 있다. On the other hand, according to the results of Tables 1, 2, 6 and 7 as described above, in the iron oxide /
또한, 더욱 바람직하게는, 상기 산화철/실리카 복합 분말(140)에 있어서, 상기 산화철 중 경자성 산화철, 즉, ε-Fe2O3의 비율은 70 내지 100%에 해당하며, 상기 산화철 중 경자성 산화철을 제외한 나머지 산화철의 비율은 0 또는 0을 초과하고 30% 미만에 해당하며, 이때, 상기 나머지 산화철은 α-Fe2O3일 수 있다. Also, more preferably, in the iron oxide/
또한, S150 단계의 상기 산화철 분말(150) 중 경자성 산화철, 즉, ε-Fe2O3의 비율은 60 내지 100%에 해당하며, 상기 산화철 중 경자성 산화철을 제외한 나머지 산화철의 비율은 0 또는 0을 초과하고 40% 미만에 해당하며, 이때, 상기 나머지 산화철은 α-Fe2O3일 수 있다. In addition, the ratio of hard magnetic iron oxide, that is, ε-Fe 2 O 3 in the
또한, 더욱 바람직하게는, S150 단계의 상기 산화철 분말(150) 중 경자성 산화철, 즉, ε-Fe2O3의 비율은 70 내지 100%에 해당하며, 상기 산화철 중 경자성 산화철을 제외한 나머지 산화철의 비율은 0 또는 0을 초과하고 30% 미만에 해당하며, 이때, 상기 나머지 산화철은 α-Fe2O3일 수 있다.In addition, more preferably, the ratio of hard magnetic iron oxide, that is, ε-Fe 2 O 3 in the
하기 표 3은 본 발명에 따라 제조된 분말의 철 전구체의 농도의 변화에 따른 분말의 입도 변화를 도시하는 표이다.Table 3 below is a table showing the change in the particle size of the powder according to the change in the concentration of the iron precursor of the powder prepared according to the present invention.
또한, 도 8은 본 발명에 따라 제조된 분말의 철 전구체의 농도의 변화에 따른 분말의 입도 변화를 도시하는 그래프이다.In addition, FIG. 8 is a graph showing the change in the particle size of the powder according to the change in the concentration of the iron precursor of the powder prepared according to the present invention.
또한, 도 9는 본 발명에 따라 제조된 분말의 철 전구체의 농도의 변화에 따른 분말의 입도를 도시하는 실사진이다.In addition, Figure 9 is an actual photograph showing the particle size of the powder according to the change in the concentration of the iron precursor of the powder prepared according to the present invention.
이때, 표 3, 도 8 및 도 9에서의 조건은 표 1에서의 조건과 동일하다.In this case, the conditions in Table 3, FIGS. 8 and 9 are the same as the conditions in Table 1.
표 3, 도 8 및 도 9를 참조하면, 열처리시의 온도가 1180℃인 경우에 있어서, 철 전구체의 농도가 15mol%인 경우에는, 평균 21.1nm 직경의 입도분포를 나타내고 있다.Referring to Table 3, FIGS. 8 and 9 , when the temperature during the heat treatment is 1180° C., when the concentration of the iron precursor is 15 mol%, an average particle size distribution of 21.1 nm diameter is shown.
또한, 열처리시의 온도가 1180℃인 경우에 있어서, 철 전구체의 농도가 각각 40mol% 및 60mol%인 경우에는, 각각 평균 30.6nm, 41.9 nm의 직경의 입도분포를 나타내고 있다.In addition, when the temperature during the heat treatment is 1180° C., when the iron precursor concentrations are 40 mol% and 60 mol%, respectively, particle size distributions of average diameters of 30.6 nm and 41.9 nm are shown, respectively.
따라서, 본 발명에 따른 산화철 분말(150)의 직경은 20 내지 45nm에 해당할 수 있으며, 더욱 바람직하게는, 산화철 분말(150)의 직경은 30 내지 45nm에 해당할 수 있다.Therefore, the diameter of the
상술한 바와 같이, 알려진 ε-Fe2O3 분말은 역마이셀법 및 졸겔법을 이용하여 제조되고 있다.As described above, the known ε-Fe 2 O 3 powder has been prepared using the reverse micelle method and the sol-gel method.
하지만, 이러한 역마이셀법 및 졸겔법을 이용한 ε-Fe2O3 분말의 제조방법은, 장시간동안 진행되어야 하는 다단계 공정에 해당하여, 실제 상업적 생산측면에서는 비효율적인 공정에 해당한다. However, the method for producing ε-Fe 2 O 3 powder using the reverse micelle method and the sol-gel method corresponds to a multi-step process that must be carried out for a long time, and thus corresponds to an inefficient process in terms of actual commercial production.
따라서, 단시간 및 간단한 공정에 의하여, ε-Fe2O3 분말을 제조하는 공정이 필요한 실정이며, 본 발명에서는 전구체 용액을 분무하여 액적을 형성한후, 건조공정 및 열처리공정을 진행하여, ε-Fe2O3의 경자성 산화철을 제조할 수 있으므로, 단시간 및 간단한 공정에 의하여, ε-Fe2O3 분말을 제조할 수 있다. Therefore, a process for producing ε-Fe 2 O 3 powder by a short time and simple process is required, and in the present invention, the precursor solution is sprayed to form droplets, followed by a drying process and a heat treatment process, ε- it is possible to prepare a hard magnetic iron oxide Fe 2 O 3, by a short and simple step, it is possible to manufacture the ε-Fe 2 O 3 powder.
이상과 첨부된 도면을 참조하여 본 발명의 실시예를 설명하였지만, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명이 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.Although embodiments of the present invention have been described with reference to the above and the accompanying drawings, those of ordinary skill in the art to which the present invention pertains can practice the present invention in other specific forms without changing its technical spirit or essential features. You will understand that there is Therefore, it should be understood that the embodiments described above are illustrative in all respects and not restrictive.
Claims (6)
상기 실리카 매트릭스 내에 내재된 산화철 입자를 포함하며,
상기 산화철 입자는 경자성 산화철 입자를 포함하며, 상기 경자성 산화철 입자는 ε-Fe2O3인 것을 특징으로 하는 자성 분말.silica matrix; and
It contains iron oxide particles embedded in the silica matrix,
The iron oxide particles include hard magnetic iron oxide particles, and the hard magnetic iron oxide particles are ε-Fe 2 O 3 Magnetic powder, characterized in that.
상기 산화철 입자의 직경은 20 내지 45nm인 것을 특징으로 하는 자성 분말.The method of claim 1,
The magnetic powder, characterized in that the diameter of the iron oxide particles is 20 to 45nm.
상기 산화철 입자는 경자성 산화철 입자를 포함하며, 상기 경자성 산화철 입자는 ε-Fe2O3인 자성 분말에 있어서,
상기 자성 분말은 희토류 원소를 비포함하는 것을 특징으로 하는 자성 분말.containing iron oxide particles,
The iron oxide particles include hard magnetic iron oxide particles, and the hard magnetic iron oxide particles are ε-Fe 2 O 3 In the magnetic powder,
The magnetic powder is a magnetic powder, characterized in that it does not contain a rare earth element.
상기 산화철 입자의 직경은 20 내지 45nm인 것을 특징으로 하는 자성 분말.5. The method of claim 4,
The magnetic powder, characterized in that the diameter of the iron oxide particles is 20 to 45nm.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020190133659A KR102329436B1 (en) | 2018-07-17 | 2019-10-25 | An magnetic powder and a method of producing of the same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020180082783A KR102045771B1 (en) | 2018-07-17 | 2018-07-17 | An magnetic powder and a method of producing of the same |
KR1020190133659A KR102329436B1 (en) | 2018-07-17 | 2019-10-25 | An magnetic powder and a method of producing of the same |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020180082783A Division KR102045771B1 (en) | 2018-07-17 | 2018-07-17 | An magnetic powder and a method of producing of the same |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20200008981A KR20200008981A (en) | 2020-01-29 |
KR102329436B1 true KR102329436B1 (en) | 2021-11-22 |
Family
ID=69322533
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020190133659A KR102329436B1 (en) | 2018-07-17 | 2019-10-25 | An magnetic powder and a method of producing of the same |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR102329436B1 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016130208A (en) * | 2015-01-09 | 2016-07-21 | Dowaエレクトロニクス株式会社 | Ferrous oxide magnetic particle powder, method for manufacturing the same, coating material, and magnetic recording medium |
JP2018110168A (en) * | 2016-12-28 | 2018-07-12 | 国立研究開発法人産業技術総合研究所 | Magnetic particle and method of producing the same |
-
2019
- 2019-10-25 KR KR1020190133659A patent/KR102329436B1/en active IP Right Grant
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016130208A (en) * | 2015-01-09 | 2016-07-21 | Dowaエレクトロニクス株式会社 | Ferrous oxide magnetic particle powder, method for manufacturing the same, coating material, and magnetic recording medium |
JP2018110168A (en) * | 2016-12-28 | 2018-07-12 | 国立研究開発法人産業技術総合研究所 | Magnetic particle and method of producing the same |
Also Published As
Publication number | Publication date |
---|---|
KR20200008981A (en) | 2020-01-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6419812B2 (en) | Manganese bismuth-based sintered magnet with improved thermal stability and manufacturing method thereof | |
Sugimoto | Current status and recent topics of rare-earth permanent magnets | |
JP4830024B2 (en) | Composite magnetic material for magnet and manufacturing method thereof | |
JP5347146B2 (en) | Magnetic material, magnet, and method of manufacturing magnetic material | |
JP2011032496A (en) | Magnetic material, magnet and method for producing the magnetic material | |
WO2007119551A1 (en) | Method for producing rare earth permanent magnet material | |
CN108565109B (en) | Preparation method of soft magnetic composite material | |
Brown | Fabrication, processing technologies, and new advances for RE-Fe-B magnets | |
Hioki et al. | Development of Dy-free hot-deformed Nd-Fe-B magnets by optimizing chemical composition and microstructure | |
WO2012101752A1 (en) | Magnetic material, magnet and method of producing magnetic material | |
Zhu et al. | Chemical synthesis and coercivity enhancement of Nd 2 Fe 14 B nanostructures mediated by non-magnetic layer | |
Wang et al. | Effect of washing process on the magnetic properties of Nd-Fe-B nanoparticles prepared by reduction-diffusion method | |
JP5501829B2 (en) | Rare earth permanent magnet manufacturing method | |
US20200243231A1 (en) | Composite magnetic material, magnet comprising the material, motor using the magnet, and method of manufacturing the composite magnetic material | |
Coey et al. | Bonded Sm-Fe-N permanent magnets | |
Xu et al. | Exchange coupled SrFe 12 O 19/Fe-Co core/shell particles with different shell thickness | |
KR102045771B1 (en) | An magnetic powder and a method of producing of the same | |
US11657935B2 (en) | Iron oxide magnetic powder and manufacturing method therefor | |
KR102329436B1 (en) | An magnetic powder and a method of producing of the same | |
KR102243111B1 (en) | An magnetic powder and a method of producing of the same | |
JP6520168B2 (en) | Iron nitride based magnetic powder and bonded magnet using the same | |
KR101693519B1 (en) | Method of manufacturing manganese-bismuth permanent magnet | |
JP2019029503A (en) | Method for manufacturing anisotropic rare earth magnet | |
V Sreenivasulu et al. | Fascinating magnetic energy storage nanomaterials: A brief review | |
KR102172058B1 (en) | An magnetic powder and a method of producing of the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A107 | Divisional application of patent | ||
N231 | Notification of change of applicant | ||
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |