KR102325828B1 - Composite Materials for 3D Printing including Loess and BoneCement - Google Patents

Composite Materials for 3D Printing including Loess and BoneCement Download PDF

Info

Publication number
KR102325828B1
KR102325828B1 KR1020170160184A KR20170160184A KR102325828B1 KR 102325828 B1 KR102325828 B1 KR 102325828B1 KR 1020170160184 A KR1020170160184 A KR 1020170160184A KR 20170160184 A KR20170160184 A KR 20170160184A KR 102325828 B1 KR102325828 B1 KR 102325828B1
Authority
KR
South Korea
Prior art keywords
powder
loess
composite
printing
cement
Prior art date
Application number
KR1020170160184A
Other languages
Korean (ko)
Other versions
KR20190061618A (en
Inventor
황진하
이현배
김재환
최은수
Original Assignee
홍익대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 홍익대학교 산학협력단 filed Critical 홍익대학교 산학협력단
Priority to KR1020170160184A priority Critical patent/KR102325828B1/en
Publication of KR20190061618A publication Critical patent/KR20190061618A/en
Application granted granted Critical
Publication of KR102325828B1 publication Critical patent/KR102325828B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B13/00Layered products comprising a a layer of water-setting substance, e.g. concrete, plaster, asbestos cement, or like builders' material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • C04B14/10Clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • C04B14/14Minerals of vulcanic origin
    • C04B14/16Minerals of vulcanic origin porous, e.g. pumice
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/0076Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials characterised by the grain distribution
    • C04B20/008Micro- or nanosized fillers, e.g. micronised fillers with particle size smaller than that of the hydraulic binder
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/08Acids or salts thereof
    • C04B22/16Acids or salts thereof containing phosphorus in the anion, e.g. phosphates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00034Physico-chemical characteristics of the mixtures
    • C04B2111/00181Mixtures specially adapted for three-dimensional printing (3DP), stereo-lithography or prototyping

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Civil Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Producing Shaped Articles From Materials (AREA)
  • Materials For Medical Uses (AREA)

Abstract

본 발명은 3D 프린터를 이용하여 시공이 가능하고 친환경적인 건축 재료로 사용될 수 있는 황토와 본시멘트를 포함하는 3D 프린팅용 복합체에 관한 것으로, 30 ~ 80wt%의 황토 분말과 20 ~ 70wt%의 본 시멘트 분말이 혼합된 원료 분말과 원료 분말의 전체 중량에 대하여 15 ~ 50중량부의 배합수를 포함하는 황토와 본시멘트를 포함하는 3D 프린팅용 복합체를 개시한다.
본 발명의 황토와 본시멘트를 포함하는 3D 프린팅용 복합체는 건축 재료에서 필요로 하는 압축 강도를 구비하여 3D 프린터를 이용하여 시공이 가능하며, 황토를 포함하므로 원적외선 방출 특성과 전자파 차단 특성과 습도 조절 특성과 항균 특성 및 자정 특성을 보유하여 친환경적인 건축 재료로 사용될 수 있다.
The present invention relates to a 3D printing composite comprising loess and main cement, which can be constructed using a 3D printer and used as an eco-friendly building material, and 30 to 80 wt% of loess powder and 20 to 70 wt% of this cement Disclosed is a composite for 3D printing including loess and bone cement containing 15 to 50 parts by weight of a compounding water based on the total weight of the raw powder and the raw powder in which the powder is mixed.
The composite for 3D printing comprising loess and bone cement of the present invention has the compressive strength required for building materials and can be constructed using a 3D printer. It has properties, antibacterial properties and self-cleaning properties, so it can be used as an eco-friendly building material.

Description

황토와 본시멘트를 포함하는 3D 프린팅용 복합체{Composite Materials for 3D Printing including Loess and BoneCement}Composite Materials for 3D Printing including Loess and BoneCement

본 발명은 황토와 본시멘트를 포함하는 3D 프린팅용 복합체에 관한 것이다.The present invention relates to a composite for 3D printing comprising loess and bone cement.

시멘트와 콘크리트는 현대 건축물의 주요 건축 재료로 사용되고 있으나, 인체에 좋지 않은 영향을 주는 화학 물질을 발생시켜 웰빙(well-being)을 추구하는 현대인들의 삶의 질을 저해하는 원인이 되고 있다. 따라서, 시멘트와 콘크리트를 대신할 친환경 건축 재료에 대한 연구 및 개발이 진행되고 있으며, 그 중에서도 우리나라 고유의 건축 재료인 황토가 주목받고 있다. 황토는 원적외선 방출 기능, 뛰어난 온습도 조절 기능, 우수한 항균력 및 자정 기능을 가지고 있어 인체에 유익한 친환경 재료로 알려져 있다. 또한, 황토는 매장량이 풍부하여 원료의 공급이 용이하기 때문에 건축 재료로서 적합한 이점을 가지고 있다. 그러나, 황토는 양생 후 수축으로 인한 균열 발생, 낮은 역학적 특성을 가지고 있어 자체를 직접 건축 자재로 활용하기에는 걸림돌로 작용하고 있다.Cement and concrete are used as the main building materials of modern buildings, but they generate chemical substances that adversely affect the human body, thereby impairing the quality of life of modern people who pursue well-being. Therefore, research and development of eco-friendly building materials to replace cement and concrete are in progress, and among them, yellow clay, a building material unique to Korea, is attracting attention. Red clay is known as an eco-friendly material beneficial to the human body as it has far-infrared emitting function, excellent temperature and humidity control function, excellent antibacterial and self-cleaning function. In addition, loess has an advantage suitable as a building material because the supply of raw materials is easy due to abundant reserves. However, ocher has cracks due to shrinkage after curing and has low mechanical properties, so it acts as an obstacle to directly using it as a building material.

한편, 3D 프린터를 이용한 건축 시공이 전 세계적으로 시도되고 있는데, 3D 프린터를 건축에 이용하면 건축 시간과 노동력을 크게 절감할 수 있고 폐자재를 남기지 않아 환경 부하가 매우 적은 이점이 있다. 이미 중국, 두바이, 러시아 등에서 3D 프린터를 이용하여 지은 건물이 공개되고 있다. On the other hand, construction construction using 3D printers is being attempted all over the world. If 3D printers are used for construction, construction time and labor can be greatly reduced, and there is an advantage that the environmental load is very small as no waste materials are left. Buildings built using 3D printers are already being unveiled in China, Dubai, and Russia.

본 발명은 3D 프린터를 이용하여 시공이 가능하고 친환경적인 건축 재료로 사용될 수 있는 황토와 본시멘트를 포함하는 3D 프린팅용 복합체를 제공하는 것을 목적으로 한다.An object of the present invention is to provide a composite for 3D printing including loess and bone cement, which can be constructed using a 3D printer and used as an eco-friendly building material.

본 발명의 황토와 본시멘트를 포함하는 3D 프린팅용 복합체는 30 ~ 80wt%의 황토 분말 및 20 ~ 70wt%의 본 시멘트 분말이 혼합된 원료 분말을 포함하는 것을 특징으로 한다.The composite for 3D printing comprising loess and main cement of the present invention is characterized in that it comprises a raw material powder in which 30 to 80 wt% of loess powder and 20 to 70 wt% of this cement powder are mixed.

또한, 상기 3D 프린팅용 복합체는 상기 원료 분말의 전체 중량에 대하여 15 ~ 50중량부로 혼합되는 배합수를 더 포함할 수 있다.In addition, the composite for 3D printing may further include a blending water that is mixed in an amount of 15 to 50 parts by weight based on the total weight of the raw material powder.

또한, 상기 황토 분말과 상기 본 시멘트 분말은 0.1 ~ 5㎛의 입도를 가질 수 있다.In addition, the loess powder and the present cement powder may have a particle size of 0.1 to 5㎛.

또한, 상기 황토 분말과 상기 본 시멘트 분말은 평균 입도가 3㎛일 수 있다.In addition, the loess powder and the present cement powder may have an average particle size of 3 μm.

또한, 상기 본 시멘트 분말은 DCPD(dicalcium phosphate dihydrate), OCP(octacalcium phosphate), CDHA(calcium deficient hydroxyapatite), SHA(sintered hydroxyapatite), β-TCP(beta-tricalcium phosphate), MCPM(monocalcium monophosphate), TTCP(tetracalcium phosphate) 및 PHA(precipitated hydroxyapatite) 중 하나 또는 둘 이상이 혼합되어 형성될 수 있다.In addition, the present cement powder is DCPD (dicalcium phosphate dihydrate), OCP (octacalcium phosphate), CDHA (calcium deficient hydroxyapatite), SHA (sintered hydroxyapatite), β-TCP (beta-tricalcium phosphate), MCPM (monocalcium monophosphate), TTCP (tetracalcium phosphate) and PHA (precipitated hydroxyapatite) may be formed by mixing one or two or more.

또한, 3D 프린팅용 복합체는 현무암, 규조토, 석고, 소석회, 생석회 또는 모래에서 선택되는 적어도 어느 하나를 포함하는 강도 증진제를 더 포함할 수 있다. 상기 강도 증진제는 상기 원료 분말의 전체 중량에 대하여 1 ~ 10중량부로 혼합될 수 있다.In addition, the composite for 3D printing may further include a strength enhancer including at least one selected from basalt, diatomaceous earth, gypsum, slaked lime, quicklime, and sand. The strength enhancer may be mixed in an amount of 1 to 10 parts by weight based on the total weight of the raw material powder.

본 발명의 황토와 본시멘트를 포함하는 3D 프린팅용 복합체는 건축 재료에서 필요로 하는 압축 강도를 구비하여 3D 프린터를 이용하여 시공이 가능할 수 있다.The composite for 3D printing including loess and bone cement of the present invention may be constructed using a 3D printer by having the compressive strength required for a building material.

또한, 본 발명의 황토와 본시멘트를 포함하는 3D 프린팅용 복합체는 황토를 포함하므로 원적외선 방출 특성 및 전자파 차단 특성을 보유하여 친환경적인 건축 재료로 사용될 수 있다.In addition, since the composite for 3D printing including loess and bone cement of the present invention contains loess, it has far-infrared emitting properties and electromagnetic wave blocking properties and can be used as an eco-friendly building material.

또한, 본 발명의 황토와 본시멘트를 포함하는 3D 프린팅용 복합체는 습도 조절 특성과 항균 특성 및 자정 특성을 보유하여 친환경적인 건축 재료로 사용될 수 있다.In addition, the composite for 3D printing including loess and bone cement of the present invention has humidity control properties, antibacterial properties and self-cleaning properties, so it can be used as an eco-friendly building material.

또한, 본 발명의 황토와 본시멘트를 포함하는 3D 프린팅용 복합체는 3D 프린터를 이용하여 건축물 시공이 가능하므로 건축시 건축 시간과 노동력을 절감할 수 있다.In addition, the composite for 3D printing including loess and bone cement of the present invention can be constructed using a 3D printer, so that construction time and labor can be reduced during construction.

도 1은 본 발명의 일 실시예에 따른 황토와 본시멘트를 포함하는 3D 프린팅용 복합체에 대한 공정도이다.
도 2는 본 발명의 일 실시예에 따른 황토와 본시멘트를 포함하는 3D 프린팅용 복합체로 제조된 압축 강도 측정용 시편의 사진이다.
도 3은 본 발명의 일 실시예에 따른 황토와 본시멘트를 포함하는 3D 프린팅용 복합체로 제조된 블록의 압축 강도 측정 결과이다.
도 4는 본 발명의 일 실시예에 따른 황토와 본시멘트를 포함하는 3D 프린팅용 복합체에 석고 분말이 첨가된 복합 블록의 압축 강도 측정 결과이다.
도 5는 본 발명의 일 실시예에 따른 황토와 본시멘트를 포함하는 3D 프린팅용 복합체에 석고 분?이 첨가된 복합 블록의 혼합 비율에 따른 압축 강도 측정 결과이다.
도 6은 본 발명의 일 실시예에 따른 황토와 본시멘트를 포함하는 3D 프린팅용 복합체를 이용한 3D 프린팅 진행 사진이다.
1 is a process diagram for a composite for 3D printing including loess and bone cement according to an embodiment of the present invention.
2 is a photograph of a specimen for measuring compressive strength made of a composite for 3D printing including loess and bone cement according to an embodiment of the present invention.
3 is a result of measuring the compressive strength of a block made of a composite for 3D printing including loess and bone cement according to an embodiment of the present invention.
4 is a result of measuring the compressive strength of a composite block in which gypsum powder is added to a 3D printing composite including loess soil and bone cement according to an embodiment of the present invention.
5 is a result of measuring the compressive strength according to the mixing ratio of the composite block to which gypsum powder is added to the 3D printing composite including loess and bone cement according to an embodiment of the present invention.
6 is a 3D printing process photograph using a 3D printing composite including loess and bone cement according to an embodiment of the present invention.

이하, 첨부된 도면과 실시예를 참조하여 본 발명의 일 실시예에 따른 황토와 본시멘트를 포함하는 3D 프린팅용 복합체에 대하여 상세히 설명한다.Hereinafter, a 3D printing composite including loess and bone cement according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings and examples.

먼저, 본 발명의 일 실시예에 따른 황토와 본시멘트를 포함하는 3D 프린팅용 복합체에 대하여 설명한다.First, a 3D printing composite including loess and bone cement according to an embodiment of the present invention will be described.

상기 황토와 본시멘트를 포함하는 3D 프린팅용 복합체는 황토 분말 및 본 시멘트(bonecement) 분말을 포함할 수 있다. 여기서 상기 황토 분말 및 본 시멘트 분말은 원료 분말을 형성할 수 있다. 또한, 상기 황토와 본시멘트를 포함하는 3D 프린팅용 복합체는 배합수를 더 포함할 수 있다. 상기 황토와 본시멘트를 포함하는 3D 프린팅용 복합체는 3D 프린터를 사용하여 블록과 같은 건축 재료의 제조가 가능하고, 벽체와 같은 건축 구조물의 시공이 가능하도록 한다. 상기 황토와 본시멘트를 포함하는 3D 프린팅용 복합체는 건축 재료 또는 건축 구조물과 같은 구조물을 제조하는데 사용될 수 있다. 상기 황토와 본시멘트를 포함하는 3D 프린팅용 복합체는 황토 분말을 포함하므로 황토의 고유 특성인 원적외선 방출과 전자파 차단과 같은 작용을 할 수 있다.The composite for 3D printing including loess and bone cement may include loess powder and bone cement powder. Here, the loess powder and the present cement powder may form a raw material powder. In addition, the composite for 3D printing including the loess and bone cement may further include a compounding water. The composite for 3D printing including the loess and bone cement enables the manufacture of building materials such as blocks using a 3D printer, and enables construction of building structures such as walls. The composite for 3D printing including the loess and bone cement may be used to manufacture a structure such as a building material or a building structure. Since the complex for 3D printing including loess and bone cement contains loess powder, it can act such as emitting far-infrared rays and blocking electromagnetic waves, which are inherent properties of loess.

또한, 상기 황토와 본시멘트를 포함하는 3D 프린팅용 복합체는 현무암, 규조토, 석고, 소석회, 생석회 또는 모래에서 선택되는 적어도 어느 하나를 강도 증진제로 더 포함할 수 있다. 상기 강도 증진제는 물리적 또는 화학적 작용을 하면서 복합체로 형성되는 구조물의 강도를 증가시킬 수 있다. 또한, 상기 강도 증진제는 구조물에서 황토의 수축력을 억제하여 구조물에서 크랙이 전파되는 것을 억제할 수 있다. 상기 강도 증진체는 원료 분말의 전체 중량에 대하여 1~10중량부로 혼합될 수 있다.In addition, the composite for 3D printing including loess and main cement may further include at least one selected from basalt, diatomaceous earth, gypsum, slaked lime, quicklime and sand as a strength enhancer. The strength enhancer may increase the strength of the structure formed of the composite while performing a physical or chemical action. In addition, the strength enhancer may suppress the propagation of cracks in the structure by suppressing the contractile force of the loess in the structure. The strength enhancer may be mixed in an amount of 1 to 10 parts by weight based on the total weight of the raw powder.

상기 황토 분말은 원적외선 방출 특성과 전자파 차단 특성과 온습도 조절 특성과 항균 특성 및 자정 특성을 갖는다. 상기 황토 분말은 0.1 ~ 5㎛의 입도를 갖는 분말일 수 있다. 상기 황토 분말은 바람직하게는 2 ~ 4㎛의 입도를 갖는 분말일 수 있다. 상기 황토 분말은 평균 입도가 3㎛인 분말일 수 있다. 상기 황토 분말은 다양한 성분을 갖는 황토 분말일 수 있다. 상기 황토 분말은 황토가 존재하는 지역에 따라 다양한 성분을 가질 수 있다. 예를 들면, 상기 황토 분말은 SiO2가 54wt%, Al2O3가 31.7wt%, Fe2O3가 9.93wt%, K2O가 2.06wt%, TiO2가 1.15wt%, MgO가 0.747wt%, CaO가 0.196wt%, SO3가 0.114wt%, Na2O가 0.104wt%, Cr2O3가 0.0266wt%로 포함될 수 있다.The loess powder has far-infrared emission properties, electromagnetic wave blocking properties, temperature and humidity control properties, antibacterial properties, and self-cleaning properties. The loess powder may be a powder having a particle size of 0.1 to 5㎛. The loess powder may be a powder having a particle size of preferably 2 to 4 μm. The loess powder may be a powder having an average particle size of 3 μm. The loess powder may be loess powder having various components. The loess powder may have various components depending on the region where loess exists. For example, the loess powder is SiO 2 54wt%, Al 2 O 3 31.7wt%, Fe 2 O 3 9.93wt%, K 2 O 2.06wt%, TiO 2 1.15wt%, MgO 0.747 wt%, CaO 0.196wt%, SO 3 0.114wt%, Na 2 O 0.104wt%, Cr 2 O 3 0.0266wt% may be included.

상기 황토 분말은 원료 분말에 30 ~ 80wt%로 포함될 수 있다. 상기 황토 분말의 함량이 적으면, 3D 프린팅용 복합체의 유익한 특성이 약해질 수 있다. 또한, 상기 황토 분말의 함량이 많으면, 3D 프린팅용 복합체에 의한 구조물의 강도가 약해질 수 있다.The loess powder may be included in an amount of 30 to 80 wt% in the raw powder. If the content of the loess powder is small, the beneficial properties of the composite for 3D printing may be weakened. In addition, if the content of the loess powder is large, the strength of the structure by the 3D printing composite may be weakened.

상기 본 시멘트 분말은 DCPD(dicalcium phosphate dihydrate), OCP(octacalcium phosphate), CDHA(calcium deficient hydroxyapatite), SHA(sintered hydroxyapatite), β-TCP(beta-tricalcium phosphate), MCPM(monocalcium monophosphate), TTCP(tetracalcium phosphate) 및 PHA(precipitated hydroxyapatite) 중 하나 또는 둘 이상의 재료가 일정 비율로 혼합되어 형성될 수 있다. 예를 들면, 상기 본 시멘트 분말은 β-TCP(β-tricalcium phosphate)와 MCPM(monocalcium monophosphate) 분말을 5.7:4.3의 비율로 혼합하여 사용할 수 있다. 또한, 상기 본 시멘트 분말은 사용 용도에 따라 혼합 비율을 바꿀 수 있다. 예를 들면, 상기 3D 프린팅용 복합체의 강도를 증가시키기 위해서는 β-TCP의 비율을 높이고, 탄성력을 증가시키기 위해서는 β-TCP의 비율을 낮출 수 있다.The present cement powder is DCPD (dicalcium phosphate dihydrate), OCP (octacalcium phosphate), CDHA (calcium deficient hydroxyapatite), SHA (sintered hydroxyapatite), β-TCP (beta-tricalcium phosphate), MCPM (monocalcium monophosphate), TTCP (tetracalcium) phosphate) and PHA (precipitated hydroxyapatite) may be formed by mixing one or two or more materials in a certain ratio. For example, the present cement powder may be used by mixing β-tricalcium phosphate (β-TCP) and monocalcium monophosphate (MCPM) powder in a ratio of 5.7:4.3. In addition, the mixing ratio of the present cement powder may be changed according to the intended use. For example, in order to increase the strength of the 3D printing composite, the ratio of β-TCP may be increased, and in order to increase the elasticity, the ratio of β-TCP may be decreased.

상기 본 시멘트 분말은 원료 분말에 20~70wt%로 포함될 수 있다. 상기 본 시멘트 분말은 구조물에 강도를 부여할 수 있다. 상기 본 시멘트 분말의 함량이 너무 적으면 3D 프린팅용 복합체로 제조되는 구조물의 강도가 저하될 수 있다. 상기 본 시멘트 분말의 함량이 너무 많으면 황토의 원적외선 방출, 전자파 차단 및 온습도 조절의 기능이 제대로 발현되지 않을 수 있다. 또한, 상기 본 시멘트 분말의 함량이 너무 많으면 본시멘트의 빠른 경화 속도로 인해 구조물이 완성되기 전에 재료가 노즐 내부에서 굳어져 프린팅 과정에서 문제가 생길 수 있다. 또한, 상기 본 시멘트 분말의 함량이 너무 작으면 구조물의 강도가 약해질 수 있다. 상기 본 시멘트 분말은 0.1 ~ 5㎛의 입도를 갖는 분말일 수 있다. 상기 본 시멘트 분말은 바람직하게는 2 ~ 4㎛의 입도를 갖는 분말일 수 있다. 상기 본 시멘트 분말은 평균 입도가 3㎛인 분말일 수 있다.The present cement powder may be included in the raw material powder in an amount of 20 to 70 wt%. The present cement powder can impart strength to the structure. If the content of the present cement powder is too small, the strength of the structure made of the composite for 3D printing may be reduced. If the content of the present cement powder is too large, the functions of emitting far-infrared radiation, blocking electromagnetic waves, and controlling temperature and humidity of loess may not be properly expressed. In addition, if the content of the main cement powder is too large, the material hardens inside the nozzle before the structure is completed due to the fast curing speed of the main cement, which may cause problems in the printing process. In addition, if the content of the present cement powder is too small, the strength of the structure may be weakened. The present cement powder may be a powder having a particle size of 0.1 to 5㎛. The present cement powder may be preferably a powder having a particle size of 2 to 4 μm. The present cement powder may be a powder having an average particle size of 3 μm.

상기 배합수는 원료 분말의 전체 중량에 대하여 15 ~ 50중량부로 포함될 수 있다. 상기 배합수는 3D 프린팅용 복합체에 유동성을 부여할 수 있다. 상기 배합수의 함량이 너무 적으면 3D 프린팅용 복합체의 유동성이 저하되어, 3D 프린팅 과정에서 프린팅이 원활하게 되지 않거나 프린팅 후에 구조물 표면의 평활도가 감소될 수 있다. 상기 배합수의 함량이 너무 많으면 상대적으로 황토 분말과 본 시멘트 분말의 함량이 적게 되어 구조물의 형상을 형성하기 어려우며, 구조물의 건조 시간이 증가될 수 있다. The blending water may be included in an amount of 15 to 50 parts by weight based on the total weight of the raw material powder. The compounding water may impart fluidity to the 3D printing composite. If the content of the blending water is too small, the fluidity of the 3D printing composite is lowered, so that printing may not be smooth during the 3D printing process or the smoothness of the surface of the structure may be reduced after printing. If the content of the blending water is too large, the content of the loess powder and the present cement powder is relatively small, making it difficult to form the shape of the structure, and the drying time of the structure may be increased.

다음은 본 발명의 일 실시예에 따른 황토와 본시멘트를 포함하는 3D 프린팅용 복합체의 평가 결과에 대하여 설명한다.The following describes the evaluation results of the 3D printing composite including loess and bone cement according to an embodiment of the present invention.

상기 3D 프린팅용 복합체에 대한 평가는 복합체 블록에 대하여 압축 강도를 평가하는 방식으로 진행하였다. 상기 복합체 블록은 도 1에 도시된 바와 같은 공정을 통하여 제조하였다. The evaluation of the composite for 3D printing was conducted in a manner of evaluating the compressive strength of the composite block. The composite block was manufactured through a process as shown in FIG. 1 .

먼저, 상기 황토 분말과 본 시멘트 분말을 필요한 중량으로 계량하였다. 상기 본 시멘트 분말은 β-TCP(β-tricalcium phosphate)와 MCPM(monocalcium monophosphate) 분말을 5.7:4.3의 비율로 혼합하여 제조하였다. 상기 본시멘트 분말과 황토 분말은 각각 50wt%와 50wt%로 혼합하여 원료 분말을 제조하였다. 상기 원료 분말은 전동 믹서를 이용하여 평균 입도가 3㎛인 분말로 제조하였다. 상기 원료 분말은 건비빔, V형 믹서, 더블콘 믹서 또는 볼 밀링(ball milling)을 이용하여 혼합할 수 있다. 상기 배합수는 필요로 하는 중량으로 계량하였다. 상기 배합수는 본 시멘트 분말과 황토 분말이 혼합된 원료 분말의 전체 중량에 대하여 30wt%로 혼합하였다. 상기 3D 프린팅용 복합체는 본 시멘트 분말과 황토 분말을 각각 50wt%와 50wt%로 혼합하였고, 원료 분말 총 중량의 30wt%만큼의 배합수를 혼합하여 제조하였다. 상기 3D 프린팅용 복합체를 5cm x 5cm x 5cm 크기의 몰드에 채워 넣어 복합체 블록으로 제조하였다. 상기 복합체 블록은 60℃, 95% 습도의 항온항습 조건에 양생하여 도 2와 같은 압축강도 측정용 정육면체 시편을 제작하였다. 상기 복합체 블록의 압축 강도는 도 3과 같이 최대 압축강도가 2.97 MPa로 측정되었다.First, the loess powder and the present cement powder were weighed to the required weight. The present cement powder was prepared by mixing β-tricalcium phosphate (β-TCP) and monocalcium monophosphate (MCPM) powder in a ratio of 5.7:4.3. The raw cement powder and loess powder were mixed at 50 wt % and 50 wt %, respectively, to prepare a raw material powder. The raw material powder was prepared as a powder having an average particle size of 3 μm using an electric mixer. The raw material powder may be mixed using dry bibim, V-type mixer, double cone mixer, or ball milling. The compounding water was measured by the required weight. The mixing water was mixed in an amount of 30wt% based on the total weight of the raw material powder in which the present cement powder and loess powder were mixed. The composite for 3D printing was prepared by mixing the present cement powder and loess powder at 50wt% and 50wt%, respectively, and mixing water as much as 30wt% of the total weight of the raw material powder. The composite for 3D printing was filled into a mold having a size of 5 cm x 5 cm x 5 cm to prepare a composite block. The composite block was cured under constant temperature and humidity conditions of 60° C. and 95% humidity to prepare a cube specimen for measuring compressive strength as shown in FIG. 2 . The compressive strength of the composite block was measured to have a maximum compressive strength of 2.97 MPa as shown in FIG. 3 .

또한, 상기 원료 분말에 석고가 첨가된 복합체 블록을 제조하여 압축 강도를 평가하였다. 상기 복합체 블록은 도 1에 도시된 바와 같은 공정을 통하여 제조하였다. 먼저, 상기 황토 분말과 본 시멘트 분말 및 석고 분말을 혼합하여 원료 분말을 제조하였다. 상기 본 시멘트 분말은 β-TCP(β-tricalcium phosphate)와 MCPM(monocalcium monophosphate) 분말을 5.7:4.3의 비율로 혼합하여 제조하였다. 상기 본 시멘트 분말과 황토 분말 및 석고 분말은 전체 원료 분말의 중량에서 각각 50wt%와 49wt% 및 1wt%가 되도록 혼합하였다. 상기 원료 분말은 전동 믹서를 이용하여 평균 입도가 3㎛인 분말로 제조하였다. 상기 배합수는 본 시멘트 분말과 황토 분말 및 석고 분말이 혼합된 원료 분말의 전체 중량에 대하여 17중량부로 혼합하였다. 상기 3D 프린팅용 복합체를 5cm x 5cm x 5cm 크기의 몰드에 채워 넣어 복합체 블록으로 제조하였다. 상기 복합체 블록은 60℃, 95% 습도의 항온항습 조건에 양생하여 압축강도 측정용 정육면체 시편을 제작하였다. 상기 복합체 블록의 압축 강도는 도 4과 같이 최대 압축강도가 7.56MPa로 측정되었다.In addition, the compressive strength was evaluated by preparing a composite block in which gypsum was added to the raw material powder. The composite block was manufactured through a process as shown in FIG. 1 . First, the raw material powder was prepared by mixing the loess powder with the present cement powder and gypsum powder. The present cement powder was prepared by mixing β-tricalcium phosphate (β-TCP) and monocalcium monophosphate (MCPM) powder in a ratio of 5.7:4.3. The cement powder, loess powder, and gypsum powder were mixed to be 50 wt%, 49 wt%, and 1 wt%, respectively, based on the weight of the total raw material powder. The raw material powder was prepared as a powder having an average particle size of 3 μm using an electric mixer. The mixing water was mixed in an amount of 17 parts by weight based on the total weight of the raw material powder in which the present cement powder, loess powder, and gypsum powder were mixed. The composite for 3D printing was filled into a mold having a size of 5 cm x 5 cm x 5 cm to prepare a composite block. The composite block was cured under constant temperature and humidity conditions of 60° C. and 95% humidity to prepare a cube specimen for measuring compressive strength. The compressive strength of the composite block was measured to have a maximum compressive strength of 7.56 MPa as shown in FIG. 4 .

또한, 상기 복합체 볼록의 본 시멘트와 황토 및 석고의 혼합 비율에 따른 압축강도 평가 결과를 도 5에 나타내었다.In addition, the compressive strength evaluation result according to the mixing ratio of the main cement, loess, and gypsum of the composite convex is shown in FIG. 5 .

또한, 상기 3D 프린팅용 복합체의 3D 프린팅용 소재 적합성을 평가하기 위해 3D 프린팅 테스트를 진행하였다. 상기 3D 프린팅용 복합체는 도 1에 도시된 바와 같은 공정을 통하여 제조하였다. 먼저, 상기 황토 분말과 본 시멘트 분말을 필요로 하는 중량으로 계량하였다. 상기 본 시멘트 분말은 β-TCP(β-tricalcium phosphate)와 MCPM(monocalcium monophosphate) 분말을 5.7:4.3의 비율로 혼합하여 제조하였다. 상기 본 시멘트 분말과 황토 분말은 중량비로 1:1이 되도록 혼합하여 원료 분말로 제조하였다. 상기 배합수는 원료 분말의 전체 중량을 기준으로 40중량부로 혼합하였다. 상기 3D 프린팅용 복합체는 본 시멘트 분말과 황토 분말을 각각 50wt%와 50wt%로 혼합하였고, 원료 분말의 전체 질량의 40wt%만큼의 배합수를 혼합하여 제조하였다. 상기 3D 프린팅용 복합체를 3D 프린터의 노즐 끝부분에 위치한 플라스틱 용기에 담아두고 압력을 가하여 노즐을 통해 사출될 수 있도록 하였다. 상기 3D 프린팅용 복합체의 3D 프린팅을 위해 내경 8mm의 노즐을 사용하였다. 상기 3D 프린팅용 복합체를 소재로 이용한 3D 프린팅은 구조물의 형태가 무너지지 않고 일정한 형상을 유지하였고 도중 끊김 없이 진행되었다. 상기 3D 프린팅용 복합체를 이용한 3D 프린팅 과정을 도 6에 나타내었다.In addition, a 3D printing test was performed to evaluate the suitability of the 3D printing composite for 3D printing. The composite for 3D printing was prepared through the process shown in FIG. 1 . First, the loess powder and this cement powder were weighed to the required weight. The present cement powder was prepared by mixing β-tricalcium phosphate (β-TCP) and monocalcium monophosphate (MCPM) powder in a ratio of 5.7:4.3. The present cement powder and loess powder were mixed in a weight ratio of 1:1 to prepare a raw material powder. The mixing water was mixed in an amount of 40 parts by weight based on the total weight of the raw material powder. The composite for 3D printing was prepared by mixing the present cement powder and loess powder at 50wt% and 50wt%, respectively, and mixing water as much as 40wt% of the total mass of the raw material powder. The composite for 3D printing was placed in a plastic container located at the end of the nozzle of the 3D printer and injected through the nozzle by applying pressure. For 3D printing of the composite for 3D printing, a nozzle having an inner diameter of 8 mm was used. 3D printing using the composite for 3D printing as a material maintained a constant shape without collapsing the shape of the structure, and proceeded without interruption. The 3D printing process using the composite for 3D printing is shown in FIG. 6 .

이상에서 설명한 것은 본 발명에 따른 황토와 본시멘트를 포함하는 3D 프린팅용 복합체를 실시하기 위한 하나의 실시예에 불과한 것으로서, 본 발명은 상기한 실시예에 한정되지 않고, 이하의 특허청구범위에서 청구하는 바와 같이 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변경 실시가 가능한 범위까지 본 발명의 기술적 정신이 있다고 할 것이다.What has been described above is only one embodiment for implementing the composite for 3D printing including loess and bone cement according to the present invention, and the present invention is not limited to the above embodiment, and is claimed in the claims below. As described above, without departing from the gist of the present invention, it will be said that the technical spirit of the present invention exists to the extent that various modifications can be made by anyone with ordinary knowledge in the field to which the present invention belongs.

Claims (7)

49wt%의 황토 분말과 및 50wt%의 본 시멘트 분말 및 1wt%의 석고 분말이 혼합된 원료 분말 및
상기 원료 분말의 전체 중량에 대하여 17중량부로 혼합되는 배합수를 포함하며,
상기 본 시멘트 분말은 β-TCP(β-tricalcium phosphate)와 MCPM(monocalcium monophosphate) 분말이 5.7:4.3의 비율로 혼합되는 것을 특징으로 하는 황토와 본시멘트를 포함하는 3D 프린팅용 복합체.
49wt% of loess powder and 50wt% of this cement powder and 1wt% of gypsum powder are mixed raw material powder and
Contains 17 parts by weight of mixing water based on the total weight of the raw material powder,
The present cement powder is β-TCP (β-tricalcium phosphate) and MCPM (monocalcium monophosphate) powder is mixed in a ratio of 5.7: 4.3 3D printing composite comprising loess and main cement.
삭제delete 제 1 항에 있어서,
상기 황토 분말과 상기 본 시멘트 분말은 0.1 ~ 5㎛의 입도를 갖는 것을 특징으로 하는 황토와 본시멘트를 포함하는 3D 프린팅용 복합체.
The method of claim 1,
3D printing composite comprising loess and main cement, characterized in that the loess powder and the main cement powder have a particle size of 0.1 to 5 μm.
삭제delete 삭제delete 삭제delete 삭제delete
KR1020170160184A 2017-11-28 2017-11-28 Composite Materials for 3D Printing including Loess and BoneCement KR102325828B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170160184A KR102325828B1 (en) 2017-11-28 2017-11-28 Composite Materials for 3D Printing including Loess and BoneCement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170160184A KR102325828B1 (en) 2017-11-28 2017-11-28 Composite Materials for 3D Printing including Loess and BoneCement

Publications (2)

Publication Number Publication Date
KR20190061618A KR20190061618A (en) 2019-06-05
KR102325828B1 true KR102325828B1 (en) 2021-11-12

Family

ID=66844696

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170160184A KR102325828B1 (en) 2017-11-28 2017-11-28 Composite Materials for 3D Printing including Loess and BoneCement

Country Status (1)

Country Link
KR (1) KR102325828B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230117268A (en) 2022-01-28 2023-08-08 한국지질자원연구원 Method for manufacturing material for binder jetting 3d printer based on natural minerals, the material thereof, method of manufacturing 3d compact therefrom, and 3d compact thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110218069B (en) * 2019-07-01 2023-07-18 成都建工赛利混凝土有限公司 Waterproof 3D printing gypsum mortar and preparation method thereof
CN114057206A (en) * 2021-11-29 2022-02-18 重庆大学 Method for absorbing electromagnetic waves by adopting layered nickel-cobalt double-metal hydroxide/diatomite composite material

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106242507A (en) 2016-08-27 2016-12-21 景德镇陶瓷大学 A kind of straight forming 3D pottery prints with clay pug and its preparation method and application
WO2017059866A2 (en) * 2015-10-09 2017-04-13 Syddansk Universitet Feedstock for 3d printing and uses thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7087109B2 (en) * 2002-09-25 2006-08-08 Z Corporation Three dimensional printing material system and method
US6930144B2 (en) * 2003-06-24 2005-08-16 Hewlett-Packard Development Company, L.P. Cement system including a binder for use in freeform fabrication

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017059866A2 (en) * 2015-10-09 2017-04-13 Syddansk Universitet Feedstock for 3d printing and uses thereof
CN106242507A (en) 2016-08-27 2016-12-21 景德镇陶瓷大学 A kind of straight forming 3D pottery prints with clay pug and its preparation method and application

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230117268A (en) 2022-01-28 2023-08-08 한국지질자원연구원 Method for manufacturing material for binder jetting 3d printer based on natural minerals, the material thereof, method of manufacturing 3d compact therefrom, and 3d compact thereof

Also Published As

Publication number Publication date
KR20190061618A (en) 2019-06-05

Similar Documents

Publication Publication Date Title
JP7224711B2 (en) Cement composition for modeling and method for producing cementitious hardened body
KR102325828B1 (en) Composite Materials for 3D Printing including Loess and BoneCement
ES2703699T3 (en) Binder based on a solid mineral compound rich in alkaline earth metal oxide with phosphate-containing activators
JP5032401B2 (en) Material composition mainly using ocher for civil engineering and construction
KR101187320B1 (en) Exposed concrete pannel for exterior of building comprising additive of carbon source and manufacturing method thereof
US9957196B1 (en) Particle size optimized white cementitious compositions
KR101601967B1 (en) cement mortar compositon for Block and cement mortar for Block comprising the same
WO2015085129A1 (en) Gypsum composites containing cementitious materials and methods
US20180230057A1 (en) White cementitious compositions
RU2361834C1 (en) Granulated filler based on natural sedimentary highly-siliceous rocks for concrete mix, composition of concrete mix for manufacture of concrete construction products, method for manufacturing of concrete construction products and concrete construction product
KR101747877B1 (en) Manufacturing method of ocher board and ocher board manufactured thereby
KR101481753B1 (en) Crack cleaner for repairing concrete microcrack with autogenous crack healing
RU2358937C1 (en) Granulated filler based on perlite for concrete mix, composition of concrete mix for production of construction items, method for production of concrete construction items and concrete construction item
EP3442928A1 (en) Aerated concrete moulded body comprising an overlayer and/or underlayer
Mohammed et al. Effect of Alkali-activated natural pozzolan on mechanical properties of geopolymer concrete
KR101355800B1 (en) Concrete composition comprising loess
CA3051243A1 (en) Particle size optimized white cementitious compositions
KR100863139B1 (en) The manufacturing method of construction materials using waterworks sludge
RU2412136C1 (en) Foamed concrete mixture based on nanostructured binder (versions), method of making articles from foamed concrete (versions)
KR102243246B1 (en) Composite Materials for 3D Printing including Loess and Quicklime
JP6224679B2 (en) Water-curable powder composition, cured product thereof, and method of forming cured product
Jin et al. Influence of calcium added slag on the strength and water-repellency of magnesium oxychloride cement
KR101598285B1 (en) Artificial stone composite and preparing method thereof
EP3568275B1 (en) Building brick and manufacturing method thereof
KR100301365B1 (en) process for preparing drying mortar including mineral stone

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant