KR102324008B1 - Microorganisms fermenting galacturonic acid and pentose simultaneously - Google Patents

Microorganisms fermenting galacturonic acid and pentose simultaneously Download PDF

Info

Publication number
KR102324008B1
KR102324008B1 KR1020200049988A KR20200049988A KR102324008B1 KR 102324008 B1 KR102324008 B1 KR 102324008B1 KR 1020200049988 A KR1020200049988 A KR 1020200049988A KR 20200049988 A KR20200049988 A KR 20200049988A KR 102324008 B1 KR102324008 B1 KR 102324008B1
Authority
KR
South Korea
Prior art keywords
gene
galacturonic acid
xylose
arabinose
dna
Prior art date
Application number
KR1020200049988A
Other languages
Korean (ko)
Other versions
KR20210000653A (en
Inventor
김수린
정덕열
예수지
Original Assignee
경북대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 경북대학교 산학협력단 filed Critical 경북대학교 산학협력단
Publication of KR20210000653A publication Critical patent/KR20210000653A/en
Application granted granted Critical
Publication of KR102324008B1 publication Critical patent/KR102324008B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • C12N15/81Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/01012L-Arabinitol 4-dehydrogenase (1.1.1.12)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/0109Aryl-alcohol dehydrogenase (1.1.1.90)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/01203Uronate dehydrogenase (1.1.1.203)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/01307D-Xylose reductase (1.1.1.307)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y102/00Oxidoreductases acting on the aldehyde or oxo group of donors (1.2)
    • C12Y102/01Oxidoreductases acting on the aldehyde or oxo group of donors (1.2) with NAD+ or NADP+ as acceptor (1.2.1)
    • C12Y102/0101Acetaldehyde dehydrogenase (acetylating) (1.2.1.10)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/01Phosphotransferases with an alcohol group as acceptor (2.7.1)
    • C12Y207/01017Xylulokinase (2.7.1.17)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y301/00Hydrolases acting on ester bonds (3.1)
    • C12Y301/03Phosphoric monoester hydrolases (3.1.3)
    • C12Y301/030414-Nitrophenylphosphatase (3.1.3.41)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y401/00Carbon-carbon lyases (4.1)
    • C12Y401/02Aldehyde-lyases (4.1.2)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Mycology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Plant Pathology (AREA)
  • Microbiology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

본 발명은 갈락투론산과 오탄당을 동시에 발효하는 미생물에 대한 것으로, 과일 가공 부산물을 생물공정의 원료로 전환하기 위하여 과피의 가장 많은 양을 차지하고 있는 펙틴과 그 주요 구성성분인 갈락투론산, 자일로스, 아라비노스의 세 가지 탄소원을 효율적으로 대사할 수 있는 재조합 미생물을 개발하였으므로 과일 가공시 발생되는 폐기물을 효과적으로 처리할 수 있다.The present invention relates to microorganisms that simultaneously ferment galacturonic acid and pentose, and pectin, which occupies the largest amount of pericarp, and its main components, galacturonic acid and xylose, in order to convert fruit processing by-products into raw materials for biological processes. , We have developed a recombinant microorganism that can efficiently metabolize the three carbon sources of arabinose, so wastes generated during fruit processing can be effectively treated.

Description

갈락투론산과 오탄당을 동시에 발효하는 미생물{Microorganisms fermenting galacturonic acid and pentose simultaneously}Microorganisms fermenting galacturonic acid and pentose simultaneously

본 발명은 갈락투론산과 오탄당을 동시에 발효하는 미생물에 대한 것이다. The present invention relates to a microorganism that simultaneously ferments galacturonic acid and pentose.

펙틴이 풍부한 바이오매스는 설탕과 주스 산업, 사탕무 펄프 및 감귤 껍질 폐기물의 부산물을 말하며, 특히 감귤은 건조 중량의 35%까지 높은 펙틴 함량을 갖는다. 연간 감귤 주스 생산량은 같은 양의 감귤 껍질 폐기물을 생성하며, 이 양은 미국에서만 약 460 만 톤의 과일류 폐기물이 발생한다. 또한 설탕 가공으로 인한 사탕무 펄프는 제품의 초기 바이오매스의 7%만을 생산하지만 유럽 연합에서만 연간 생산량은 약 1400 만 톤에 이른다.Pectin-rich biomass refers to a by-product of the sugar and juice industry, sugar beet pulp and citrus peel waste, especially citrus fruits with a high pectin content up to 35% by dry weight. Annual citrus juice production generates the same amount of citrus peel waste, which is about 4.6 million tonnes of fruit waste in the United States alone. Also, beet pulp from sugar processing produces only 7% of the initial biomass of the product, but in the European Union alone the annual production is around 14 million tonnes.

이러한 기후변화에 의한 피해와 반대로 미국 및 멕시코 내 허리케인 발생 빈도가 감소하여 2019년 기준, 작년대비 420만 톤이 증가한 5,180만 톤의 오렌지가 생산되었으며 매년 꾸준히 증가할 것이라는 긍정적인 전망 또한 이루어지고 있다.Contrary to the damage caused by climate change, the frequency of hurricanes in the United States and Mexico has decreased. As of 2019, 51.8 million tons of oranges were produced, an increase of 4.2 million tons from the previous year, and there is also a positive forecast that it will steadily increase every year.

하지만, 급격한 과일 생산량의 증가로 인해 발생하는 비상품과 및 수요공급의 실패로 폐기되는 양 또한 증가하고 있으며, 이를 해결하기 위해 가공공정을 통해 다양한 상품화가 개발되고 있지만 중량대비 절반 가까이가 버려지고 있어 세계적으로 감귤박과 같은 과일계 바이오매스가 차세대 바이오매스로 급부상하고 있다.However, the amount of non-commodities that are generated due to the rapid increase in fruit production and the amount discarded due to the failure of supply and demand is also increasing. Worldwide, fruit-based biomass such as citrus gourd is rapidly emerging as the next-generation biomass.

우리나라는 연간 약 50만톤의 감귤류를 생산하고있으며 가공공정을 통해 약 6만톤의 감귤박(citrus peel waste)이 발생하고 있으며 약 5만톤이 비상품과로 버려지는 등 환경적·경제적인 문제가 발생하고 있지만, 아직 차세대 바이오매스를 활용할 수 있는 효과적인 대책이 마련되어 있지 않은 실정이다. Korea produces about 500,000 tons of citrus per year, about 60,000 tons of citrus peel waste is generated through the processing process, and about 50,000 tons of citrus fruits are thrown away as non-commodities, which causes environmental and economic problems. However, effective measures to utilize next-generation biomass have not yet been prepared.

따라서 기후변화로 인해 새롭게 급부상한 차세대 바이오매스를 신재생에너지로 전환하기 위해선 본 발명을 통해 개발하고자 하는 '과일 가공 부산물을 생분해 할 수 있는 플랫폼 미생물의 개발'이 반드시 필요하다.Therefore, in order to convert the next-generation biomass, which has emerged rapidly due to climate change, to new and renewable energy, the 'development of a platform microorganism capable of biodegrading fruit processing by-products', which is intended to be developed through the present invention, is absolutely necessary.

감귤류와 같은 펙틴-리치 바이오매스(Pectin-rich biomass)에 가장 풍부한 다당류는 펙틴으로 갈락투론산(D-galacturonic acid)이 단일 사슬결합으로 구성되어 있으며 글루코스(glucose), 자일로스(xylose), 아라비노스(L-arabinose) 및 람노스(L-rhamnose) 등 다양한 단당류가 가지 형태로 이어져 있는 것이 특징이다. The most abundant polysaccharide in pectin-rich biomass such as citrus fruits is pectin. D-galacturonic acid is composed of a single chain bond, and glucose, xylose, arabi It is characterized in that various monosaccharides such as L-arabinose and L-rhamnose are connected in a branched form.

이러한 펙틴을 산 및 효소적(cellulase, hemicellulase, pectinase) 가수분해 처리할 경우, 글루코스 및 프릭토스, 갈락토스, 자일로스, 아라비노스 및 갈락투론산 등의 다량의 탄소원을 얻을 수 있기 때문에 바이오에너지 생산을 위한 바이오매스로서 적합한 자원이다. When this pectin is subjected to acid and enzymatic (cellulase, hemicellulase, pectinase) hydrolysis treatment, a large amount of carbon sources such as glucose, frictose, galactose, xylose, arabinose and galacturonic acid can be obtained, so bioenergy production is reduced. It is a suitable resource as biomass for

1. Edwards, M.C., Doran-Peterson, J., 2012. Pectin-rich biomass as feedstock for fuel ethanol production. Appl. Microbiol. Biotechnol. 95 (3), 565-575.1. Edwards, M.C., Doran-Peterson, J., 2012. Pectin-rich biomass as feedstock for fuel ethanol production. Appl. Microbiol. Biotechnol. 95 (3), 565-575. 2. Huisjes, E.H., de Hulster, E., van Dam, J.C., Pronk, J.T., van Maris, A.J., 2012. Galacturonic acid inhibits the growth of Saccharomyces cerevisiae on galactose, xylose,and arabinose. Appl. Environ. Microbiol. 78 (15), 5052-5059.2. Huisjes, E.H., de Hulster, E., van Dam, J.C., Pronk, J.T., van Maris, A.J., 2012. Galacturonic acid inhibits the growth of Saccharomyces cerevisiae on galactose, xylose, and arabinose. Appl. Environ. Microbiol. 78 (15), 5052-5059. 3. Protzko RJ, Latimer LN, Martinho Z, de Reus E, Seibert T, Benz JP, et al. 2018. Engineering Saccharomyces cerevisiae for co-utilization of D-galacturonic acid and d-glucose from citrus peel waste. Nat. Commun. 9: 5059.3. Protzko RJ, Latimer LN, Martinho Z, de Reus E, Seibert T, Benz JP, et al. 2018. Engineering Saccharomyces cerevisiae for co-utilization of D-galacturonic acid and d-glucose from citrus peel waste. Nat. Commun. 9:5059.

본 발명에서는 비통상적 탄소원 3종(자일로스, 아라비노스, 갈락투론산)을 동시에 발효할 수 있는 균주를 구축하기 위하여 유전자 가위 기술을 이용하여 기후변화로 인해 지속가능한 대체자원으로 급부상한 과일계 바이오매스를 유래로한 신재생에너지를 생산할 수 있음을 확인함으로써 본 발명을 완성하였다. In the present invention, a fruit-based biotechnology that has rapidly emerged as a sustainable alternative resource due to climate change using gene scissors technology to construct a strain capable of simultaneously fermenting three unconventional carbon sources (xylose, arabinose, and galacturonic acid) The present invention was completed by confirming that it is possible to produce new and renewable energy derived from mass.

상기 과제를 해결하기 위하여, 본 발명은 ALD6(acetaldehyde dehydrogenase gene) 및 PHO13(haloacid dehalogenase Type IIA phosphatase gene)가 녹아웃(knock-out)되고, XYL1(xylose reductase gene), XYL2(xylitol dehydrogenase gene), XYL3(xylulokinase gene), lad1(L-arabitol dehydrogenase gene), alx1(L-xylulose reductase gene), gaaA(D-galacturonic acid reductase gene), gaaC(2-keto-3-deoxy-L-galactonate aldolase gene) 및 lgd1(L-galactonate dehydratase gene)가 녹인(knock-in)된 것인 갈락투론산과 오탄당(자일로스, 아라비노스)의 동시 소비능을 가지는 재조합 미생물을 제공한다. In order to solve the above problems, the present invention is ALD6 (acetaldehyde dehydrogenase gene) and PHO13 (haloacid dehalogenase Type IIA phosphatase gene) knock-out (knock-out), XYL1 (xylose reductase gene), XYL2 (xylitol dehydrogenase gene), XYL3 (xylulokinase gene), lad1 (L-arabitol dehydrogenase gene), alx1 (L-xylulose reductase gene), gaaA (D-galacturonic acid reductase gene), gaaC (2-keto-3-deoxy-L-galactonate aldolase gene) and Provided is a recombinant microorganism having the ability to simultaneously consume galacturonic acid and pentose (xylose, arabinose) in which lgd1 (L-galactonate dehydratase gene) is knocked-in.

상기 ALD6(acetaldehyde dehydrogenase gene)의 녹아웃에 의해 아세테이트(acetate) 생성이 억제되는 것일 수 있다.Acetate production may be inhibited by knockout of the ALD6 (acetaldehyde dehydrogenase gene).

상기 PHO13(haloacid dehalogenase Type IIA phosphatase gene)의 녹아웃에 의해 오탄당 인산화 회로를 촉진시키는 것일 수 있다.The pentose phosphorylation cycle may be promoted by knockout of the PHO13 (haloacid dehalogenase Type IIA phosphatase gene).

상기 XYL1(xylose reductase gene), XYL2(xylitol dehydrogenase gene) 및 XYL3(xylulokinase gene)의 녹인에 의해 자일로스 대사경로가 생성되는 것일 수 있다.The xylose metabolic pathway may be generated by knock-in of the XYL1 (xylose reductase gene), XYL2 (xylitol dehydrogenase gene) and XYL3 (xylulokinase gene).

상기 lad1(L-arabitol dehydrogenase gene) 및 alx1(L-xylulose reductase gene)의 녹인에 의해 아라비노스 대사경로가 생성되는 것일 수 있다.The arabinose metabolic pathway may be generated by knock-in of the lad1 (L-arabitol dehydrogenase gene) and alx1 (L-xylulose reductase gene).

상기 gaaA(D-galacturonic acid reductase gene), gaaC(2-keto-3-deoxy-L-galactonate aldolase gene) 및 lgd1(L-galactonate dehydratase gene)의 녹인에 의해 갈락투론산 대사경로가 생성되는 것일 수 있다.The galacturonic acid metabolic pathway may be generated by the knock -in of the gaaA (D-galacturonic acid reductase gene), gaaC (2-keto-3-deoxy-L-galactonate aldolase gene) and lgd1 (L-galactonate dehydratase gene). have.

상기 균주는 사카로마이세스 세레비지애(Saccharomyces cerevisiae)인 것일 수 있다.The strain may be Saccharomyces cerevisiae.

상기 균주는 자일로스, 아라비노스 또는 갈락투론산을 대사하는 것일 수 있다.The strain may metabolize xylose, arabinose or galacturonic acid.

과일 가공 부산물을 생물공정의 원료로 전환하기 위하여 과피의 가장 많은 양을 차지하고 있는 펙틴과 그 주요 구성성분인 갈락투론산, 자일로스, 아라비노스의 세 가지 탄소원을 효율적으로 대사할 수 있는 재조합 미생물을 개발하였으므로 과일 가공시 발생되는 폐기물을 효과적으로 처리할 수 있다.In order to convert fruit processing by-products into raw materials for bioprocessing, recombinant microorganisms that can efficiently metabolize three carbon sources: pectin, which occupies the largest amount of pericarp, and its main components, galacturonic acid, xylose, and arabinose. Since it has been developed, it is possible to effectively treat wastes generated during fruit processing.

도 1은 S. cerevisiae YE9 균주를 개발하기 위해 3종의 비통상적 탄소원(자일로스, 아라비노스, 갈락투론산)의 대사경로를 도입하기 위한 대사공학적 전략(a) 및 유전자 도입 확인을 위한 프라이머 세트(b)를 보여준 모식도이다.
도 2는 3종의 비통상적 탄소원(자일로스, 아라비노스, 갈락투론산)의 대사경로가 구축된 S. cerevisiae YE9 균주의 세포 내 대사경로를 나타낸 모식도이다.
도 3은 모균주 S. cerevisiae D452-2 및 개량균주 S. cerevisiae YE9의 자일로스(D-xylose) 소비(a)를 통한 글리세롤(glycerol)(b) 및 에탄올(ethanol)(c)의 생산을 확인한 그래프이다.
도 4는 모균주 S. cerevisiae D452-2 및 개량균주 S. cerevisiae YE9의 아라비노스(L-arabinose) 소비(a)를 통한 글리세롤(glycerol)(b) 및 에탄올(ethanol)(c)의 생산을 확인한 그래프이다.
도 5는 모균주 S. cerevisiae D452-2 및 개량균주 S. cerevisiae YE9의 갈락투론산(D-galacturonic acid) 소비(a)를 통한 글리세롤(glycerol)(b) 및 에탄올(ethanol)(c)의 생산을 확인한 그래프이다.
도 6은 개량균주 S. cerevisiae YE9의 글루코스(D-glucose)(a) 및 프릭토스(D-fructose)(b), 갈락토스(D-galactose)(c)의 소비를 통한 글리세롤(glycerol) 및 에탄올(ethanol)의 생산을 확인한 그래프이다.
도 7은 서로 다른 2종의 L-글리세르알데하이드 환원효소(L-glyceraldehyde reductase) 유전자(gaaD, YPR1)를 발현하는 S. cerevisiae YE6 균주의 갈락투론산(D-galacturonic acid) 발효 결과를 나타낸 그래프이다.
도 8은 갈락투론산(galUA, D-galacturonic acid)을 함유한 혼합당(Glc, 글루코스; Fru, 프릭토스; Gal, 갈락토스; Xyl, 자일로스; Ara, 아라비노스) 조건에서 S. cerevisiae YE9 균주의 발효 결과를 나타낸 그래프이다.
도 9는 갈락투론산(galUA)을 함유한 혼합당(Glc, 글루코스; Fru, 프릭토스; Gal, 갈락토스; Xyl, 자일로스; Ara, 아라비노스) 조건에서 개량균주 S. cerevisiae YE9의 발효 결과를 나타낸 그래프이다(도 8의 축적된 생산물 결과).
도 10은 다양한 농도의 갈락투론산(D-galacturonic acid)이 함유된 자일로스(D-xylose) 혼합 조건에서 S. cerevisiae YE9 균주의 탄소원 소비속도(consumption rate)(g/L/h) 결과를 나타낸 그래프이다.
도 11은 자일로스(Xyl, D-xylose) 및 갈락투론산(galUA, D-galacturonic acid)이 단독 혹은 혼합 조건에서 S. cerevisiae YE9 균주의 세포 내 대사산물(intracellular metabolite)의 결과를 나타낸 그래프와 모식도이다.
도 12는 감귤박 가수분해물(citrus peel hydrolysate) 조건에서 모균주 S. cereivisiae D452-2 및 개량균주 S. cerevisiae YE9의 발효 결과를 나타낸 그래프이다.
1 is a metabolic engineering strategy for introducing metabolic pathways of three unconventional carbon sources (xylose, arabinose, galacturonic acid) to develop S. cerevisiae YE9 strain (a) and a primer set for confirming gene introduction It is a schematic diagram showing (b).
Figure 2 is a schematic diagram showing the intracellular metabolic pathways of the S. cerevisiae YE9 strain in which the metabolic pathways of three unconventional carbon sources (xylose, arabinose, and galacturonic acid) are constructed.
Figure 3 is the production of glycerol (glycerol) (b) and ethanol (ethanol) (c) through xylose (D-xylose) consumption (a) of the parent strain S. cerevisiae D452-2 and the improved strain S. cerevisiae YE9 This is the confirmed graph.
Figure 4 is the production of glycerol (glycerol) (b) and ethanol (ethanol) (c) through arabinose (L-arabinose) consumption (a) of the parent strain S. cerevisiae D452-2 and the improved strain S. cerevisiae YE9 This is the confirmed graph.
Figure 5 is glycerol (glycerol) (b) and ethanol (ethanol) (c) through galacturonic acid (D-galacturonic acid) consumption (a) of the parent strain S. cerevisiae D452-2 and the improved strain S. cerevisiae YE9 It is a graph confirming production.
6 is an improved strain S. cerevisiae YE9 glucose (D-glucose) (a) and fructose (D-fructose) (b), galactose (D-galactose) (c) through consumption of glycerol (glycerol) and ethanol It is a graph confirming the production of (ethanol).
7 is a graph showing the results of fermentation of galacturonic acid (D-galacturonic acid) of S. cerevisiae YE6 strain expressing two different L-glyceraldehyde reductase genes ( gaaD , YPR1 ) am.
8 shows S. cerevi siae YE9 in a mixed sugar (Glc, glucose; Fru, frictose; Gal, galactose; Xyl, xylose; Ara, arabinose) containing galacturonic acid (galUA, D-galacturonic acid). It is a graph showing the fermentation result of the strain.
9 is a galacturonic acid (galUA)-containing mixed sugar (Glc, glucose; Fru, frictose; Gal, galactose; Xyl, xylose; Ara, arabinose) conditions of the improved strain S. cerevisiae YE9 fermentation results. The graph shown (accumulated product results in FIG. 8).
10 is a carbon source consumption rate (g / L / h) results of the S. cerevisiae YE9 strain in xylose (D-xylose) mixing conditions containing various concentrations of galacturonic acid (D-galacturonic acid). This is the graph shown.
11 is a graph showing the results of intracellular metabolites of S. cerevisiae YE9 strains in which xylose (Xyl, D-xylose) and galacturonic acid (galUA, D-galacturonic acid) are alone or mixed. It is a schematic diagram
12 is a graph showing the result of fermentation the parental strain S. cereivisiae D452-2 and improved strain S. cerevisiae in terms YE9 citrus foil hydrolyzate (citrus peel hydrolysate).

본 발명에서 과일계 바이오매스를 분해할 개량 균주는 글루코스(D-glucose) 및 프릭토스(D-fructose)의 탄소원을 효과적으로 바이오에탄올(bioethanol)로 생산하고 유기산이나 열 등의 다양한 스트레스에 내성이 높은 GRAS형 효모인 사카로마이세스 세레비지애(Saccharomyces cerevisiae)를 이용할 것이다. 하지만 natively S. cerevisiae는 자일로스(xylose) 및 아라비노스(L-arabinose), 갈락투론산(D-galacturonic acid)은 대사를 하지 못하기 때문에 균주 개량이 필요하다.In the present invention, the improved strain to decompose fruit-based biomass effectively produces carbon sources of glucose and fructose as bioethanol, and is resistant to various stresses such as organic acids and heat. The GRAS type yeast, Saccharomyces cerevisiae , will be used. However, natively S. cerevisiae does not metabolize xylose, arabinose, and galacturonic acid, so strain improvement is required.

이에 본 발명자들은 Saccharomyces cerevisiae YE9 균주를 확립하였다.Accordingly, the present inventors have established a Saccharomyces cerevisiae YE9 strain.

본 발명은 과피의 가장 많은 양을 차지하고 있는 펙틴과 그 주요 구성성분인 갈락투론산, 자일로스, 아라비노스의 세 가지 탄소원을 효율적으로 대사할 수 있는 재조합 미생물로 과일 가공시 발생되는 폐기물을 효과적으로 처리할 수 있다. The present invention is a recombinant microorganism that can efficiently metabolize three carbon sources: pectin, which occupies the largest amount of fruit skin, and its main components, galacturonic acid, xylose, and arabinose, and effectively treats waste generated during fruit processing. can do.

또한, 본 발명으로 개발한 재조합 미생물 S. cerevisiae YE9은 이전 연구(Protzko et al., 2018)와는 달리 과일 폐기물을 발효하기 위하여 과일 폐기물을 산성화(pH 3.5)시킬 필요 없으며 외래 갈락투론산 수송체 유전자를 추가로 도입할 필요 없이 갈락투론산을 효과적으로 발효할 수 있다.In addition, the recombinant microorganism S. cerevisiae YE9 developed by the present invention does not require acidification (pH 3.5) of fruit waste to ferment fruit waste, unlike previous studies (Protzko et al., 2018), and exogenous galacturonic acid transporter gene It is possible to effectively ferment galacturonic acid without the need to additionally introduce.

본 발명의 균주는 갈락투론산 수송체 유전자(D-galacturonic acid transporter gene)의 녹인 없이도 갈락투론산의 소비능이 높은 것이다.The strain of the present invention has a high consumption of galacturonic acid without detoxification of the galacturonic acid transporter gene (D-galacturonic acid transporter gene).

본 발명은 ALD6(acetaldehyde dehydrogenase gene; accession no. NM_001180296; 서열번호 1) 및 PHO13(haloacid dehalogenase Type IIA phosphatase gene; accession no. NM_001180296.1; 서열번호 2)가 녹아웃(knock-out)되고, XYL1(xylose reductase gene; accession no. XM_001385144.1; 서열번호 3), XYL2(xylitol dehydrogenase gene; accession no. (XM_001386945.1); 서열번호 4, XYL3(xylulokinase gene; accession no. XM_001387288.1; 서열번호 5), lad1(L-arabitol dehydrogenase gene; accession no. MT321096; 서열번호 6), alx1(L-xylulose reductase gene; accession no. AJ583159.1; 서열번호 7), gaaA(D-galacturonic acid reductase gene; accession no. MT309494; 서열번호 8), gaaC(2-keto-3-deoxy-L-galactonate aldolase gene; accession no. MT321095; 서열번호 9) 및 lgd1(L-galactonate dehydratase gene; accession no. MT321097; 서열번호 10)가 녹인(knock-in)된 것인 갈락투론산과 오탄당(자일로스, 아라비노스)의 동시 소비능을 가지는 재조합 미생물을 제공한다. The present invention is ALD6 (acetaldehyde dehydrogenase gene; accession no. NM_001180296; SEQ ID NO: 1) and PHO13 (haloacid dehalogenase Type IIA phosphatase gene; accession no. NM_001180296.1; SEQ ID NO: 2) are knocked out, XYL1 ( xylose reductase gene; accession no. XM_001385144.1; SEQ ID NO: 3), XYL2 (xylitol dehydrogenase gene; accession no. (XM_001386945.1); SEQ ID NO: 4, XYL3 (xylulokinase gene; accession no. XM_001387288.1; SEQ ID NO: 5) ), lad1 (L-arabitol dehydrogenase gene; accession no. MT321096; SEQ ID NO: 6), alx1 (L-xylulose reductase gene; accession no. AJ583159.1; SEQ ID NO: 7), gaaA (D-galacturonic acid reductase gene; accession no. MT309494; SEQ ID NO: 8), gaaC (2-keto-3-deoxy-L-galactonate aldolase gene; accession no. MT321095; SEQ ID NO: 9) and lgd1 (L-galactonate dehydratase gene; accession no. MT321097; SEQ ID NO: 9) 10) provides a recombinant microorganism having the ability to simultaneously consume galacturonic acid and pentose (xylose, arabinose) that is knock-in.

구체적으로, 야생형(Wild type)인 S. cerevisiae D452-2를 모균주로 한다. 유전자 변형은 Cas9 유전자 가위 기술을 사용하였다. 아세테이트(acetate) 생성을 억제하기 위해 ALD6(acetaldehyde dehydrogenase gene)을 결실하였다. 오탄당 인산화 회로(pentose phosphate pathway)를 촉진하기 위해 PHO13을 결실하였다. 피키아 스티피티스(Pichia stipitis) 유래 XYL1(xylose reductase gene), XYL2(xylitol dehydrogenase gene), XYL3(xylulokinase gene)를 자일로스 대사경로(D-xylose pathway)를 위해 도입하였다. 트리코더마 레세이(Trichoderma reesei) 유래 lad1(L-arabitol dehydrogenase gene), 엠브로시오지마 모노스포라(Ambrosiozyma monospora) 유래 alx1(L-xylulose reductase gene)를 아라비노스 대사경로(L-arabinose pathway)를 위해 도입하였다. 아스퍼질러스 나이거(Aspergillus niger) 유래 gaaA(D-galacturonic acid reductase gene), gaaC(2-keto-3-deoxy-L-galactonate aldolase gene), T. reesei 유래 lgd1(L-galactonate dehydratase gene)를 갈락투론산 대사경로(D-galacturonic acid pathway)를 위해 도입하였다.Specifically, wild type S. cerevisiae D452-2 is used as the parent strain. Genetic modification was performed using Cas9 gene editing technology. In order to suppress acetate production, ALD6 (acetaldehyde dehydrogenase gene) was deleted. PHO13 was deleted to promote the pentose phosphate pathway. Pichia stipitis derived XYL1 (xylose reductase gene), XYL2 (xylitol dehydrogenase gene), XYL3 (xylulokinase gene) was introduced for the xylose metabolic pathway (D-xylose pathway). Trichoderma reseyi (Trichoderma reesei) not come when M bromo-derived lad1 (L-arabitol dehydrogenase gene) , a mono spokes La (Ambrosiozyma monospo r a) derived alx1 (L-xylulose reductase gene) the arabinose metabolic pathway (L-arabinose pathway) introduced for Aspergillus niger ( Aspergillus niger ) derived gaaA (D-galacturonic acid reductase gene), gaaC (2-keto-3-deoxy-L-galactonate aldolase gene), T. reesei- derived lgd1 (L-galactonate dehydratase gene) It was introduced for the galacturonic acid pathway (D-galacturonic acid pathway).

본 발명은 아세테이트(acetate) 생성을 억제하기 위해 ALD6(acetaldehyde dehydrogenase gene)와 오탄당 인산화 회로를 촉진하기 위해 PHO13(haloacid dehalogenase Type IIA phosphatase gene)이 결실되어 있고, In the present invention, ALD6 (acetaldehyde dehydrogenase gene) to inhibit acetate production and PHO13 (haloacid dehalogenase Type IIA phosphatase gene) to promote pentose phosphorylation cycle are deleted,

자일로스 대사경로를 위해 XYL1(xylose reductase gene), XYL2(xylitol dehydrogenase gene) 및 XYL3(xylulokinase gene), 아라비노스 대사경로를 위해 lad1(L-arabitol dehydrogenase gene) 및 alx1(L-xylulose reductase gene), 갈락투론산 대사경로를 위해 gaaA(D-galacturonic acid reductase gene), gaaC(2-keto-3-deoxy-L-galactonate aldolase gene) 및 lgd1(L-galactonate dehydratase gene)이 도입되어 있는 갈락투론산과 오탄당(자일로스, 아라비노스)의 동시 소비능을 가지는 재조합 미생물이다. XYL1 (xylose reductase gene), XYL2 (xylitol dehydrogenase gene) and XYL3 (xylulokinase gene) for the xylose metabolic pathway, lad1 (L-arabitol dehydrogenase gene) and alx1 (L-xylulose reductase gene) for the arabinose pathway, For galacturonic acid metabolism pathway, gaaA (D-galacturonic acid reductase gene), gaaC (2-keto-3-deoxy-L-galactonate aldolase gene) and lgd1 (L-galactonate dehydratase gene) are introduced. It is a recombinant microorganism having the ability to simultaneously consume pentose (xylose, arabinose).

상기 XYL1(xylose reductase gene), XYL2(xylitol dehydrogenase gene) 및 XYL3(xylulokinase gene)는 피키아 스티피티스(Pichia stipitis) 유래이다.The XYL1 (xylose reductase gene), XYL2 (xylitol dehydrogenase gene) and XYL3 (xylulokinase gene) are derived from Pichia stipitis.

상기 alx1(L-xylulose reductase gene)는 엠브로시오지마 모노스포라(Ambrosiozyma monospora) 유래이다.The alx1 (L-xylulose reductase gene) has not come when M is a mono-bromo spokes La (Ambrosiozyma monospo r a) is derived.

상기 gaaA(D-galacturonic acid reductase gene) 및 gaaC(2-keto-3-deoxy-L-galactonate aldolase gene)는 아스퍼질러스 나이거(Aspergillus niger) 유래이다.The gaaA (D-galacturonic acid reductase gene) and gaaC (2-keto-3-deoxy-L-galactonate aldolase gene) are derived from Aspergillus niger.

상기 lad1(L-arabitol dehydrogenase gene) 및 lgd1(L-galactonate dehydratase gene)는 트리코더마 레세이(Trichoderma reesei) 유래이다.The lad1 (L-arabitol dehydrogenase gene) and lgd1 (L-galactonate dehydratase gene) are Trichoderma reesei ( Trichoderma reesei ) is the origin

<실시예 1> 실험방법<Example 1> Experimental method

<1-1> 균주 및 발효<1-1> Strain and Fermentation

모든 균주는 표 1에 정리하였다. S.cerevisiae 균주의 하나의 콜로니를 30℃ 및 250 rpm에서 36 시간 동안 20g/L의 글루코스(YPD)를 함유하는 YP 배지(10g/Lyeast extract, 20g/L peptone)에서 전배양(preculture)하였다. 전 배양된 효모를 1회 세척하고, 초기 세포양을 0.5g/L 또는 25g/L로 회수하여 다양한 탄소원을 함유하는 20mL YP 액체 배지에 다시 현탁하였다. 접종된 배양액은 100-mL 삼각 플라스크에서 30℃ 및 130rpm으로 최대 72시간동안 발효를 실시하였다. 모든 발효는 생물학적 3반복으로 수행되었다.All strains are summarized in Table 1. One colony of the S. cerevisiae strain was precultured in YP medium (10 g/Lyeast extract, 20 g/L peptone) containing 20 g/L of glucose (YPD) at 30° C. and 250 rpm for 36 hours. The pre-cultured yeast was washed once, and the initial cell amount was recovered at 0.5 g/L or 25 g/L and resuspended in 20 mL YP liquid medium containing various carbon sources. The inoculated culture medium was fermented in a 100-mL Erlenmeyer flask at 30° C. and 130 rpm for up to 72 hours. All fermentations were performed in biological triplicates.

균주strain 관련된 유전자형의 설명*Description of the relevant genotype* 인용문헌Citations D452-2D452-2 Wild type; Mata leu2 his3 ura3 Wild type; Mata leu2 his3 ura3 (Hosaka et al., 1992)(Hosaka et al., 1992) DY02DY02 Expressing the heterologous D-xylose pathway; D452-2 ald6::TDH3 P -XYL1-TDH3 T -PGK1 P -XYL2-PGK1 T pho13::TEF1 P -XYL3-TEF1 T Expressing the heterologous D-xylose pathway; D452-2 ald6::TDH3 P -XYL1-TDH3 T -PGK1 P -XYL2-PGK1 T pho13::TEF1 P -XYL3-TEF1 T This studythis study YE3YE3 DY02 int#4::CCW12 P -gaaA-CCW12 T DY02 int#4::CCW12 P -gaaA-CCW12 T This studythis study YE4YE4 DY02 int#4::PGK1 P -lgd1-PGK1 T DY02 int#4::PGK1 P -lgd1-PGK1 T This studythis study YE5YE5 DY02 int#4::TDH3 P -gaaC-TDH3 T DY02 int#4::TDH3 P -gaaC-TDH3 T This studythis study YE6YE6 Expressing the heterologous D-xylose and D-galacturonic acid pathway; DY02 int#4::CCW12 P -gaaA-CCW12 T -PGK1 P -lgd1-PGK1 T -TDH3 P -gaaC-TDH3 T Expressing the heterologous D-xylose and D-galacturonic acid pathway; DY02 int#4::CCW12 P -gaaA-CCW12 T -PGK1 P -lgd1-PGK1 T -TDH3 P -gaaC-TDH3 T This studythis study YE6
YPR1
YE6
YPR1
YE6 CCW12 P -YPR1 YE6 CCW12 P -YPR1 This studythis study
YE6
gaaD
YE6
gaaD
YE6 int#6::CCW12 P -gaaD-CCW12 T YE6 int#6::CCW12 P -gaaD-CCW12 T This studythis study
YE01YE01 Expressing the heterologous D-xylose, and L-arabinose pathway
D452-2 ald6::TDH3 P -XYL1-TDH3 T -PGK1 P -XYL2-PGK1 T
int#1::TEF1 P -XYL3-TEF1 T
sor1::FBA1 P -lad1-FBA1 T -PGK1 P -alx1-CYC1 T
Expressing the heterologous D-xylose, and L-arabinose pathway
D452-2 ald6::TDH3 P -XYL1-TDH3 T -PGK1 P -XYL2-PGK1 T
int#1::TEF1 P -XYL3-TEF1 T
sor1::FBA1 P -lad1-FBA1 T -PGK1 P -alx1-CYC1 T
(Ye et al., 2019)(Ye et al., 2019)
YE9YE9 Expressing the heterologous D-xylose, L-arabinos, and D-galacturonic acid pathway; YE6
int#7::FBA1 P -lad1-FBA1 T-PGK1 P -alx1-CYC1 T
Expressing the heterologous D-xylose, L-arabinos, and D-galacturonic acid pathway; YE6
int#7::FBA1 P -lad1-FBA1 T - PGK1 P -alx1-CYC1 T
This studythis study

* XYL1, XYL2XYL3Pichia stipitis에서 유래한다. gaaA, gaaC gaaDAspergillus niger에서 유래하고, lad1 lgd1Trichoderma reesei에서 유래하고, alx1Ambrosiozyma monospora에서 유래한다.* XYL1, XYL2 and XYL3 are from Pichia stipitis . gaaA, gaaC gaaD and is derived from Aspergillus niger and, lad1 lgd1 and is derived from Trichoderma reesei and, alx1 stems from Ambrosiozyma monospora.

<1-2> Cas9 기반 게놈 편집에 의한 스트레인 구축<1-2> Strain construction by Cas9-based genome editing

모든 균주는 Cas9 유전자 가위 기술을 응용하여 생체 내 조립(in vivo assembly) 및 염색체(chromosome) 내 도입 기술(integration technology)에 의해 개량되었다. 요약해서, 균주 개량을 위해 3 종의 구성요소를 포함한다: 1) guide RNA(gRNA) 플라스미드 개발, 2) donor DNA 준비 및 3) 효모 형질전환(yeast transformation). gRNA의 염기서열은 하기 표 2에서와 같이 표적 절단 부위-특이적이고 20-bp 길이로 설계하였다. All strains were improved by in vivo assembly and chromosome integration technology by applying Cas9 gene editing technology. In summary, there are three components for strain improvement: 1) guide RNA (gRNA) plasmid development, 2) donor DNA preparation, and 3) yeast transformation. The nucleotide sequence of the gRNA was designed to be target cleavage site-specific and 20-bp in length as shown in Table 2 below.

gRNAgRNA Target cut siteTarget cut site PAM 서열
(5'-3')
PAM sequence
(5'-3')
Target sequencesTarget sequences 플라스미드 이름Plasmid name
염기서열(5'-3')base sequence (5'-3') 서열번호SEQ ID NO: ALD6.1ALD6.1 ALD6ALD6 TGGTGG GTCAAGATCACACTTCCAAA GTCAGATCACACTTCCAAA 1111 pRS42H-ALD6.1pRS42H-ALD6.1 PHO13.1PHO13.1 PHO13PHO13 CGGCGG TCCCTTATCTATTAACTTTC TCCCTTATCTATTAACTTTC 1212 pRS42H-PHO13.1pRS42H-PHO13.1 YPR1.1YPR1.1 YPR1YPR1 GGGGGG CATGGTAGATTATTATCTGT CATGGTAGATTATTATCTGT 1313 pRS42H-YPR1.1pRS42H-YPR1.1 INT#4INT#4 Intergenic region upstream ASF1 Intergenic region upstream ASF1 GGGGGG CTCTCGAAGTGGTCACGTGCCTCTCGAAGTGGTCACGTGC 1414 pRS42H-INT#4pRS42H-INT#4 INT#6INT#6 Intergenic region upstream ATG33 Intergenic region upstream ATG33 CGGCGG TTGTCACAGTGTCACATCAG TTGTCACAGTGTCACATCAG 1515 pRS42H-INT#6pRS42H-INT#6 INT#7INT#7 Intergenic region downstream YGR190C Intergenic region downstream YGR190C TGGTGG GATACTTATCATTAAGAAAA GATACTTATCATTAAGAAAA 1616 pRS42H-INT#7pRS42H-INT#7

각 gRNA 염기서열을 발현하는 플라스미드는 PCR을 기반으로 한 고속 클로닝 방법(fast cloning method)에 의해 구축되었다. pRS42H-ALD6.1 플라스미드를 구축하기 위해, 예를 들어 pRS42H-GND1.1 플라스미드(주형 플라스미드)를 프라이머 Kim044/Kim045로 증폭시켰다(표 3). PCR 생성물을 DpnI로 처리하고 E. coli TOP10(Invitrogen, Carlsbad, CA, USA) 균주에 형질전환 하였다. 형질전환을 하기 위해 LBA(5 g/L yeast extract, 10 g/L tryptone, 10 g/L NaCl, 100 μg/mL ampicillin) 고체 배지를 선택배지로 이용하였다. 생성된 플라스미드의 gRNA 염기서열은 T3 프로모터용 프라이머를 사용하여 생어 염기서열 분석(Sanger sequencing)으로 확인하여 선별하였다. 표 2의 모든 gRNA 플라스미드는 표 3에 기재된 다른 프라이머를 이용하여 동일한 절차를 통해 구축하였다.A plasmid expressing each gRNA nucleotide sequence was constructed by a fast cloning method based on PCR. To construct the pRS42H-ALD6.1 plasmid, for example, the pRS42H-GND1.1 plasmid (template plasmid) was amplified with primers Kim044/Kim045 (Table 3). The PCR product was treated with Dpn I and transformed into E. coli TOP10 (Invitrogen, Carlsbad, CA, USA) strain. For transformation, LBA (5 g/L yeast extract, 10 g/L tryptone, 10 g/L NaCl, 100 μg/mL ampicillin) solid medium was used as a selective medium. The gRNA nucleotide sequence of the generated plasmid was confirmed and selected by Sanger sequencing using a primer for the T3 promoter. All gRNA plasmids in Table 2 were constructed through the same procedure using the other primers listed in Table 3.

플라스미드 이름Plasmid name 프라이머primer 서열(5'-3')sequence (5'-3') 서열번호SEQ ID NO: pRS42H-ALD6.1pRS42H-ALD6.1 Kim044Kim044 AAGATCACACTTCCAAAGTTTTAGAGCTAGAAATAGCAAG AAGATCACACTTCCAAA GTTTTAGAGCTAGAAATAGCAAG 1717 Kim045Kim045 TTGGAAGTGTGATCTTGACGATCATTTATCTTTCACTGCG TTGGAAGTGTGATCTTGAC GATCATTTATTCTTTCACTGCG 1818 pRS42H-PHO13.1pRS42H-PHO13.1 Kim624Kim624 CTTATCTATTAACTTTCGTTTTAGAGCTAGAAATAGCAAG CTTATCTATTAACTTTC GTTTTAGAGCTAGAAATAGCAAG 1919 Kim625Kim625 AAAGTTAATAGATAAGGGAGATCATTTATCTTTCACTGCG AAAGTTAATAGATAAGGG AGATCATTTATTCTTTCACTGCG 2020 pRS42H-YPR1.1pRS42H-YPR1.1 Kim535Kim535 GGTAGATTATTATCTGTGTTTTAGAGCTAGAAATAGCAAG GGTAGATTATTATCTGT GTTTTAGAGCTAGAAATAGCAAG 2121 Kim536Kim536 CAGATAATAATCTACCATGGATCATTTATCTTTCACTGCG CAGATAATAATCTACCATG GATCATTTATTCTTTCACTGCG 2222 pRS42H-INT#4pRS42H-INT#4 Kim310Kim310 TCGAAGTGGTCACGTGCGTTTTAGAGCTAGAAATAGCAAG TCGAAGTGGTCACGTGC GTTTTAGAGCTAGAAATAGCAAG 2323 Kim311Kim311 CACGTGACCACTTCGAGAGGATCATTTATCTTTCACTGCG CACGTGACCACTTCGAGAG GATCATTTATTCTTTCACTGCG 2424 pRS42H-INT#6pRS42H-INT#6 Kim314Kim314 TCACAGTGTCACATCAGGTTTTAGAGCTAGAAATAGCAAG TCACAGTGTCACATCAG GTTTTAGAGCTAGAAATAGCAAG 2525 Kim315Kim315 TGATGTGACACTGTGACAAGATCATTTATCTTTCACTGCG TGATGTGACACTGTGACAA GATCATTTATTCTTTCACTGCG 2626 pRS42H-INT#7pRS42H-INT#7 Kim486Kim486 AGGAATTATGTTCGCCCGTTTTAGAGCTAGAAATAGCAAG AGGAATTATGTTCGCCC GTTTTAGAGCTAGAAATAGCAAG 2727 Kim487Kim487 GGCGAACATAATTCCTTACGATCATTTATCTTTCACTGCG GGCGAACATAATTCCTTAC GATCATTTATTCTTTCACTGCG 2828

Donor DNA 단편(Donor DNA fragments)은 표 4에 열거된 프라이머를 사용하여 중합효소 연쇄 반응(Polymerase Chain Reaction, PCR)을 통해 제작하였다. 각 donor DNA 단편들이 생체 내 조립(in vivo assembly) 및 염색체 내 도입되기 위하여 donor DNA 단편의 양쪽에 각각 40-50 bp 길이의 염색체 염기서열로 구축하여 상동 재조합(homologous recombination)이 일어나도록 유도하였다. 각 외래 유전자의 발현을 위한 발현 카세트(expression cassette)를 구축하기 위해 표 4의 프라이머를 활용하였다. 자일로스 발현 카세트의 donor DNA는 염색체 내에 도입됨과 동시에 목표로하는 유전자(ALD6, PHO13)가 완전히 제거되도록 설계하였다. 한편, 아라비노스 경로 및 갈락투론산 경로의 발현 카세트는 주변의 유전자의 발현에 방해되지 않는 위치에 도입되었다.Donor DNA fragments were prepared through polymerase chain reaction (PCR) using the primers listed in Table 4. Each donor DNA fragment was constructed as a chromosomal sequence of 40-50 bp in length on both sides of the donor DNA fragment for in vivo assembly and introduction into the chromosome, and homologous recombination was induced. The primers in Table 4 were used to construct an expression cassette for the expression of each foreign gene. The donor DNA of the xylose expression cassette was designed so that the target genes (ALD6, PHO13) were completely removed while being introduced into the chromosome. On the other hand, the expression cassette of the arabinose pathway and the galacturonic acid pathway was introduced at a position that does not interfere with the expression of surrounding genes.

마지막으로 Cas9 유전자 가위 기술을 이용한 효모의 형질전환(yeast transformation)은 lithium acetate/single-stranded carrier DNA-polyethylene glycol 방법(ref)을 일부 수정하여 실시하였다. 상기에서 개발한 gRNA 플라스미드 및 donor DNA 단편과 Cas9 단백질 발현 플라스미드(pRS41N-Cas9 plasmid)를 S. cerevisiae 에 도입시켰으며, 100 μg/mL nourseothricin sulfate과 300 μg/mL hygromysin B를 함유한 YPD 고체 배지에서 선택 및 배양되었다. 균주 개량의 성공 여부를 확인하기 위해 표 5의 프라이머를 이용하여 콜로니 PCR(colony PCR)을 진행함으로써 확인하였다. 최종 균주(S. cerevisiae YE9)를 포함한 개량된 균주들은 표 1에 나열하였다.Finally, yeast transformation using Cas9 gene editing technology was performed by partially modifying the lithium acetate/single-stranded carrier DNA-polyethylene glycol method (ref). The gRNA plasmid, donor DNA fragment, and Cas9 protein expression plasmid (pRS41N-Cas9 plasmid) developed above were introduced into S. cerevisiae, and in YPD solid medium containing 100 μg/mL nourseothricin sulfate and 300 μg/mL hygromysin B. Selected and cultured. It was confirmed by performing colony PCR using the primers in Table 5 to confirm the success of strain improvement. The improved strains including the final strain ( S. cerevisiae YE9) are listed in Table 1.

주형 게놈의
DNA*
of the template genome
DNA*
공여
DNA
조각
donate
DNA
piece
프라
이머
pra
Emer
서열번호SEQ ID NO: 서열(5'-3')sequence (5'-3')
XYL1XYL1 , , XYL2XYL2 expression cassette for deleting expression cassette for deleting ALD6ALD6 ( ( ald6::TDH3ald6::TDH3 PP -XYL1-TDH3-XYL1-TDH3 TT -PGK1-PGK1 PP -XYL2-PGK1-XYL2-PGK1 TT )) S. cerevisiaeS. cerevisiae TDH3TDH3 PP Kim626Kim626 2929 TAACATACACAAACACATACTATCAGAATACACTATTTTCGAGGACCTTGTC TAACATACACAAACACATACTATCAGAATACA CTATTTTCGAGGACCTTGTC SOO384SOO384 3030 TCAACTTAATAGAAGGCATTTTTAGATCTCCTAGGTTTGTTTGTTTATGTGTGTTTATTC TCAACTTAATAGAAGGCATTTTTTAGATCTCCTAGGTTTGTTTGTTTATGTGTGTTTAT TC P. stipitisP. stipitis XYL1XYL1 SOO385SOO385 3131 ATAAACACACATAAACAAACAAACCTAGGAGATCTAAAAATGCCTTCTATTAAGTTGAAC ATAAACACACATAAACAAACAAACCTAGGAGATCTAAAAATGCCTTCTATTAAGTTGA AC SOO386SOO386 3232 AATGCAAGATTTAAAGTAAATTCACTGTTAACGCATGCTTAGACGAAGATAGGAATCTTG AAT GCAAGATTTAAAGTAAATTCACTGTTAACGCATGCTTAGACGAAGATAGGAATCTTG S. cerevisiaeS. cerevisiae TDH3TDH3 TT SOO387SOO387 3333 GGACAAGATTCCTATCTTCGTCTAAGCATGCGTTAACAGTGAATTTACTTTAAATCTTGC GGA CAAGATTCCTATCTTCGTCTAAGCATGCGTTAACAGTGAATTTACTTTAAATTCTTGC SOO388SOO388 3434 ATTCTTTGAAGGTACTTCTTCGAAAAATTCGCGTCTGCTAGCTCCTGGCGGAAAAAATTC ATTCTTTGAAGGTACTT CTTCGAAAAATTCGCGTCTGCTAGCTCCTGGCGGAAAAAATTC S. cerevisiaeS. cerevisiae PGK1PGK1 PP SOO389SOO389 3535 TTTTAAAGTTTACAAATGAATTTTTTCCGCCAGGAGCTAGCAGACGCGAATTTTTCGAAG TTTTAAAGTTTACAAAT GAATTTTTTCCGCCAGGAGCTAGCAGACGCGAATTTTTTCGAAG SOO390SOO390 3636 CACCAAGGAAGGGTTAGCAGTCATTTTTTCTAGATGTTTTATATTTGTTGTAAAAAGTAG CACCAA GGAAGGGTTAGCAGTCATTTTTTCTAGATGTTTTATATTTGTTGTAAAAAGTAG P. stipitisP. stipitis XYL2XYL2 SOO391SOO391 3737 AATTATCTACTTTTTACAACAAATATAAAACATCTAGAAAAAATGACTGCTAACCCTTCC AATTAT CTACTTTTTACAACAAATATAAAACATCTAGAAAAAATGACTGCTAACCCTTCC SOO392SOO392 3838 AAAAAATTGATCTATCGATTTCAATTCAATTCAATACTAGTTTACTCAGGGCCGTCAATG AAAAAATTGAT CTATCGATTTCAATTCAATTCAATACTAGTTTACTCAGGGCCGTCAATG S. cerevisiaeS. cerevisiae PGK1PGK1 TT SOO393SOO393 3939 GTCAAGTGTCTCATTGACGGCCCTGAGTAAACTAGTATTGAATTGAATTGAAATCGATAG GTCAAGTGTCT CATTGACGGCCCTGAGTAAACTAGTATTGAATTGAATTGAAATCGATAG Kim627Kim627 4040 GTATATGACGGAAAGAAATGCAGGTTGGTACAAAATAATATCCTTCTCGAAAG GTATATGACGGAAAGAAATGCAGGTTGGTACA AAATAATATCCTTCTCGAAAG XYL3XYL3 expression cassette for deleting expression cassette for deleting PHO13PHO13 ( ( pho13::TDH3pho13::TDH3 PP -XYL1-TDH3-XYL1-TDH3 TT -PGK1-PGK1 PP -XYL2-PGK1-XYL2-PGK1 TT )) S. cerevisiaeS. cerevisiae TDH3TDH3 PP Kim628Kim628 4141 ATGTGACATCTTTACTATTCTCCAGCACGTTTCTTCATCGGTATCTTCGC ATGTGACATCTTTACTATTCTCCAGCACGTTT CTTCATCGGTATCTTCGC SOO374SOO374 4242 AATGGGGTAGTGGTCATTTTTAAGCTTGAATTCTTTGTAATTAAAACTTAGATTAGATTG AA TGGGGTAGTGGTCATTTTTAAGCTTGAATTCTTTGTAATTAAAACTTAGATTAGATTG P. stipitisP. stipitis XYL3XYL3 SOO375SOO375 4343 ATCTAATCTAAGTTTTAATTACAAAGAATTCAAGCTTAAAAATGACCACTACCCCATTTG AT CTAATCTAAGTTTTAATTACAAAGAATTCAAGCTTAAAAATGACCACTACCCCATTTG SOO376SOO376 4444 GCAACTAGAAAAGTCTTATCAATCTCCGTCGACATCGATTTAGTGTTTCAATTCACTTTC GCAACTA GAAAAGTCTTATCAATCTCCGTCGACATCGATTTAGTGTTTCAATTCACTTTC S. cerevisiaeS. cerevisiae TDH3TDH3 TT SOO377SOO377 4545 CAAGATGGAAAGTGAATTGAAACACTAAATCGATGTCGACGGAGATTGATAAGACTTTTC CAAGATG GAAAGTGAATTGAAACACTAAATCGATGTCGACGGAGATTGATAAGACTTTTC Kim629Kim629 4646 CTATAACTCATTATTGGTTAAGGTGTAGATGAAGTTGGGTAACGCCAGG CTATAACTCATTATTGGTTAAGGTGTAGATG AAGTTGGGTAACGCCAGG gaaAgaaA expression cassette ( expression cassette ( int#4::CCW12int#4::CCW12 PP -gaaA-CCW12-gaaA-CCW12 TT )) S. cerevisiaeS. cerevisiae CCW12CCW12 PP Kim379Kim379 4747 TTCCTCGGGCAGAGAAACTCGCAGGCAACTTGCACGCAAAAGAAAACCTT TTCCTCGGGCAGAGAAACTCGCAGGCAACTTG CACGCAAAAAGAAAACCTT Kim380Kim380 4848 TCAACACAGCTGGGGGAGCCATTTTTTATTGATATAGTGTTTAAGCGAAT TCAACA CAGCTGGGGGAGCCATTTTTTATTGATATAGTGTTTAAGCGAAT A. nigerA. niger gaaAgaaA Kim381Kim381 4949 TCTGTCATTCGCTTAAACACTATATCAATAAAAAATGGCTCCCCCAGCTG TCTGTC ATTCGCTTAAACACTATATCAATAAAAAATGGCTCCCCCAGCTG Kim382Kim382 5050 TAGAATGTATAAATAATAATAAACTAAGTCTACTTCAGCTCCCACTTTCC TAGA ATGTATAAATAATAATAAACTAAGTCTACTTCAGCTCCCACTTTCC S. cerevisiaeS. cerevisiae CCW12CCW12 TT Kim383Kim383 5151 GGATGGAAAGTGGGAGCTGAAGTAGACTTAGTTTATTATTATTTATACAT GGAT GGAAAGTGGGAGCTGAAGTAGACTTAGTTTATTATTATTTATACAT Kim384Kim384 5252 TGTGAGGGCCGATTATGCAGGCCTAGATGTTCTAGTGTGTTTATATTATC TGTGAGGGCCGATTATGCAGGCCTAGA TGTTCTAGTGTGTTTATATTATC lgd1lgd1 expression cassette ( expression cassette ( int#4::PGK1int#4::PGK1 PP -lgd1-PGK1-lgd1-PGK1 TT )) S. cerevisiaeS. cerevisiae PGK1PGK1 PP Kim385Kim385 5353 CCTCGGGCAGAGAAACTCGCAGGCAACTTGGTGAGTAAGGAAAGAGTGAG CCTCGGGCAGAGAAACTCGCAGGCAACTTG GTGAGTAAGGAAAGAGTGAG Kim386Kim386 5454 GTGATGGTGACTTCAGACATTTTTTGTTTTATATTTGTTGTAAAAAGTAGGTGATGGTGACTTCAGACATTTTTTGTTTTATATTTGTTGTAAAAAGTAG T. reeseiT. reesei lgd1lgd1 Kim387Kim387 5555 CTACTTTTTACAACAAATATAAAACAAAAAATGTCTGAAGTCACCATCACCTACTTTTTTACAACAAATATAAAACAAAAAATGTCTGAAGTCACCATCAC Kim388Kim388 5656 ATTGATCTATCGATTTCAATTCAATTCAATTCAGATCTTCTCTCCGTTCA ATTGATCTAT CGATTTCAATTCAATTCAATTCAGATCTTCTCTCCGTTCA S. cerevisiaeS. cerevisiae PGK1PGK1 TT Kim389Kim389 5757 CTGCCCATCTTGAACGGAGAGAAGATCTGAATTGAATTGAATTGAAATCG CTGCCCATCT TGAACGGAGAGAAGATCTGAATTGAATTGAATTGAAATCG Kim390Kim390 5858 CTCTGTGAGGGCCGATTATGCAGGCCTAGAAAATAATATCCTTCTCGAAA CTCTGTGAGGGCCGATTATGCAGGCCTAGA AAATAATATCCTTCTCGAAA gaaCgaaC expression cassette ( expression cassette ( int#4::TDH3int#4::TDH3 PP -gaaC-TDH3-gaaC-TDH3 TT )) S. cerevisiaeS. cerevisiae TDH3TDH3 PP Kim391Kim391 5959 CTCGGGCAGAGAAACTCGCAGGCAACTTGGAATAAAAAACACGCTTTTTC CTCGGGCAGAGAAACTCGCAGGCAACTTG GAATAAAAAACACGCTTTTTC Kim392Kim392 6060 GACTCCGGGGCGGAGCGGGGTAAAAGGCATTTTTTTTGTTTGTTTATGTGTGTT GACTCCGGGGCG GAGCGGGGTAAAAGGCATTTTTTTTGTTTGTTTATGTGTGTT A. nigerA. niger gaaCgaaC Kim393Kim393 6161 TTCGAATAAACACACATAAACAAACAAAAAAAATGCCTTTTACCCCGCTC TTCGAATA AACACACATAAACAAACAAAAAAAATGCCTTTTACCCCGCTC Kim394Kim394 6262 ATTTAAATGCAAGATTTAAAGTAAATTCACCTAAGCAATATCCGGCAACG ATTTAAAT GCAAGATTTAAAGTAAATTCACCTAAGCAATATCCGGCAACG S. cerevisiaeS. cerevisiae TDH3TDH3 TT Kim395Kim395 6363 TGAGAAGTCGTTGCCGGATATTGCTTAGGTGAATTTACTTTAAATCTTGC TGAGAAGT CGTTGCCGGATATTGCTTAGGTGAATTTACTTTAAATTCTTGC Kim396Kim396 6464 CCTCTGTGAGGGCCGATTATGCAGGCCTAGAATCCTGGCGGAAAAAATTC CCTCTGTGAGGGCCGATTATGCAGGCCTAGA ATCCTGGCGGAAAAAATTC gaaAgaaA , , lgd1lgd1 , and , and gaaCgaaC expression cassettes ( expression cassettes ( int#4::CCW12int#4::CCW12 PP -gaaA-CCW12-gaaA-CCW12 TT -PGK1-PGK1 PP -lgd1-PGK1-lgd1-PGK1 TT -TDH3-TDH3 PP -gaaC-TDH3-gaaC-TDH3 TT )) S. cerevisiae YE3 S. cerevisiae YE3 CCW12CCW12 PP -gaaA-CCW12-gaaA-CCW12 TT Kim410Kim410 6565 TCTTTAGGTTAATTGTCGCTGTTATTGTCTA GATTTTTTCTCGGAGATGG TCTTTAGGTTAATTGTCGCTGTTATTGTCTA GATTTTTTCTCGGAGATGG Kim411Kim411 6666 TAGTTCCTCACTCTTTCCTTACTCACTGTTCTAGTGTGTTTATATTATCC TAGTTC CTCACTCTTTCCTTACTCACTGTTCTAGTGTGTTTATATTATCC S. cerevisiae YE4 S. cerevisiae YE4 PGK1PGK1 PP -lgd1-PGK1-lgd1-PGK1 TT Kim412Kim412 6767 AGCCAAGGATAATATAAACACACTAGAACA GTGAGTAAGGAAAGAGTGAG AGCCAA GGATAATATAAACACACTAGAACA GTGAGTAAGGAAAGAGTGAG Kim413Kim413 6868 AAACTCGAACTGAAAAAGCGTGTTTTTTATTCCCGATTATGCAGGCCTAG AAACTCGAA CTGAAAAACGTGTTTTTTATTCCCGATTATGCAGGCCTAG S. cerevisiae YE5 S. cerevisiae YE5 TDH3TDH3 PP -gaaC-TDH3-gaaC-TDH3 TT Kim414Kim414 6969 TATTATTTTCTAGGCCTGCATAATCGGGAATAAAAAACACGCTTTTTCAG TATTATTTT CTAGGCCTGCATAATCGGGAATAAAAAACACGCTTTTTCAG Kim415Kim415 7070 CTACTCTCTTCCTAGTCGCCCGGTTGTTGAAAGTTTAATTGTGGGTTTTC CTACTCTCTTCCTAGTCGCCCGGTTGTT GAAAGTTTAATTGTGGGTTTTC lad1,lad1, and and alx1 alx1 expression cassettes ( expression cassettes ( int#7::FBA1int#7::FBA1 PP -lad1-FBA1-lad1-FBA1 TT -- PGK1PGK1 PP -alx1-CYC1-alx1-CYC1 TT )) S. cerevisiae YE01 S. cerevisiae YE01 FBA1 P -lad1-FBA1 T-PGK1 P -alx1-CYC1 T FBA1 P -lad1-FBA1 T - PGK1 P -alx1-CYC1 T Kim553Kim553 7171 CTTACACTTGTGTAATGACAAATGTTTTT TGAACAACAATACCAGCCTTC CTTACACTTGTGTAATGACAAATGTTTTT TGAACAACAATACCAGCCTTC Kim554Kim554 7272 TGTTTCACGTTATCAAGATTATGTCATCTATT GGCCGCAAATTAAAGCCT TGTTTCACGTTATCAAGATTATGTCATCTATT GGCCGCAAATTAAAGCCT Overexpression of Overexpression of YPR1YPR1 (( CCW12CCW12 PP -YPR1-YPR1 )) S. cerevisiaeS. cerevisiae CCW12CCW12 PP Kim537Kim537 7373 GTAACTTTGCAATATAATCAGGTCGCAAATAT CACGCAAAAGAAAACCTT GTAACTTTGCAATATAATCAGGTCGCAAATAT CACGCAAAAAGAAAACCTT Kim538Kim538 7474 GAAGAATTCTTTAACGTAGCAGGCAT TATTGATATAGTGTTTAAGCGAAT GAAGAATTCTTTAACGTAGCAGGCAT TATTGATATAGTGTTTAAGCGAAT gaaDgaaD expression cassette ( expression cassette ( int#6::CCW12int#6::CCW12 PP -gaaD-CCW12-gaaD-CCW12 TT )) S. cerevisiaeS. cerevisiae CCW12CCW12 PP Kim541Kim541 7575 CGGAGGAGACCGCTATAACCGGTTTGAATTTA CACGCAAAAGAAAACCTT CGGAGGAGACCGCTATAACCGGTTTGAATTTA CACGCAAAAAGAAAACCTT Kim542Kim542 7676 TA ACCTTCTTTCCGAGAGACATTTTTTATTGATATAGTGTTTAAGCGAAT TA ACCTTCTTTCCGAGAGACATTTTTTATTGATATAGTGTTTAAGCGAAT A. nigerA. niger gaaDgaaD Kim543Kim543 7777 TC ATTCGCTTAAACACTATATCAATAAAAAATGTCTCTCGGAAAGAAGGT TC ATTCGCTTAAACACTATATCAATAAAAAATGTCTCTCGGAAAGAAGGT Kim544Kim544 7878 GT ATAAATAATAATAAACTAAGTTTATTAAACAATCACCTTATGACCAGC GT ATAAATAATAATAAACTAAGTTTATTAAACAATCACCTTATGACCAGC S. cerevisiaeS. cerevisiae CCW12CCW12 TT Kim545Kim545 7979 TG GTCATAAGGTGATTGTTTAATAAACTTAGTTTATTATTATTTATACAT TG GTCATAAGGTGATTGTTTAATAAACTTAGTTTATTATTATTTATACAT Kim546Kim546 8080 CTTGCTTGCTGTCAAACTTCTGAGTTG TGTTCTAGTGTGTTTATATTATC CTTGCTTGCTGTCAAACTTCTGAGTTG TGTTCTAGTGTGTTTATATTATC

a Saccharomyces cerevisiae D452-2; Pichia stipitis CBS 6054; Aspergillus niger CBS 120.49; Trichoderma reesei ATCC 5676. a Saccharomyces cerevisiae D452-2; Pichia stipitis CBS 6054; Aspergillus niger CBS 120.49; Trichoderma reesei ATCC 5676.

Flanking region is underlined.Flanking region is underlined.

프라이머primer 서열(5'-3')sequence (5'-3') 서열번호SEQ ID NO: 프라이머primer 서열(5'-3')sequence (5'-3') 서열
번호
order
number
D-xylose pathwayD-xylose pathway D-galacturonic acid pathwayD-galacturonic acid pathway Kim049Kim049 GGAACGGTGAGTGCAACG GGAACGGTGAGTGCAACG 8181 Kim322Kim322 GCGCATCTATTTGCCGTCGCGCATCTATTTGCCGTC 103103 Kim427Kim427 AAACTGTTCACCCAGACACCAAACTGTTCACCCAGACACC 8282 Kim397Kim397 GCTGGGGGAGCCATTTTTTATTGGCTGGGGGAGCCATTTTTTATTG 104104 Kim194Kim194 AGCGCAACTACAGAGAACAGG AGCGCAACTACAGAGAACAGG 8383 Kim398Kim398 GTGGGAGCTGAAGTAGACTTAGGTGGGAGCTGAAGTAGACTTAG 105105 Kim100Kim100 CGGCACCGTCGAACAATCTGCGGCACCGTCGAACAATCTG 8484 Kim323Kim323 TCACGACACACCTCACTGTCACGACACACCTCACTG 106106 Kim101Kim101 CCGCTTACTCTTCGTTCGGTCCCCGCTTACTCTTCGTTCGGTCC 8585 Kim399Kim399 CCTGTGATGGTGACTTCAGACCCTGTGATGGTGACTTCAGAC 107107 Kim193Kim193 CTCAGCATCCACAATGTATCAG CTCAGCATCCACAATGTATCAG 8686 Kim401Kim401 GAACGGAGAGAAGATCTGAATTGGAACGGAGAGAAGATCTGAATTG 108108 Kim426Kim426 GCGCTATTGCATTGTTCTTGTCGCGCTATTGCATTGTTCTTGTC 8787 Kim400Kim400 ACAGCCTGTTCTCACACACACAGCCTGTTTCCACACAC 109109 Kim547Kim547 AGGTATGCGATAGTTCCTCAC AGGTATGCGATAGTTCCTCAC 8888 Kim402Kim402 GCGGGGTAAAAGGCATTTTTTTTGGCGGGGTAAAAGGCATTTTTTTTG 110110 Kim125Kim125 TGCAGCTTCCAATTTCGTCAC TGCAGCTTCCAATTTCGTCAC 8989 Kim408Kim408 GCCGGATATTGCTTAGGTGGCCGGATATTGCTTAGGTG 111111 Kim630Kim630 GAGGTGACACCCTTACCAACGAGGTGACACCCTTACCAAC 9090 Kim631Kim631 CTGCTACTCACACCTTCAACTC CTGCTACTCACACCTTCAACTC 9191 Introduction of L-arabinose pathwayIntroduction of L-arabinose pathway Kim632Kim632 CGCTGAACCCGAACATAGAAATATCCGCTGAACCCGAACATAGAAATATC 9292 Kim490Kim490 GGCACTAGGAGCATTTGTCGGGCACTAGGAGCATTTGTCG 112112 Kim633Kim633 TCGATATTTCTATGTTCGGGTTCAGTCGATATTTCTATGTTCGGGTTCAG 9393 Kim304Kim304 GCTTCGCTAATCCAGAGGTC GCTTCGCTAATCCAGAGGTC 113113 Kim078Kim078 GATTGGAATTGGTTCGCAGTG GATTGGAATTGGTTCGCAGTG 9494 Kim400Kim400 ACAGCCTGTTCTCACACACACAGCCTGTTTCCACACAC 109109 Kim048Kim048 GAGGAAGACGTTGAAGGTGG GAGGAAGACGTTGAAGGTGG 9595 Kim491Kim491 GTCCCTTAGGGTGCGTATAATG GTCCCTTAGGGTGCGTATAATG 114114 Kim149Kim149 TTTGAAGTGGTACGGCGATG TTTGAAGTGGTACGGCGATG 9696 Kim577Kim577 CACCCAAGCACAGCATACCACCCAAGCACAGCATAC 9797 Overexpression of Overexpression of YPR1YPR1 Kim634Kim634 TGGCTCGATAACGAAGATTCAGTGGCTCGATAACGAAGATTCAG 9898 Kim539Kim539 CAATTCCGTGAAACCCTTTTCTTCAATTCCGTGAAACCCTTTTCTT 115115 Kim635Kim635 GTCTTGTAGATTGAGAACTGGTCCGTCTTGTAGATTGAGAACTGGTCC 9999 Kim540Kim540 CTGCCAACTTCTTCTTCATTCAACTGCCAACTTCTTCTTCATTCAA 116116 Kim636Kim636 TCTATGAGGCAAGTAAGAGGCACTCTATGAGGCAAGTAAGAGGCAC 100100 Kim492Kim492 AACAGGCGACAGTCCAAATGAACAGGCGACAGTCCAAATG 101101 Introduction of Introduction of gaaD gaaD gene cassettegene cassette Kim077Kim077 TTGGAGTTCAAACTGGCGAG TTGGAGTTCAAAACTGGCGAG 102102 Kim326Kim326 GGTTCTGACTCCTACTGAGCGGTTCTGACTCCTACTGAGC 117117 Kim093Kim093 GCAAAGATAGCGGCGTAGGTGGCAAAGATAGCGGCGTAGGTG 118118 Kim549Kim549 GCATCCTTTGCCTCCGTTCGCATCCTTTGCCTCCGTTC 119119 Kim327Kim327 AGCATCGAGTACGGCAGTTCAGCATCGAGTACGGCAGTTC 120120

<1-3> 고성능 액체 크로마토그래피(High Performance Liqui Chromatography, HPLC)를 활용한 성분 분석<1-3> Component analysis using High Performance Liqui Chromatography (HPLC)

배양액의 glucose, fructose, galactose, xylose, L-arabinose, galacturonic acid, glycerol 및 ethanol의 농도는 HPLC (Agilent Technologies, 1260 series, USA)를 사용하여 분석을 실시하였다. 구체적으로, 위의 성분을 분석하기 위해 배양액의 상등액을 Rezex-ROA Organic Acid H+ (8%) column 및 RI detector를 장비한 HPLC에 0.005 N H2SO4 mobile phase를 0.6 mL/min 유속 및 column 온도를 50℃로 설정하여 분석을 실시하였다. The concentrations of glucose, fructose, galactose, xylose, L-arabinose, galacturonic acid, glycerol and ethanol in the culture medium were analyzed using HPLC (Agilent Technologies, 1260 series, USA). Specifically, to analyze the above components, the supernatant of the culture medium was subjected to a Rezex-ROA Organic Acid H+ (8%) column and 0.005 NH 2 SO 4 mobile phase on HPLC equipped with an RI detector, 0.6 mL/min flow rate and column temperature. The analysis was performed by setting it to 50°C.

<1-4> 기체 크로마토그래피 질량분석기(Gas Chromatography/Mass Spectrometry, GC/MS)를 활용한 세포 내 대사산물(intracellular metabolites) 분석<1-4> Analysis of intracellular metabolites using Gas Chromatography/Mass Spectrometry (GC/MS)

자일로스 및 갈락투론산의 단독 또는 혼합당 조건에서 세포내 대사산물을 분석하기 위해 아래와 같은 방법으로 대사체 추출 및 GC/MS 분석을 실시하였다. In order to analyze intracellular metabolites under single or mixed sugar conditions of xylose and galacturonic acid, metabolite extraction and GC/MS analysis were performed as follows.

우선, 0, 24, 48 및 72 h의 발효 시간에서 5 mL의 배양액에 함유한 세포의 대사체를 추출 및 진공건조한 다음, 메톡시아민화 및 트리메틸실릴화 하여 유도화를 실시하였다. 메톡시아민화를 수행하기 위하여 진공건조된 샘플에 메톡시아민 하이드로클로라이드가 포함된 피리딘 10 μL을 첨가 한 후 30℃에서 90분동안 처리하였다. 그 다음, N-메틸-N-(트리메티실릴)트리플루오로아세트아미드 40 μL를 추가한 다음 37℃에서 30분간 처리하여 트리메틸실릴화를 실시하였다. GC/MS 분석은 Agilent 5973 질량 선별 검출기 및 RTX-5Sil MS column이 장착된 Agilent 6890 가스 크로마토그래피를 사용하여 수행되었다. 1 μL의 유도화된 샘플을 스플릿리스 모드(splitless mode)로 하는 GC 장비에 주입하였다. 초기 오븐의 온도는 50℃에서 1분동안 유지 후 20℃/min의 속도로 향상되어 최종적으로 330℃에서 5분간 유지하도록 조건을 설정하였으며, 이온 소스(ion source) 및 전달라인(transfer line)은 각각 250℃, 290℃의 온도로 설정하였다. 캐리어 가스(carrier gas)는 헬륨가스를 이용하였으며 1.5 mL/min의 속도로 흐르게 하였다. 분리된 대사산물들은 70 eV에서 이온화하도록 조정하였으며, 50-550 m/z 질량범위의 스캔 모드(scan mode)에서 검출하도록 하여 세포 내 대사산물 분석을 실시하였다.First, at fermentation times of 0, 24, 48 and 72 h, the metabolites of cells contained in 5 mL of culture medium were extracted and vacuum dried, and then derivatized by methoxyamination and trimethylsilylation. To perform methoxyamination, 10 μL of pyridine containing methoxyamine hydrochloride was added to the vacuum-dried sample, and then treated at 30° C. for 90 minutes. Then, 40 μL of N-methyl-N-(trimethicilyl)trifluoroacetamide was added, followed by treatment at 37° C. for 30 minutes to perform trimethylsilylation. GC/MS analysis was performed using an Agilent 6890 gas chromatography equipped with an Agilent 5973 mass screening detector and an RTX-5Sil MS column. 1 μL of the derivatized sample was injected into the GC instrument in splitless mode. The temperature of the initial oven was maintained at 50°C for 1 minute, then improved at a rate of 20°C/min, and finally the conditions were set to maintain at 330°C for 5 minutes, and the ion source and transfer line were The temperatures were set at 250°C and 290°C, respectively. Helium gas was used as the carrier gas and flowed at a rate of 1.5 mL/min. The isolated metabolites were adjusted to be ionized at 70 eV, and intracellular metabolite analysis was performed to detect them in a scan mode in a mass range of 50-550 m/z.

<1-5> 감귤박 가수분해물(Citrus peel hydrolysate)의 발효<1-5> Fermentation of Citrus peel hydrolysate

개량균주 S. cerevisiae YE9가 실제 폐자원 바이오매스를 기질로 바이오에너지를 생산할 수 있는지 확인하기 위하여 과일계 폐자원 바이오매스 중 하나인 감귤박(citrus peel)을 열처리 및 효소적 처리를 하여 감귤박 가수분해물을 제조하였다. 구체적으로 2019년 1월 제주에서 수확한 감귤의 귤껍질을 1회 세척 후 60℃에서 약 24시간동안 열풍 건조를 실시한 다음 분쇄기로 갈아서 감귤박 분말을 만들었다. 분말화된 감귤박은 고압증기멸균기를 이용하여 121℃에서 1시간동안 열처리를 실시한 후 상온에서 냉각 단계를 거쳐서 감귤박 가수분해물(citrus peel hydrolysate)을 제조하였다. 동시당화발효(Simultaneous Saccharification and Fermentation, SSF)를 실시하기 위하여 감귤박 가수분해물에 초기 세포농도 25g/L의 개량효모 S. cerevisiae YE9 및 2종의 복합 가수분해효소(60U/g biomass의 pectinase, 80FPU/g biomass의 Cellic CTec2)를 첨가하여 30℃에서 130rpm으로 240시간동안 발효를 실시하였다. 모든 발효는 생물학적 3반복으로 수행되었으며, 개량효모 S. cerevisiae YE9의 발효 결과는 모균주 S. cerevisiae D452-2의 결과와 비교하였다.In order to confirm that the improved strain S. cerevisiae YE9 can produce bioenergy using actual waste biomass as a substrate, citrus peel, one of the fruit-based waste biomass, is subjected to heat treatment and enzymatic treatment to increase citrus fruit juice. A lysate was prepared. Specifically, the tangerine peels of tangerines harvested in Jeju in January 2019 were washed once, dried with hot air at 60°C for about 24 hours, and then ground with a grinder to make tangerine gourd powder. The powdered citrus peel was heat-treated at 121° C. for 1 hour using a high-pressure steam sterilizer, and then cooled at room temperature to prepare a citrus peel hydrolysate. For simultaneous Saccharification and Fermentation (SSF), the improved yeast S. cerevisiae YE9 with an initial cell concentration of 25 g/L and two complex hydrolases (60U/g biomass pectinase, 80FPU) were added to the hydrolyzate of citrus peel. Cellic CTec2) of /g biomass was added, and fermentation was carried out at 30° C. at 130 rpm for 240 hours. All fermentations were performed in three biological replicates, and the fermentation results of the improved yeast S. cerevisiae YE9 were compared with those of the parent strain S. cerevisiae D452-2.

<실시예 2> 과일계 바이오매스 유래 3종의 비통상적 탄소원을 발효하는 <Example 2> Fermentation of three unconventional carbon sources derived from fruit-based biomass S. cerevisiae S. cerevisiae YE9 균주의 개발Development of YE9 strain

균주 개발에 앞서 과일계 바이오매스 유래 3종의 비통상적 탄소원을 동시에 발효하는 균주를 개발하기 위해 CRISPR/Cas9 유전자가위 기술을 이용하여 외래 유전자를 효모 S. cerevisiae D452-2에 도입하여 재조합 효모 S. cerevisiae YE9를 개발하였다. Prior to strain development, a foreign gene was introduced into yeast S. cerevisiae D452-2 using CRISPR/Cas9 gene editing technology to develop a strain that simultaneously ferments three unconventional carbon sources derived from fruit-based biomass, and the recombinant yeast S. cerevisiae YE9 was developed.

우선, 효모의 주된 부산물이며 생육에 저해를 일으키는 아세테이트(acetate)의 억제를 위해 아세트알데하이드 탈수효소(acetaldehyde dehydrogenase) 유전자 ALD6를 제거하였으며, 오탄당 인산경로의 발현 수준을 향상시켜줌으로써 자일로스 및 아라비노스의 대사 플럭스(flux)를 향상시키기 위해 PHO13 유전자를 제거하였다. First, the acetaldehyde dehydrogenase gene ALD6 was removed to suppress acetate, which is a major by-product of yeast and causes inhibition of growth. The PHO13 gene was removed to improve metabolic flux.

다음으로 목질계 바이오매스중 하나인 자일로스(xylose)를 이용하기 위해서 Pichia stipitis 유래의 xylose reductase(XYL1), xylitol dehydrogenase(XYL2), xylulokinase(XYL3) 유전자 도입하였으며, 감귤박에 풍부하게 존재하는 오탄당인 아라비노스(L-arabinose)를 이용하기 위해 Trichoderma reesei 유래의 L-arabitol dehydrogenase 유전자 lad1Ambrosiozyma monospora 유래의 L-xylulose reductase 유전자 alx1를 도입하였다. 마지막으로 펙틴의 주요 구성성분인 D-갈락투론산(D-galacturonic acid; galUA)을 이용하기 위해 Aspergillus niger 유래의 D-galacturonic acid reductase(gaaA), 2-keto-3-deoxy-L-galactonate aldolase(gaaC) 및 Trichoderma reesei 유래의 L-galactonate dehydratase 유전자 lgd1을 도입하였다.Next, to use xylose, one of the lignocellulosic biomass, xylose reductase ( XYL1 ), xylitol dehydrogenase ( XYL2 ), and xylulokinase ( XYL3 ) genes derived from Pichia stipitis were introduced. To use phosphorus arabinose (L-arabinose), the L-arabitol dehydrogenase gene lad1 derived from Trichoderma reesei and the L-xylulose reductase gene alx1 derived from Ambrosiozyma monospo ra were introduced. Lastly, in order to use D-galacturonic acid (galUA ), which is a major component of pectin, D-galacturonic acid reductase ( gaaA ) derived from Aspergillus niger , 2-keto-3-deoxy-L-galactonate aldolase ( gaaC ) and Trichoderma reesei- derived L-galactonate dehydratase gene lgd1 was introduced.

<실시예 3> <Example 3> S. cerevisiae S. cerevisiae YE9 균주의 발효 결과Fermentation results of YE9 strain

3종의 비통상적 탄소원(자일로스, 아라비노스, 갈락투론산)을 단독 탄소원으로 야생 효모 D452-2와 개량 균주 S. cerevisiae YE9 를 비교하였다. Wild yeast D452-2 and improved strain S. cerevisiae YE9 were compared with three unconventional carbon sources (xylose, arabinose, and galacturonic acid) as the sole carbon source.

구체적으로, 플라스크를 이용한 발효실험을 위해 우선 2%(w/v) 글루코스를 함유한 YP 액체배지에서 전배양(preculture)을 수행하였고, 4%(w/v) 자일로스 또는 4%(w/v) 아라비노스, 2%(w/v) 갈락투론산을 함유한 YP 액체배지에 초기 세포를 25g/L로 접종하여 30℃ 및 미세호기 조건(130 rpm)에서 발효를 실시하였다. 모든 실험은 생물학적 3반복을 실시하였으며 평균 및 표준편차를 나타내었다.Specifically, for fermentation experiments using flasks, preculture was first performed in YP liquid medium containing 2% (w/v) glucose, and 4% (w/v) xylose or 4% (w/v) v) Initial cells were inoculated at 25 g/L in YP broth containing arabinose and 2% (w/v) galacturonic acid, and fermentation was performed at 30° C. and microaerobic conditions (130 rpm). All experiments were performed in three biological replicates, and the mean and standard deviation were shown.

그 결과, 모균주 S. cerevisiae D452-2 는 3종의 비통상적 탄소원(자일로스, 아라비노스, 갈락투론산)을 모두 소비하지 못하였지만, 재조합 효모 YE9는 소비하여 글리세롤(glycerol) 또는 에탄올(ethanol)과 같은 에너지원을 생산하였다(도 3 내지 도 5).As a result, the parent strain S. cerevisiae D452-2 did not consume all three unconventional carbon sources (xylose, arabinose, and galacturonic acid), but the recombinant yeast YE9 consumed glycerol or ethanol. ) was produced as an energy source ( FIGS. 3 to 5 ).

자일로스를 기질로 발효한 결과, 재조합 효모 YE9는 발효 9시간에 자일로스를 모두 소비하여 약 0.6 g/L 글리세롤 및 11.3 g/L 에탄올을 생산하였으며(도 3), 아라비노스를 기질로 발효한 결과, 재조합 효모 YE9는 자일로스보다 발효 속도가 느렸지만 발효 72시 간동안 아라비노스를 30.2 g/L 소비하여 1.9 g/L의 에탄올을 축적하였다(도 4). As a result of fermenting xylose as a substrate, the recombinant yeast YE9 consumed all of the xylose at 9 hours of fermentation and produced about 0.6 g/L glycerol and 11.3 g/L ethanol (FIG. 3). As a result, the recombinant yeast YE9 had a slower fermentation rate than xylose, but consumed 30.2 g/L of arabinose for 72 hours of fermentation and accumulated 1.9 g/L of ethanol (FIG. 4).

갈락투론산을 기질로 발효한 결과, 재조합 효모 YE9는 발효 72시간 동안 6.7 g/L의 갈락투론산을 소비하여 0.3 g/L 글리세롤 및 0.3 g/L 에탄올을 축적하였지만,발효 12시간 이후부터는 갈락투론산의 소비가 멈춘 것을 확인하였다(도 5).As a result of fermenting galacturonic acid as a substrate, recombinant yeast YE9 consumed 6.7 g/L of galacturonic acid during 72 hours of fermentation and accumulated 0.3 g/L glycerol and 0.3 g/L ethanol, but after 12 hours of fermentation, It was confirmed that the consumption of lacturonic acid stopped ( FIG. 5 ).

이전 보고된 연구에서는 재조합된 S. cerevisiae 균주는 수송체 발현 및 pH조절 없이는 거의 소비하지 못하거나 1g/L 미만으로 소비하는 결과를 보여준 반면(Protzko et al., 2018), 본 발명을 통해 개발된 재조합 균주 S. cerevisiae YE9는 pH 조절없이 6.7 g/L의 galUA를 소비함으로써 과일 펙틴 발효에 효과적임을 증명하였다.Previously reported studies showed that the recombinant S. cerevisiae strain consumed little or less than 1 g/L without transporter expression and pH control (Protzko et al., 2018), whereas the Recombinant strain S. cerevisiae YE9 proved effective for fruit pectin fermentation by consuming 6.7 g/L of galUA without pH adjustment.

기존의 모균주 S. cerevisiae D452-2는 글루코즈(glucose) 및 프럭토즈(fructose), 갈락토스(galactose)를 소비할 수 있다. 재조합 효모 YE9가 3종의 통상적 탄소원(glucose, fructose, galactose)를 소비할 수 있는지 확인하기 위해 40 g/L 통상적 탄소원 3종에 대해 각각 발효를 실시하였으며, 발효 조건은 상기 발효 조건과 동일하다.The existing parent strain S. cerevisiae D452-2 can consume glucose, fructose, and galactose. In order to confirm that the recombinant yeast YE9 can consume three kinds of conventional carbon sources (glucose, fructose, galactose), fermentation was carried out for three types of 40 g/L conventional carbon sources, respectively, and the fermentation conditions are the same as the fermentation conditions.

글루코스를 기질로 발효한 결과, 발효 1시간 안에 모두 소비되었으며 글리세롤 및 에탄올을 각각 2.0 g/L, 16.5 g/L를 생산하였으며(도 6a), 프릭토스를 기질로 발효한 결과, 발효 1시간 안에 모두 소비되었으며 글리세롤 및 에탄올을 각각 1.9 g/L, 15.1 g/L를 생산하였다(도 6b). As a result of fermenting glucose as a substrate, it was consumed within 1 hour of fermentation, and glycerol and ethanol were respectively 2.0 g/L and 16.5 g/L (Fig. 6a). All were consumed to produce 1.9 g/L and 15.1 g/L of glycerol and ethanol, respectively (FIG. 6b).

또한, 갈락토스를 기질로 발효한 결과, 발효 약 30시간 안에 모두 소비되었으며 글리세롤을 8.2 g/L를 생산하였다(도 6c).In addition, as a result of fermenting galactose as a substrate, it was consumed within about 30 hours of fermentation and produced 8.2 g/L of glycerol (FIG. 6c).

이외에 갈락투론산 대사경로를 최종적으로 완성시키기 위해 2종의 L-glyceraldehyde reductase (Aspergillus niger 유래 유전자 gaaA 및 내인성 유전자 YPR1)를 비교하였다. 여기서 내인성 유전자인 YPR1은 L-glyceraldehyde reductase의 기능을 가질 수 있다고 추정되는 유전자로 알려져 있다. In addition, two types of L-glyceraldehyde reductase ( Aspergillus niger- derived gene gaaA and endogenous gene YPR1 ) were compared to finally complete the galacturonic acid metabolic pathway. Here, the endogenous gene YPR1 is known as a gene presumed to have the function of L-glyceraldehyde reductase.

그 결과, 2종의 L-glyceraldehyde reductase 유전자를 발현에도 불구하고 갈락투론산 발효 향상에는 영향을 미치지 못하였다(도 7).As a result, despite the expression of the two L-glyceraldehyde reductase genes, there was no effect on the improvement of galacturonic acid fermentation (FIG. 7).

<실시예 4> <Example 4> S. cerevisiae S. cerevisiae YE9 균주의 갈락투론산 및 발효 가능한 당의 혼합당 발효 결과 Mixed sugar fermentation result of galacturonic acid and fermentable sugar of YE9 strain

단독당 발효 결과를 통해 YE9 균주는 두 종의 오탄당을 빠르게 소비할 수 있었지만 갈락투론산은 완전히 소비되지 않는 결과를 확인할 수 있었다. 갈락투론산은 대사 과정 중 2 mole의 NADPH cofactor를 필요로 하기때문에 산화환원의 불균형을 해소하기 위하여 갈락투론산 발효에 cofactor의 공급원으로 발효 가능한 당을 첨가하여 혼합당 발효를 실시하였다. 과일계 바이오매스에 풍부하게 존재하는 5종의 단당류(glucose, fructose, galactose, xylose, L-arabinose)를 갈락투론산 대사의 cofactor 공급원으로써 이용하였다.Through the single sugar fermentation result, the YE9 strain was able to rapidly consume the two types of pentose sugar, but it was confirmed that the galacturonic acid was not completely consumed. Since galacturonic acid requires 2 moles of NADPH cofactor during the metabolic process, mixed sugar fermentation was performed by adding fermentable sugar as a source of cofactor to galacturonic acid fermentation in order to solve the redox imbalance. Five types of monosaccharides (glucose, fructose, galactose, xylose, L-arabinose) abundantly present in fruit-based biomass were used as cofactor sources for galacturonic acid metabolism.

혼합 발효를 실시하기 위한 발효 조건은 다음과 같다. 2%(w/v) 글루코스를 함유한 YP 액체배지에서 전배양을 수행하였고, 2%(w/v) 갈락투론산 및 4%(w/v) 단당류를 함유한 YP 액체배지에 초기 세포를 25g/L로 접종하여 30℃ 및 미세호기 조건(130rpm)에서 발효를 실시하였다. 모든 실험은 생물학적 3반복을 실시하였으며 평균 및 표준편차를 나타내었다.Fermentation conditions for carrying out the mixed fermentation are as follows. Pre-culture was performed in YP broth containing 2% (w/v) glucose, and initial cells were cultured in YP broth containing 2% (w/v) galacturonic acid and 4% (w/v) monosaccharides. It was inoculated at 25 g/L and fermented at 30° C. and microaerobic conditions (130 rpm). All experiments were performed in three biological replicates, and the mean and standard deviation were shown.

Cofactor 공급을 위한 5종의 단당류 중 글루코스의 첨가는 S. cerevisiae 고유의 특징인 glucose repression에의해 갈락투론산의 소비가 억제되어 3.3 g/L의 갈락투론산을 소비하였으며(도 8a), 프릭토스(도 8b)와 갈락토스(도 8c)의 첨가 또한 발효 72시간동안 갈락투론산을 각각 4.5 g/L, 4.6 g/L를 소비함으로써 일부 갈락투론산의 소비가 향상되었지만, 갈락투론산 단독 발효보다는 적게 소비하였다. 반면에, 오탄당인(도 8d) 자일로스 및(도 8e) 아라비노스의 첨가는 발효 72시간 안에 각각 13.1 g/L, 11.9 g/L의 갈락투론산을 소비함으로써 갈락투론산과 동시에 소비는 결과를 보여줌과 동시에 단독당 발효보다 각각 1.96-, 1.78-배 많이 소비하였을 뿐만아니라(도 8g), 갈락투론산의 소비속도도 향상시키는 결과를 확인하였다(도 8h).The addition of glucose among the five monosaccharides for supplying the cofactor suppressed the consumption of galacturonic acid by glucose repression, a characteristic characteristic of S. cerevisiae , and consumed 3.3 g/L of galacturonic acid (Fig. 8a), and frictose. The addition of (Fig. 8b) and galactose (Fig. 8c) also improved the consumption of some galacturonic acid by consuming 4.5 g/L and 4.6 g/L of galacturonic acid, respectively, during 72 hours of fermentation, but rather than fermentation of galacturonic acid alone. consumed less. On the other hand, the addition of pentose (Fig. 8d) xylose and (Fig. 8e) arabinose consumed 13.1 g/L and 11.9 g/L of galacturonic acid within 72 hours of fermentation, respectively, resulting in simultaneous consumption with galacturonic acid. At the same time, it was confirmed that not only consumed 1.96- and 1.78-fold more than single sugar fermentation, respectively (FIG. 8g), but also improved the consumption rate of galacturonic acid (FIG. 8h).

자일로스의 첨가는 갈락투론산의 소비속도를 향상시키며, 아라비노스는 갈락투론산을 지속적으로 대사될 수 있도록 유도하는 역할을 하므로 갈락투론산의 단위 시간당 소비량을 증가시키기 위하여 3종의 탄소원(xylose, L-arabinose, galacturonic acid)의 혼합당 발효를 실시하였다.The addition of xylose improves the consumption rate of galacturonic acid, and arabinose serves to induce galacturonic acid to be metabolized continuously. , L-arabinose, and galacturonic acid) were fermented.

3종의 탄소원(xylose, L-arabinose, galacturonic acid)을 혼합하여 동시에 발효한 결과, 자일로스는 36시간만에 모두 소비되어 2종의 혼합당 발효보다 약 3배 천천히 소비되었지만, 자일로스가 고갈된 이후부터는 아라비노스와 함께 갈락투론산이 지속적으로 소비됨으로써 갈락투론산의 단독 및 2종의 혼합 발효 결과보다 단위시간당 더 많은 양의 갈락투론산 (15.3 g/L)을 소비하는 결과를 얻을 수 있었다(도 8f, g).As a result of simultaneous fermentation by mixing three types of carbon sources (xylose, L-arabinose, and galacturonic acid), xylose was consumed in 36 hours and consumed about 3 times slower than fermentation of two types of mixed sugar, but xylose was depleted Since galacturonic acid is continuously consumed together with arabinose, it is possible to obtain a result of consuming a higher amount of galacturonic acid (15.3 g/L) per unit time than the result of single or mixed fermentation of galacturonic acid. There was (Fig. 8f, g).

이전에 보고된 연구 결과는 갈락투론산의 효율적인 소비를 위해서는 수송체가 필요하다고 강조하였지만, 본 발명에서 개량균주 S. cereiviae YE9는 갈락투론산 수송체의 추가적인 도입 없이 갈락투론산을 소비할 수 있었을 뿐만아니라 오탄당의 혼합당 조건에서는 갈락투론산의 소비 효율을 증가시킬 수 있으며 갈락투론산과 오탄당을 동시에 소비할 수 있는 발효 능력 또한 검증하였다.Although the previously reported results emphasized that a transporter is required for efficient consumption of galacturonic acid, the improved strain S. cereiviae YE9 in the present invention was able to consume galacturonic acid without additional introduction of the galacturonic acid transporter. However, it is possible to increase the consumption efficiency of galacturonic acid under the mixed sugar condition of pentose, and the fermentation ability to simultaneously consume galacturonic acid and pentose was also verified.

도 9는 도 8의 갈락투론산 및 단당류의 혼합당 발효를 통해 축적된 2개의 생산물(glycerol, ethanol) 결과를 보여주고 있다. 갈락투론산 발효에서 글루코스를 첨가할 경우, 72시간 발효 동안 글리세롤 및 에탄올을 각각 2.4 g/L, 16.9 g/L를 축적하였으며(도 9a), 프릭토스 첨가에서는 각각 2.9 g/L, 16.9 g/L를 축적하였다(도 9b). 갈락토스 첨가에서는 글리세롤 및 에탄올을 각각 1.6 g/L, 2.4 g/L 축적함으로써 부산물을 거의 축적하지 못하는 모습을 보였다(도 9c). 9 shows the results of two products (glycerol, ethanol) accumulated through the fermentation of mixed sugars of galacturonic acid and monosaccharides of FIG. 8 . When glucose was added in galacturonic acid fermentation, 2.4 g/L and 16.9 g/L of glycerol and 16.9 g/L of ethanol were respectively accumulated during 72 hours of fermentation (Fig. L accumulated ( FIG. 9b ). In the galactose addition, glycerol and ethanol were accumulated at 1.6 g/L and 2.4 g/L, respectively, so that almost no by-products were accumulated (FIG. 9c).

반면에, 자일로스 조건에서는 글리세롤 및 에탄올을 각각 4.5 g/L, 12.8 g/L을 축적하였으며(도 9d), 아라비노스 조건에서는 글리세롤 및 에탄올을 각각 4.2 g/L, 4.1g/L 축적함으로써 부산물 생성에는 큰 영향을 미치진 못하였지만, 갈락투론산 동시소비를 통해 cofactor 공급 및 세포 성장의 탄소원 역할을 할 수 있을 거라 사료된다(도 9d). 또한 아라비노스를 단독 발효시 글리세롤을 거의 축적하지 못하는 반면, 갈락투론산과 혼합 발효에서는 글리세롤을 축적한 것을 보면 아라비노스의 첨가가 갈락투론산의 소비에 긍정적인 영향을 미친다는 것 또한 한번 더 확인할 수 있었다. On the other hand, in the xylose condition, 4.5 g/L and 12.8 g/L of glycerol and 12.8 g/L were accumulated, respectively (FIG. 9d), and in the arabinose condition, glycerol and ethanol were accumulated at 4.2 g/L and 4.1 g/L, respectively. Although it did not have a significant effect on the production, it is thought that it can serve as a carbon source for cofactor supply and cell growth through simultaneous consumption of galacturonic acid (FIG. 9d). In addition, when arabinose is fermented alone, glycerol is hardly accumulated, whereas in mixed fermentation with galacturonic acid, glycerol is accumulated. could

마지막으로 2종의 오탄당(xylose, L-arabinose)과 갈락투론산을 혼합한 발효 결과, 글리세롤 및 에탄올을 각각 5.3 g/L, 16.5 g/L 축적함으로써 갈락투론산의 소비량 뿐만아니라 부산물의 축적량 또한 증가시킴으로써 재생에너지 생산의 가능성 또한 보여주었다(도 9d). Finally, as a result of fermentation by mixing two types of pentose sugars (xylose, L-arabinose) and galacturonic acid, glycerol and ethanol were accumulated at 5.3 g/L and 16.5 g/L, respectively, so that not only the consumption of galacturonic acid but also the accumulation of by-products It also showed the possibility of renewable energy production by increasing it (FIG. 9d).

이전 혼합당 결과를 통해 자일로스 및 아라비노스의 첨가가 갈락투론산 소비 향상을 위한 최적 당임을 확인할 수 있었다. 하지만 이전 연구결과에 따르면 산성 조건의 배지(pH 3.5)에서 10 g/L의 갈락투론산 존재시 갈락토스 및 자일로스, 아라비노스의 소비를 억제시키는 반면 글루코즈의 소비에는 영향을 미치지 않는 보고가 있었다(Huisjes et al., 2012). 본 연구로부터 개발된 3종의 비통상적 탄소원을 발효하는 YE9 균주를 활용하여 이전 연구와 동일한 결과를 나타내는지 확인하기 위해 자일로스 및 다양한 갈락투론산(1-100g/L) 혼합당 조건에서 자일로스 및 갈락투론산의 소비율을 확인하였다(도 10). From the previous mixed sugar results, it was confirmed that the addition of xylose and arabinose was the optimal sugar for improving galacturonic acid consumption. However, according to the results of previous studies, there was a report that the presence of 10 g/L galacturonic acid in an acidic medium (pH 3.5) inhibited the consumption of galactose, xylose, and arabinose, while not affecting the consumption of glucose ( Huisjes et al., 2012). In order to check whether the YE9 strain fermenting three kinds of non-conventional carbon sources developed from this study shows the same results as in the previous study, xylose and various galacturonic acids (1-100 g/L) mixed sugar conditions And the consumption rate of galacturonic acid was confirmed (FIG. 10).

자일로스 및 갈락투론산의 소비율을 확인하기 위해 우선 재조합 균주 YE9는 20g/L 글루코스를 함유한 YP 액체배지에서 전배양을 수행하였고, 1-100g/L 갈락투론산 및 40g/L 자일로스를 함유한 YP 액체배지에 초기 세포농도를 0.05 g/L로 접종하여 30℃ 및 미세호기 조건(130 rpm)에서 발효를 실시하였다. 모든 실험은 생물학적 3반복을 실시하였으며 평균 및 표준편차를 나타내었다.In order to confirm the consumption rates of xylose and galacturonic acid, the recombinant strain YE9 was first pre-cultured in YP broth containing 20 g/L glucose, containing 1-100 g/L galacturonic acid and 40 g/L xylose. One YP liquid medium was inoculated with an initial cell concentration of 0.05 g/L, and fermentation was performed at 30° C. and microaerobic conditions (130 rpm). All experiments were performed in three biological replicates, and the mean and standard deviation were shown.

다양한 갈락투론산 농도(1-100g/L)에서 자일로스 발효 속도를 확인한 결과, 갈락투론산의 농도가 증가할수록 자일로스 소모율이 감소되는 것을 확인하였으며, 고농도의 갈락투론산(80g/L)에서는 자일로스를 전혀 소비하지 못하는 결과를 확인할 수 있었다. 또한 이전 연구 결과와 동일하게 갈락투론산의 존재는 자일로스의 소비 속도에 영향을 미칠 수 있지만, 재조합 균주 YE9는 자일로스의 억제제인 갈락투론산을 기질로 사용할 수 있기때문에 결국 자일로스가 소비되는 결과를 얻을 수 있었다.As a result of checking the xylose fermentation rate at various galacturonic acid concentrations (1-100 g/L), it was confirmed that the xylose consumption rate decreased as the galacturonic acid concentration increased. It was confirmed that Xylose was not consumed at all. Also, as in the previous study results, the presence of galacturonic acid can affect the consumption rate of xylose, but since the recombinant strain YE9 can use galacturonic acid, an inhibitor of xylose, as a substrate, eventually xylose is consumed. could get the results.

<실시예 5> <Example 5> S. cerevisiae S. cerevisiae YE9 균주의 갈락투론산 대사 과정 중 세포내 대사산물의 프로파일링Profiling of intracellular metabolites during galacturonic acid metabolism in YE9 strain

이전 실험 결과를 통해 배양액에 자일로스의 첨가가 갈락투론산의 소비에 영향을 미치는지 확인하였다. 자일로스가 갈락투론산의 소비에 어떻게 도움을 주고 있고 어떤 limiting-step pathway를 해소하고 있는지 파악하기 위해 GC/MS 기기를 활용하여 자일로스 및 갈락투론산의 단독당 및 혼합당 조건에서의 세포내 대사산물(intracellular metabolite) 분석을 실시하였다(도 11).Through the results of previous experiments, it was confirmed whether the addition of xylose to the culture medium affects the consumption of galacturonic acid. In order to understand how xylose helps the consumption of galacturonic acid and which limiting-step pathway is being resolved, intracellular xylose and galacturonic acid in monosaccharide and mixed sugar conditions using GC/MS equipment Metabolite (intracellular metabolite) analysis was performed (FIG. 11).

세포내 대사산물 분석을 위한 타겟 물질은 2종의 탄소원의 대사 과정에서 생성되는 중간대사산물로 하였다. 세포내 자일로스 대사경로의 중간 대사산물은 자일로스 및 자일리톨(xylitol), 자일룰로스(D-xylulose), 자일룰로스-5P(xylulose-5P)이고, 갈락투론산 대사경로의 중간대사산물은 갈락투론산(D-galacturonic acid), L-갈락토네이트(L-galactonate), 2-케토-3-디옥시-L-글리세르알데하이드(2-keto-3-deoxy-L-glyceraldehyde), L-글리세르알데하이드(L-glyceraldehyde)이다. 두 탄소원의 공통적인 중간대사산물은 글리세롤 및 피루빈산(pyruvate)이다.The target material for intracellular metabolite analysis was an intermediate metabolite generated in the metabolic process of two carbon sources. The intermediate metabolites of the intracellular xylose metabolic pathway are xylose, xylitol, xylulose (D-xylulose), and xylulose-5P, and the intermediate metabolites of the galacturonic acid metabolic pathway are D-galacturonic acid, L-galactonate, 2-keto-3-deoxy-L-glyceraldehyde, L -Glyceraldehyde (L-glyceraldehyde). Common intermediate metabolites of both carbon sources are glycerol and pyruvate.

세포내 대사산물 분석을 위해, 우선 2%(w/v) 글루코스를 함유한 YP 액체배지에서 전배양을 실시하였고, 2%(w/v) 갈락투론산 및 4%(w/v) 자일로스를 단독 또는 혼합한 YP 액체배지에 초기세포 농도를 0.05 g/L로 접종하여 30℃ 및 미세호기 조건(130 rpm)에서 발효를 실시하였으며, 세포는 발효액에 YE9 균주 접종 후(0 h), 발효 24시간(24 h), 48시간(48 h), 72시간(72 h) 후의 배양액 5 mL의 세포를 포집하여 분석을 실시하였다.For intracellular metabolite analysis, preculture was first performed in YP broth containing 2% (w/v) glucose, 2% (w/v) galacturonic acid and 4% (w/v) xylose. was inoculated at an initial cell concentration of 0.05 g/L in YP broth alone or mixed with After 24 hours (24 h), 48 hours (48 h), and 72 hours (72 h), 5 mL of the culture medium was collected and analyzed.

이후 세포 내 대사산물을 추출하고 Agilent 5973 MSD가 포함된 Agilent 6890 GC 장비를 이용하여 GC/MS 분석을 실시하였다. 분석한 결과는 세포 바이오매스(biomass)에 의해 일반화(normalization)한 값(Signal abundance)으로 표시하였다. 모든 실험은 생물학적 3반복을 실시하였으며 평균 및 표준편차를 나타내었다. Thereafter, intracellular metabolites were extracted and GC/MS analysis was performed using an Agilent 6890 GC instrument with an Agilent 5973 MSD. The analyzed result was expressed as a value normalized by cell biomass (Signal abundance). All experiments were performed in three biological replicates, and the mean and standard deviation were shown.

그 결과, 갈락투론산을 단독당으로 발효하였을 경우 갈락투론산은 균주 접종하자마자 세포 내로 축적되어 첫번째 중간대사산물인 L-갈락토네이트(L-galactonate)로 빠르게 전환이 이루어지지만, 두번째 대사산물인 2-케토-3-디옥시-L-글리세르알데하이드(2-keto-3-deoxy-L-glyceraldehyde)는 전혀 축적이 이루어지지 않았다. 반면에, 자일로스 및 갈락투론산을 혼합 발효할 경우, 발효가 진행됨에 따라 세포내 갈락투론산 및 L-갈락토네이트(L-galactonate)로 빠르게 고갈됨과 동시에 2-케토-3-디옥시-L-글리세르알데하이드(2-keto-3-deoxy-L-glyceraldehyde)를 축적하는 결과를 확인할 수 있다(도 11).As a result, when galacturonic acid is fermented as a single sugar, galacturonic acid accumulates in the cell immediately after strain inoculation and is rapidly converted to L-galactonate, the first intermediate metabolite, but the second metabolite 2-keto-3-deoxy-L-glyceraldehyde did not accumulate at all. On the other hand, in the case of mixed fermentation of xylose and galacturonic acid, as fermentation proceeds, intracellular galacturonic acid and L-galactonate are rapidly depleted, and at the same time, 2-keto-3-deoxy- The result of accumulating L-glyceraldehyde (2-keto-3-deoxy-L-glyceraldehyde) can be confirmed (FIG. 11).

이러한 결과는 갈락투론산이 세포 내로 uptake는 충분히 가능함을 시사하며, 중간대사산물인 2-케토-3-디옥시-L-글리세르알데하이드(2-keto-3-deoxy-L-glyceraldehyde)가 갈락투론산 단독 발효에는 축적되지 않는 반면 자일로스 및 갈락투론산 혼합발효에서는 축적됨으로써 갈락투론산의 대사를 촉진시키는 결과를 확인 할 수 있었다.These results suggest that the uptake of galacturonic acid into cells is sufficiently possible, and the intermediate metabolite, 2-keto-3-deoxy-L-glyceraldehyde, It was confirmed that lacturonic acid did not accumulate in single fermentation, whereas in xylose and galacturonic acid mixed fermentation, it was accumulated, thereby accelerating the metabolism of galacturonic acid.

<실시예 6> <Example 6> S. cerevisiae S. cerevisiae YE9 균주의 감귤박 가수분해물의 발효Fermentation of citrus fruit hydrolyzate of YE9 strain

펙틴에 풍부한 3종의 탄소원(자일로스, 아라비노스, 갈락투론산)을 동시에 소비할 수 있는 개량균주 S. cerevisiae YE9가 실제 펙틴 가수분해물을 발효하여 바이오에너지를 생산할 수 있는지 확인하기 위하여 감귤박 가수분해물(citrus peel hydrolysate)을 이용하여 동시당화발효(Simultaneous Saccharification and Fermentation, SSF)를 실시하였다(도 12). To confirm that the improved strain S. cerevisiae YE9, which can simultaneously consume three types of carbon sources rich in pectin (xylose, arabinose, and galacturonic acid), can produce bioenergy by fermenting the actual pectin hydrolyzate, Simultaneous Saccharification and Fermentation (SSF) was performed using citrus peel hydrolysate (FIG. 12).

감귤박 가수분해물을 발효한 결과, 모균주인 S. cerevisiae D452-2는 발효 2시간 안에 글루코스 및 프룩토스는 모두 소비한 반면, 갈락투론산, 자일로스, 아라비노스를 전혀 소비하지 못하였다. 반면에, 자일로스, 아라비노스 및 갈락투론산의 대사경로가 도입된 개량균주 S. cerevisiae YE9는 발효 2시간 안에 글루코스, 프릭토스 및 자일로스를 모두 소비하였으며, 갈락투론산 및 아라비노스의 소비하는 결과를 확인할 수 있었다. 또한 글리세롤 및 에탄올을 최대 4.5 g/L, 18.7 g/L를 생산함으로써 개량균주 S. cerevisiae YE9를 이용하여 실제 펙틴 가수분해물로부터 바이오연료로 전환하는 결과를 확인하였다.As a result of fermenting the citrus fruit hydrolyzate, the parent strain, S. cerevisiae D452-2, consumed all glucose and fructose within 2 hours of fermentation, but consumed no galacturonic acid, xylose, or arabinose. On the other hand, the improved strain S. cerevisiae YE9 in which the metabolic pathway of xylose, arabinose and galacturonic acid was introduced consumed glucose, fractose and xylose within 2 hours of fermentation, and consumed galacturonic acid and arabinose. I was able to check the results. In addition, the result of converting the actual pectin hydrolyzate into biofuel using the improved strain S. cerevisiae YE9 was confirmed by producing up to 4.5 g/L and 18.7 g/L of glycerol and ethanol.

<110> Kyungpook National University Industry-Academic Cooperation Foundation <120> Microorganisms fermenting galacturonic acid and pentose simultaneously <130> PN2004-158 <160> 120 <170> KoPatentIn 3.0 <210> 1 <211> 1503 <212> DNA <213> Unknown <220> <223> ALD6(acetaldehyde dehydrogenase gene) <400> 1 atgactaagc tacactttga cactgctgaa ccagtcaaga tcacacttcc aaatggtttg 60 acatacgagc aaccaaccgg tctattcatt aacaacaagt ttatgaaagc tcaagacggt 120 aagacctatc ccgtcgaaga tccttccact gaaaacaccg tttgtgaggt ctcttctgcc 180 accactgaag atgttgaata tgctatcgaa tgtgccgacc gtgctttcca cgacactgaa 240 tgggctaccc aagacccaag agaaagaggc cgtctactaa gtaagttggc tgacgaattg 300 gaaagccaaa ttgacttggt ttcttccatt gaagctttgg acaatggtaa aactttggcc 360 ttagcccgtg gggatgttac cattgcaatc aactgtctaa gagatgctgc tgcctatgcc 420 gacaaagtca acggtagaac aatcaacacc ggtgacggct acatgaactt caccacctta 480 gagccaatcg gtgtctgtgg tcaaattatt ccatggaact ttccaataat gatgttggct 540 tggaagatcg ccccagcatt ggccatgggt aacgtctgta tcttgaaacc cgctgctgtc 600 acacctttaa atgccctata ctttgcttct ttatgtaaga aggttggtat tccagctggt 660 gtcgtcaaca tcgttccagg tcctggtaga actgttggtg ctgctttgac caacgaccca 720 agaatcagaa agctggcttt taccggttct acagaagtcg gtaagagtgt tgctgtcgac 780 tcttctgaat ctaacttgaa gaaaatcact ttggaactag gtggtaagtc cgcccatttg 840 gtctttgacg atgctaacat taagaagact ttaccaaatc tagtaaacgg tattttcaag 900 aacgctggtc aaatttgttc ctctggttct agaatttacg ttcaagaagg tatttacgac 960 gaactattgg ctgctttcaa ggcttacttg gaaaccgaaa tcaaagttgg taatccattt 1020 gacaaggcta acttccaagg tgctatcact aaccgtcaac aattcgacac aattatgaac 1080 tacatcgata tcggtaagaa agaaggcgcc aagatcttaa ctggtggcga aaaagttggt 1140 gacaagggtt acttcatcag accaaccgtt ttctacgatg ttaatgaaga catgagaatt 1200 gttaaggaag aaatttttgg accagttgtc actgtcgcaa agttcaagac tttagaagaa 1260 ggtgtcgaaa tggctaacag ctctgaattc ggtctaggtt ctggtatcga aacagaatct 1320 ttgagcacag gtttgaaggt ggccaagatg ttgaaggccg gtaccgtctg gatcaacaca 1380 tacaacgatt ttgactccag agttccattc ggtggtgtta agcaatctgg ttacggtaga 1440 gaaatgggtg aagaagtcta ccatgcatac actgaagtaa aagctgtcag aattaagttg 1500 taa 1503 <210> 2 <211> 939 <212> DNA <213> Unknown <220> <223> PHO13(haloacid dehalogenase Type IIA phosphatase gene) <400> 2 atgactgctc aacaaggtgt accaataaag ataaccaata aggagattgc tcaagaattc 60 ttggacaaat atgacacgtt tctgttcgat tgtgatggtg tattatggtt aggttctcaa 120 gcattaccat acaccctgga aattctaaac cttttgaagc aattgggcaa acaactgatc 180 ttcgttacga ataactctac caagtcccgt ttagcataca cgaaaaagtt tgcttcgttt 240 ggtattgatg tcaaagaaga acagattttc acctctggtt atgcgtcagc tgtttatatt 300 cgtgactttc tgaaattgca gcctggcaaa gataaggtat gggtatttgg agaaagcggt 360 attggtgaag aattgaaact aatggggtac gaatctctag gaggtgccga ttccagattg 420 gatacgccgt tcgatgcagc taaatcacca tttttggtga acggccttga taaggatgtt 480 agttgtgtta ttgctgggtt agacacgaag gtaaattacc accgtttggc tgttacactg 540 cagtatttgc agaaggattc tgttcacttt gttggtacaa atgttgattc tactttcccg 600 caaaagggtt atacatttcc cggtgcaggc tccatgattg aatcattggc attctcatct 660 aataggaggc catcgtactg tggtaagcca aatcaaaata tgctaaacag cattatatcg 720 gcattcaacc tggatagatc aaagtgctgt atggttggtg acagattaaa caccgatatg 780 aaattcggtg ttgaaggtgg gttaggtggc acactactcg ttttgagtgg tattgaaacc 840 gaagagagag ccttgaagat ttcgcacgat tatccaagac ctaaatttta cattgataaa 900 cttggtgaca tctacacctt aaccaataat gagttatag 939 <210> 3 <211> 957 <212> DNA <213> Unknown <220> <223> XYL1(xylose reductase gene) <400> 3 atgccttcta ttaagttgaa ctctggttac gacatgccag ccgtcggttt cggctgttgg 60 aaagtcgacg tcgacacctg ttctgaacag atctaccgtg ctatcaagac cggttacaga 120 ttgttcgacg gtgccgaaga ttacgccaac gaaaagttag ttggtgccgg tgtcaagaag 180 gccattgacg aaggtatcgt caagcgtgaa gacttgttcc ttacctccaa gttgtggaac 240 aactaccacc acccagacaa cgtcgaaaag gccttgaaca gaaccctttc tgacttgcaa 300 gttgactacg ttgacttgtt cttgatccac ttcccagtca ccttcaagtt cgttccatta 360 gaagaaaagt acccaccagg attctactgt ggtaagggtg acaacttcga ctacgaagat 420 gttccaattt tagagacctg gaaggctctt gaaaagttgg tcaaggccgg taagatcaga 480 tctatcggtg tttctaactt cccaggtgct ttgctcttgg acttgttgag aggtgctacc 540 atcaagccat ctgtcttgca agttgaacac cacccatact tgcaacaacc aagattgatc 600 gaattcgctc aatcccgtgg tattgctgtc accgcttact cttcgttcgg tcctcaatct 660 ttcgttgaat tgaaccaagg tagagctttg aacacttctc cattgttcga gaacgaaact 720 atcaaggcta tcgctgctaa gcacggtaag tctccagctc aagtcttgtt gagatggtct 780 tcccaaagag gcattgccat cattccaaag tccaacactg tcccaagatt gttggaaaac 840 aaggacgtca acagcttcga cttggacgaa caagatttcg ctgacattgc caagttggac 900 atcaacttga gattcaacga cccatgggac tgggacaaga ttcctatctt cgtctaa 957 <210> 4 <211> 1092 <212> DNA <213> Unknown <220> <223> XYL2(xylitol dehydrogenase gene) <400> 4 atgactgcta acccttcctt ggtgttgaac aagatcgacg acatttcgtt cgaaacttac 60 gatgccccag aaatctctga acctaccgat gtcctcgtcc aggtcaagaa aaccggtatc 120 tgtggttccg acatccactt ctacgcccat ggtagaatcg gtaacttcgt tttgaccaag 180 ccaatggtct tgggtcacga atccgccggt actgttgtcc aggttggtaa gggtgtcacc 240 tctcttaagg ttggtgacaa cgtcgctatc gaaccaggta ttccatccag attctccgac 300 gaatacaaga gcggtcacta caacttgtgt cctcacatgg ccttcgccgc tactcctaac 360 tccaaggaag gcgaaccaaa cccaccaggt accttatgta agtacttcaa gtcgccagaa 420 gacttcttgg tcaagttgcc agaccacgtc agcttggaac tcggtgctct tgttgagcca 480 ttgtctgttg gtgtccacgc ctctaagttg ggttccgttg ctttcggcga ctacgttgcc 540 gtctttggtg ctggtcctgt tggtcttttg gctgctgctg tcgccaagac cttcggtgct 600 aagggtgtca tcgtcgttga cattttcgac aacaagttga agatggccaa ggacattggt 660 gctgctactc acaccttcaa ctccaagacc ggtggttctg aagaattgat caaggctttc 720 ggtggtaacg tgccaaacgt cgttttggaa tgtactggtg ctgaaccttg tatcaagttg 780 ggtgttgacg ccattgcccc aggtggtcgt ttcgttcaag tcggtaacgc tgctggtcca 840 gtcagcttcc caatcaccgt tttcgccatg aaggaattga ctttgttcgg ttctttcaga 900 tacggattca acgactacaa gactgctgtt ggaatctttg acactaacta ccaaaacggt 960 agagaaaatg ctccaattga ctttgaacaa ttgatcaccc acagatacaa gttcaaggac 1020 gctattgaag cctacgactt ggtcagagcc ggtaagggtg ctgtcaagtg tctcattgac 1080 ggccctgagt aa 1092 <210> 5 <211> 1872 <212> DNA <213> Unknown <220> <223> XYL3(xylulokinase gene) <400> 5 atgaccacta ccccatttga tgctccagat aagctcttcc tcgggttcga tctttcgact 60 cagcagttga agatcatcgt caccgatgaa aacctcgctg ctctcaaaac ctacaatgtc 120 gagttcgata gcatcaacag ctctgtccag aagggtgtca ttgctatcaa cgacgaaatc 180 agcaagggtg ccattatttc ccccgtttac atgtggttgg atgcccttga ccatgttttt 240 gaagacatga agaaggacgg attccccttc aacaaggttg ttggtatttc cggttcttgt 300 caacagcacg gttcggtata ctggtctaga acggccgaga aggtcttgtc cgaattggac 360 gctgaatctt cgttatcgag ccagatgaga tctgctttca ccttcaagca cgctccaaac 420 tggcaggatc actctaccgg taaagagctt gaagagttcg aaagagtgat tggtgctgat 480 gccttggctg atatctctgg ttccagagcc cattacagat tcacagggct ccagattaga 540 aagttgtcta ccagattcaa gcccgaaaag tacaacagaa ctgctcgtat ctctttagtt 600 tcgtcatttg ttgccagtgt gttgcttggt agaatcacct ccattgaaga ggccgatgct 660 tgtggaatga acttgtacga tatcgaaaag cgcgagttca acgaagagct cttggccatc 720 gctgctggtg tccaccctga gttggatggt gtagaacaag acggtgaaat ttacagagct 780 ggtatcaatg agttgaagag aaagttgggt cctgtcaaac ctataacata cgaaagcgaa 840 ggtgacattg cctcttactt tgtcaccaga tacggcttca accccgactg taaaatctac 900 tcgttcaccg gagacaattt ggccacgatt atctcgttgc ctttggctcc aaatgatgct 960 ttgatctcat tgggtacttc tactacagtt ttaattatca ccaagaacta cgctccttct 1020 tctcaatacc atttgtttaa acatccaacc atgcctgacc actacatggg catgatctgc 1080 tactgtaacg gttccttggc cagagaaaag gttagagacg aagtcaacga aaagttcaat 1140 gtagaagaca agaagtcgtg ggacaagttc aatgaaatct tggacaaatc cacagacttc 1200 aacaacaagt tgggtattta cttcccactt ggcgaaattg tccctaatgc cgctgctcag 1260 atcaagagat cggtgttgaa cagcaagaac gaaattgtag acgttgagtt gggcgacaag 1320 aactggcaac ctgaagatga tgtttcttca attgtagaat cacagacttt gtcttgtaga 1380 ttgagaactg gtccaatgtt gagcaagagt ggagattctt ctgcttccag ctctgcctca 1440 cctcaaccag aaggtgatgg tacagatttg cacaaggtct accaagactt ggttaaaaag 1500 tttggtgact tgtacactga tggaaagaag caaacctttg agtctttgac cgccagacct 1560 aaccgttgtt actacgtcgg tggtgcttcc aacaacggca gcattatccg caagatgggt 1620 tccatcttgg ctcccgtcaa cggaaactac aaggttgaca ttcctaacgc ctgtgcattg 1680 ggtggtgctt acaaggccag ttggagttac gagtgtgaag ccaagaagga atggatcgga 1740 tacgatcagt atatcaacag attgtttgaa gtaagtgacg agatgaatct gttcgaagtc 1800 aaggataaat ggctcgaata tgccaacggg gttggaatgt tggccaagat ggaaagtgaa 1860 ttgaaacact aa 1872 <210> 6 <211> 1134 <212> DNA <213> Unknown <220> <223> lad1(L-arabitol dehydrogenase gene) <400> 6 atgtcgcctt ccgcagtcga tgacgctccc aaggccacag gggcagccat ctcagtcaag 60 cccaacattg gcgtcttcac aaatccaaaa catgacctct ggattagcga agctgaaccc 120 agcgccgatg ccgtcaaatc tggcgctgat ctgaagcccg gcgaggtgac cattgctgtc 180 cgcagcactg gtatctgtgg ttcagatgtc catttctggc acgccggctg cattgggccc 240 atgatcgtcg agggcgacca catcctcggc cacgagtctg ccggcgaggt catcgccgtc 300 cacccgactg tcagtagcct ccaaatcggc gatcgggttg ccatcgagcc caacatcatc 360 tgcaacgcat gcgagccctg cctgacaggt cgatacaacg gctgcgaaaa ggtcgagttc 420 ctatccacgc cgccagtgcc cggactgctg cgacgctacg tcaaccaccc agccgtttgg 480 tgccacaaga ttggcaacat gtcgtgggag aacggcgcgc tgctggagcc cctgagcgtg 540 gctctggccg gcatgcagag ggccaaggtt cagctcggtg accccgtgct ggtctgcggc 600 gctggtccga ttggattggt gtcaatgctg tgcgctgctg ccgccggtgc ttgcccgctt 660 gtcatcacag acatttcaga gagccgtctg gcgtttgcaa aggagatctg cccccgcgtc 720 accacgcacc gcatcgagat tggcaagtcg gctgaggaaa cggccaaaag catcgtcagc 780 tcttttgggg gcgtcgagcc agccgtgacc ctggagtgca ccggtgtgga gagcagcatt 840 gcagcggcca tctgggccag caagtttgga ggaaaggtct ttgtgatcgg cgtcggcaag 900 aatgaaatca gcattccctt tatgagggcc agtgtacgcg aggtcgatat ccagctgcag 960 tatcgctaca gcaacacctg gcctcgtgcc atccggctca tcgagagcgg tgtcatcgat 1020 ctatccaaat ttgtgacgca tcgcttcccg ctggaggatg ccgtcaaggc atttgagacg 1080 tcagcagatc ccaagagcgg cgccattaag gtcatgattc agagcctgga ttga 1134 <210> 7 <211> 816 <212> DNA <213> Unknown <220> <223> alx1(L-xylulose reductase gene) <400> 7 atgactgact acattccaac ttttagattc gatggccact taaccattgt cacaggtgcc 60 tgtggtggtt tagctgaagc tttaatcaag ggtttgttgg cctacggttc tgacattgct 120 ttgcttgata tcgaccaaga aaagactgct gccaaacaag ccgaatacca caaatacgct 180 actgaagaat tgaagttgaa agaagttcca aagatgggtt catatgcctg tgatatttct 240 gattctgata ccgttcacaa ggtgtttgct caagttgcta aggattttgg taagttgcca 300 ttgcacttgg ttaacacagc tggttactgt gaaaacttcc catgtgaaga ttacccagcc 360 aagaacgctg agaagatggt gaaggttaac ttgttgggtt ctttgtatgt ttctcaagcc 420 tttgctaagc cattgatcaa agaaggtatc aagggtgctt ctgttgtttt gattggttct 480 atgtctggtg ccattgtcaa cgatcctcaa aaccaagttg tctacaacat gtccaaggct 540 ggtgttatcc atttggctaa gactttggct tgtgaatggg ctaagtacaa catcagagtt 600 aattctttaa acccaggtta catctacggt cctttgacca agaatgttat caatggtaac 660 gaagaattgt acaacagatg gatctctggt atcccacaac aaagaatgtc cgaaccaaag 720 gaatacattg gtgctgtttt gtacttgctt tctgaatctg ctgcttcata cactactggt 780 gccagcttac tggttgatgg tggtttcact tcttgg 816 <210> 8 <211> 1239 <212> DNA <213> Unknown <220> <223> gaaA(D-galacturonic acid reductase gene) <400> 8 atggctcccc cagctgtgtt gatggtagga acaggcgagt acacgaccgg ctacgtcggt 60 ggtacagcct cgacctccga caagaaagtg ggtgtcgtgg gcctaacgct cttcgacttg 120 cgtcgtcgcg gcaaagttgg cgatttgagc atggtgggcg tatctggatc caaattccct 180 ggaatccgcg cacacttgca gaagaatatc tccgaagtct acaacggcct tgatgtctcc 240 ttcacctcct ttcccgccga caacacctcc gacccagaag cctacaaagc tgccattgac 300 gcccttcccg ccggctctgc aatcaccatt ttcacacccg accccaccca ttaccctatc 360 gctctgtacg ccattcagcg caagatccac gttctcatca ctaagcccgc gaccaagctc 420 ctctctgacc acctcgattt gctcgctgag tctcgcaagc acaatgtcgt tgtgtacatt 480 gaacaccaca agcgcttcga cccggcctac agtgacgccc gcgctaaggc tgccaagctt 540 ggtgacttca actactttta cagctacatg agtcagccca agagccagct ggagacgttc 600 aaggcctggg ctggtaagga ctcggatatc tcttattatt tgaacagcca ccacgtggat 660 gttaatgaga gcatggtgcc ggactatgtc cccgtgaagg tgacggctag tgcagcgacg 720 ggaactgctg tcgagctggg ctgtgcccat gagacggagg acacgattac tctacttgtg 780 gaatggaaga agaaggatgg atcaagaatg gctacgggtg tttacacatc tagttggacc 840 gcaccaaaga gggccggtgt acactctaac cagtacttcc attatatggg ctcgaagggt 900 gaaatccgtg tcaatcaggc gaagcgtggc tatgatgttg ccgaggatga ggctggattg 960 tcttggatta acccgttcta tatgaagtac gcaccagacg aggagggtaa cttcggtggt 1020 cagacgggct acggatacat cagtttcgag aagttcattg atgccgttac ggctgttaat 1080 gaggggcggt tgacgctcga tcagctggat gccaggccga tcccgacgct gaagaacact 1140 attgccacga cggcaatcct gcatgcagga cgcatttcct tggatgagaa gcggtcggtg 1200 gagatcgtga ccgaggatgg aaagtgggag ctgaagtag 1239 <210> 9 <211> 1008 <212> DNA <213> Unknown <220> <223> gaaC(2-keto-3-deoxy-L-galactonate aldolase gene) <400> 9 atgcctttta ccccgctccg ccccggagtc tacgctccaa ccatgacttt cttcgaccct 60 tcaaccgaag accttgacgt ccctaccatt cgcaagcacg ccgttcgcct cgcaaaagcc 120 ggtctcgtcg gtctcgtctg catgggctcc aacggcgaag ccgtacacct cacccgggca 180 gagcgcaaga ccgtgatcaa cgagacccgc tccgcactcg ttgaagccgg cttctccaac 240 gtccccgtca tcgcaggagc cagcgaacaa tccattcgcg gcaccatcga gctctgcaag 300 gaatcctacg aagccggagc tgaatatgcc ctgatcgttc cccccagcta ctaccgctac 360 gccaccggca acgaccaaac cctctatgaa ttcttcacca gcgtcgccga tggttccccc 420 atccctctca tcctctacaa ctaccccggt gccgtggcag gaattgacat ggactccgac 480 ctcatcatcc gcatctctca gcaccccaac atcgtaggca cgaagttcac ttgcgccaac 540 accggcaagt tgacccgtgt tgcttccgcc ctgcacgcca ttacccctcc ttcgccattg 600 gctccggcgc agcgcaagtt ccccagcaca aagacggagg caaaccaccc atacgttgcg 660 ttcggaggta ttgcagattt ctccctgcag acgctggcgt ccggaggttc cgcgatcctg 720 gcgggtggcg cgaatgtcat ccccaagctg tgtgtgcaga tcttcaacct ctggagcgcg 780 ggtcgcttca cggaggctat ggaggctcag gagttgttga gtagggctga ctgggtcctc 840 actaaggcgg ctatccccgg tacgaagagt gcaattcaga gctactatgg atatggtgga 900 ttcccgcgtc gcccgttggc tcgcttgagt gccgagcagg cggaggcggt ggctgagaag 960 atcaaggatg ccatggaggt tgagaagtcg ttgccggata ttgcttag 1008 <210> 10 <211> 1353 <212> DNA <213> Unknown <220> <223> lgd1(L-galactonate dehydratase gene) <400> 10 atgtctgaag tcaccatcac aggcttcagg agccgcgatg tgcggttccc cacgtcccta 60 gacaagacgg gctcggatgc gatgaacgct gcgggcgact attcagcggc atactgcatc 120 ctcgagactg attcagcgca cagtggtcat ggcatgacat tcaccattgg acgcggaaac 180 gacatcgtct gcgccgccat caaccacgtc gcggaccgac tcaagggcaa gaaactgtca 240 tcactagtgg ccgactgggg caagacctgg cggtatctgg tcaacgacag ccagctgcgg 300 tggattggcc ccgaaaaggg cgtcatccat cttgcgctcg gagccgtcgt caacgccgtc 360 tgggacctgt gggcaaagac gctcaacaag ccggtttggc gcatcgttgc cgacatgacg 420 cccgaggagt atgtccgctg catcgacttc cgctacatta ccgacgcaat cacccccgag 480 gaagccgtgg cgatgctgcg cgagcaggag gccggcaagg ccaagcgcat cgaggaggct 540 ctccagaacc gagcggtgcc tgcatacaca acaagtgccg gttggctggg atacggagag 600 gacaagatga agcagctcct gagagagacg ctggctgccg gatacagaca cttcaaggtc 660 aaggttggcg gcagcgtcga ggaggaccga aggcgcctcg gcattgctcg cgaaattctt 720 ggtttcgaca agggcaacgt tctcatggtc gatgccaacc aggtctggtc cgttcccgaa 780 gcgatcgact acatgaagca gctcagcgag tacaagccct ggttcattga ggagcccacc 840 tcacccgacg acatcatggg ccacaaggcc attcgcgatg ccctcaagcc ctatggcatc 900 ggcgtcgcta ccggcgagat gtgccagaac cgcgtcatgt tcaagcagct gatcatgacg 960 ggcgccatcg acatctgcca gattgatgcc tgccgcctcg gcggcgtcaa cgaagtgctg 1020 gccgtcctgc tcatggccaa gaagtacggt gtgcccattg tgccgcattc cggcggcgtg 1080 ggccttcccg agtacaccca gcatctgagc accatcgact acgtggtcgt cagcggcaag 1140 ctttccgtct tggagtttgt agaccacctc cacgagcact tcttgcatcc ttcagtcatc 1200 aaggacggat actaccagac accaaccgag gccggctaca gcgttgagat gaagccggag 1260 agcatggaca agtatgagta tcccggcaag aagggcgtaa gttggtggac gaccgacgag 1320 gctctgccca tcttgaacgg agagaagatc tga 1353 <210> 11 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> ALD6 Target cut site <400> 11 gtcaagatca cacttccaaa 20 <210> 12 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> PHO13 Target cut site <400> 12 tcccttatct attaactttc 20 <210> 13 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> YPR1 Target cut site <400> 13 catggtagat tattatctgt 20 <210> 14 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Intergenic region upstream ASF1 <400> 14 ctctcgaagt ggtcacgtgc 20 <210> 15 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Intergenic region upstream ATG33 <400> 15 ttgtcacagt gtcacatcag 20 <210> 16 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Intergenic region downstream YGR190C <400> 16 gatacttatc attaagaaaa 20 <210> 17 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> pRS42H-ALD6.1_Kim044 <400> 17 aagatcacac ttccaaagtt ttagagctag aaatagcaag 40 <210> 18 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> pRS42H-ALD6.1_Kim045 <400> 18 ttggaagtgt gatcttgacg atcatttatc tttcactgcg 40 <210> 19 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> pRS42H-PHO13.1_Kim624 <400> 19 cttatctatt aactttcgtt ttagagctag aaatagcaag 40 <210> 20 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> pRS42H-PHO13.1_Kim625 <400> 20 aaagttaata gataagggag atcatttatc tttcactgcg 40 <210> 21 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> pRS42H-YPR1.1_Kim535 <400> 21 ggtagattat tatctgtgtt ttagagctag aaatagcaag 40 <210> 22 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> pRS42H-YPR1.1_Kim536 <400> 22 cagataataa tctaccatgg atcatttatc tttcactgcg 40 <210> 23 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> pRS42H-INT#4_Kim310 <400> 23 tcgaagtggt cacgtgcgtt ttagagctag aaatagcaag 40 <210> 24 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> pRS42H-INT#4_Kim311 <400> 24 cacgtgacca cttcgagagg atcatttatc tttcactgcg 40 <210> 25 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> pRS42H-INT#6_Kim314 <400> 25 tcacagtgtc acatcaggtt ttagagctag aaatagcaag 40 <210> 26 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> pRS42H-INT#6_Kim315 <400> 26 tgatgtgaca ctgtgacaag atcatttatc tttcactgcg 40 <210> 27 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> pRS42H-INT#7_Kim486 <400> 27 aggaattatg ttcgcccgtt ttagagctag aaatagcaag 40 <210> 28 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> pRS42H-INT#7_Kim487 <400> 28 ggcgaacata attccttacg atcatttatc tttcactgcg 40 <210> 29 <211> 52 <212> DNA <213> Artificial Sequence <220> <223> S. cerevisiae_TDH3P_Kim626 <400> 29 taacatacac aaacacatac tatcagaata cactattttc gaggaccttg tc 52 <210> 30 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> S. cerevisiae_TDH3P_SOO384 <400> 30 tcaacttaat agaaggcatt tttagatctc ctaggtttgt ttgtttatgt gtgtttattc 60 60 <210> 31 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> P. stipitis_XYL1_SOO385 <400> 31 ataaacacac ataaacaaac aaacctagga gatctaaaaa tgccttctat taagttgaac 60 60 <210> 32 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> P. stipitis_XYL1_SOO386 <400> 32 aatgcaagat ttaaagtaaa ttcactgtta acgcatgctt agacgaagat aggaatcttg 60 60 <210> 33 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> s. cerevisiae_TDH3T_SOO387 <400> 33 ggacaagatt cctatcttcg tctaagcatg cgttaacagt gaatttactt taaatcttgc 60 60 <210> 34 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> s. cerevisiae_TDH3T_SOO388 <400> 34 attctttgaa ggtacttctt cgaaaaattc gcgtctgcta gctcctggcg gaaaaaattc 60 60 <210> 35 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> s. cerevisiae_PGK1P_SOO389 <400> 35 ttttaaagtt tacaaatgaa ttttttccgc caggagctag cagacgcgaa tttttcgaag 60 60 <210> 36 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> s. cerevisiae_PGK1P_SOO390 <400> 36 caccaaggaa gggttagcag tcattttttc tagatgtttt atatttgttg taaaaagtag 60 60 <210> 37 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> P. stipitis_XYL2_SOO391 <400> 37 aattatctac tttttacaac aaatataaaa catctagaaa aaatgactgc taacccttcc 60 60 <210> 38 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> P. stipitis_XYL2_SOO392 <400> 38 aaaaaattga tctatcgatt tcaattcaat tcaatactag tttactcagg gccgtcaatg 60 60 <210> 39 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> S. cerevisiae_PGK1T_SOO393 <400> 39 gtcaagtgtc tcattgacgg ccctgagtaa actagtattg aattgaattg aaatcgatag 60 60 <210> 40 <211> 53 <212> DNA <213> Artificial Sequence <220> <223> S. cerevisiae_PGK1T_Kim627 <400> 40 gtatatgacg gaaagaaatg caggttggta caaaataata tccttctcga aag 53 <210> 41 <211> 50 <212> DNA <213> Artificial Sequence <220> <223> S. cerevisiae_TDH3P_Kim628 <400> 41 atgtgacatc tttactattc tccagcacgt ttcttcatcg gtatcttcgc 50 <210> 42 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> S. cerevisiae_TDH3P_SOO374 <400> 42 aatggggtag tggtcatttt taagcttgaa ttctttgtaa ttaaaactta gattagattg 60 60 <210> 43 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> P. stipitis_XYL3_SOO375 <400> 43 atctaatcta agttttaatt acaaagaatt caagcttaaa aatgaccact accccatttg 60 60 <210> 44 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> P. stipitis_XYL3_SOO376 <400> 44 gcaactagaa aagtcttatc aatctccgtc gacatcgatt tagtgtttca attcactttc 60 60 <210> 45 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> S. cerevisiae_TDH3T_SOO377 <400> 45 caagatggaa agtgaattga aacactaaat cgatgtcgac ggagattgat aagacttttc 60 60 <210> 46 <211> 49 <212> DNA <213> Artificial Sequence <220> <223> S. cerevisiae_TDH3T_Kim629 <400> 46 ctataactca ttattggtta aggtgtagat gaagttgggt aacgccagg 49 <210> 47 <211> 50 <212> DNA <213> Artificial Sequence <220> <223> S. cerevisiae_CCW12P_Kim379 <400> 47 ttcctcgggc agagaaactc gcaggcaact tgcacgcaaa agaaaacctt 50 <210> 48 <211> 50 <212> DNA <213> Artificial Sequence <220> <223> S. cerevisiae_CCW12P_Kim380 <400> 48 tcaacacagc tgggggagcc attttttatt gatatagtgt ttaagcgaat 50 <210> 49 <211> 50 <212> DNA <213> Artificial Sequence <220> <223> A. niger_gaaA_Kim381 <400> 49 tctgtcattc gcttaaacac tatatcaata aaaaatggct cccccagctg 50 <210> 50 <211> 50 <212> DNA <213> Artificial Sequence <220> <223> A. niger_gaaA_Kim382 <400> 50 tagaatgtat aaataataat aaactaagtc tacttcagct cccactttcc 50 <210> 51 <211> 50 <212> DNA <213> Artificial Sequence <220> <223> S. cerevisiae_CCW12T_Kim383 <400> 51 ggatggaaag tgggagctga agtagactta gtttattatt atttatacat 50 <210> 52 <211> 50 <212> DNA <213> Artificial Sequence <220> <223> S. cerevisiae_CCW12T_Kim384 <400> 52 tgtgagggcc gattatgcag gcctagatgt tctagtgtgt ttatattatc 50 <210> 53 <211> 50 <212> DNA <213> Artificial Sequence <220> <223> S. cerevisiae_PGK1P_Kim385 <400> 53 cctcgggcag agaaactcgc aggcaacttg gtgagtaagg aaagagtgag 50 <210> 54 <211> 50 <212> DNA <213> Artificial Sequence <220> <223> S. cerevisiae_PGK1P_Kim386 <400> 54 gtgatggtga cttcagacat tttttgtttt atatttgttg taaaaagtag 50 <210> 55 <211> 50 <212> DNA <213> Artificial Sequence <220> <223> T. reesei_lgd1_Kim387 <400> 55 ctacttttta caacaaatat aaaacaaaaa atgtctgaag tcaccatcac 50 <210> 56 <211> 50 <212> DNA <213> Artificial Sequence <220> <223> T. reesei_lgd1_Kim388 <400> 56 attgatctat cgatttcaat tcaattcaat tcagatcttc tctccgttca 50 <210> 57 <211> 50 <212> DNA <213> Artificial Sequence <220> <223> S. cerevisiae_PGK1T_Kim389 <400> 57 ctgcccatct tgaacggaga gaagatctga attgaattga attgaaatcg 50 <210> 58 <211> 50 <212> DNA <213> Artificial Sequence <220> <223> S. cerevisiae_PGK1T_Kim390 <400> 58 ctctgtgagg gccgattatg caggcctaga aaataatatc cttctcgaaa 50 <210> 59 <211> 50 <212> DNA <213> Artificial Sequence <220> <223> S. cerevisiae_TDH3P_Kim391 <400> 59 ctcgggcaga gaaactcgca ggcaacttgg aataaaaaac acgctttttc 50 <210> 60 <211> 54 <212> DNA <213> Artificial Sequence <220> <223> S. cerevisiae_TDH3P_Kim392 <400> 60 gactccgggg cggagcgggg taaaaggcat tttttttgtt tgtttatgtg tgtt 54 <210> 61 <211> 50 <212> DNA <213> Artificial Sequence <220> <223> A. niger_gaaC_Kim393 <400> 61 ttcgaataaa cacacataaa caaacaaaaa aaatgccttt taccccgctc 50 <210> 62 <211> 50 <212> DNA <213> Artificial Sequence <220> <223> A. niger_gaaC_Kim394 <400> 62 atttaaatgc aagatttaaa gtaaattcac ctaagcaata tccggcaacg 50 <210> 63 <211> 50 <212> DNA <213> Artificial Sequence <220> <223> S. cerevisiae_TDH3T_Kim395 <400> 63 tgagaagtcg ttgccggata ttgcttaggt gaatttactt taaatcttgc 50 <210> 64 <211> 50 <212> DNA <213> Artificial Sequence <220> <223> S. cerevisiae_TDH3T_Kim396 <400> 64 cctctgtgag ggccgattat gcaggcctag aatcctggcg gaaaaaattc 50 <210> 65 <211> 50 <212> DNA <213> Artificial Sequence <220> <223> S. cerevisiae YE3_CCW12P-gaaA-CCW12T_Kim410 <400> 65 tctttaggtt aattgtcgct gttattgtct agattttttc tcggagatgg 50 <210> 66 <211> 50 <212> DNA <213> Artificial Sequence <220> <223> S. cerevisiae YE3_CCW12P-gaaA-CCW12T_Kim411 <400> 66 tagttcctca ctctttcctt actcactgtt ctagtgtgtt tatattatcc 50 <210> 67 <211> 50 <212> DNA <213> Artificial Sequence <220> <223> S. cerevisiae YE4_PGK1P-lgd1-PGK1T_Kim412 <400> 67 agccaaggat aatataaaca cactagaaca gtgagtaagg aaagagtgag 50 <210> 68 <211> 50 <212> DNA <213> Artificial Sequence <220> <223> S. cerevisiae YE4_PGK1P-lgd1-PGK1T_Kim413 <400> 68 aaactcgaac tgaaaaagcg tgttttttat tcccgattat gcaggcctag 50 <210> 69 <211> 50 <212> DNA <213> Artificial Sequence <220> <223> S. cerevisiae YE5_TDH3P-gaaC-TDH3T_Kim414 <400> 69 tattattttc taggcctgca taatcgggaa taaaaaacac gctttttcag 50 <210> 70 <211> 50 <212> DNA <213> Artificial Sequence <220> <223> S. cerevisiae YE5_TDH3P-gaaC-TDH3T_Kim415 <400> 70 ctactctctt cctagtcgcc cggttgttga aagtttaatt gtgggttttc 50 <210> 71 <211> 50 <212> DNA <213> Artificial Sequence <220> <223> S. cerevisiae YE01_FBA1P-lad1-FBA1T-PGK1P-alx1-CYC1T_Kim553 <400> 71 cttacacttg tgtaatgaca aatgtttttt gaacaacaat accagccttc 50 <210> 72 <211> 50 <212> DNA <213> Artificial Sequence <220> <223> S. cerevisiae YE01_FBA1P-lad1-FBA1T-PGK1P-alx1-CYC1T_Kim554 <400> 72 tgtttcacgt tatcaagatt atgtcatcta ttggccgcaa attaaagcct 50 <210> 73 <211> 50 <212> DNA <213> Artificial Sequence <220> <223> S. cerevisiae_CCW12P_Kim537 <400> 73 gtaactttgc aatataatca ggtcgcaaat atcacgcaaa agaaaacctt 50 <210> 74 <211> 50 <212> DNA <213> Artificial Sequence <220> <223> S. cerevisiae_CCW12P_Kim538 <400> 74 gaagaattct ttaacgtagc aggcattatt gatatagtgt ttaagcgaat 50 <210> 75 <211> 50 <212> DNA <213> Artificial Sequence <220> <223> S. cerevisiae_CCW12P_Kim541 <400> 75 cggaggagac cgctataacc ggtttgaatt tacacgcaaa agaaaacctt 50 <210> 76 <211> 50 <212> DNA <213> Artificial Sequence <220> <223> S. cerevisiae_CCW12P_Kim542 <400> 76 taaccttctt tccgagagac attttttatt gatatagtgt ttaagcgaat 50 <210> 77 <211> 50 <212> DNA <213> Artificial Sequence <220> <223> A. niger_gaaD_Kim543 <400> 77 tcattcgctt aaacactata tcaataaaaa atgtctctcg gaaagaaggt 50 <210> 78 <211> 50 <212> DNA <213> Artificial Sequence <220> <223> A. niger_gaaD_Kim544 <400> 78 gtataaataa taataaacta agtttattaa acaatcacct tatgaccagc 50 <210> 79 <211> 50 <212> DNA <213> Artificial Sequence <220> <223> S. cerevisiae_CCW12T_Kim545 <400> 79 tggtcataag gtgattgttt aataaactta gtttattatt atttatacat 50 <210> 80 <211> 50 <212> DNA <213> Artificial Sequence <220> <223> S. cerevisiae_CCW12T_Kim546 <400> 80 cttgcttgct gtcaaacttc tgagttgtgt tctagtgtgt ttatattatc 50 <210> 81 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Kim049 <400> 81 ggaacggtga gtgcaacg 18 <210> 82 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Kim427 <400> 82 aaactgttca cccagacacc 20 <210> 83 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Kim194 <400> 83 agcgcaacta cagagaacag g 21 <210> 84 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Kim100 <400> 84 cggcaccgtc gaacaatctg 20 <210> 85 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Kim101 <400> 85 ccgcttactc ttcgttcggt cc 22 <210> 86 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Kim193 <400> 86 ctcagcatcc acaatgtatc ag 22 <210> 87 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Kim426 <400> 87 gcgctattgc attgttcttg tc 22 <210> 88 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Kim547 <400> 88 aggtatgcga tagttcctca c 21 <210> 89 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Kim125 <400> 89 tgcagcttcc aatttcgtca c 21 <210> 90 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Kim630 <400> 90 gaggtgacac ccttaccaac 20 <210> 91 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Kim631 <400> 91 ctgctactca caccttcaac tc 22 <210> 92 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Kim632 <400> 92 cgctgaaccc gaacatagaa atatc 25 <210> 93 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Kim633 <400> 93 tcgatatttc tatgttcggg ttcag 25 <210> 94 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Kim078 <400> 94 gattggaatt ggttcgcagt g 21 <210> 95 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Kim048 <400> 95 gaggaagacg ttgaaggtgg 20 <210> 96 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Kim149 <400> 96 tttgaagtgg tacggcgatg 20 <210> 97 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Kim577 <400> 97 cacccaagca cagcatac 18 <210> 98 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Kim634 <400> 98 tggctcgata acgaagattc ag 22 <210> 99 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Kim635 <400> 99 gtcttgtaga ttgagaactg gtcc 24 <210> 100 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Kim636 <400> 100 tctatgaggc aagtaagagg cac 23 <210> 101 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Kim492 <400> 101 aacaggcgac agtccaaatg 20 <210> 102 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Kim077 <400> 102 ttggagttca aactggcgag 20 <210> 103 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Kim322 <400> 103 gcgcatctat ttgccgtc 18 <210> 104 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Kim397 <400> 104 gctgggggag ccatttttta ttg 23 <210> 105 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Kim398 <400> 105 gtgggagctg aagtagactt ag 22 <210> 106 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Kim323 <400> 106 tcacgacaca cctcactg 18 <210> 107 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Kim399 <400> 107 cctgtgatgg tgacttcaga c 21 <210> 108 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Kim401 <400> 108 gaacggagag aagatctgaa ttg 23 <210> 109 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Kim400 <400> 109 acagcctgtt ctcacacac 19 <210> 110 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Kim402 <400> 110 gcggggtaaa aggcattttt tttg 24 <210> 111 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Kim408 <400> 111 gccggatatt gcttaggtg 19 <210> 112 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Kim490 <400> 112 ggcactagga gcatttgtcg 20 <210> 113 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Kim304 <400> 113 gcttcgctaa tccagaggtc 20 <210> 114 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Kim491 <400> 114 gtcccttagg gtgcgtataa tg 22 <210> 115 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Kim539 <400> 115 caattccgtg aaaccctttt ctt 23 <210> 116 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Kim540 <400> 116 ctgccaactt cttcttcatt caa 23 <210> 117 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Kim326 <400> 117 ggttctgact cctactgagc 20 <210> 118 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Kim093 <400> 118 gcaaagatag cggcgtaggt g 21 <210> 119 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Kim549 <400> 119 gcatcctttg cctccgttc 19 <210> 120 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Kim327 <400> 120 agcatcgagt acggcagttc 20 <110> Kyungpook National University Industry-Academic Cooperation Foundation <120> Microorganisms fermenting galacturonic acid and pentose simultaneously <130> PN2004-158 <160> 120 <170> KoPatentIn 3.0 <210> 1 <211> 1503 <212> DNA <213> Unknown <220> <223> ALD6 (acetaldehyde dehydrogenase gene) <400> 1 atgactaagc tacactttga cactgctgaa ccagtcaaga tcacacttcc aaatggtttg 60 acatacgagc aaccaaccgg tctattcatt aacaacaagt ttatgaaagc tcaagacggt 120 aagacctatc ccgtcgaaga tccttccact gaaaacaccg tttgtgaggt ctcttctgcc 180 accactgaag atgttgaata tgctatcgaa tgtgccgacc gtgctttcca cgacactgaa 240 tgggctaccc aagacccaag agaaagaggc cgtctactaa gtaagttggc tgacgaattg 300 gaaagccaaa ttgacttggt ttcttccatt gaagctttgg acaatggtaa aactttggcc 360 ttagcccgtg gggatgttac cattgcaatc aactgtctaa gagatgctgc tgcctatgcc 420 gacaaagtca acggtagaac aatcaacacc ggtgacggct acatgaactt caccacctta 480 gagccaatcg gtgtctgtgg tcaaattatt ccatggaact ttccaataat gatgttggct 540 tggaagatcg ccccagcatt ggccatgggt aacgtctgta tcttgaaacc cgctgctgtc 600 acacctttaa atgccctata ctttgcttct ttatgtaaga aggttggtat tccagctggt 660 gtcgtcaaca tcgttccagg tcctggtaga actgttggtg ctgctttgac caacgaccca 720 agaatcagaa agctggcttt taccggttct acagaagtcg gtaagagtgt tgctgtcgac 780 tcttctgaat ctaacttgaa gaaaatcact ttggaactag gtggtaagtc cgcccatttg 840 gtctttgacg atgctaacat taagaagact taccaaatc tagtaaacgg tattttcaag 900 aacgctggtc aaatttgttc ctctggttct agaatttacg ttcaagaagg tatttacgac 960 gaactattgg ctgctttcaa ggcttacttg gaaaccgaaa tcaaagttgg taatccattt 1020 gacaaggcta acttccaagg tgctatcact aaccgtcaac aattcgacac aattatgaac 1080 tacatcgata tcggtaagaa agaaggcgcc aagatcttaa ctggtggcga aaaagttggt 1140 gacaagggtt acttcatcag accaaccgtt ttctacgatg ttaatgaaga catgagaatt 1200 gttaaggaag aaatttttgg accagttgtc actgtcgcaa agttcaagac tttagaagaa 1260 ggtgtcgaaa tggctaacag ctctgaattc ggtctaggtt ctggtatcga aacagaatct 1320 ttgagcacag gtttgaaggt ggccaagatg ttgaaggccg gtaccgtctg gatcaacaca 1380 tacaacgatt ttgactccag agttccattc ggtggtgtta agcaatctgg ttacggtaga 1440 gaaatgggtg aagaagtcta ccatgcatac actgaagtaa aagctgtcag aattaagttg 1500 taa 1503 <210> 2 <211> 939 <212> DNA <213> Unknown <220> <223> PHO13 (haloacid dehalogenase Type IIA phosphatase gene) <400> 2 atgactgctc aacaaggtgt accaataaag ataaccaata aggagattgc tcaagaattc 60 ttggacaaat atgacacgtt tctgttcgat tgtgatggtg tattatggtt aggttctcaa 120 gcattaccat acaccctgga aattctaaac cttttgaagc aattgggcaa acaactgatc 180 ttcgttacga ataactctac caagtcccgt ttagcataca cgaaaaagtt tgcttcgttt 240 ggtattgatg tcaaagaaga acagattttc acctctggtt atgcgtcagc tgtttatatt 300 cgtgactttc tgaaattgca gcctggcaaa gataaggtat gggtatttgg agaaagcggt 360 attggtgaag aattgaaact aatggggtac gaatctctag gaggtgccga ttccagattg 420 gatacgccgt tcgatgcagc taaatcacca tttttggtga acggccttga taaggatgtt 480 agttgtgtta ttgctgggtt agacacgaag gtaaattacc accgtttggc tgttacactg 540 cagtatttgc agaaggattc tgttcacttt gttggtacaa atgttgattc tactttcccg 600 caaaagggtt atacatttcc cggtgcaggc tccatgattg aatcattggc attctcatct 660 aataggaggc catcgtactg tggtaagcca aatcaaaata tgctaaacag cattatatcg 720 gcattcaacc tggatagatc aaagtgctgt atggttggtg acagattaaa caccgatatg 780 aaattcggtg ttgaaggtgg gttaggtggc acactactcg ttttgagtgg tattgaaacc 840 gaagagagag ccttgaagat ttcgcacgat tatccaagac ctaaatttta cattgataaa 900 cttggtgaca tctacacctt aaccaataat gagttatag 939 <210> 3 <211> 957 <212> DNA <213> Unknown <220> <223> XYL1 (xylose reductase gene) <400> 3 atgccttcta ttaagttgaa ctctggttac gacatgccag ccgtcggttt cggctgttgg 60 aaagtcgacg tcgacacctg ttctgaacag atctaccgtg ctatcaagac cggttacaga 120 ttgttcgacg gtgccgaaga ttacgccaac gaaaagttag ttggtgccgg tgtcaagaag 180 gccattgacg aaggtatcgt caagcgtgaa gacttgttcc ttacctccaa gttgtggaac 240 aactaccacc acccagacaa cgtcgaaaag gccttgaaca gaaccctttc tgacttgcaa 300 gttgactacg ttgacttgtt cttgatccac ttcccagtca ccttcaagtt cgttccatta 360 gaagaaaagt acccaccagg attctactgt ggtaagggtg acaacttcga ctacgaagat 420 gttccaattt tagagacctg gaaggctctt gaaaagttgg tcaaggccgg taagatcaga 480 tctatcggtg tttctaactt cccaggtgct ttgctcttgg acttgttgag aggtgctacc 540 atcaagccat ctgtcttgca agttgaacac cacccatact tgcaacaacc aagattgatc 600 gaattcgctc aatcccgtgg tattgctgtc accgcttact cttcgttcgg tcctcaatct 660 ttcgttgaat tgaaccaagg tagagctttg aacacttctc cattgttcga gaacgaaact 720 atcaaggcta tcgctgctaa gcacggtaag tctccagctc aagtcttgtt gagatggtct 780 tcccaaagag gcattgccat cattccaaag tccaacactg tcccaagatt gttggaaaac 840 aaggacgtca acagcttcga cttggacgaa caagatttcg ctgacattgc caagttggac 900 atcaacttga gattcaacga cccatgggac tgggacaaga ttcctatctt cgtctaa 957 <210> 4 <211> 1092 <212> DNA <213> Unknown <220> <223> XYL2 (xylitol dehydrogenase gene) <400> 4 atgactgcta acccttcctt ggtgttgaac aagatcgacg acattcgtt cgaaacttac 60 gatgccccag aaatctctga acctaccgat gtcctcgtcc aggtcaagaa aaccggtatc 120 tgtggttccg acatccactt ctacgcccat ggtagaatcg gtaacttcgt tttgaccaag 180 ccaatggtct tgggtcacga atccgccggt actgttgtcc aggttggtaa gggtgtcacc 240 tctcttaagg ttggtgacaa cgtcgctatc gaaccaggta ttccatccag attctccgac 300 gaatacaaga gcggtcacta caacttgtgt cctcacatgg ccttcgccgc tactcctaac 360 tccaaggaag gcgaaccaaa cccaccaggt accttatgta agtacttcaa gtcgccagaa 420 gacttcttgg tcaagttgcc agaccacgtc agcttggaac tcggtgctct tgttgagcca 480 ttgtctgttg gtgtccacgc ctctaagttg ggttccgttg ctttcggcga ctacgttgcc 540 gtctttggtg ctggtcctgt tggtcttttg gctgctgctg tcgccaagac cttcggtgct 600 aagggtgtca tcgtcgttga cattttcgac aacaagttga agatggccaa ggacattggt 660 gctgctactc acaccttcaa ctccaagacc ggtggttctg aagaattgat caaggctttc 720 ggtggtaacg tgccaaacgt cgttttggaa tgtactggtg ctgaaccttg tatcaagttg 780 ggtgttgacg ccattgcccc aggtggtcgt ttcgttcaag tcggtaacgc tgctggtcca 840 gtcagcttcc caatcaccgt tttcgccatg aaggaattga ctttgttcgg ttctttcaga 900 tacggattca acgactacaa gactgctgtt ggaatctttg acactaacta ccaaaacggt 960 agagaaaatg ctccaattga ctttgaacaa ttgatcaccc acagatacaa gttcaaggac 1020 gctattgaag cctacgactt ggtcagagcc ggtaagggtg ctgtcaagtg tctcattgac 1080 ggccctgagt aa 1092 <210> 5 <211> 1872 <212> DNA <213> Unknown <220> <223> XYL3 (xylulokinase gene) <400> 5 atgaccacta ccccatttga tgctccagat aagctcttcc tcgggttcga tctttcgact 60 cagcagttga agatcatcgt caccgatgaa aacctcgctg ctctcaaaac ctacaatgtc 120 gagttcgata gcatcaacag ctctgtccag aagggtgtca ttgctatcaa cgacgaaatc 180 agcaagggtg ccattatttc ccccgtttac atgtggttgg atgcccttga ccatgttttt 240 gaagacatga agaaggacgg attccccttc aacaaggttg ttggtatttc cggttcttgt 300 caacagcacg gttcggtata ctggtctaga acggccgaga aggtcttgtc cgaattggac 360 gctgaatctt cgttatcgag ccagatgaga tctgctttca ccttcaagca cgctccaaac 420 tggcaggatc actctaccgg taaagagctt gaagagttcg aaagagtgat tggtgctgat 480 gccttggctg atatctctgg ttccagagcc cattacagat tcacagggct ccagattaga 540 aagttgtcta ccagattcaa gcccgaaaag tacaacagaa ctgctcgtat ctctttagtt 600 tcgtcatttg ttgccagtgt gttgcttggt agaatcacct ccattgaaga ggccgatgct 660 tgtggaatga acttgtacga tatcgaaaag cgcgagttca acgaagagct cttggccatc 720 gctgctggtg tccaccctga gttggatggt gtagaacaag acggtgaaat ttacagagct 780 ggtatcaatg agttgaagag aaagttgggt cctgtcaaac ctataacata cgaaagcgaa 840 ggtgacattg cctcttactt tgtcaccaga tacggcttca accccgactg taaaatctac 900 tcgttcaccg gagacaattt ggccacgatt atctcgttgc ctttggctcc aaatgatgct 960 ttgatctcat tgggtacttc tactacagtt ttaattatca ccaagaacta cgctccttct 1020 tctcaatacc atttgtttaa acatccaacc atgcctgacc actacatggg catgatctgc 1080 tactgtaacg gttccttggc cagagaaaag gttagagacg aagtcaacga aaagttcaat 1140 gtagaagaca agaagtcgtg ggacaagttc aatgaaatct tggacaaatc cacagacttc 1200 aacaacaagt tgggtattta cttcccactt ggcgaaattg tccctaatgc cgctgctcag 1260 atcaagagat cggtgttgaa cagcaagaac gaaattgtag acgttgagtt gggcgacaag 1320 aactggcaac ctgaagatga tgtttcttca attgtagaat cacagacttt gtcttgtaga 1380 ttgagaactg gtccaatgtt gagcaagagt ggagattctt ctgcttccag ctctgcctca 1440 cctcaaccag aaggtgatgg tacagatttg cacaaggtct accaagactt ggttaaaaag 1500 tttggtgact tgtacactga tggaaagaag caaacctttg agtctttgac cgccagacct 1560 aaccgttgtt actacgtcgg tggtgcttcc aacaacggca gcattatccg caagatgggt 1620 tccatcttgg ctcccgtcaa cggaaactac aaggttgaca ttcctaacgc ctgtgcattg 1680 ggtggtgctt acaaggccag ttggagttac gagtgtgaag ccaagaagga atggatcgga 1740 tacgatcagt atatcaacag attgtttgaa gtaagtgacg agatgaatct gttcgaagtc 1800 aaggataaat ggctcgaata tgccaacggg gttggaatgt tggccaagat ggaaagtgaa 1860 ttgaaacact aa 1872 <210> 6 <211> 1134 <212> DNA <213> Unknown <220> <223> lad1 (L-arabitol dehydrogenase gene) <400> 6 atgtcgcctt ccgcagtcga tgacgctccc aaggccacag gggcagccat ctcagtcaag 60 cccaacattg gcgtcttcac aaatccaaaa catgacctct ggattagcga agctgaaccc 120 agcgccgatg ccgtcaaatc tggcgctgat ctgaagcccg gcgaggtgac cattgctgtc 180 cgcagcactg gtatctgtgg ttcagatgtc catttctggc acgccggctg cattgggccc 240 atgatcgtcg agggcgacca catcctcggc cacgagtctg ccggcgaggt catcgccgtc 300 cacccgactg tcagtagcct ccaaatcggc gatcgggttg ccatcgagcc caacatcatc 360 tgcaacgcat gcgagccctg cctgacaggt cgatacaacg gctgcgaaaa ggtcgagttc 420 ctatccacgc cgccagtgcc cggactgctg cgacgctacg tcaaccaccc agccgtttgg 480 tgccacaaga ttggcaacat gtcgtgggag aacggcgcgc tgctggagcc cctgagcgtg 540 gctctggccg gcatgcagag ggccaaggtt cagctcggtg accccgtgct ggtctgcggc 600 gctggtccga ttggattggt gtcaatgctg tgcgctgctg ccgccggtgc ttgcccgctt 660 gtcatcacag acatttcaga gagccgtctg gcgtttgcaa aggagatctg cccccgcgtc 720 accacgcacc gcatcgagat tggcaagtcg gctgaggaaa cggccaaaag catcgtcagc 780 tcttttgggg gcgtcgagcc agccgtgacc ctggagtgca ccggtgtgga gagcagcatt 840 gcagcggcca tctgggccag caagtttgga ggaaaggtct ttgtgatcgg cgtcggcaag 900 aatgaaatca gcattccctt tatgagggcc agtgtacgcg aggtcgatat ccagctgcag 960 tatcgctaca gcaacacctg gcctcgtgcc atccggctca tcgagagcgg tgtcatcgat 1020 ctatccaaat ttgtgacgca tcgcttcccg ctggaggatg ccgtcaaggc atttgagacg 1080 tcagcagatc ccaagagcgg cgccattaag gtcatgattc agagcctgga ttga 1134 <210> 7 <211> 816 <212> DNA <213> Unknown <220> <223> alx1 (L-xylulose reductase gene) <400> 7 atgactgact acatccaac ttttagattc gatggccact taaccattgt cacaggtgcc 60 tgtggtggtt tagctgaagc tttaatcaag ggtttgttgg cctacggttc tgacattgct 120 ttgcttgata tcgaccaaga aaagactgct gccaaacaag ccgaatacca caaatacgct 180 actgaagaat tgaagttgaa agaagttcca aagatgggtt catatgcctg tgatatttct 240 gattctgata ccgttcacaa ggtgtttgct caagttgcta aggattttgg taagttgcca 300 ttgcacttgg ttaacacagc tggttactgt gaaaacttcc catgtgaaga ttacccagcc 360 aagaacgctg agaagatggt gaaggttaac ttgttgggtt ctttgtatgt ttctcaagcc 420 tttgctaagc cattgatcaa agaaggtatc aagggtgctt ctgttgtttt gattggttct 480 atgtctggtg ccattgtcaa cgatcctcaa aaccaagttg tctacaacat gtccaaggct 540 ggtgttatcc atttggctaa gactttggct tgtgaatggg ctaagtacaa catcagagtt 600 aattctttaa acccaggtta catctacggt cctttgacca agaatgttat caatggtaac 660 gaagaattgt acaacagatg gatctctggt atcccacaac aaagaatgtc cgaaccaaag 720 gaatacattg gtgctgtttt gtacttgctt tctgaatctg ctgcttcata cactactggt 780 gccagcttac tggttgatgg tggtttcact tcttgg 816 <210> 8 <211> 1239 <212> DNA <213> Unknown <220> <223> gaaA (D-galacturonic acid reductase gene) <400> 8 atggctcccc cagctgtgtt gatggtagga acaggcgagt acacgaccgg ctacgtcggt 60 ggtacagcct cgacctccga caagaaagtg ggtgtcgtgg gcctaacgct cttcgacttg 120 cgtcgtcgcg gcaaagttgg cgatttgagc atggtgggcg tatctggatc caaattccct 180 ggaatccgcg cacacttgca gaagaatatc tccgaagtct acaacggcct tgatgtctcc 240 ttcacctcct ttcccgccga caacacctcc gacccagaag cctacaaagc tgccattgac 300 gcccttcccg ccggctctgc aatcaccatt ttcacacccg accccaccca ttaccctatc 360 gctctgtacg ccattcagcg caagatccac gttctcatca ctaagcccgc gaccaagctc 420 ctctctgacc acctcgattt gctcgctgag tctcgcaagc acaatgtcgt tgtgtacatt 480 gaacaccaca agcgcttcga cccggcctac agtgacgccc gcgctaaggc tgccaagctt 540 ggtgacttca actactttta cagctacat agtcagccca agagccagct ggagacgttc 600 aaggcctggg ctggtaagga ctcggatatc tcttattatt tgaacagcca ccacgtggat 660 gttaatgaga gcatggtgcc ggactatgtc cccgtgaagg tgacggctag tgcagcgacg 720 ggaactgctg tcgagctggg ctgtgcccat gagacggagg acacgattac tctacttgtg 780 gaatggaaga agaaggatgg atcaagaatg gctacgggtg tttacacatc tagttggacc 840 gcaccaaaga gggccggtgt acactctaac cagtacttcc attatatggg ctcgaagggt 900 gaaatccgtg tcaatcaggc gaagcgtggc tatgatgttg ccgaggatga ggctggattg 960 tcttggatta acccgttcta tatgaagtac gcaccagacg aggagggtaa cttcggtggt 1020 cagacgggct acggatacat cagtttcgag aagttcattg atgccgttac ggctgttaat 1080 gaggggcggt tgacgctcga tcagctggat gccaggccga tcccgacgct gaagaacact 1140 attgccacga cggcaatcct gcatgcagga cgcatttcct tggatgagaa gcggtcggtg 1200 gagatcgtga ccgaggatgg aaagtgggag ctgaagtag 1239 <210> 9 <211> 1008 <212> DNA <213> Unknown <220> <223> gaaC (2-keto-3-deoxy-L-galactonate aldolase gene) <400> 9 atgcctttta ccccgctccg ccccggagtc tacgctccaa ccatgacttt cttcgaccct 60 tcaaccgaag accttgacgt ccctaccatt cgcaagcacg ccgttcgcct cgcaaaagcc 120 ggtctcgtcg gtctcgtctg catgggctcc aacggcgaag ccgtacacct cacccgggca 180 gagcgcaaga ccgtgatcaa cgagacccgc tccgcactcg ttgaagccgg cttctccaac 240 gtccccgtca tcgcaggagc cagcgaacaa tccattcgcg gcaccatcga gctctgcaag 300 gaatcctacg aagccggagc tgaatatgcc ctgatcgttc cccccagcta ctaccgctac 360 gccaccggca acgaccaaac cctctatgaa ttcttcacca gcgtcgccga tggttccccc 420 atccctctca tcctctacaa ctaccccggt gccgtggcag gaattgacat ggactccgac 480 ctcatcatcc gcatctctca gcaccccaac atcgtaggca cgaagttcac ttgcgccaac 540 accggcaagt tgacccgtgt tgcttccgcc ctgcacgcca ttacccctcc ttcgccattg 600 gctccggcgc agcgcaagtt ccccagcaca aagacggagg caaaccaccc atacgttgcg 660 ttcggaggta ttgcagattt ctccctgcag acgctggcgt ccggaggttc cgcgatcctg 720 gcgggtggcg cgaatgtcat ccccaagctg tgtgtgcaga tcttcaacct ctggagcgcg 780 ggtcgcttca cggaggctat ggaggctcag gagttgttga gtagggctga ctgggtcctc 840 actaaggcgg ctatccccgg tacgaagagt gcaattcaga gctactatgg atatggtgga 900 ttcccgcgtc gcccgttggc tcgcttgagt gccgagcagg cggaggcggt ggctgagaag 960 atcaaggatg ccatggaggt tgagaagtcg ttgccggata ttgcttag 1008 <210> 10 <211> 1353 <212> DNA <213> Unknown <220> <223> lgd1 (L-galactonate dehydratase gene) <400> 10 atgtctgaag tcaccatcac aggcttcagg agccgcgatg tgcggttccc cacgtcccta 60 gacaagacgg gctcggatgc gatgaacgct gcgggcgact attcagcggc atactgcatc 120 ctcgagactg attcagcgca cagtggtcat ggcatgacat tcaccattgg acgcggaaac 180 gacatcgtct gcgccgccat caaccacgtc gcggaccgac tcaagggcaa gaaactgtca 240 tcactagtgg ccgactgggg caagacctgg cggtatctgg tcaacgacag ccagctgcgg 300 tggattggcc ccgaaaaggg cgtcatccat cttgcgctcg gagccgtcgt caacgccgtc 360 tgggacctgt gggcaaagac gctcaacaag ccggtttggc gcatcgttgc cgacatgacg 420 cccgaggagt atgtccgctg catcgacttc cgctacatta ccgacgcaat cacccccgag 480 gaagccgtgg cgatgctgcg cgagcaggag gccggcaagg ccaagcgcat cgaggaggct 540 ctccagaacc gagcggtgcc tgcatacaca acaagtgccg gttggctggg atacggagag 600 gacaagatga agcagctcct gagagagacg ctggctgccg gatacagaca cttcaaggtc 660 aaggttggcg gcagcgtcga ggaggaccga aggcgcctcg gcattgctcg cgaaattctt 720 ggtttcgaca agggcaacgt tctcatggtc gatgccaacc aggtctggtc cgttcccgaa 780 gcgatcgact acatgaagca gctcagcgag tacaagccct ggttcattga ggagcccacc 840 tcacccgacg acatcatggg ccacaaggcc attcgcgatg ccctcaagcc ctatggcatc 900 ggcgtcgcta ccggcgagat gtgccagaac cgcgtcatgt tcaagcagct gatcatgacg 960 ggcgccatcg acatctgcca gattgatgcc tgccgcctcg gcggcgtcaa cgaagtgctg 1020 gccgtcctgc tcatggccaa gaagtacggt gtgcccattg tgccgcattc cggcggcgtg 1080 ggccttcccg agtacaccca gcatctgagc accatcgact acgtggtcgt cagcggcaag 1140 ctttccgtct tggagtttgt agaccacctc cacgagcact tcttgcatcc ttcagtcatc 1200 aaggacggat actaccagac accaaccgag gccggctaca gcgttgagat gaagccggag 1260 agcatggaca agtatgagta tcccggcaag aagggcgtaa gttggtggac gaccgacgag 1320 gctctgccca tcttgaacgg agagaagatc tga 1353 <210> 11 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> ALD6 Target cut site <400> 11 gtcaagatca cacttccaaa 20 <210> 12 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> PHO13 Target cut site <400> 12 tcccttatct attaactttc 20 <210> 13 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> YPR1 Target cut site <400> 13 catggtagat tattatctgt 20 <210> 14 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Intergenic region upstream ASF1 <400> 14 ctctcgaagt ggtcacgtgc 20 <210> 15 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Intergenic region upstream ATG33 <400> 15 ttgtcacagt gtcacatcag 20 <210> 16 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Intergenic region downstream YGR190C <400> 16 gatacttatc attaagaaaa 20 <210> 17 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> pRS42H-ALD6.1_Kim044 <400> 17 aagatcacac ttccaaagtt ttagagctag aaatagcaag 40 <210> 18 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> pRS42H-ALD6.1_Kim045 <400> 18 ttggaagtgt gatcttgacg atcatttatc tttcactgcg 40 <210> 19 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> pRS42H-PHO13.1_Kim624 <400> 19 cttatctatt aactttcgtt ttagagctag aaatagcaag 40 <210> 20 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> pRS42H-PHO13.1_Kim625 <400> 20 aaagttaata gataagggag atcatttatc tttcactgcg 40 <210> 21 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> pRS42H-YPR1.1_Kim535 <400> 21 ggtagattat tatctgtgtt ttagagctag aaatagcaag 40 <210> 22 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> pRS42H-YPR1.1_Kim536 <400> 22 cagataataa tctaccatgg atcatttatc tttcactgcg 40 <210> 23 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> pRS42H-INT#4_Kim310 <400> 23 tcgaagtggt cacgtgcgtt ttagagctag aaatagcaag 40 <210> 24 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> pRS42H-INT#4_Kim311 <400> 24 cacgtgacca cttcgagagg atcatttatc tttcactgcg 40 <210> 25 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> pRS42H-INT#6_Kim314 <400> 25 tcacagtgtc acatcaggtt ttagagctag aaatagcaag 40 <210> 26 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> pRS42H-INT#6_Kim315 <400> 26 tgatgtgaca ctgtgacaag atcatttatc tttcactgcg 40 <210> 27 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> pRS42H-INT#7_Kim486 <400> 27 aggaattatg ttcgcccgtt ttagagctag aaatagcaag 40 <210> 28 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> pRS42H-INT#7_Kim487 <400> 28 ggcgaacata attccttacg atcatttatc tttcactgcg 40 <210> 29 <211> 52 <212> DNA <213> Artificial Sequence <220> <223> S. cerevisiae_TDH3P_Kim626 <400> 29 taacatacac aaacacatac tatcagaata cactattttc gaggaccttg tc 52 <210> 30 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> S. cerevisiae_TDH3P_SOO384 <400> 30 tcaacttaat agaaggcatt tttagatctc ctaggtttgt ttgtttatgt gtgtttattc 60 60 <210> 31 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> P. stipitis_XYL1_SOO385 <400> 31 ataaacacac ataaacaaac aaacctagga gatctaaaaa tgccttctat taagttgaac 60 60 <210> 32 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> P. stipitis_XYL1_SOO386 <400> 32 aatgcaagat ttaaagtaaa ttcactgtta acgcatgctt agacgaagat aggaatcttg 60 60 <210> 33 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> s. cerevisiae_TDH3T_SOO387 <400> 33 ggacaagatt cctatcttcg tctaagcatg cgttaacagt gaatttactt taaatcttgc 60 60 <210> 34 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> s. cerevisiae_TDH3T_SOO388 <400> 34 attctttgaa ggtacttctt cgaaaaattc gcgtctgcta gctcctggcg gaaaaaattc 60 60 <210> 35 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> s. cerevisiae_PGK1P_SOO389 <400> 35 ttttaaagtt tacaaatgaa ttttttccgc caggagctag cagacgcgaa tttttcgaag 60 60 <210> 36 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> s. cerevisiae_PGK1P_SOO390 <400> 36 caccaaggaa gggttagcag tcattttttc tagatgtttt atatttgttg taaaaagtag 60 60 <210> 37 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> P. stipitis_XYL2_SOO391 <400> 37 aattatctac tttttacaac aaatataaaa catctagaaa aaatgactgc taacccttcc 60 60 <210> 38 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> P. stipitis_XYL2_SOO392 <400> 38 aaaaaattga tctatcgatt tcaattcaat tcaatactag tttactcagg gccgtcaatg 60 60 <210> 39 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> S. cerevisiae_PGK1T_SOO393 <400> 39 gtcaagtgtc tcattgacgg ccctgagtaa actagtattg aattgaattg aaatcgatag 60 60 <210> 40 <211> 53 <212> DNA <213> Artificial Sequence <220> <223> S. cerevisiae_PGK1T_Kim627 <400> 40 gtatatgacg gaaagaaatg caggttggta caaaataata tccttctcga aag 53 <210> 41 <211> 50 <212> DNA <213> Artificial Sequence <220> <223> S. cerevisiae_TDH3P_Kim628 <400> 41 atgtgacatc tttactattc tccagcacgt ttcttcatcg gtatcttcgc 50 <210> 42 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> S. cerevisiae_TDH3P_SOO374 <400> 42 aatggggtag tggtcatttt taagcttgaa ttctttgtaa ttaaaactta gattagattg 60 60 <210> 43 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> P. stipitis_XYL3_SOO375 <400> 43 atctaatcta agttttaatt acaaagaatt caagcttaaa aatgaccact accccatttg 60 60 <210> 44 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> P. stipitis_XYL3_SOO376 <400> 44 gcaactagaa aagtcttatc aatctccgtc gacatcgatt tagtgtttca attcactttc 60 60 <210> 45 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> S. cerevisiae_TDH3T_SOO377 <400> 45 caagatggaa agtgaattga aacactaaat cgatgtcgac ggagattgat aagacttttc 60 60 <210> 46 <211> 49 <212> DNA <213> Artificial Sequence <220> <223> S. cerevisiae_TDH3T_Kim629 <400> 46 ctataactca ttattggtta aggtgtagat gaagttgggt aacgccagg 49 <210> 47 <211> 50 <212> DNA <213> Artificial Sequence <220> <223> S. cerevisiae_CCW12P_Kim379 <400> 47 ttcctcgggc agagaaactc gcaggcaact tgcacgcaaa agaaaacctt 50 <210> 48 <211> 50 <212> DNA <213> Artificial Sequence <220> <223> S. cerevisiae_CCW12P_Kim380 <400> 48 tcaacacagc tgggggagcc attttttatt gatatagtgt ttaagcgaat 50 <210> 49 <211> 50 <212> DNA <213> Artificial Sequence <220> <223> A. niger_gaaA_Kim381 <400> 49 tctgtcattc gcttaaacac tatatcaata aaaaatggct cccccagctg 50 <210> 50 <211> 50 <212> DNA <213> Artificial Sequence <220> <223> A. niger_gaaA_Kim382 <400> 50 tagaatgtat aaataataat aaactaagtc tacttcagct cccactttcc 50 <210> 51 <211> 50 <212> DNA <213> Artificial Sequence <220> <223> S. cerevisiae_CCW12T_Kim383 <400> 51 ggatggaaag tgggagctga agtagactta gtttattatt atttatacat 50 <210> 52 <211> 50 <212> DNA <213> Artificial Sequence <220> <223> S. cerevisiae_CCW12T_Kim384 <400> 52 tgtgagggcc gattatgcag gcctagatgt tctagtgtgt ttatattatc 50 <210> 53 <211> 50 <212> DNA <213> Artificial Sequence <220> <223> S. cerevisiae_PGK1P_Kim385 <400> 53 cctcgggcag agaaactcgc aggcaacttg gtgagtaagg aaagagtgag 50 <210> 54 <211> 50 <212> DNA <213> Artificial Sequence <220> <223> S. cerevisiae_PGK1P_Kim386 <400> 54 gtgatggtga cttcagacat tttttgtttt atatttgttg taaaaagtag 50 <210> 55 <211> 50 <212> DNA <213> Artificial Sequence <220> <223> T. reesei_lgd1_Kim387 <400> 55 ctacttttta caacaaatat aaaacaaaaa atgtctgaag tcaccatcac 50 <210> 56 <211> 50 <212> DNA <213> Artificial Sequence <220> <223> T. reesei_lgd1_Kim388 <400> 56 attgatctat cgatttcaat tcaattcaat tcagatcttc tctccgttca 50 <210> 57 <211> 50 <212> DNA <213> Artificial Sequence <220> <223> S. cerevisiae_PGK1T_Kim389 <400> 57 ctgcccatct tgaacggaga gaagatctga attgaattga attgaaatcg 50 <210> 58 <211> 50 <212> DNA <213> Artificial Sequence <220> <223> S. cerevisiae_PGK1T_Kim390 <400> 58 ctctgtgagg gccgattatg caggcctaga aaataatatc cttctcgaaa 50 <210> 59 <211> 50 <212> DNA <213> Artificial Sequence <220> <223> S. cerevisiae_TDH3P_Kim391 <400> 59 ctcgggcaga gaaactcgca ggcaacttgg aataaaaaac acgctttttc 50 <210> 60 <211> 54 <212> DNA <213> Artificial Sequence <220> <223> S. cerevisiae_TDH3P_Kim392 <400> 60 gactccgggg cggagcgggg taaaaggcat tttttttgtt tgtttatgtg tgtt 54 <210> 61 <211> 50 <212> DNA <213> Artificial Sequence <220> <223> A. niger_gaaC_Kim393 <400> 61 ttcgaataaa cacacataaa caaacaaaaa aaatgccttt taccccgctc 50 <210> 62 <211> 50 <212> DNA <213> Artificial Sequence <220> <223> A. niger_gaaC_Kim394 <400> 62 atttaaatgc aagatttaaa gtaaattcac ctaagcaata tccggcaacg 50 <210> 63 <211> 50 <212> DNA <213> Artificial Sequence <220> <223> S. cerevisiae_TDH3T_Kim395 <400> 63 tgagaagtcg ttgccggata ttgcttaggt gaatttactt taaatcttgc 50 <210> 64 <211> 50 <212> DNA <213> Artificial Sequence <220> <223> S. cerevisiae_TDH3T_Kim396 <400> 64 cctctgtgag ggccgattat gcaggcctag aatcctggcg gaaaaaattc 50 <210> 65 <211> 50 <212> DNA <213> Artificial Sequence <220> <223> S. cerevisiae YE3_CCW12P-gaaA-CCW12T_Kim410 <400> 65 tctttaggtt aattgtcgct gttattgtct agattttttc tcggagatgg 50 <210> 66 <211> 50 <212> DNA <213> Artificial Sequence <220> <223> S. cerevisiae YE3_CCW12P-gaaA-CCW12T_Kim411 <400> 66 tagttcctca ctctttcctt actcactgtt ctagtgtgtt tatattatcc 50 <210> 67 <211> 50 <212> DNA <213> Artificial Sequence <220> <223> S. cerevisiae YE4_PGK1P-lgd1-PGK1T_Kim412 <400> 67 agccaaggat aatataaaca cactagaaca gtgagtaagg aaagagtgag 50 <210> 68 <211> 50 <212> DNA <213> Artificial Sequence <220> <223> S. cerevisiae YE4_PGK1P-lgd1-PGK1T_Kim413 <400> 68 aaactcgaac tgaaaaagcg tgttttttat tcccgattat gcaggcctag 50 <210> 69 <211> 50 <212> DNA <213> Artificial Sequence <220> <223> S. cerevisiae YE5_TDH3P-gaaC-TDH3T_Kim414 <400> 69 tattattttc taggcctgca taatcgggaa taaaaaacac gctttttcag 50 <210> 70 <211> 50 <212> DNA <213> Artificial Sequence <220> <223> S. cerevisiae YE5_TDH3P-gaaC-TDH3T_Kim415 <400> 70 ctactctctt cctagtcgcc cggttgttga aagtttaatt gtgggttttc 50 <210> 71 <211> 50 <212> DNA <213> Artificial Sequence <220> <223> S. cerevisiae YE01_FBA1P-lad1-FBA1T-PGK1P-alx1-CYC1T_Kim553 <400> 71 cttacacttg tgtaatgaca aatgtttttt gaacaacaat accagccttc 50 <210> 72 <211> 50 <212> DNA <213> Artificial Sequence <220> <223> S. cerevisiae YE01_FBA1P-lad1-FBA1T-PGK1P-alx1-CYC1T_Kim554 <400> 72 tgtttcacgt tatcaagatt atgtcatcta ttggccgcaa attaaagcct 50 <210> 73 <211> 50 <212> DNA <213> Artificial Sequence <220> <223> S. cerevisiae_CCW12P_Kim537 <400> 73 gtaactttgc aatataatca ggtcgcaaat atcacgcaaa agaaaacctt 50 <210> 74 <211> 50 <212> DNA <213> Artificial Sequence <220> <223> S. cerevisiae_CCW12P_Kim538 <400> 74 gaagaattct ttaacgtagc aggcattatt gatatagtgt ttaagcgaat 50 <210> 75 <211> 50 <212> DNA <213> Artificial Sequence <220> <223> S. cerevisiae_CCW12P_Kim541 <400> 75 cggaggagac cgctataacc ggtttgaatt tacacgcaaa agaaaacctt 50 <210> 76 <211> 50 <212> DNA <213> Artificial Sequence <220> <223> S. cerevisiae_CCW12P_Kim542 <400> 76 taaccttctt tccgagagac attttttatt gatatagtgt ttaagcgaat 50 <210> 77 <211> 50 <212> DNA <213> Artificial Sequence <220> <223> A. niger_gaaD_Kim543 <400> 77 tcattcgctt aaacactata tcaataaaaa atgtctctcg gaaagaaggt 50 <210> 78 <211> 50 <212> DNA <213> Artificial Sequence <220> <223> A. niger_gaaD_Kim544 <400> 78 gtataaataa taataaacta agtttattaa acaatcacct tatgaccagc 50 <210> 79 <211> 50 <212> DNA <213> Artificial Sequence <220> <223> S. cerevisiae_CCW12T_Kim545 <400> 79 tggtcataag gtgattgttt aataaactta gtttattatt atttatacat 50 <210> 80 <211> 50 <212> DNA <213> Artificial Sequence <220> <223> S. cerevisiae_CCW12T_Kim546 <400> 80 cttgcttgct gtcaaacttc tgagttgtgt tctagtgtgt ttatattatc 50 <210> 81 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Kim049 <400> 81 ggaacggtga gtgcaacg 18 <210> 82 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Kim427 <400> 82 aaactgttca cccagacacc 20 <210> 83 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Kim194 <400> 83 agcgcaacta cagagaacag g 21 <210> 84 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Kim100 <400> 84 cggcaccgtc gaacaatctg 20 <210> 85 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Kim101 <400> 85 ccgcttactc ttcgttcggt cc 22 <210> 86 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Kim193 <400> 86 ctcagcatcc acaatgtatc ag 22 <210> 87 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Kim426 <400> 87 gcgctattgc attgttcttg tc 22 <210> 88 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Kim547 <400> 88 aggtatgcga tagttcctca c 21 <210> 89 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Kim125 <400> 89 tgcagcttcc aatttcgtca c 21 <210> 90 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Kim630 <400> 90 gaggtgacac ccttaccaac 20 <210> 91 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Kim631 <400> 91 ctgctactca caccttcaac tc 22 <210> 92 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Kim632 <400> 92 cgctgaaccc gaacatagaa atatc 25 <210> 93 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Kim633 <400> 93 tcgatatttc tatgttcggg ttcag 25 <210> 94 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Kim078 <400> 94 gattggaatt ggttcgcagt g 21 <210> 95 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Kim048 <400> 95 gaggaagacg ttgaaggtgg 20 <210> 96 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Kim149 <400> 96 tttgaagtgg tacggcgatg 20 <210> 97 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Kim577 <400> 97 cacccaagca cagcatac 18 <210> 98 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Kim634 <400> 98 tggctcgata acgaagatc ag 22 <210> 99 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Kim635 <400> 99 gtcttgtaga ttgagaactg gtcc 24 <210> 100 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Kim636 <400> 100 tctatgaggc aagtaagagg cac 23 <210> 101 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Kim492 <400> 101 aacaggcgac agtccaaatg 20 <210> 102 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Kim077 <400> 102 ttggagttca aactggcgag 20 <210> 103 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Kim322 <400> 103 gcgcatctat ttgccgtc 18 <210> 104 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Kim397 <400> 104 gctgggggag ccatttttta ttg 23 <210> 105 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Kim398 <400> 105 gtgggagctg aagtagactt ag 22 <210> 106 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Kim323 <400> 106 tcaggacaca cctcactg 18 <210> 107 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Kim399 <400> 107 cctgtgatgg tgacttcaga c 21 <210> 108 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Kim401 <400> 108 gaacggagag aagatctgaa ttg 23 <210> 109 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Kim400 <400> 109 acagcctgtt ctcacacac 19 <210> 110 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Kim402 <400> 110 gcggggtaaa aggcattttt tttg 24 <210> 111 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Kim408 <400> 111 gccggatatt gcttaggtg 19 <210> 112 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Kim490 <400> 112 ggcactagga gcatttgtcg 20 <210> 113 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Kim304 <400> 113 gcttcgctaa tccagaggtc 20 <210> 114 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Kim491 <400> 114 gtcccttagg gtgcgtataa tg 22 <210> 115 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Kim539 <400> 115 caattccgtg aaaccctttt ctt 23 <210> 116 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Kim540 <400> 116 ctgccaactt cttcttcatt caa 23 <210> 117 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Kim326 <400> 117 ggttctgact cctactgagc 20 <210> 118 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Kim093 <400> 118 gcaaagatag cggcgtaggt g 21 <210> 119 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Kim549 <400> 119 gcatcctttg cctccgttc 19 <210> 120 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Kim327 <400> 120 agcatcgagt acggcagttc 20

Claims (12)

ALD6(acetaldehyde dehydrogenase gene) 및 PHO13(haloacid dehalogenase Type IIA phosphatase gene)가 녹아웃(knock-out)되고, XYL1(xylose reductase gene), XYL2(xylitol dehydrogenase gene), XYL3(xylulokinase gene), lad1(L-arabitol dehydrogenase gene), alx1(L-xylulose reductase gene), gaaA(D-galacturonic acid reductase gene), gaaC(2-keto-3-deoxy-L-galactonate aldolase gene gene) 및 lgd1(L-galactonate dehydratase gene)가 녹인(knock-in)된 것인 갈락투론산, 자일로스 및 아라비노스의 소비능 가지는 재조합 미생물에서, 상기 미생물은 사카로마이세스 세레비지애(Saccharomyces cerevisiae)인 것인, 갈락투론산, 자일로스 및 아라비노스의 소비능을 가지는 재조합 미생물.ALD6 (acetaldehyde dehydrogenase gene) and PHO13 (haloacid dehalogenase Type IIA phosphatase gene) are knocked out, XYL1 (xylose reductase gene), XYL2 (xylitol dehydrogenase gene), XYL3 (xylulokinase gene), lad1 (L-arabitolase gene) dehydrogenase gene), alx1 (L-xylulose reductase gene), gaaA (D-galacturonic acid reductase gene), gaaC (2-keto-3-deoxy-L-galactonate aldolase gene) and lgd1 (L-galactonate dehydratase gene) In the recombinant microorganisms having the consumption capacity of galacturonic acid, xylose and arabinose that are knock-in, the microorganism is Saccharomyces cerevisiae , which is galacturonic acid, xylose and a recombinant microorganism having the ability to consume arabinose. 제 1항에 있어서, 상기 ALD6(acetaldehyde dehydrogenase gene)의 녹아웃에 의해 아세테이트(acetate) 생성이 억제되는 것인, 갈락투론산, 자일로스 및 아라비노스의 소비능을 가지는 재조합 미생물.The recombinant microorganism according to claim 1, wherein the production of acetate is inhibited by knockout of the ALD6 (acetaldehyde dehydrogenase gene). 제 1항에 있어서, 상기 ALD6(acetaldehyde dehydrogenase gene)는 서열번호 1로 표기되는 것인, 갈락투론산, 자일로스 및 아라비노스의 소비능을 가지는 재조합 미생물.The recombinant microorganism of claim 1, wherein the ALD6 (acetaldehyde dehydrogenase gene) is represented by SEQ ID NO: 1, galacturonic acid, xylose and arabinose. 제 1항에 있어서, 상기 PHO13(haloacid dehalogenase Type IIA phosphatase gene)의 녹아웃에 의해 오탄당 인산화 회로를 촉진시키는 것인, 갈락투론산, 자일로스 및 아라비노스의 소비능을 가지는 재조합 미생물.According to claim 1, wherein the PHO13 (haloacid dehalogenase Type IIA phosphatase gene) to promote the phosphorylation cycle of the pentose by knockout, galacturonic acid, xylose, and recombinant microorganisms having the ability to consume arabinose. 제 1항에 있어서, 상기 PHO13(haloacid dehalogenase Type IIA phosphatase gene)는 서열번호 2로 표기되는 것인, 갈락투론산, 자일로스 및 아라비노스의 소비능을 가지는 재조합 미생물.The recombinant microorganism of claim 1, wherein the PHO13 (haloacid dehalogenase Type IIA phosphatase gene) is represented by SEQ ID NO: 2, galacturonic acid, xylose and arabinose. 제 1항에 있어서, 상기 XYL1(xylose reductase gene), XYL2(xylitol dehydrogenase gene) 및 XYL3(xylulokinase gene)의 녹인에 의해 자일로스 대사경로가 생성되는 것인, 갈락투론산, 자일로스 및 아라비노스의 소비능을 가지는 재조합 미생물.According to claim 1, The xylose reductase gene (XYL1), XYL2 (xylitol dehydrogenase gene) and XYL3 (xylulokinase gene) that the xylose metabolic pathway is generated by the knock-in, galacturonic acid, xylose and arabinose Recombinant microorganisms with consumption ability. 제 1항에 있어서, 상기 XYL1(xylose reductase gene)는 서열번호 3으로 표기되고, XYL2(xylitol dehydrogenase gene)는 서열번호 4로 표기되며 및 XYL3(xylulokinase gene)는 서열번호 5로 표기되는 것인, 갈락투론산, 자일로스 및 아라비노스의 소비능을 가지는 재조합 미생물.According to claim 1, wherein the XYL1 (xylose reductase gene) is represented by SEQ ID NO: 3, XYL2 (xylitol dehydrogenase gene) is represented by SEQ ID NO: 4, and XYL3 (xylulokinase gene) is represented by SEQ ID NO: 5, A recombinant microorganism having the ability to consume galacturonic acid, xylose and arabinose. 제 1항에 있어서, 상기 lad1(L-arabitol dehydrogenase gene) 및 alx1(L-xylulose reductase gene)의 녹인에 의해 아라비노스 대사경로가 생성되는 것인, 갈락투론산, 자일로스 및 아라비노스의 소비능을 가지는 재조합 미생물.The consumption capacity of galacturonic acid, xylose and arabinose according to claim 1, wherein the arabinose metabolic pathway is generated by knock-in of the lad1 (L-arabitol dehydrogenase gene) and alx1 (L-xylulose reductase gene). Recombinant microorganisms having 제 1항에 있어서, 상기 lad1(L-arabitol dehydrogenase gene)는 서열번호 6으로 표기되고 및 alx1(L-xylulose reductase gene)는 서열번호 7로 표기되는 것인, 갈락투론산, 자일로스 및 아라비노스의 소비능을 가지는 재조합 미생물.According to claim 1, wherein the lad1 (L-arabitol dehydrogenase gene) is represented by SEQ ID NO: 6 and alx1 (L-xylulose reductase gene) is represented by SEQ ID NO: 7, Galacturonic acid, xylose and arabinose Recombinant microorganisms having a consumption capacity of 제 1항에 있어서, 상기 gaaA(D-galacturonic acid reductase gene), gaaC(2-keto-3-deoxy-L-galactonate aldolase gene) 및 lgd1(L-galactonate dehydratase gene)의 녹인에 의해 갈락투론산 대사경로가 생성되는 것인, 갈락투론산, 자일로스 및 아라비노스의 소비능을 가지는 재조합 미생물.The galacturonic acid metabolism according to claim 1, wherein the gaaA (D-galacturonic acid reductase gene), gaaC (2-keto-3-deoxy-L-galactonate aldolase gene) and lgd1 (L-galactonate dehydratase gene) are knocked-in. A recombinant microorganism having the ability to consume galacturonic acid, xylose and arabinose, wherein a pathway is generated. 제 1항에 있어서, 상기 gaaA(D-galacturonic acid reductase gene)는 서열번호 8로 표기되고, gaaC(2-keto-3-deoxy-L-galactonate aldolase gene)는 서열번호 9로 표기되며 및 lgd1(L-galactonate dehydratase gene)는 서열번호 10으로 표기되는 것인, 갈락투론산, 자일로스 및 아라비노스의 소비능을 가지는 재조합 미생물.
According to claim 1, wherein the gaaA (D-galacturonic acid reductase gene) is represented by SEQ ID NO: 8, gaaC (2-keto-3-deoxy-L-galactonate aldolase gene) is represented by SEQ ID NO: 9 and lgd1 ( L-galactonate dehydratase gene) is a recombinant microorganism having the ability to consume galacturonic acid, xylose and arabinose, which is represented by SEQ ID NO: 10.
삭제delete
KR1020200049988A 2019-06-25 2020-04-24 Microorganisms fermenting galacturonic acid and pentose simultaneously KR102324008B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190075366 2019-06-25
KR20190075366 2019-06-25

Publications (2)

Publication Number Publication Date
KR20210000653A KR20210000653A (en) 2021-01-05
KR102324008B1 true KR102324008B1 (en) 2021-11-09

Family

ID=74140935

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200049988A KR102324008B1 (en) 2019-06-25 2020-04-24 Microorganisms fermenting galacturonic acid and pentose simultaneously

Country Status (1)

Country Link
KR (1) KR102324008B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230150213A (en) 2022-04-19 2023-10-30 경북대학교 산학협력단 Microorganism co-fermenting rhamnose and five-carbon sugars and method for producing bioethanol using the same

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Biotechnology and Bioengineering, Vol.112, No.11, 페이지2406-2411(2015. 06. 30. 공개)*
Microbial Cell Factories. Vol.15, No.144, 페이지 1-11(2016. 08. 18. 공개)*
Microbial Cell Factories. Vol.8, No.40, 페이지1-12 (2009. 07. 24. 공개)*

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230150213A (en) 2022-04-19 2023-10-30 경북대학교 산학협력단 Microorganism co-fermenting rhamnose and five-carbon sugars and method for producing bioethanol using the same

Also Published As

Publication number Publication date
KR20210000653A (en) 2021-01-05

Similar Documents

Publication Publication Date Title
JP5219074B2 (en) A hexose and pentose co-fermenting yeast with excellent xylose fermentability and a highly efficient production method of ethanol using the same
CA2901974C (en) Method for producing ethanol using recombinant yeast
Shi et al. Anaerobic growth and improved fermentation of Pichia stipitis bearing a URA1 gene from Saccharomyces cerevisiae
DK2646544T3 (en) Process for the preparation of an industrial yeast, industrial yeast and its use in the production of ethanol from at least one pentose
EP1282686B1 (en) A recombinant yeast for lignocellulose raw materials
KR102324008B1 (en) Microorganisms fermenting galacturonic acid and pentose simultaneously
US9890398B2 (en) Method for producing ethanol using recombinant yeast
KR101220430B1 (en) New alcohol dehydrogenase HpADH3 and a method for preparing bioethanol using it
Tomitaka et al. Isolation and characterization of a mutant recombinant Saccharomyces cerevisiae strain with high efficiency xylose utilization
WO2012063344A1 (en) Method for manufacturing ethanol using recombinant yeast
CA2912037C (en) Recombinant yeast and method for producing ethanol using the same
US10745684B2 (en) Recombinant yeast and a method for producing ethanol using the same
JP6447583B2 (en) Recombinant yeast and method for producing ethanol using the same
Jeong et al. Bioconversion of citrus waste into mucic acid by xylose-fermenting Saccharomyces cerevisiae
US20120270290A1 (en) Pentose transporter
US11193113B2 (en) Transgenic yeast and method for producing ethanol using the same
WO2023079048A1 (en) Process for the production of ethanol and recombinant yeast cell
WO2023079050A1 (en) Recombinant yeast cell
JP6338900B2 (en) Mutant yeast belonging to the genus Kluyveromyces and method for producing ethanol using the same

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant