KR102321425B1 - Asymmetric siRNA Inhibiting Expression of NRL - Google Patents

Asymmetric siRNA Inhibiting Expression of NRL Download PDF

Info

Publication number
KR102321425B1
KR102321425B1 KR1020200006755A KR20200006755A KR102321425B1 KR 102321425 B1 KR102321425 B1 KR 102321425B1 KR 1020200006755 A KR1020200006755 A KR 1020200006755A KR 20200006755 A KR20200006755 A KR 20200006755A KR 102321425 B1 KR102321425 B1 KR 102321425B1
Authority
KR
South Korea
Prior art keywords
nrl
asirna
sirna
rna
sense
Prior art date
Application number
KR1020200006755A
Other languages
Korean (ko)
Other versions
KR20200090132A (en
Inventor
이동기
이숙영
Original Assignee
올릭스 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 올릭스 주식회사 filed Critical 올릭스 주식회사
Publication of KR20200090132A publication Critical patent/KR20200090132A/en
Application granted granted Critical
Publication of KR102321425B1 publication Critical patent/KR102321425B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/713Double-stranded nucleic acids or oligonucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/14Type of nucleic acid interfering N.A.
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/31Chemical structure of the backbone
    • C12N2310/315Phosphorothioates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/32Chemical structure of the sugar
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/32Chemical structure of the sugar
    • C12N2310/3212'-O-R Modification
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/35Nature of the modification
    • C12N2310/351Conjugate
    • C12N2310/3515Lipophilic moiety, e.g. cholesterol

Abstract

본 발명은 NRL(Neural retina leucine zipper)의 발현을 억제하는 비대칭 siRNA 및 이의 용도에 관한 것으로, 더욱 상세하게는 NRL을 코딩하는 mRNA와 상보적인 서열을 포함하는 안티센스 가닥과, 상기 안티센스 가닥과 상보적 결합을 형성하는 센스 가닥을 포함하는 비대칭 siRNA 및 상기 비대칭 siRNA를 포함하는 망막질환 개선 또는 치료용 약학 조성물에 관한 것이다. The present invention relates to an asymmetric siRNA that inhibits the expression of neural retina leucine zipper (NRL) and uses thereof, and more particularly, to an antisense strand comprising a sequence complementary to an mRNA encoding NRL, and to the antisense strand complementary to the antisense strand It relates to an asymmetric siRNA comprising a sense strand forming a bond, and a pharmaceutical composition for improving or treating retinal diseases comprising the asymmetric siRNA.

Figure R1020200006755
Figure R1020200006755

Description

NRL(Neural retina leucine zipper)의 발현을 억제하는 비대칭 siRNA{Asymmetric siRNA Inhibiting Expression of NRL}Asymmetric siRNA Inhibiting Expression of NRL {Asymmetric siRNA Inhibiting Expression of NRL}

본 발명은 NRL(Neural retina leucine zipper)의 발현을 억제하는 비대칭 siRNA 및 이의 용도에 관한 것으로, 더욱 상세하게는 NRL을 코딩하는 mRNA와 상보적인 서열을 포함하는 안티센스 가닥과, 상기 안티센스 가닥과 상보적 결합을 형성하는 센스 가닥을 포함하는 비대칭 siRNA 및 상기 비대칭 siRNA를 포함하는 망막질환 개선 또는 치료용 약학 조성물에 관한 것이다.The present invention relates to an asymmetric siRNA that inhibits the expression of neural retina leucine zipper (NRL) and uses thereof, and more particularly, to an antisense strand comprising a sequence complementary to an mRNA encoding NRL, and to the antisense strand complementary to the antisense strand It relates to an asymmetric siRNA comprising a sense strand forming a bond, and a pharmaceutical composition for improving or treating retinal diseases comprising the asymmetric siRNA.

망막색소변성증(retinitis pigmentosa)은 간상세포의 특징을 갖게 하는 유전자에 돌연변이가 생겨, 간상세포가 파괴되고 이차적으로 원추세포가 파괴되어 결국 실명에 이를 수 있는 질병이다. 이 때 간상세포로 분화되게 하는 주요 전사인자인 Neural retina leucine zipper(NRL)를 adenovirus-associated virus(AAV) delivered CRISPR/Cas9으로 knockout하면, 간상세포가 부분적인 원추세포의 성질을 획득하여, 간상세포의 특징을 갖게 하는 유전자에 돌연변이가 있을 때 간상세포가 파괴되지 않고 유지되어 이차적인 원추세포의 손실을 막는다는 것이 retinal degeneration의 mouse model을 통해 관찰되었다(Yu, Wenhan, et al., "Nrl knockdown by AAV-delivered CRISPR/Cas9 prevents retinal degeneration in mice." Nature communications 8 (2017): 14716). NRL이 간상세포 및 원추세포의 분화 과정에서 매우 중요한 기능을 하며, NRL의 전사활성이 간상세포 분화에 직접적으로 작용하고 있음을 의미한다. NRL이 망막의 발생 및 분화뿐만 아니라 로돕신과 같은 광수용체 단백질의 발현에 기능하기 때문에 NRL의 유전적 돌연변이가 망막 질환과도 관계가 있다는 연구가 보고되었다.Retinitis pigmentosa is a disease that can lead to blindness due to mutations in a gene that gives characteristics of rod cells, resulting in destruction of rod cells and secondary destruction of cone cells. At this time, when the Neural retina leucine zipper (NRL), a major transcription factor that allows differentiation into rod cells, is knocked out with adenovirus-associated virus (AAV) delivered CRISPR/Cas9, rod cells acquire partial cone-like properties, and rod cells It was observed in a mouse model of retinal degeneration that, when there is a mutation in a gene that gives the characteristics of by AAV-delivered CRISPR/Cas9 prevents retinal degeneration in mice." Nature communications 8 (2017): 14716). NRL plays a very important function in the differentiation process of rod and cone cells, indicating that the transcriptional activity of NRL acts directly on rod cell differentiation. Because NRL functions in the development and differentiation of retina as well as in the expression of photoreceptor proteins such as rhodopsin, a study has been reported that genetic mutations in NRL are also related to retinal diseases.

CRISPR/Cas9은 DNA에 double strand break를 일으켜 유전자의 발현을 transcriptional level에서 조절하는 유전자 편집기술이다. 그러나 CRISPR/Cas9을 통한 특정 유전자의 knockout은 타겟 유전자가 아닌 곳에서 의도하지 않은 변이를 일으켰을 때 다시 knockout 이전의 상태로 복구시킬 수 없으며, 그로 인하여 심각한 부작용이 발생할 수 있다. 또한 Cas9은 bacterial protein이기 때문에 in vivo에서 발현될 때 면역반응과 다른 알려지지 않은 부작용을 야기할 수 있어 망막색소변성증을 비롯한 질병에 대한 약물로 개발되는데 어려움이 있다.CRISPR/Cas9 is a gene editing technology that regulates gene expression at the transcriptional level by causing a double strand break in DNA. However, knockout of a specific gene through CRISPR/Cas9 cannot restore the state prior to knockout when an unintended mutation is made in a non-target gene, which may cause serious side effects. In addition, since Cas9 is a bacterial protein, when expressed in vivo, it can cause immune responses and other unknown side effects, making it difficult to develop as a drug for diseases including retinitis pigmentosa.

한편, RNA 간섭(RNA interference) 현상을 이용한 질병의 치료는 mRNA를 타겟으로 하여, 유전자의 발현을 translational level에서 조절하는 siRNA를 이용하기 때문에 보다 안전하게 질병을 치료할 수 있다. 짧은 간섭 RNA(small interfering RNA; siRNA)는 표적 mRNA와 같은 시퀀스를 가진 sense strand와 그와 상보적인 시퀀스를 가진 antisense strand로 구성된다. conventional siRNA는 19-21bp의 짧은 duplex를 가지며 양쪽 strand 3'에 2개의 뉴클레오타이드가 돌출되어있다. siRNA는 세포 내로 들어가 표적 mRNA에 붙어 표적 mRNA를 분해시키며 표적 유전자의 발현을 억제한다. oligo의 시퀀스를 바꿈으로써 모든 mRNA를 표적으로 하는 것이 가능하기 때문에 구조가 복잡한 단백질의 발현도 억제할 수 있으며, 따라서 현재 치료가 어려운 암, 바이러스 감염, 유전병과 같은 질병의 치료를 가능하게 할 수 있다. 그러나 세포 내로 유입된 siRNA는 면역반응 유발, 비표적 유전자의 억제와 같은 부작용을 일으킬 수 있는데, 그 중에서도 siRNA를 세포 내로 도입하는 delivery system이 siRNA를 이용한 치료제 개발에서 가장 큰 문제가 되고 있다.On the other hand, the treatment of diseases using RNA interference phenomenon can treat diseases more safely because siRNA that targets mRNA and regulates gene expression at the translational level is used. A short interfering RNA (siRNA) consists of a sense strand having the same sequence as the target mRNA and an antisense strand having a complementary sequence thereto. Conventional siRNA has a short duplex of 19-21bp, and 2 nucleotides protrude from both strands 3'. siRNA enters the cell, attaches to the target mRNA, degrades the target mRNA, and suppresses the expression of the target gene. Since it is possible to target all mRNAs by changing the sequence of oligo, it is possible to suppress the expression of proteins with complex structures, thus enabling the treatment of diseases such as cancer, viral infection, and genetic diseases that are currently difficult to treat. . However, siRNA introduced into cells can cause side effects such as induction of immune response and suppression of non-target genes.

siRNA는 phosphate backbone 때문에 음전하를 띄게 되는데, 음전하를 갖는 세포막과 반발력을 갖게 되어 세포 내로 siRNA를 도입하려면 delivery system을 필요로 한다. delivery system의 한 예로는 양전하를 갖는 리포좀이나 폴리머로 siRNA를 감싸서 음전하를 상쇄시켜 세포 내로 도입하는 방법이 많이 사용되고 있다. 그러나 양전하를 갖는 전달체는 음전하를 갖는 세포막에 붙어 원하지 않는 독성을 나타내거나 세포 내의 여러 종류의 단백질과 상호작용을 통해 원하지 않는 복합체를 형성하는 등 다양한 부작용을 일으킬 수 있다. 또한 siRNA는 혈액 내의 핵산가수분해효소(nuclease)에 의해 빠르게 분해되기 때문에 표적으로 하는 세포에 도달되는 siRNA의 양이 표적 유전자의 발현을 상당히 감소시킬 만큼 충분하지 않을 수 있다. 따라서 siRNA가 안전하고 효과적으로 타겟 세포 내로 전달될 수 있는 방법이 필요하다.Because siRNA is negatively charged due to the phosphate backbone, it has a repulsive force with the negatively charged cell membrane, so a delivery system is required to introduce siRNA into the cell. As an example of a delivery system, a method of introducing siRNA into a cell by offsetting the negative charge by wrapping the siRNA with a liposome or polymer having a positive charge is widely used. However, a positively charged carrier may cause various side effects, such as binding to a negatively charged cell membrane, exhibiting unwanted toxicity, or forming an unwanted complex through interaction with various types of proteins in the cell. In addition, since siRNA is rapidly degraded by nuclease in the blood, the amount of siRNA reaching the target cell may not be sufficient to significantly reduce the expression of the target gene. Therefore, there is a need for a method by which siRNA can be safely and effectively delivered into target cells.

이에 본 발명자들은 NRL의 발현을 억제시킬 수 있는 NRL 표적 siRNA를 선별하고, 전달체의 도움 없이 세포 내로 전달되며 핵산가수분해효소에 대한 저항성이 높은 siRNA를 개발하고자 예의 연구 노력한 결과, NRL을 타겟으로 하는 siRNA들을 디자인하였으며, 스크리닝을 통해 가장 효율적으로 NRL을 억제시키는 siRNA를 선별하고, 변형(modification)을 통해 세포 내 전달 문제를 극복할 수 있음을 확인하고, 본 발명을 완성하였다.Accordingly, the present inventors selected an NRL target siRNA capable of inhibiting the expression of NRL, and made intensive research efforts to develop an siRNA that is delivered into cells without the aid of a carrier and has high resistance to nuclease. The siRNAs were designed, the siRNA that most efficiently inhibits NRL was selected through screening, and it was confirmed that the problem of intracellular delivery could be overcome through modification, and the present invention was completed.

본 발명의 목적은 NRL의 발현을 특이적으로 억제하는 비대칭 siRNA(asymmetric shorter duplex siRNA, asiRNA)를 제공하는 데 있다.An object of the present invention is to provide an asymmetric shorter duplex siRNA (asiRNA) that specifically inhibits the expression of NRL.

본 발명의 다른 목적은 상기 비대칭 siRNA를 포함하는 망막질환 개선 또는 치료용 약학 조성물, 또는 망막질환 개선 또는 치료방법을 제공하는 데 있다.Another object of the present invention is to provide a pharmaceutical composition for improving or treating a retinal disease, or a method for improving or treating a retinal disease, comprising the asymmetric siRNA.

상기 목적을 달성하기 위하여, 본 발명은 NRL(Neural retina leucine zipper)을 코딩하는 mRNA와 상보적인 서열을 포함하는 안티센스 가닥과, 상기 안티센스 가닥과 상보적 결합을 형성하는 센스 가닥을 포함하고, 상기 안티센스 가닥의 5' 말단 및 센스 가닥의 3' 말단은 블런트 말단(blunt end)을 형성하는 것을 특징으로 하는 siRNA를 제공한다.In order to achieve the above object, the present invention includes an antisense strand comprising a sequence complementary to an mRNA encoding a neural retina leucine zipper (NRL), and a sense strand forming a complementary bond with the antisense strand, The 5' end of the strand and the 3' end of the sense strand form a blunt end.

본 발명은 또한, 상기 siRNA를 포함하는 망막질환 개선 또는 치료용 약학 조성물을 제공한다.The present invention also provides a pharmaceutical composition for improving or treating retinal diseases comprising the siRNA.

본 발명은 또한, 상기 siRNA를 개체에 투여하는 단계를 포함하는 망막질환 개선 또는 치료방법을 제공한다.The present invention also provides a method for improving or treating retinal diseases comprising administering the siRNA to an individual.

본 발명에 따르면, 간상세포 및 원추세포의 분화 과정에서 매우 중요한 기능을 하는 NRL의 발현을 효율적으로 억제시킬 수 있는 비대칭 siRNA를 선별하고, 상기 siRNA가 전달체 도움 없이 세포 내로 도입되고 핵산가수분해효소에 대한 저항성을 갖도록 화학적으로 변형시켜 전달체로 인한 세포독성을 제거하고, in vivo에서 보다 효율적인 유전자 발현의 억제를 가능하게 함으로써, 망막색소변성증을 포함한 망막질환의 치료제로 유용하게 사용할 수 있다.According to the present invention, an asymmetric siRNA capable of efficiently inhibiting the expression of NRL, which plays a very important function in the differentiation process of rod and cone cells, is selected, and the siRNA is introduced into the cell without the aid of a transporter and is subjected to nuclease. By chemically modifying it to have resistance to cytotoxicity due to the carrier and enabling more efficient inhibition of gene expression in vivo, it can be usefully used as a therapeutic agent for retinal diseases including retinitis pigmentosa.

도 1은 16-19mer의 NRL 발현 억제를 위한 asiRNA(이하, NRL asiRNA 또는 asiNRL)의 구조를 나타낸다.
도 2는 Homo sapiens(H), Rattus norvegicus(R), Mus musculus(M)의 homology를 고려하여 siRNA를 디자인한 것을 나타낸 것으로, 도 2(A)는 H와 R, M 사이의 mismatch의 개수와 그에 상응하는 sequence의 개수를 표로 나타낸 것이고, 도 2(B)는 도 2(A)를 도식화시킨 것이며, 도 2(C)는 73개의 NRL asiRNA를 디자인한 후에 Human NRL transcript variants의 정보가 업데이트 되었고, 그에 따라 모든 transcript variant에 속하는 40개의 NRL asiRNA를 스크리닝하게 되었음을 나타내는 도면이다.
도 3은 1nM의 NRL asiRNA를 transfection하여 얻은 상대적인 NRL mRNA level(n=2)을 나타낸 그래프로, transfection한 plasmid에 있는 Neo의 발현양으로 normalization한 결과를 나타낸다.
도 4는 qRT-PCR 결과 NRL을 효율적으로 억제시키는 상위 7개의 NRL asiRNA를 transfection(3nM)하여 western blot한 결과이다.
도 5는 대략적인 IC50값을 구하기 위하여 NRL asiRNA #47과 #49의 농도를 다르게 하여(0.01nM부터 3nM까지) western blot한 결과이다. NRL asiRNA #47의 IC50 value는 대략 0.2nM, NRL asiRNA #49의 IC50 value는 0.6-1nM이다.
도 6은 표 4의 NRL asiRNA에 대한 화학적 modification을 도식화한 도면으로, 센스 가닥에 대해서는 S-ori, S-OMe/F, S-F를 순서대로 1S, 2S, 3S로 나타내고, AS-ori, AS-OMe/F, AS-F를 순서대로 1AS, 2AS, 3AS로 나타내었다.
도 7은 화학적 변형을 가하지 않은 #47 asiNRL (센스 가닥-안티센스 가닥, 16mer-19mer), 그리고 도 6에 기재된 화학적 modification을 도입하고 안티센스 가닥을 25mer로 한 #47 cp asiNRL, #49 cp asiNRL을 A549-stable cell line에 전달체 없이 처리한 결과이다.
도 8의 1st modification은 도 7의 결과에서 효능이 가장 우수한 2S/2AS(S-OMe/F, AS-OMe/F)를 나타낸 것이고, 도 8의 2nd modification은 상기 2S/2AS(S-OMe/F, AS-OMe/F)에 추가적인 modification을 진행한 것을 나타낸 도면이다. 즉, 센스 가닥인 2S에 추가적인 변형을 한 것을 2S-1, 안티센스 가닥인 2AS에 추가적인 변형을 한 것을 각각 2AS-1, 2AS-2로 나타낸다.
도 9는 #47 cp asiNRL (SS-AS: 16mer-25mer)의 2S/2AS, 2S/2AS-1, 2S/2AS-2, 2S-1/2AS-1, 2S-1/2AS-2의 효과를 확인한 결과이다.
도 10은 #47 cp asiNRL (SS-AS: 16mer-25mer)의 2S/2AS와 2S/2AS-1의 IC50 value와 maximum knockdown value를 구하기 위해 NRL cp-asiRNA의 농도를 다르게 처리한(30nM부터 3000nM까지) 결과이다.
도 11은 #47 cp-asiNRL (SS-AS:16mer-25mer)에서 안티센스 가닥(AS)을 25mer에서 26mer로 늘린 #47 cp-asiNRL (SS-AS: 16mer-26mer)의 효능을 확인한 결과이다.
도 12는 도 11 상의 #47 cp-asiNRL 2S-2AS-1(1626) (센스 가닥: 16mer, 안티센스 가닥: 26mer)의 sequence와 modification 정보를 나타낸다.
도 13은 #47 cp-asiNRL 2S-2AS-1(1626) 물질을 안구 내 투여한지 7일째, 마우스 안구의 망막 조직 내에서, 상기 후보 물질의 투여에 따른 NRL의 발현 변화를 western blot을 통하여 확인한 결과이다.
도 14는 #47 cp-asiNRL 2S-2AS-1(1626) 물질을 안구 내 투여한지 14일째, 마우스 안구의 망막 조직 내에서, 상기 후보 물질의 투여에 따른 NRL의 발현 변화를 western blot을 통하여 확인한 결과이다.
1 shows the structure of an asiRNA (hereinafter, NRL asiRNA or asiNRL) for suppressing NRL expression of 16-19mer.
Figure 2 shows that the siRNA was designed in consideration of the homology of Homo sapiens (H), Rattus norvegicus (R), and Mus musculus (M), and Figure 2 (A) shows the number of mismatches between H and R, and M The number of corresponding sequences is shown in a table, Figure 2 (B) is a schematic diagram of Figure 2 (A), Figure 2 (C) is after designing 73 NRL asiRNA Human NRL transcript variants information was updated and , a diagram showing that 40 NRL asiRNAs belonging to all transcript variants were screened accordingly.
3 is a graph showing the relative NRL mRNA level (n=2) obtained by transfection of 1 nM NRL asiRNA, and shows the result of normalization to the expression amount of Neo in the transfected plasmid.
4 is a qRT-PCR result of the top 7 efficiently inhibiting NRL These are the results of western blot by transfection (3nM) of NRL asiRNA.
Figure 5 is a result of western blot with different concentrations of NRL asiRNA #47 and #49 (from 0.01 nM to 3 nM) to obtain an approximate IC 50 value. Of NRL asiRNA # 47 IC 50 value is about 0.2nM, NRL asiRNA IC 50 value is 0.6-1nM of # 49.
6 is a schematic diagram of chemical modification of NRL asiRNA of Table 4, and for the sense strand, S-ori, S-OMe/F, and SF are sequentially indicated as 1S, 2S, 3S, AS-ori, AS- OMe/F and AS-F are indicated as 1AS, 2AS, and 3AS in that order.
7 shows #47 asiNRL (sense strand-antisense strand, 16mer-19mer) without chemical modification, and #47 cp asiNRL, #49 cp asiNRL with 25mer as 25mer with the chemical modification described in FIG. 6 introduced to A549 -Stable cell line is the result of treatment without a carrier.
The 1 st modification will effect the results of Fig. 7 in Fig. 8 best 2S / 2AS (S-OMe / F, AS-OMe / F) will showing a, 2 nd modification of Figure 8 is the 2S / 2AS (S- OMe/F, AS-OMe/F) is a diagram showing additional modification. That is, an additional modification to the sense strand 2S is denoted as 2S-1, and an additional modification to the antisense strand 2AS is denoted as 2AS-1 and 2AS-2, respectively.
9 shows the effect of 2S/2AS, 2S/2AS-1, 2S/2AS-2, 2S-1/2AS-1, 2S-1/2AS-2 of #47 cp asiNRL (SS-AS: 16mer-25mer) is the result of checking
Figure 10 is #47 cp asiNRL (SS-AS: 16mer-25mer) to obtain the IC 50 value and maximum knockdown value of 2S/2AS and 2S/2AS-1 NRL These are the results of different concentrations of cp-asiRNA (from 30 nM to 3000 nM).
11 is a result confirming the efficacy of #47 cp-asiNRL (SS-AS: 16mer-26mer) in which the antisense strand (AS) is extended from 25mer to 26mer in #47 cp-asiNRL (SS-AS: 16mer-25mer).
12 shows the sequence and modification information of #47 cp-asiNRL 2S-2AS-1(1626) (sense strand: 16mer, antisense strand: 26mer) in FIG. 11 .
13 shows the change in the expression of NRL according to the administration of the candidate substance in the retinal tissue of the mouse eye on the 7th day after intraocular administration of the #47 cp-asiNRL 2S-2AS-1(1626) substance through western blot. is the result
14 shows the change in the expression of NRL according to the administration of the candidate substance in the retinal tissue of the mouse eye on the 14th day after intraocular administration of the #47 cp-asiNRL 2S-2AS-1(1626) substance through western blot. is the result

다른 식으로 정의되지 않는 한, 본 명세서에서 사용된 모든 기술적 및 과학적 용어들은 본 발명이 속하는 기술분야에서 숙련된 전문가에 의해서 통상적으로 이해되는 것과 동일한 의미를 갖는다. 일반적으로 본 명세서에서 사용된 명명법은 본 기술분야에서 잘 알려져 있고 통상적으로 사용되는 것이다.Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. In general, the nomenclature used herein is those well known and commonly used in the art.

본 발명의 상세한 설명 등에서 사용되는 주요 용어의 정의는 다음과 같다.Definitions of key terms used in the detailed description of the present invention are as follows.

"RNAi(RNA interference; RNA 간섭)"란, 목적 유전자의 mRNA와 상동인 서열을 가지는 가닥과 이것과 상보적인 서열을 가지는 가닥으로 구성되는 이중가닥 RNA(dsRNA)를 세포 등에 도입하여 목적 유전자 mRNA의 분해를 유도함으로써 목적 유전자의 발현을 억제하는 메카니즘을 의미한다."RNAi (RNA interference; RNA interference)" refers to the introduction of double-stranded RNA (dsRNA) consisting of a strand having a sequence homologous to the mRNA of a target gene and a strand having a sequence complementary to this into a cell etc. It refers to a mechanism for suppressing the expression of a target gene by inducing degradation.

"siRNA(small interfering RNA; 짧은 간섭 RNA)"란, 서열 특이적으로 효율적인 유전자 발현 억제(gene silencing)를 매개하는 짧은 이중 가닥의 RNA(dsRNA)를 의미한다.“Small interfering RNA (siRNA)” refers to a short double-stranded RNA (dsRNA) that mediates sequence-specifically efficient gene silencing.

"안티센스 가닥(antisense strand)"이란 관심 있는 목적 핵산(target nucleic acid)에 실질적으로 또는 100% 상보적인 폴리뉴클레오티드로서, 예를 들어 mRNA(messenger RNA), mRNA가 아닌 RNA 서열(e.g.,microRNA, piwiRNA, tRNA, rRNA 및 hnRNA) 또는 코딩 또는 비코딩 DNA 서열과 전체로서 또는 일부로서 상보적일 수 있다.An "antisense strand" is a polynucleotide substantially or 100% complementary to a target nucleic acid of interest, for example, messenger RNA (mRNA), non-mRNA RNA sequence (eg, microRNA, piwiRNA). , tRNA, rRNA and hnRNA) or coding or non-coding DNA sequences in whole or in part.

"센스 가닥(sense strand)"이란 목적 핵산과 동일한 핵산 서열을 갖는 폴리뉴클레오티드로서, mRNA(messenger RNA), mRNA가 아닌 RNA 서열(e.g., microRNA, piwiRNA, tRNA, rRNA 및 hnRNA) 또는 코딩 또는 비코딩 DNA 서열과 전체로서 또는 일부로서 동일한 폴리뉴클레오티드를 말한다.A "sense strand" is a polynucleotide having the same nucleic acid sequence as a target nucleic acid, and is either a messenger RNA (mRNA), a non-mRNA RNA sequence (eg, microRNA, piwiRNA, tRNA, rRNA and hnRNA) or coding or non-coding Refers to a polynucleotide identical in whole or in part to a DNA sequence.

"유전자"란 최광의의 의미로 간주되어야 하며, 구조 단백질 또는 조절 단백질을 암호화할 수 있다. 이때, 조절단백질은 전사인자, 열 충격단백질 또는 DNA/RNA 복제, 전사 및/또는 번역에 관여하는 단백질을 포함한다. 본 발명에 있어서, 발현 억제의 대상이 되는 목적 유전자는 바이러스 게놈에 내재된 것으로, 동물 유전자로 통합되거나 염색체 외 구성요소로서 존재할 수 있다. 예컨대, 목적 유전자는 HIV 게놈상의 유전자일 수 있다. 이 경우, siRNA 분자는 포유동물 세포 내 HIV 유전자의 번역을 불활성화시키는데 유용하다.A “gene” is to be taken in its broadest sense and may encode a structural protein or a regulatory protein. In this case, the regulatory protein includes a transcription factor, a heat shock protein, or a protein involved in DNA/RNA replication, transcription and/or translation. In the present invention, the target gene to be suppressed is inherent in the viral genome, and may be integrated into an animal gene or exist as an extrachromosomal component. For example, the gene of interest may be a gene on the HIV genome. In this case, the siRNA molecule is useful for inactivating the translation of an HIV gene in a mammalian cell.

"Neural retina leucine zipper(NRL)"는 전사인자로서 로돕신과 같은 간상세포의 특징을 갖게 하는 유전자의 프로모터에 붙어 광수용체 전구체가 간상세포로 분화되도록 한다. NRL은 직접적으로, 또는 downstream에 있는 NR2E3를 통해 광수용체 전구체가 원추세포로 분화되는 것을 막는다. 따라서 NRL은 광수용체 전구체가 간상세포로 분화되게 하는 중요한 인자이다."Neural retina leucine zipper (NRL)" is a transcription factor that attaches to the promoter of a gene that gives rod cell characteristics, such as rhodopsin, so that photoreceptor precursors are differentiated into rod cells. NRL blocks the differentiation of photoreceptor progenitors into cones either directly or through NR2E3 downstream. Therefore, NRL is an important factor for the differentiation of photoreceptor progenitors into rod cells.

망막색소변성증(retinitis pigmentosa)은 간상세포의 특징을 나타내도록 하는 유전자에 돌연변이가 생겨 간상세포가 먼저 파괴되고 이차적으로 원추세포가 파괴되는 질병이다. 광수용체 기능에 중요한 유전자에 돌연변이가 있을 때 해로운 효과는 완전히 분화된 광수용체 환경에서 최대가 된다는 연구결과가 있다. 따라서 간상세포로의 분화를 유도하는 NRL을 knockout시키면 간상세포가 형태적으로 원추세포와 비슷한 세포로 바뀌며 간상세포의 기능은 잃게 되지만, 형태와 기능이 변한 간상세포라 할지라도 그 존재가 이차적인 원추세포의 손실을 막아준다는 것이 밝혀졌다. 따라서 NRL의 발현을 억제시키는 것은 망막색소변성증의 치료법으로서의 가능성이 있다.Retinitis pigmentosa (retinitis pigmentosa) is a disease in which a mutation occurs in a gene that expresses characteristics of rod cells, causing rod cells to be destroyed first and cone cells secondary to destruction. Studies have shown that the detrimental effects of mutations in genes important for photoreceptor function are greatest in a fully differentiated photoreceptor environment. Therefore, when NRL, which induces differentiation into rod cells, is knocked out, rod cells are morphologically changed to cone-like cells and rod cell functions are lost. has been shown to prevent the loss of Therefore, suppressing the expression of NRL has potential as a treatment for retinitis pigmentosa.

본 발명의 목적은 크게 두 가지로 나타낼 수 있는데, 첫째는 NRL을 타겟으로 하는 siRNA들을 디자인하고, 스크리닝을 통해 가장 효율적으로 NRL을 억제시키는 siRNA를 선별하는 것이며, 둘째는 siRNA를 별다른 전달체 없이 세포 내로 전달시키고 핵산가수분해 효소에 대한 저항성을 높이기 위해 화학적인 변형을 도입하는 것이다. 인지질로 구성된 세포막을 통과하려면 크기가 작거나 혹은 소수성이어야 한다. 그러나 siRNA는 phosphate backbone에 의해 음전하를 띄며 그로 인해 세포막을 투과하는데 어려움이 있다. 또한 핵산가수분해 효소에 대한 저항성을 높여 serum에서의 긴 lifetime을 가지게 하여 표적으로 도달되는 양이 효과적인 RNAi를 일으키기에 충분하도록 만들어야 한다. 따라서 변형(modification)을 도입하여, siRNA의 delivery 문제를 극복하였다.The object of the present invention can be broadly expressed in two ways. First, to design siRNAs that target NRL, and to select siRNAs that most efficiently inhibit NRL through screening, and second, to introduce siRNA into cells without a specific carrier. It is the introduction of chemical modifications to deliver and increase resistance to nucleases. To pass through a cell membrane composed of phospholipids, it must be small or hydrophobic. However, siRNA is negatively charged by the phosphate backbone, so it is difficult to penetrate the cell membrane. In addition, it is necessary to increase the resistance to nucleases to have a long lifetime in serum, so that the amount to reach the target is sufficient to cause effective RNAi. Therefore, by introducing a modification (modification), the delivery problem of siRNA was overcome.

본 발명의 일 실시예에서, 먼저 NRL을 타겟으로 하는 asiRNA를 디자인하고 NRL을 발현하는 세포에서 asiRNA를 transfection하여 가장 knockdown efficiency가 좋은 NRL asiRNA를 선별하였다. 이 선별된 siRNA에 다음 4가지의 modification을 도입하여 asiRNA가 세포 관통능을 가지고 핵산가수분해효소에 저항성을 가지도록 변형시킨다. 첫째는 센스 가닥의 3' 말단에 콜레스테롤을 첨가하여 siRNA가 세포막을 투과할 수 있게 해준다. 두 번째는 센스 가닥와 안티센스 가닥의 5' 말단 또는 3' 말단 가까이의 phosphate backbone을 포스포로티오에이트(phosphorothioate)로 치환하여 핵산외부가수분해 효소에 대한 저항성을 가지며, 세포로의 흡수와 in vivo에서 siRNA의 생물학적 이용을 가능하게 해준다. 세 번째는 당의 2'을 OMethyl로 modification하여 핵산가수분해 효소에 대한 저항성을 부여하며 siRNA immunogenicity를 낮추어 주며 off-target 효과를 감소시켜준다. 네 번째는 당의 2'을 fluoro로 modification하여 double strand duplex에 안정성을 부여하며, serum에서의 안정성을 높이고 in vitro와 in vivo에서 효율적인 silencing이 가능하게 한다. siRNA에 위와 같은 modification을 가함으로써 siRNA는 세포 관통능을 갖게 되고, serum에 더욱 오래 머물러 표적 세포로 충분한 양의 siRNA가 전달됨에 따라 보다 효율적인 유전자 억제를 가능하게 한다.In an embodiment of the present invention, NRL asiRNA with the best knockdown efficiency was selected by first designing an asiRNA targeting NRL and transfecting the asiRNA in NRL-expressing cells. The following four modifications are introduced into the selected siRNA to transform the asiRNA to have cell penetrating ability and resistance to nucleases. First, cholesterol is added to the 3' end of the sense strand, allowing siRNA to penetrate the cell membrane. Second, the phosphate backbone near the 5' end or 3' end of the sense and antisense strands is substituted with phosphorothioate to have resistance to exohydrolytic enzymes, and uptake into cells and siRNA in vivo enable the bioavailability of Third, by modifying 2' of sugar with OMethyl, it gives resistance to nucleolytic enzymes, lowers siRNA immunogenicity, and reduces off-target effects. Fourth, the 2' of the sugar is modified with fluoro to give stability to the double-stranded duplex, increase the stability in serum, and enable efficient silencing in vitro and in vivo. By adding the above modifications to the siRNA, the siRNA has the ability to penetrate cells and stays in the serum for a longer period of time, enabling more efficient gene suppression as a sufficient amount of siRNA is delivered to the target cell.

따라서, 본 발명은 일 관점에서, NRL(Neural retina leucine zipper)을 코딩하는 mRNA와 상보적인 서열을 포함하는 안티센스 가닥과, 상기 안티센스 가닥과 상보적 결합을 형성하는 센스 가닥을 포함하고, 상기 안티센스 가닥의 5' 말단 및 센스 가닥의 3' 말단은 블런트 말단(blunt end)을 형성하는 것을 특징으로 하는 siRNA에 관한 것이다.Accordingly, in one aspect, the present invention includes an antisense strand comprising a sequence complementary to an mRNA encoding a neural retina leucine zipper (NRL), and a sense strand forming a complementary bond with the antisense strand, and the antisense strand It relates to an siRNA, characterized in that the 5' end of the and the 3' end of the sense strand form a blunt end.

본 발명에서의 siRNA는 일반적인 RNAi(RNA interference) 작용을 가지는 모든 물질을 포함하는 개념이다. RNAi는 1998년 Caenorthabditis elegans에서 최초로 발견된 세포 내 유전자 조절 기작으로 작용기전은 세포 내로 투입된 RNA 이중 가닥 중 안티센스 가닥이 표적 유전자의 mRNA에 상보적으로 결합함으로써 표적 유전자 분해를 유도한다고 알려져 있다. 그 중 siRNA는 "in vitro" 에서 유전자의 발현을 억제하는 방법 중에 하나다. 19-21bp의 siRNA는 이론적으로 거의 모든 유전자에 대한 선택적 억제가 가능하여 암, 바이러스성 감염 등의 다양한 유전자 관련 질환 치료제로 개발이 가능하며, 최근 가장 각광받는 신약 개발 후보 기술이다. 포유동물에서 siRNA를 사용한 생체 내 치료를 첫 시도한 경우는 2003년 중반이었으며, 그 이후로 응용 연구에 대한 많은 시도로 생체 내 치료에 관하여 다수 보고되었다.siRNA in the present invention is a concept including all substances having a general RNAi (RNA interference) action. RNAi is an intracellular gene regulation mechanism first discovered in Caenorthabditis elegans in 1998. It is known that the mechanism of action induces target gene degradation by complementary binding of the antisense strand among the RNA double strands injected into the cell to the mRNA of the target gene. Among them, siRNA is one of the methods of suppressing gene expression "in vitro". siRNA of 19-21bp is theoretically capable of selectively suppressing almost all genes, so it can be developed as a treatment for various gene-related diseases such as cancer and viral infection, and is the most popular new drug development candidate technology. The first attempt at in vivo treatment using siRNA in mammals was in mid 2003, and since then, many attempts have been made on in vivo treatment for applied research.

다만, 가능성과 반대로 siRNA의 부작용 및 단점이 계속적으로 보고되어 있다. RNAi 기반 치료제의 개발이 이루어지기 위해서는 1) 효과적인 전달시스템의 부재 2) 오프타겟 효과 3) 면역반응 유도 4) 세포 내 RNAi 기구 포화와 같은 장벽을 극복해야 할 필요성이 있다. siRNA가 표적 유전자의 발현을 직접적으로 조절할 수 있는 효과적인 방법임에도 불구하고 이와 같은 문제들로 인해 치료제 개발에 어려움을 겪고 있다. 이와 관련하여, 비대칭 siRNA(asymmetric shorter duplex siRNA, asiRNA)는 종래의 siRNA가 가지는 19+2 구조에 비해 짧은 이중나선 길이를 갖는 비대칭 RNAi 유도 구조이다. 기존 siRNA 구조 기술에서 확인되는 오프-타겟 효과, RNAi 기작의 포화, TLR3에 의한 면역반응 등의 문제점들을 극복한 기술이며, 이에 따라 부작용이 낮은 RNAi 신약 개발이 가능하다.However, contrary to the possibility, side effects and disadvantages of siRNA have been continuously reported. For the development of RNAi-based therapeutics, it is necessary to overcome barriers such as 1) absence of an effective delivery system, 2) off-target effect, 3) induction of immune response, and 4) saturation of RNAi machinery in cells. Although siRNA is an effective method for directly regulating the expression of a target gene, it is difficult to develop a therapeutic agent due to these problems. In this regard, asymmetric shorter duplex siRNA (asiRNA) is an asymmetric RNAi-inducing structure having a shorter double helix length compared to the 19+2 structure of conventional siRNA. It is a technology that overcomes problems such as the off-target effect, the saturation of the RNAi mechanism, and the immune response by TLR3, which are confirmed in the existing siRNA structure technology, and thus it is possible to develop new RNAi drugs with low side effects.

이를 바탕으로, 본 발명에서는 센스 가닥 및 상기 센스 가닥과 상보적인 안티센스 가닥을 포함하는 비대칭 siRNA를 제시하며, 본 발명에 따른 siRNA는 오프-타겟 효과, RNAi 기작의 포화 등의 문제를 일으키지 않아 안정적으로 높은 전달 효율을 유지하면서, 목적하는 정도로 유효하게 NRL 표적 유전자에 대한 발현을 억제할 수 있다.Based on this, the present invention provides an asymmetric siRNA comprising a sense strand and an antisense strand complementary to the sense strand, and the siRNA according to the present invention does not cause problems such as off-target effect and saturation of the RNAi mechanism and is stable While maintaining high delivery efficiency, it is possible to effectively inhibit the expression of the NRL target gene to a desired degree.

본 발명에 있어서, 상기 siRNA는 상기 센스 가닥은 15 내지 17nt의 길이를 가지고, 상기 안티센스 가닥은 16nt 이상의 길이를 가지는 것을 특징으로 할 수 있다. 이에 제한되는 것은 아니나, 상기 안티센스 가닥은 16 내지 31nt의 길이를 가지는 것을 특징으로 할 수 있으며, 바람직하게는 19 내지 26nt의 길이를 가지는 것을 특징으로 할 수 있다. 더욱 바람직하게는, 상기 센스 가닥의 길이는 16nt, 이와 상보적인 안티센스 가닥의 길이는 19nt, 24nt, 25nt 또는 26nt인 것을 특징으로 할 수 있으나, 이에 제한되는 것은 아니다.In the present invention, the siRNA may be characterized in that the sense strand has a length of 15 to 17 nt, and the antisense strand has a length of 16 nt or more. Although not limited thereto, the antisense strand may be characterized as having a length of 16 to 31 nt, and preferably having a length of 19 to 26 nt. More preferably, the length of the sense strand is 16 nt, and the length of the antisense strand complementary thereto may be characterized in that it is 19 nt, 24 nt, 25 nt or 26 nt, but is not limited thereto.

상기 센스 가닥의 3' 말단 및 안티센스 가닥의 5' 말단은 블런트 말단(blunt end)을 형성한다. 안티센스 가닥의 3' 말단은 예를 들어 1내지 16nt의 오버행(overhang)을 포함할 수 있다.The 3' end of the sense strand and the 5' end of the antisense strand form a blunt end. The 3' end of the antisense strand may include, for example, an overhang of 1 to 16 nt.

본 발명의 일 실시예에서, NRL의 발현을 억제시키기 위하여 73개의 NRL asiRNA를 디자인하였고, NRL을 일시적으로 발현하는 transient cell과 NRL을 지속적으로 발현하는 stable cell line에서 mRNA level과 protein level의 억제를 확인하였다.In one embodiment of the present invention, 73 NRL asiRNAs were designed to suppress the expression of NRL, and suppression of mRNA and protein levels was achieved in transient cells that transiently express NRL and stable cell lines that continuously express NRL. Confirmed.

본 발명에 있어서, 상기 센스 가닥은 서열번호 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 137, 139, 141, 143, 및 145로 구성된 군에서 선택되는 것을 특징으로 할 수 있다.In the present invention, the sense strand is SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39 , 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89 , 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 137, 139 , 141, 143, and may be characterized in that selected from the group consisting of 145.

본 발명에 있어서, 상기 안티센스 가닥은 서열번호 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 136, 138, 140, 142, 144, 146, 153, 154, 및 155로 구성된 군에서 선택되는 것을 특징으로 할 수 있다. In the present invention, the antisense strand is SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40 , 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90 , 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 136, 138, 140 , 142, 144, 146, 153, 154, and may be characterized in that selected from the group consisting of 155.

구체적으로, 상기 센스 가닥은 예를 들어, 서열번호 11, 93, 95, 97, 101, 111, 119, 123, 133, 135, 143, 및 145로 구성된 군에서 선택되는 것일 수 있고, 및 상기 안티센스 가닥은 서열번호 12, 94, 96, 98, 102, 112, 120, 124, 134, 136, 144, 146, 153, 154, 및 155로 구성된 군에서 선택되는 것일 수 있다. 또한, 상기 센스 가닥은 서열번호 93, 95, 97, 133, 135, 143 및145로 구성된 군에서 선택되는 것일 수 있고, 및 상기 안티센스 가닥은 서열번호 94, 96, 98, 134, 136, 144, 146, 153, 154, 및 155로 구성된 군에서 선택되는 것일 수 있다. 또한, 상기 센스 가닥은 서열번호 93이고, 및 상기 안티센스 가닥은 서열번호 153 또는 155일 수 있다. Specifically, the sense strand may be, for example, selected from the group consisting of SEQ ID NOs: 11, 93, 95, 97, 101, 111, 119, 123, 133, 135, 143, and 145, and the antisense strand The strand may be selected from the group consisting of SEQ ID NOs: 12, 94, 96, 98, 102, 112, 120, 124, 134, 136, 144, 146, 153, 154, and 155. In addition, the sense strand may be selected from the group consisting of SEQ ID NOs: 93, 95, 97, 133, 135, 143 and 145, and the antisense strand may be selected from the group consisting of SEQ ID NOs: 94, 96, 98, 134, 136, 144, It may be one selected from the group consisting of 146, 153, 154, and 155. In addition, the sense strand may be SEQ ID NO: 93, and the antisense strand may be SEQ ID NO: 153 or 155.

본 발명에 있어서, 상기 siRNA의 센스 가닥 또는 안티센스 가닥은 하나 이상의 화학적 변형(chemical modification)을 포함하는 것을 특징으로 할 수 있다.In the present invention, the sense strand or the antisense strand of the siRNA may include one or more chemical modifications.

일반적인 siRNA는 포스페이트 백본 구조에 의한 높은 음전하 및 높은 분자량 등의 이유로 세포막을 통과할 수 없고 혈액에서의 빠른 분해 및 제거되어 실제 표적 부위에 RNAi 유도를 위한 충분한 양을 전달하는데 어려움이 있다. 현재 in vitro 전달의 경우 cationic lipids와 cationic polymers들을 이용한 높은 효율의 delivery 방법이 많이 개발되어 있지만, in vivo의 경우에는 in vitro만큼의 높은 효율로 siRNA를 전달하기 어렵고, 생체 내에 존재하는 다양한 단백질들과 상호작용에 의하여 siRNA 전달 효율이 감소하는 문제점이 있다.General siRNA cannot pass through the cell membrane for reasons such as high negative charge and high molecular weight due to the phosphate backbone structure, and is rapidly degraded and removed from the blood, so it is difficult to deliver a sufficient amount for RNAi induction to the actual target site. Currently, in the case of in vitro delivery, many high-efficiency delivery methods using cationic lipids and cationic polymers have been developed, but in the case of in vivo, it is difficult to deliver siRNA as high as in vitro, and it is There is a problem in that the siRNA delivery efficiency is reduced by the interaction.

이에, 본 발명자들은 비대칭 siRNA 구조에 화학적 변형을 도입하여 별도의 전달체 없이 효과적이고 세포 내 전달을 할 수 있는 자가 전달능을 가진 asiRNA 구조체(cp-asiRNA)를 개발하였다.Accordingly, the present inventors introduced a chemical modification to the asymmetric siRNA structure to develop an asiRNA construct (cp-asiRNA) with self-delivery ability that can be effectively and intracellularly delivered without a separate carrier.

본 발명에 있어서, 상기 센스 가닥 또는 안티센스 가닥에서 화학적 변형은 다음으로 구성된 군에서 선택된 하나 이상을 포함할 수 있다: 뉴클레오티드 내 당 구조의 2' 탄소 위치에서 -OH기가 -CH3(메틸), -OCH3(methoxy), -NH2, -F(불소), -O-2-메톡시에틸 -O-프로필(propyl), -O-2-메틸티오에틸(methylthioethyl), -O-3-아미노프로필, -O-3-디메틸아미노프로필로 치환; 뉴클레오티드 내 당(sugar) 구조의 산소가 황으로 치환; 뉴클레오티드 결합이 포스포로티오에이트(phosphorothioate), 보라노포페이트(boranophosphate), 또는 메틸포스포네이트(methyl phosphonate)로 변형; PNA(peptide nucleic acid), LNA(locked nucleic acid) 또는 UNA(unlocked nucleic acid) 형태로의 변형; 및 인산기(phosphate group), 친유성 화합물(lipophilic compound) 또는 세포 침투 펩타이드 결합.In the present invention, the chemical modification in the sense strand or the antisense strand may include one or more selected from the group consisting of: -OH group at the 2' carbon position of the sugar structure in the nucleotide -CH 3 (methyl), - OCH 3 (methoxy), -NH 2 , -F (fluorine), -O-2-methoxyethyl -O-propyl (propyl), -O-2-methylthioethyl, -O-3-amino propyl, substituted with -O-3-dimethylaminopropyl; replacement of oxygen in the nucleotide structure with sulfur; nucleotide linkages are modified with phosphorothioate, boranophosphate, or methyl phosphonate; transformation into peptide nucleic acid (PNA), locked nucleic acid (LNA) or unlocked nucleic acid (UNA) form; and a phosphate group, a lipophilic compound, or a cell penetrating peptide bond.

본 발명에 있어서, 상기 친유성 화합물(lipophilic compound)은 콜레스테롤, 토코페롤 및 탄소수 10개 이상의 장쇄지방산으로 구성된 군에서 선택되는 것을 특징으로 할 수 있다. 바람직하게는 콜레스테롤인 것을 특징으로 할 수 있으나, 이에 제한되는 것은 아니다.In the present invention, the lipophilic compound may be characterized in that it is selected from the group consisting of cholesterol, tocopherol and long-chain fatty acids having 10 or more carbon atoms. Preferably, it may be characterized as cholesterol, but is not limited thereto.

구체적으로, 상기 siRNA는 센스 가닥 또는 안티센스 가닥 중 2개 이상의 뉴클레오티드 내 당 구조의 2' 탄소 위치에서 -OH기가 -OCH3(methoxy) 또는 -F(불소)로 치환되는 변형; 센스 또는 안티센스 가닥에서 10% 이상의 뉴클레오티드 결합이 포스포로티오에이트(phosphorothioate)로 변형; 센스 가닥의 3' 말단에 콜레스테롤 결합; 및 안티센스 가닥의 5' 말단에 인산기(phosphate group) 결합;으로 구성된 군에서 선택된 하나 이상의 변형을 포함하는 것을 특징으로 할 수 있다.Specifically, the siRNA is a modification in which the -OH group is substituted with -OCH3(methoxy) or -F(fluorine) at the 2' carbon position of the sugar structure within two or more nucleotides of the sense strand or the antisense strand; at least 10% of the nucleotide linkages in the sense or antisense strand are modified to phosphorothioate; cholesterol binding to the 3' end of the sense strand; and a phosphate group bond to the 5' end of the antisense strand; it may be characterized in that it comprises one or more modifications selected from the group consisting of.

바람직하게는, 상기 센스 가닥은 하기 표의 (a) 내지 (g)로 구성된 군에서 선택된 어느 하나이고, 안티센스 가닥은 하기 표의 (h) 내지 (q)로 구성된 군에서 선택된 어느 하나인 것을 특징으로 할 수 있다.Preferably, the sense strand is any one selected from the group consisting of (a) to (g) of the table below, and the antisense strand is any one selected from the group consisting of (h) to (q) of the table below. can

Figure 112020005799118-pat00001
Figure 112020005799118-pat00001

상기 서열에서 *는 포스포로티오에이트 결합(phosphorothioated bond), m은 2'-O-메틸(Methyl), 2'-F-는 2'-플루오르(Fluoro), chol은 콜레스테롤, P는 5'-인산기(Phosphate group)를 의미한다.In the above sequence, * is a phosphorothioated bond, m is 2'-O-methyl (Methyl), 2'-F- is 2'-fluorine (Fluoro), chol is cholesterol, P is 5'- It means a phosphate group.

구체적으로, 상기 센스 가닥은 상기 표의 (a) 내지 (c) 중 어느 하나이고, 및 상기 안티센스 가닥은 상기 표의 (h) 내지 (j) 중 어느 하나일 수 있으며; 상기 센스 가닥은 상기 표의 (d) 내지 (f) 중 어느 하나일 수 있고, 및 상기 안티센스 가닥은 상기 표의 (k) 내지 (m) 중 어느 하나일 수 있다.Specifically, the sense strand may be any one of (a) to (c) of the above table, and the antisense strand may be any one of (h) to (j) of the above table; The sense strand may be any one of (d) to (f) in Tables above, and the antisense strand may be any one of (k) to (m) in Tables above.

또한, 상기 센스 가닥은 상기 표의 (b)이고, 및 안티센스 가닥은 상기 표의 (i), (n) 및 (o) 중 어느 하나이고; 상기 센스 가닥은 표의 (g)이고, 및 상기 안티센스 가닥은 상기 표의 (n) 또는 (o)일 수 있다. In addition, the sense strand is (b) of the above table, and the antisense strand is any one of (i), (n) and (o) of the above table; The sense strand may be (g) in Table, and the antisense strand may be (n) or (o) in Table.

또한, 상기 센스 가닥은 상기 표의 (b)이고, 및 안티센스 가닥은 표의 (p) 또는 (q)일 수 있다. In addition, the sense strand may be (b) of the table above, and the antisense strand may be (p) or (q) of the table.

일 실시예에 따르면, 상기 siRNA는 상기 표의 (b) 염기 서열로 이루어지는 센스 가닥 및 상기 표의 (i) 염기 서열로 이루어지는 안티센스 가닥; 상기 표의 (b) 염기 서열로 이루어지는 센스 가닥 및 상기 표의 (n) 염기 서열로 이루어지는 안티센스 가닥; 상기 표의 (b) 염기 서열로 이루어지는 센스 가닥 및 상기 표의 (p) 염기 서열로 이루어지는 안티센스 가닥; 또는 상기 표의 (b) 염기 서열로 이루어지는 센스 가닥 및 상기 표의 (q) 염기 서열로 이루어지는 안티센스 가닥일 수 있으며, 바람직하게, 상기 siRNA는 표의 (b) 염기 서열로 이루어지는 센스 가닥 및 상기 표의 (q) 염기 서열로 이루어지는 안티센스 가닥일 수 있다. According to one embodiment, the siRNA comprises a sense strand consisting of (b) the nucleotide sequence of the table and an antisense strand consisting of the nucleotide sequence (i) of the table; a sense strand consisting of the nucleotide sequence (b) of the table above and an antisense strand consisting of the nucleotide sequence (n) of the table above; a sense strand consisting of the nucleotide sequence (b) of the table above and an antisense strand consisting of the nucleotide sequence (p) of the table above; Alternatively, the sense strand consisting of the nucleotide sequence of (b) in the table above and the antisense strand consisting of the nucleotide sequence of (q) in the table above, preferably, the siRNA is a sense strand consisting of the nucleotide sequence of (b) in the table and (q) in the table It may be an antisense strand consisting of a nucleotide sequence.

본 발명에 있어서, 상기 안티센스 가닥의 5' 말단에 인산기가 한 개 내지 세 개 결합될 수 있으나, 이에 제한되는 것은 아니다.In the present invention, one to three phosphate groups may be bonded to the 5' end of the antisense strand, but the present invention is not limited thereto.

본 발명의 일 실시예에서, 센스 가닥은 공통적으로 3' 말단에 3개의 phosphate linkage를 phosphorothioate linkage로 치환하고 콜레스테롤을 첨가하였다. 안티센스 가닥은 공통적으로 3' 말단에 4개의 phosphate linkage를 phosphorothioate linkage로 치환하였다. 그리고 당의 2'에 OMethyl과 fluoro의 치환 개수와 치환 위치를 다르게 하여 센스 가닥 3개, 안티센스 가닥 3개를 합성하였다. 따라서 9가지 경우로 annealing하여 전달체 없이 NRL을 가장 잘 knockdown시키는 modification을 선별하였으며, 여기에 몇 가지 modification을 추가하였다. 이는 센스 가닥과 안티센스 가닥의 5' 말단에 있는 2개의 phosphate linkage를 phosphorothioate linkage로의 치환과 antisense 안티센스 가닥의 5' 말단에 phosphate의 추가를 포함한다. 따라서 2번의 modification을 통해 NRL을 가장 효율적으로 knockdown시키는 NRL cp-asiRNA를 선택하였다.In one embodiment of the present invention, three phosphate linkages were substituted with phosphorothioate linkage at the 3' end of the sense strand and cholesterol was added. In the antisense strand, 4 phosphate linkages were substituted with phosphorothioate linkages at the 3' end in common. And 3 sense strands and 3 antisense strands were synthesized by differentiating the number and substitution positions of OMethyl and fluoro at 2' of the sugar. Therefore, by annealing in 9 cases, the modifications that best knockdown NRL without a transporter were selected, and several modifications were added. This involves the substitution of two phosphate linkages at the 5' end of the sense strand and the antisense strand with a phosphorothioate linkage and the addition of phosphate at the 5' end of the antisense antisense strand. Therefore, the NRL cp-asiRNA that knockdown the NRL most efficiently through two modifications was selected.

본 발명은 다른 관점에서, 상기 siRNA를 포함하는 망막질환 개선 또는 치료용 약학 조성물에 관한 것이다.In another aspect, the present invention relates to a pharmaceutical composition for improving or treating retinal diseases comprising the siRNA.

본 발명에 있어서, 상기 망막질환은 어셔 증후군, 스타가트병(Stargardt disease), 바뎃-비들 증후군, 베스트병, 맥락막 결여, 맥락망막 위축(gyrate-atrophy), 망막색소변성증, 망막 황반성 퇴화증, 레베르선천성흑내장(Leber Congenital Amaurosis; Leber's Hereditary Optic Neuropathy), BCM(Blue-cone monochromacy), 망막층간 분리, ML(Malattia Leventinese), 오구치병(Oguchi disease) 또는 레프섬병(Refsum disease)인 것을 특징으로 할 수 있으나, 이에 한정되는 것은 아니다.In the present invention, the retinal disease is Usher syndrome, Stargardt disease, Badette-Biddle syndrome, Best's disease, choroid deficiency, choroidal atrophy (gyrate-atrophy), retinitis pigmentosa, retinal macular degeneration, Leber Congenital Amaurosis (Leber's Hereditary Optic Neuropathy), BCM (Blue-cone monochromacy), retinal interlayer separation, ML (Malattia Leventinese), Oguchi disease or Refsum disease can, but is not limited thereto.

상기 약학 조성물은 유효성분인 siRNA 이외에 추가로 약제학적으로 허용 가능한 담체를 1종 이상 포함하여 제조할 수 있다. 약제학적으로 허용 가능한 담체는 본 발명의 유효성분과 양립 가능하여야 하며, 식염수, 멸균수, 링거액, 완충 식염수, 덱스트로즈 용액, 말토덱스트린 용액, 글리세롤, 에탄올 및 이들 성분 중 한 성분 또는 둘 이상의 성분을 혼합하여 사용할 수 있고, 필요에 따라 항산화제, 완충액, 정균제 등 다른 통상의 첨가제를 첨가할 수 있다. 또한 희석제, 분산제, 계면활성제, 결합제 및 윤활제를 부가적으로 첨가하여 수용액, 현탁액, 유탁액 등과 같은 주사용 제형으로 제제화 할 수 있다. 특히, 동결건조(lyophilized)된 형태의 제형으로 제제화하여 제공하는 것이 바람직하다. 동결건조 제형 제조를 위해서 본 발명이 속하는 기술분야에서 통상적으로 알려져 있는 방법이 사용될 수 있으며, 동결건조를 위한 안정화제가 추가될 수도 있다.The pharmaceutical composition may be prepared by including one or more pharmaceutically acceptable carriers in addition to the active ingredient siRNA. A pharmaceutically acceptable carrier must be compatible with the active ingredient of the present invention, and contains saline, sterile water, Ringer's solution, buffered saline, dextrose solution, maltodextrin solution, glycerol, ethanol, and one or two or more of these components. They can be mixed and used, and other conventional additives such as antioxidants, buffers, and bacteriostats can be added as needed. In addition, diluents, dispersants, surfactants, binders and lubricants may be additionally added to form an injectable formulation such as an aqueous solution, suspension, emulsion, and the like. In particular, it is preferable to provide the formulation in a lyophilized form. For the preparation of the freeze-dried formulation, a method commonly known in the art to which the present invention pertains may be used, and a stabilizer for freeze-drying may be added.

상기 약학 조성물의 투여방법은 통상의 환자의 증후와 질병의 심각도에 기초하여 본 기술분야의 통상의 전문가가 결정할 수 있다. 또한, 산제, 정제, 캡슐제, 액제, 주사제, 연고제, 시럽제 등의 다양한 형태로 제제화 할 수 있으며 단위-투여량 또는 다-투여량 용기, 예를 들면 밀봉된 앰플 및 병 등으로 제공될 수도 있다.The method of administering the pharmaceutical composition may be determined by a person skilled in the art based on the symptoms of the patient and the severity of the disease. In addition, it can be formulated in various forms such as powders, tablets, capsules, liquids, injections, ointments, syrups, etc., and may be provided in unit-dose or multi-dose containers, such as sealed ampoules and bottles. .

본 발명의 약학 조성물은 경구 또는 비경구 투여가 가능하다. 본 발명에 따른 조성물의 투여경로는 이들로 한정되는 것은 아니지만, 예를 들면, 구강, 정맥 내, 근육 내, 동맥 내, 골수 내, 경막 내, 심장 내, 경피, 피하, 복강 내, 장관, 설하 또는 국소 투여가 가능하다. 본 발명에 따른 조성물의 투여량은 환자의 체중, 연령, 성별, 건강상태, 식이, 투여시간, 방법, 배설율 또는 질병의 중증도 등에 따라 그 범위가 다양하며, 본 기술분야의 통상의 전문가가 용이하게 결정할 수 있다. 또한, 임상 투여를 위해 공지의 기술을 이용하여 본 발명의 조성물을 적합한 제형으로 제제화할 수 있다.The pharmaceutical composition of the present invention can be administered orally or parenterally. The route of administration of the composition according to the present invention is not limited thereto, but for example, oral, intravenous, intramuscular, intraarterial, intramedullary, intrathecal, intracardiac, transdermal, subcutaneous, intraperitoneal, intestinal, sublingual Alternatively, topical administration is possible. The dosage of the composition according to the present invention varies depending on the patient's weight, age, sex, health status, diet, administration time, method, excretion rate or severity of disease, etc. can decide In addition, the composition of the present invention may be formulated into a suitable dosage form for clinical administration using known techniques.

본 발명은 또 다른 관점에서, 상기 siRNA를 개체에 투여하는 단계를 포함하는 망막질환 개선 또는 치료방법에 관한 것이다. 본 발명에 따른 개선 또는 치료방법에 포함되는 구성은 앞서 설명한 발명에 포함되는 구성과 동일하므로, 위 설명은 개선 또는 치료방법에도 동일하게 적용될 수 있다.In another aspect, the present invention relates to a method for improving or treating a retinal disease comprising administering the siRNA to a subject. Since the configuration included in the improvement or treatment method according to the present invention is the same as the configuration included in the invention described above, the above description can be equally applied to the improvement or treatment method.

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail through examples. These examples are only for illustrating the present invention, and it will be apparent to those of ordinary skill in the art that the scope of the present invention is not to be construed as being limited by these examples.

실시예 1: NRL을 표적으로 하는 RNAi 유도 이중가닥 핵산 분자 73종 스크리닝Example 1: Screening of 73 RNAi-induced double-stranded nucleic acid molecules targeting NRL

스크리닝을 위한 NRL asymmetric siRNA(asiRNA)를 디자인하였다. conventional siRNA는 양쪽 strand 3'에 2개 뉴클레오타이드 overhang을 가지는 19 base pair의 duplex이다. asiRNA는 안티센스 가닥의 5'이 blunt end이고 15-16 base pair의 짧은 duplex를 가져 siRNA와 동등한 억제효율을 나타내면서 짧아진 sense 길이로 인하여 감소된 off-target 효과를 가진다. 따라서 16mer(센스 가닥)-19mer(안티센스 가닥)의 asiRNA로 디자인하였다(도 1).NRL for screening Asymmetric siRNA (asiRNA) was designed. Conventional siRNA is a duplex of 19 base pairs having 2 nucleotide overhangs on both strand 3'. asiRNA has a blunt end at the 5' end of the antisense strand and a short duplex of 15-16 base pairs, exhibiting the same inhibitory efficiency as siRNA, and reduced off-target effect due to the shortened sense length. Therefore, it was designed as an asiRNA of 16mer (sense strand)-19mer (antisense strand) ( FIG. 1 ).

NRL asiRNA는 동물실험을 위하여 Homo sapiens(H), Rattus norvegicus(R), Mus musculus(M)의 homology를 고려하여 디자인되었다. 이는 Homo sapiens와는 100% 일치하는 시퀀스들이며, Rattus norvegicus, Mus musculus와는 하나 또는 두 개의 뉴클레오타이드가 불일치하는 시퀀스까지 허용하였다. 이때 RNA 간섭에 중요한 역할을 하는 seed region(2번째 뉴클레오타이드부터 8번째 뉴클레오타이드까지)에는 불일치하는 시퀀스가 없는 것만 포함하였다. 따라서 H와 R, M이 모두 일치하는 시퀀스 6개, H와 R은 일치하고, M과는 하나 또는 두 개의 뉴클레오타이드가 불일치하는 시퀀스 12개, H와 M은 일치하고, R과는 하나의 뉴클레오타이드가 불일치하는 시퀀스 8개, H와 R은 하나의 뉴클레오타이드가 불일치하고, M과 하나 또는 두 개의 뉴클레오타이드가 불일치하는 시퀀스 47개, 총 73개의 시퀀스를 디자인 하였다. 후에 Human transcript variants 정보가 업데이트되었고, 이 중 모든 transcript variants에 포함되는 40개의 NRL asiRNA를 선택하여 스크리닝하였다. 하기 표 1은 73개의 NRL asiRNA의 sequence를 나타낸다.NRL asiRNA was designed considering the homology of Homo sapiens (H), Rattus norvegicus (R), and Mus musculus (M) for animal experiments. These are sequences that are 100% identical to Homo sapiens, and even sequences with one or two nucleotide mismatches with Rattus norvegicus and Mus musculus are allowed. In this case, the seed region (from the 2nd nucleotide to the 8th nucleotide), which plays an important role in RNA interference, contained only those without a mismatched sequence. Therefore, 6 sequences in which both H and R and M match, H and R match, 12 sequences in which M matches one or two nucleotides mismatch, H and M match, and R matches one nucleotide A total of 73 sequences were designed, with 8 mismatched sequences, 47 sequences in which H and R have one nucleotide mismatch, and M and one or two nucleotide mismatches. Later, information on human transcript variants was updated, and among them, 40 NRLs included in all transcript variants asiRNA was selected and screened. Table 1 below shows the 73 NRLs. The sequence of asiRNA is shown.

No.No. sequence (5'→ 3')sequence (5'→ 3') 서열번호SEQ ID NO: 1One sensesense CGGCUGAAGCAGAGGCCGGCUGAAGCAGAGGC 1One antisenseantisense GCCUCUGCUUCAGCCGCAGGCCUCUGCUUCAGCCGCAG 22 22 sensesense GGCUGAAGCAGAGGCGGGCUGAAGCAGAGGCG 33 antisenseantisense CGCCUCUGCUUCAGCCGCACGCCUCUGCUUCAGCCGCA 44 33 sensesense AAGCAGAGGCGCCGCAAAGCAGAGGCGCCGCA 55 antisenseantisense UGCGGCGCCUCUGCUUCAGUGCGGCGCCUCUGCUUCAG 66 44 sensesense AGCAGAGGCGCCGCACAGCAGAGGCGCCGCAC 77 antisenseantisense GUGCGGCGCCUCUGCUUCAGUGCGGCGCCUCUGCUUCA 88 55 sensesense CGCUCCAAGCGGCUGCCGCUCCAAGCGGCUGC 99 antisenseantisense GCAGCCGCUUGGAGCGACAGCAGCCGCUUGGAGCGACA 1010 66 sensesense GCUCCAAGCGGCUGCAGCUCCAAGCGGCUGCA 1111 antisenseantisense UGCAGCCGCUUGGAGCGACUGCAGCCGCUUGGAGCGAC 1212 77 sensesense ACUUUGACUUGAUGAAACUUUGACUUGAUGAA 1313 antisenseantisense UUCAUCAAGUCAAAGUCAUUUCAUCAAGUCAAAGUCAU 1414 88 sensesense CUUUGACUUGAUGAAGCUUUGACUUGAUGAAG 1515 antisenseantisense CUUCAUCAAGUCAAAGUCACUUCAUCAAGUCAAAGUCA 1616 99 sensesense UUUGACUUGAUGAAGUUUUGACUUGAUGAAGU 1717 antisenseantisense ACUUCAUCAAGUCAAAGUCACUUCAUCAAGUCAAAGUC 1818 1010 sensesense UUGACUUGAUGAAGUUUUGACUUGAUGAAGUU 1919 antisenseantisense AACUUCAUCAAGUCAAAGUAACUUCAUCAAGUCAAAAGU 2020 1111 sensesense GCCUGUCGCUCCAAGCGCCUGUCGCUCCAAGC 2121 antisenseantisense GCUUGGAGCGACAGGCCUGGCUUGGAGCGACAGGCCUG 2222 1212 sensesense CCUGUCGCUCCAAGCGCCUGUCGCUCCAAGCG 2323 antisenseantisense CGCUUGGAGCGACAGGCCUCGCUUGGAGCGACAGGCCU 2424 1313 sensesense GUCGCUCCAAGCGGCUGUCGCUCCAAGCGGCU 2525 antisenseantisense AGCCGCUUGGAGCGACAGGAGCCGCUUGGAGCGACAGG 2626 1414 sensesense UCGCUCCAAGCGGCUGUCGCUCCAAGCGGCUG 2727 antisenseantisense CAGCCGCUUGGAGCGACAGCAGCCGCUUGGAGCGACAG 2828 1515 sensesense CUCCAAGCGGCUGCAGCUCCAAGCGGCUGCAG 2929 antisenseantisense CUGCAGCCGCUUGGAGCGACUGCAGCCGCUUGGAGCGA 3030 1616 sensesense UGACUUGAUGAAGUUUUGACUUGAUGAAGUUU 3131 antisenseantisense AAACUUCAUCAAGUCAAAGAAACUUCAUCAAGUCAAAG 3232 1717 sensesense AGGCCUGUCGCUCCAAAGGCCUGUCGCUCCAA 3333 antisenseantisense UUGGAGCGACAGGCCUGCGUUGGAGCGACAGGCCUGCG 3434 1818 sensesense GGCCUGUCGCUCCAAGGGCCUGUCGCUCCAAG 3535 antisenseantisense CUUGGAGCGACAGGCCUGCCUUGGAGCGACAGGCCUGC 3636 1919 sensesense CCUCCUUCACCCACCUCCUCCUUCACCCACCU 3737 antisenseantisense AGGUGGGUGAAGGAGGCACAGGUGGGUGAAGGAGGCAC 3838 2020 sensesense CUCCUUCACCCACCUUCUCCUUCACCCACCUU 3939 antisenseantisense AAGGUGGGUGAAGGAGGCAAAGGUGGGUGAAGGAGGCA 4040 2121 sensesense UCCUUCACCCACCUUCUCCUUCACCCACCUUC 4141 antisenseantisense GAAGGUGGGUGAAGGAGGCGAAGGUGGGUGAAGGAGGC 4242 2222 sensesense CCUUCACCCACCUUCACCUUCACCCACCUUCA 4343 antisenseantisense UGAAGGUGGGUGAAGGAGGUGAAGGUGGGUGAAGGAGG 4444 2323 sensesense CUUCACCCACCUUCAGCUUCACCCACCUUCAG 4545 antisenseantisense CUGAAGGUGGGUGAAGGAGCUGAAGGUGGGUGAAGGAG 4646 2424 sensesense UUCACCCACCUUCAGUUUCACCCACCUUCAGU 4747 antisenseantisense ACUGAAGGUGGGUGAAGGAACUGAAGGUGGGUGAAGGA 4848 2525 sensesense UCACCCACCUUCAGUGUCACCCACCUUCAGUG 4949 antisenseantisense CACUGAAGGUGGGUGAAGGCACUGAAGGUGGGUGAAGG 5050 2626 sensesense CACCCACCUUCAGUGACACCCACCUUCAGUGA 5151 antisenseantisense UCACUGAAGGUGGGUGAAGUCACUGAAGGUGGGUGAAG 5252 2727 sensesense AAUAUGUCAAUGACUUAAUAUGUCAAUGACUU 5353 antisenseantisense AAGUCAUUGACAUAUUCCAAAGUCAUUGACAUAUUCCA 5454 2828 sensesense AUAUGUCAAUGACUUUAUAUGUCAAUGACUUU 5555 antisenseantisense AAAGUCAUUGACAUAUUCCAAAGUCAUUGACAUAUUCC 5656 2929 sensesense UAUGUCAAUGACUUUGUAUGUCAAUGACUUUG 5757 antisenseantisense CAAAGUCAUUGACAUAUUCCAAAGUCAUUGACAUAUUC 5858 3030 sensesense AUGUCAAUGACUUUGAAUGUCAAUGACUUUGA 5959 antisenseantisense UCAAAGUCAUUGACAUAUUUCAAAGUCAUUGACAUAUU 6060 3131 sensesense UGUCAAUGACUUUGACUGUCAAUGACUUUGAC 6161 antisenseantisense GUCAAAGUCAUUGACAUAUGUCAAAGUCAUUGACAUAU 6262 3232 sensesense UGCCUCCUUCACCCACUGCCUCCUUCACCCAC 6363 antisenseantisense GUGGGUGAAGGAGGCACUGGUGGGUGAAGGAGGCACUG 6464 3333 sensesense GCCUCCUUCACCCACCGCCUCCUUCACCCACC 6565 antisenseantisense GGUGGGUGAAGGAGGCACUGGUGGGUGAAGGAGGCACU 6666 3434 sensesense UCAGUGAACCAGGCAUUCAGUGAACCAGGCAU 6767 antisenseantisense AUGCCUGGUUCACUGAAGGAUGCCUGGUUCACUGAAGG 6868 3535 sensesense CAGUGAACCAGGCAUGCAGUGAACCAGGCAUG 6969 antisenseantisense CAUGCCUGGUUCACUGAAGCAUGCCUGGUUCACUGAAG 7070 3636 sensesense AGUGAACCAGGCAUGGAGUGAACCAGGCAUGG 7171 antisenseantisense CCAUGCCUGGUUCACUGAACCAUGCCUGGUUCACUGAA 7272 3737 sensesense GUGAACCAGGCAUGGUGUGAACCAGGCAUGGU 7373 antisenseantisense ACCAUGCCUGGUUCACUGAACCAUGCCUGGUUCACUGA 7474 3838 sensesense AGCUGUACUGGCUGGCAGCUGUACUGGCUGGC 7575 antisenseantisense GCCAGCCAGUACAGCUCCUGCCAGCCAGUACAGCUCCU 7676 3939 sensesense GGCUGGCUACCCUGCAGGCUGGCUACCCUGCA 7777 antisenseantisense UGCAGGGUAGCCAGCCAGUUGCAGGGUAGCCAGCCAGU 7878 4040 sensesense GCUGGCUACCCUGCAGGCUGGCUACCCUGCAG 7979 antisenseantisense CUGCAGGGUAGCCAGCCAGCUGCAGGGUAGCCAGCCAG 8080 4141 sensesense CUGGCUACCCUGCAGCCUGGCUACCCUGCAGC 8181 antisenseantisense GCUGCAGGGUAGCCAGCCAGCUGCAGGGUAGCCAGCCA 8282 4242 sensesense UGGCUACCCUGCAGCAUGGCUACCCUGCAGCA 8383 antisenseantisense UGCUGCAGGGUAGCCAGCCUGCUGCAGGGUAGCCAGCC 8484 4343 sensesense GGCUACCCUGCAGCAGGGCUACCCUGCAGGCAG 8585 antisenseantisense CUGCUGCAGGGUAGCCAGCCUGCUGCAGGGUAGCCAGC 8686 4444 sensesense GCUACCCUGCAGCAGCGCUACCCUGCAGCAGC 8787 antisenseantisense GCUGCUGCAGGGUAGCCAGGCUGCUGCAGGGUAGCCAG 8888 4545 sensesense CUACCCUGCAGCAGCACUACCCUGCAGGCAGCA 8989 antisenseantisense UGCUGCUGCAGGGUAGCCAUGCUGCUGCAGGGUAGCCA 9090 4646 sensesense UACCCUGCAGCAGCAGUACCCUGCAGCAGCAG 9191 antisenseantisense CUGCUGCUGCAGGGUAGCCCUGCUGCUGCAGGGUAGCC 9292 4747 sensesense CGGCGCUGGUCUCGAUCGGCGCUGGUCUCGAU 9393 antisenseantisense AUCGAGACCAGCGCCGCGUAUCGAGACCAGCGCCGCGU 9494 4848 sensesense GCGCUGGUCUCGAUGUGCGCUGGUCUCGAUGU 9595 antisenseantisense ACAUCGAGACCAGCGCCGCACAUCGAGACCAGCGCCGC 9696 4949 sensesense CGCUGGUCUCGAUGUCCGCUGGUCUCGAUGUC 9797 antisenseantisense GACAUCGAGACCAGCGCCGGACAUCGAGACCAGCGCCG 9898 5050 sensesense ACCGGCAGCUGCGGGGACCGGCAGCUGCGGGG 9999 antisenseantisense CCCCGCAGCUGCCGGUUUACCCCGCAGCUGCCGGUUUA 100100 5151 sensesense AGGCGCUGCGGCUGAAAGGCGCUGCGGCUGAA 101101 antisenseantisense UUCAGCCGCAGCGCCUCGUUUCAGCCGCAGCGCCUCGU 102102 5252 sensesense CGCUGCGGCUGAAGCACGCUGCGGCUGAAGCA 103103 antisenseantisense UGCUUCAGCCGCAGCGCCUUGCUUCAGCCGCAGGCGCCU 104104 5353 sensesense CUGCGGCUGAAGCAGACUGCGGCUGAAGCAGA 105105 antisenseantisense UCUGCUUCAGCCGCAGCGCUCUGCUUCAGCCGCAGGCGC 106106 5454 sensesense UGCGGCUGAAGCAGAGUGCGGCUGAAGCAGAG 107107 antisenseantisense CUCUGCUUCAGCCGCAGCGCUCUGCUUCAGCCGCAGCG 108108 5555 sensesense GCGGCUGAAGCAGAGGGCGGCUGAAGCAGAGG 109109 antisenseantisense CCUCUGCUUCAGCCGCAGCCCUCUGCUUCAGCCGCAGC 110110 5656 sensesense GCACGCUGAAGAACCGGCACGCUGAAGAACCG 111111 antisenseantisense CGGUUCUUCAGCGUGCGGCCGGUUCUUCAGCGUGCGGC 112112 5757 sensesense CACGCUGAAGAACCGCCACGCUGAAGAACCGC 113113 antisenseantisense GCGGUUCUUCAGCGUGCGGGCGGUUCUUCAGCGUGCGG 114114 5858 sensesense ACGCUGAAGAACCGCGACGCUGAAGAACCGCG 115115 antisenseantisense CGCGGUUCUUCAGCGUGCGCGCGGUUCUUCAGCGUGCG 116116 5959 sensesense CGCUGAAGAACCGCGGCGCUGAAGAACCGCGG 117117 antisenseantisense CCGCGGUUCUUCAGCGUGCCCCGGGUUCUUCAGGCGUGC 118118 6060 sensesense GCUGAAGAACCGCGGCGCUGAAGAACCGCGGC 119119 antisenseantisense GCCGCGGUUCUUCAGCGUGGCCGCGGUUCUUCAGCGUG 120120 6161 sensesense CUGAAGAACCGCGGCUCUGAAGAACCGCGGCU 121121 antisenseantisense AGCCGCGGUUCUUCAGCGUAGCCCGCGGUUCUUCAGCGU 122122 6262 sensesense UGAAGAACCGCGGCUAUGAAGAACCGCGGCUA 123123 antisenseantisense UAGCCGCGGUUCUUCAGCGUAGCCGCGGUUCUUCAGCG 124124 6363 sensesense GAAGAACCGCGGCUACGAAGAACCGCGGCUAC 125125 antisenseantisense GUAGCCGCGGUUCUUCAGCGUAGCCCGCGGUUCUCAGC 126126 6464 sensesense AAGAACCGCGGCUACGAAGAACCGCGGCUACG 127127 antisenseantisense CGUAGCCGCGGUUCUUCAGCGUAGCCGCGGUUCUUCAG 128128 6565 sensesense AGAACCGCGGCUACGCAGAACCGCGGCUACGC 129129 antisenseantisense GCGUAGCCGCGGUUCUUCAGCGUAGCCCGCGGUUCUUCA 130130 6666 sensesense GAACCGCGGCUACGCGGAACCGCGGCUACGCG 131131 antisenseantisense CGCGUAGCCGCGGUUCUUCCGCGUAGCCGCGGUUCUUC 132132 6767 sensesense ACAAGGCUCGCUGUGAACAAGGCUCGCUGUGA 133133 antisenseantisense UCACAGCGAGCCUUGUAGAUCACAGCGAGCCUUGUAGA 134134 6868 sensesense CAAGGCUCGCUGUGACCAAGGCUCGCUGUGAC 135135 antisenseantisense GUCACAGCGAGCCUUGUAGGUCACAGCGAGCCUUGUAG 136136 6969 sensesense AAGGCUCGCUGUGACCAAGGCUCGCUGUGACC 137137 antisenseantisense GGUCACAGCGAGCCUUGUAGGUCACAGCGAGCCUUGUA 138138 7070 sensesense AGGCUCGCUGUGACCGAGGCUCGCUGUGACCG 139139 antisenseantisense CGGUCACAGCGAGCCUUGUCGGUCACAGCGAGCCUUGU 140140 7171 sensesense GGCUCGCUGUGACCGGGGCUCGCUGUGACCGG 141141 antisenseantisense CCGGUCACAGCGAGCCUUGCCGGUCCAGCGAGCCUUG 142142 7272 sensesense GCUCGCUGUGACCGGCGCUCGCUGUGACCGGC 143143 antisenseantisense GCCGGUCACAGCGAGCCUUGCCGGUCACAGCGAGCCUU 144144 7373 sensesense CUCGCUGUGACCGGCUCUCGCUGUGACCGGCU 145145 antisenseantisense AGCCGGUCACAGCGAGCCUAGCCGGUCACAGCGAGCCU 146146

실시예 2: NRL을 표적으로 하는 RNAi 유도 이중가닥의 핵산 분자 스크리닝Example 2: Screening of RNAi-induced double-stranded nucleic acid molecules targeting NRL

합성한 NRL asiRNA 중 가장 knockdown 효율이 좋은 asiRNA를 찾기 위해서는 어느 정도 NRL을 발현하는 cell line이 필요한데, NRL을 충분히 발현하는 cell line을 찾지 못하여 NRL을 stable하게 발현하는 cell line을 제작하였다.In order to find the asiRNA with the highest knockdown efficiency among synthesized NRL asiRNAs, a cell line expressing NRL to some extent is required.

또한, NRL plasmid와 NRL asiRNA를 연속적으로 transfection하여 일시적으로 NRL을 발현하는 cell(transient cell line)에서 먼저 실험을 진행하였다. 보다 구체적으로는 HeLa cell을 100mm petri dish에 10% FBS(fetal bovine serum-gibco)를 첨가한 DMEM(Dulbecco's modified Eagle's medium-corning)에서 배양하여 증식시킨 후, 세포를 12 well 플레이트에 웰 당 5×10⁴개씩 분주하였다. 24시간 뒤 NRL plasmid를 Lipofectamine 2000(Invitrogene)과 Opti-MEM reduced serum media(gibco)에 incubation한 후 세포에 처리하고 세 시간 후 배양배지를 DMEM(10% FBS)으로 바꾸어주었다. 하루 뒤에 siRNA를 Lipofectamine RNAimax Transfection Reagent(Invitrogene)를 사용하여 transfection하였다. siRNA의 각 strand는 siRNA duplex buffer(bioneer)에 dilution되어 95℃에서 5분, 37℃에서 1시간 incubation하여 annealing되었다. annealing된 siRNA는 12% polyacrylamide gel에 전기영동 한 후, EtBr에서 10분 staining하여 UV transiluminator를 통해 annealing을 확인하였다. siRNA를 transfection 하고 24시간 후에 Tri-RNA Reagent(FAVOGEN)를 처리하여 total RNA를 추출하고, 이를 High-capacity cDNA reverse transcription kit(Applied Biosystems)를 이용하여 제공된 프로토콜을 따라 cDNA를 합성하였다. 이후 cDNA에 대하여 Step One real-time PCR system(Applied Biosystems)으로 qRT-PCR(quantitative real-time reverse transcription polymerase chain reaction)을 수행하여 표적 유전자인 NRL의 발현 수준을 분석하였다. NRL plasmid의 transfection을 통해 세포가 일시적으로 NRL을 발현하도록 하였기 때문에 각 well 마다 transfection 효율이 다를 수 있으므로, NRL plasmid에 있는 Neo gene의 발현양으로 NRL의 발현양을 nomalization하였다. 하기 표 2에 qRT-PCR에 사용한 NRL primer와 Neo primer 서열을 나타내었다.In addition, NRL plasmid and NRL asiRNA were sequentially transfected to conduct an experiment first in a cell (transient cell line) expressing transiently NRL. More specifically, HeLa cells were cultured in DMEM (Dulbecco's modified Eagle's medium-corning) supplemented with 10% fetal bovine serum-gibco (FBS) in a 100 mm petri dish and grown, and then the cells were grown in a 12-well plate at 5× per well. 10⁴ was dispensed. After 24 hours, the NRL plasmid was incubated with Lipofectamine 2000 (Invitrogene) and Opti-MEM reduced serum media (gibco), treated with cells, and the culture medium was changed to DMEM (10% FBS) after three hours. One day later, siRNA was transfected using Lipofectamine RNAimax Transfection Reagent (Invitrogene). Each strand of siRNA was dilution in siRNA duplex buffer (bioneer) and annealed by incubation at 95°C for 5 minutes and 37°C for 1 hour. The annealed siRNA was electrophoresed on 12% polyacrylamide gel, followed by staining in EtBr for 10 minutes to confirm annealing through a UV transiluminator. Twenty-four hours after transfection of siRNA, total RNA was extracted by treatment with Tri-RNA Reagent (FAVOGEN), and cDNA was synthesized according to the provided protocol using a high-capacity cDNA reverse transcription kit (Applied Biosystems). Thereafter, qRT-PCR (quantitative real-time reverse transcription polymerase chain reaction) was performed on cDNA with Step One real-time PCR system (Applied Biosystems) to analyze the expression level of the target gene, NRL. Since the transfection efficiency may be different for each well because the cells were temporarily allowed to express NRL through transfection of the NRL plasmid, the expression level of NRL was normalized with the expression amount of the Neo gene in the NRL plasmid. Table 2 below shows the NRL primer and Neo primer sequences used for qRT-PCR.

유전자gene 방향direction sequence(5'→3')sequence(5'→3') 서열번호SEQ ID NO: NRLNRL ForwardForward GTCCTGAAGAGGCCATGGAGGTCCTGAAGAGGCCATGGAG 147147 ReverseReverse GTTTAGCTCCCGCACAGACAGTTTAGCTCCCGCACAGACA 148148 NeoNeo ForwardForward TTGCGCAGCTGTGCTCGACGTTGCGCAGCTGTGCTCGACG 149149 ReverseReverse AAGGCGATGCGCTGCGAATCAAGGCGATGCGCTGCGAATC 150150

도 3은 1nM의 NRL asiRNA를 transfection하여 얻은 NRL의 상대적인 mRNA level(n=2)을 나타낸 것이다. 처음에 3nM의 NRL asiRNA를 transfection하여 총 40개의 sequence 중 knockdown이 잘 되지 않는 12개의 sequence를 1차적으로 제외하였다. PO는 plasmid only의 약자로 NRL plasmid만 transfection하고, NRL asiRNA는 transfection하지 않았다.3 shows the relative mRNA level (n=2) of NRL obtained by transfection of 1 nM NRL asiRNA. At first, 3nM of NRL asiRNA was transfected, and 12 sequences that did not perform well in knockdown were primarily excluded from a total of 40 sequences. PO stands for plasmid only, and only NRL plasmid was transfected, and NRL asiRNA was not transfected.

실시예 3: 선정된 asiRNA에 대한 NRL 발현 억제 효율 확인Example 3: Confirmation of NRL expression inhibition efficiency for the selected asiRNA

가장 knockdown이 잘된 #47, #48, #49, #67, #68, #72, #73의 7개 NRL asiRNA의 효과를 western blot을 통해 protein level에서 확인하였다.The effects of 7 NRL asiRNAs, #47, #48, #49, #67, #68, #72, and #73, which performed the most knockdown, were confirmed at the protein level by western blot.

6 well 플레이트에 웰 당 14×10⁴개씩 cell을 분주한 후, RNA level을 확인할 때와 동일한 과정으로 NRL plasmid(Origene-RG202237)와 NRL asiRNA(3nM)를 transfection한 후, 48시간 뒤에 cell을 RIPA buffer로 깨서 western blot을 진행하였다. 1차 항체는 NRL antibody(AVIVA-OAAB19847)와 β-Tubulin(Santa Cruz Biotechnology-sc-5274)을, 2차 항체는 goat anti-rabbit IgG-HRP(Santa Cruz Biotechnology-sc-2030)와 goat anti-mouse IgG-HRP(Santa Cruz Biotechnology-sc-2005)를 사용하였다. si-Oct4는 negative control로 사용하였다. si-Oct sequence는 sense: 5'-AUGAUGCUCUUGAUUUUUUTT-3'(서열번호 151), antisense: 5'-AAAAAAUCAAGAGCAUCAUTT-3'(서열번호 152)이다.After dispensing 14×10⁴ cells per well in a 6-well plate, follow the same procedure as when checking the RNA level with NRL plasmid (Origene-RG202237) and NRL After transfection with asiRNA (3 nM), 48 hours later, the cells were broken with RIPA buffer and western blot was performed. Primary antibodies were NRL antibody (AVIVA-OAAB19847) and β-Tubulin (Santa Cruz Biotechnology-sc-5274), and secondary antibodies were goat anti-rabbit IgG-HRP (Santa Cruz Biotechnology-sc-2030) and goat anti- Mouse IgG-HRP (Santa Cruz Biotechnology-sc-2005) was used. si-Oct4 was used as a negative control. The si-Oct sequence is sense: 5'-AUGAUGCUCUUGAUUUUUUTT-3' (SEQ ID NO: 151), antisense: 5'-AAAAAAUCAAGAGCAUCAUTT-3' (SEQ ID NO: 152).

Western blot 결과, #47이 가장 knockdown efficiency가 좋았고, 그 다음으로 #49, #67, #68이 비슷한 정도의 knockdown efficiency를 보여주었다(도 4). 따라서 mRNA level과 protein level를 고려하여, #47 및 #49를 세포막을 투과할 수 있는(cell penetrating) asiRNA의 형태로 만들기로 결정하였다.As a result of Western blot, #47 had the best knockdown efficiency, followed by #49, #67, and #68 with similar knockdown efficiency (Fig. 4). Therefore, considering the mRNA level and protein level, it was decided to make #47 and #49 in the form of cell penetrating asiRNA.

#47, #49의 IC50를 구하기 위하여 0.01nM부터 3nM까지 asiRNA의 transfection 농도를 세분화한 결과를 도 5에 나타내었다. control로는 GAPDH antibody(Santa Cruz Biotechnology-sc-47724)를 사용하였다. 그 결과, #47 NRL asiRNA의 IC50 value는 대략 0.2nM이며, #49 NRL asiRNA의 IC50 value는 0.6nM~1nM 정도인 것을 확인하였다.The results of subdividing the transfection concentration of asiRNA from 0.01 nM to 3 nM in order to obtain IC 50 of #47 and #49 are shown in FIG. 5 . As a control, GAPDH antibody (Santa Cruz Biotechnology-sc-47724) was used. As a result, #47 NRL It was confirmed that the IC 50 value of asiRNA was about 0.2 nM, and the IC 50 value of #49 NRL asiRNA was about 0.6 nM ~ 1 nM.

실시예 4: NRL을 표적하는 세포 관통능(cell-penetrating ability)이 있는 cp-asiRNA 스크리닝Example 4: cp-asiRNA screening with cell-penetrating ability to target NRL

실시예 3에서 도출된 2종의 asiRNA 염기 서열을 기반으로 안티센스 가닥의 3' 말단의 길이를 늘려 16mer(센스 가닥)-25mer(안티센스 가닥)로 합성하였다. 이때 늘린 안티센스 가닥은 human NRL과 상보적인 서열이다. 하기 표 3에 NRL을 표적으로 하는 asiRNA 염기 서열을 나타내었다. Based on the two types of asiRNA nucleotide sequences derived in Example 3, the length of the 3' end of the antisense strand was increased to synthesize 16mer (sense strand)-25mer (antisense strand). At this time, the extended antisense strand is human It is a sequence complementary to NRL. Table 3 below shows asiRNA nucleotide sequences targeting NRL.

No.No. Sequence(5'->3')Sequence(5'->3') 서열번호SEQ ID NO: 4747 S(16mer)S(16mer) CGGCGCUGGUCUCGAUCGGCGCUGGUCUCGAU 9393 AS(25mer)AS (25mer) AUCGAGACCAGCGCCGCGUCGGAAAAUCGAGACCAGCGCCGCGUCGGAAA 153153 4949 S(16mer)S(16mer) CGCUGGUCUCGAUGUCCGCUGGUCUCGAUGUC 9797 AS(25mer)AS (25mer) GACAUCGAGACCAGCGCCGCGUCGGGACAUCGAGACCAGCGCCGCGUCGG 154154

#47, #49의 NRL asiRNA를 세포 관통능을 가지고, 핵산가수분해 효소에 저항성을 가지는 asiRNA로 만들기 위해서 modification을 진행하였다. 하기 표 4에 세포 관통능을 가지는 NRL asiRNA #47, 49의 modification을 나타내었다. Modifications were carried out to make NRL asiRNAs #47 and #49 into asiRNAs with cell penetrating ability and resistance to nucleolytic enzymes. Modifications of NRL asiRNA #47 and 49 having cell penetrating ability are shown in Table 4 below.

siRNAsiRNA NoNo sequence(5'→3')sequence(5'→3') cp-asiNRLcp-asiNRL #47#47 sensesense ori
(이하, 1S)
ori
(hereinafter, 1S)
mCGmGCmGCmUGmGUmCUmCG*mA*U*-CholmCGmGCmGCmUGmGUmCUmCG*mA*U*-Chol
OMe/F
(이하, 2S)
OMe/F
(hereinafter referred to as 2S)
mC(2'-F-G)mG(2'-F-C)mG(2'-F-C)mU(2'-F-G)mG(2'-F-U)mC(2'-F-U)mC(2'-F-G)*mA*(2'-F-U)*-CholmC(2'-FG)mG(2'-FC)mG(2'-FC)mU(2'-FG)mG(2'-FU)mC(2'-FU)mC(2'-FG)* mA*(2'-FU)*-Chol
F
(이하, 3S)
F
(hereinafter referred to as 3S)
mCmGmGmCGmCmUGGmUmCmUmCmG*mA*mU*-CholmCmGmGmCGmCmUGGmUmCmUmCmG*mA*mU*-Chol
antisenseantisense ori
(이하, 1AS)
ori
(hereinafter, 1AS)
AUCGAGACCAGCGCmCmGmCmGmUmCmG*mG*mA*mA*mAAUCGAGACCAGCGCmCmGmCmGmUmCmG*mG*mA*mA*mA
OMe/F
(이하, 2AS)
OMe/F
(hereinafter referred to as 2AS)
mA(2'-F-U)mC(2'-F-G)mA(2'-F-G)mA(2'-F-C)mC(2'-F-A)mG(2'-F-C)mG(2'-F-C)mC(2'-F-G)mC(2'-F-G)mU(2'-F-C)mG*(2'-F-G)*mA*(2'-F-A)*mAmA(2'-FU)mC(2'-FG)mA(2'-FG)mA(2'-FC)mC(2'-FA)mG(2'-FC)mG(2'-FC)mC (2'-FG)mC(2'-FG)mU(2'-FC)mG*(2'-FG)*mA*(2'-FA)*mA
F
(이하, 3AS)
F
(hereinafter referred to as 3AS)
mA(2'-F-U)(2'-F-C)GAGA(2'-F-C)(2'-F-C)AG(2'-F-C)GCCGmCmGmUmCmG*mG*mA*mA*mAmA(2'-F-U)(2'-F-C)GAGA(2'-F-C)(2'-F-C)AG(2'-F-C)GCCGmCmGmUmCmG*mG*mA*mA*mA
#49#49 sensesense ori
(이하, 1S)
ori
(hereinafter, 1S)
mCGmCUmGGmUCmUCmGAmUG*mU*C*-CholmCGmCUmGGmUCmUCmGAmUG*mU*C*-Chol
OMe/F
(이하, 2S)
OMe/F
(hereinafter referred to as 2S)
mC(2'-F-G)mC(2'-F-U)mG(2'-F-G)mU(2'-F-C)mU(2'-F-C)mG(2'-F-A)mU(2'-F-G)*mU*(2'-F-C)*-CholmC(2'-FG)mC(2'-FU)mG(2'-FG)mU(2'-FC)mU(2'-FC)mG(2'-FA)mU(2'-FG)* mU*(2'-FC)*-Chol
F
(이하, 3S)
F
(hereinafter referred to as 3S)
mCmGmCmUGGmUmCmUmCGAmUmG*mU*mC*-CholmCmGmCmUGGmUmCmUmCGAmUmG*mU*mC*-Chol
antisenseantisense ori
(이하, 1AS)
ori
(hereinafter, 1AS)
GACAUCGAGACCAGmCmGmCmCmGmCmG*mU*mC*mG*mGGACAUCGAGACCAGmCmGmCmCmGmCmG*mU*mC*mG*mG
OMe/F
(이하, 2AS)
OMe/F
(hereinafter referred to as 2AS)
mG(2'-F-A)mC(2'-F-A)mU(2'-F-C)mG(2'-F-A)mG(2'-F-A)mC(2'-F-C)mA(2'-F-G)mC(2'-F-G)mC(2'-F-C)mG(2'-F-C)mG*(2'-F-U)*mC*(2'-F-G)*mGmG(2'-FA)mC(2'-FA)mU(2'-FC)mG(2'-FA)mG(2'-FA)mC(2'-FC)mA(2'-FG)mC (2'-FG)mC(2'-FC)mG(2'-FC)mG*(2'-FU)*mC*(2'-FG)*mG
F
(이하, 3AS)
F
(hereinafter referred to as 3AS)
mGA(2'-F-C)A(2'-F-U)(2'-F-C)GAGA(2'-F-C)(2'-F-C)AGCGmCmCmGmCmG*mU*mC*mG*mGmGA(2'-F-C)A(2'-F-U)(2'-F-C)GAGA(2'-F-C)(2'-F-C)AGCGmCmCmGmCmG*mU*mC*mG*mG

한편, 상기 표 4에 “*”, “m”, “2'-F-“, “chol”로 표기된 화학적 변형은 하기 표 5에 나타낸 바와 같다. On the other hand, chemical modifications indicated by “*”, “m”, “2’-F-“, and “chol” in Table 4 are as shown in Table 5 below.

표기법notation 도입된 화학적 변형introduced chemical modifications ** 포스포로티오에이트 결합(phosphorothioated bond)phosphorothioate bond mm 2'-O-메틸(Methyl)2'-O-methyl (Methyl) 2'-F-2'-F- 2'-플루오르(Fluoro)2'-Fluoro cholchol 콜레스테롤cholesterol

구체적으로, 상기 표 5에서, “*”은 기존의 포스포다이에스터 결합이 포스포로티오에이트 결합으로 치환된 형태를 의미하는 것이며, “m”은 기존의 2'-OH가 2'-O-메틸로 치환된 형태를 의미하는 것이다. 또한, “2'-F-“는 예를 들어, 2'-F-G의 경우, 기존의 G(구아닌)의 2'-OH가 플루오르로 치환된 형태를 의미하는 것이며, “Chol”은 3'-말단에 콜레스테롤이 첨가된 형태를 의미하는 것이다. Specifically, in Table 5, “*” means a form in which an existing phosphodiester bond is substituted with a phosphorothioate bond, and “m” indicates that the existing 2'-OH is 2'-O- It means a form substituted with methyl. In addition, "2'-F-" means, for example, in the case of 2'-FG, the existing 2'-OH of G (guanine) is substituted with fluorine, and "Chol" is 3'- It means a form in which cholesterol is added at the end.

상기 표 4의 sequence를 제외하고 modification을 도식화하여 도 6에 나타내었다(#47, #49에는 동일한 modification을 진행하였다). 센스 가닥 3개, 안티센스 가닥 3개, 총 9가지의 결합이 가능하며, Opti-MEM reduced serum media에 각 strand를 dilution하고 95℃에서 5분, 37℃에서 20분 incubation하여 annealing하였다.Except for the sequence in Table 4, the modifications were schematically shown in FIG. 6 (the same modifications were performed on #47 and #49). Three sense strands and three antisense strands are capable of binding a total of 9 types, and each strand was dilution in Opti-MEM reduced serum media and annealed by incubation at 95°C for 5 minutes and 37°C for 20 minutes.

센스 가닥의 3' 말단에 붙은 콜레스테롤은 세포막을 투과할 수 있게 해준다. 또한 센스 가닥과 안티센스 가닥의 3' 말단과 가까운 phosphate backbone을 포스포로티오에이트(phosphorothioate)로 치환한 것은 핵산외부가수분해효소에 대한 저항성을 증가시키며, cellular uptake와 in vivo에서 생물학적인 이용이 가능하게 한다. 또한 일부 당의 2'을 OMethyl로 modification하면 핵산가수분해효소에 대한 저항성이 높아지며, siRNA immunogenicity와 off-target 효과가 감소한다. 마지막으로, 일부 당의 2'을 fluoro로 modification하면 double strand RNA duplex를 안정화시키고 seurm에서의 안정성을 높이며 in vitro, in vivo에서 효율적인 silencing을 가능하게 한다.Cholesterol attached to the 3' end of the sense strand allows it to penetrate the cell membrane. In addition, the substitution of phosphorothioate for the phosphate backbone close to the 3' ends of the sense and antisense strands increases resistance to exohydrolase, cellular uptake and bioavailability in vivo. do. In addition, if 2' of some sugars are modified with OMethyl, resistance to nucleases is increased, and siRNA immunogenicity and off-target effect are reduced. Finally, the 2' modification of some sugars with fluoro stabilizes the double-stranded RNA duplex, increases stability in the seurm, and enables efficient silencing in vitro and in vivo.

실시예 5: NRL을 표적하는 cp-asiRNA에 대한 NRL 발현 억제 효율 확인Example 5: Confirmation of NRL expression inhibition efficiency for cp-asiRNA targeting NRL

실시예 5-1: stable cell line에서 modification된 cp-asiRNA의 효과 확인Example 5-1: Confirmation of the effect of modified cp-asiRNA in stable cell line

제작한 A549-NRL stable cell line에서 modification된 #47과 #49 cp-asiRNA의 효과를 확인하였다. A549-NRL stable cell line은 A549 cell에 NRL을 발현하는 plasmid(Origene-RG202237)를 transfection하고 G418 항생제(Goldbio)에 저항성을 갖는 cell을 골라내고 키워서 제작하였다.The effects of modified #47 and #49 cp-asiRNA were confirmed in the prepared A549- NRL stable cell line. The A549- NRL stable cell line was prepared by transfecting A549 cells with an NRL-expressing plasmid (Origene-RG202237), selecting and growing cells resistant to the G418 antibiotic (Goldbio).

A549-NRL stable cell line을 100mm petri dish에 10% FBS(fetal bovine serum)와 G418 항생제(1mg/ml)를 첨가한 Ham's F-12K(Kaighn's) Medium(gibco)에서 배양하여 증식시킨 후, 6 well에 15만개의 cell을 분주하고 24시간 후 FBS(fetal bovine serum)를 첨가하지 않은 Ham's F-12K(Kaighn's) Medium으로 바꾸어주었다. 이러한 serum starvation과정은 각각의 cell cycle을 돌고 있는 세포들을 G1 arrest를 일으켜 동질화시키고, 세포를 굶주리게 하여 treat에 대한 반응을 최대화시키고자 함이다. 그 후 24시간 뒤에 Opti-MEM reduced serum media로 바꾸어 주고 Cp-asiRNA를 transfection reagent 없이 처리하였다. 그 후 24시간 뒤 10% FBS(fetal bovine serum)가 첨가된 Ham's F-12K(Kaighn's) Medium으로 바꾸어 주고 24시간 뒤에 RIPA로 세포를 깨어 western blot을 진행하였다.The A549- NRL stable cell line was cultured in Ham's F-12K (Kaighn's) Medium (gibco) supplemented with 10% FBS (fetal bovine serum) and G418 antibiotic (1mg/ml) in a 100mm petri dish and grown, and then propagated in 6 wells. 150,000 cells were aliquoted and changed to Ham's F-12K (Kaighn's) Medium without FBS (fetal bovine serum) added after 24 hours. This serum starvation process aims to maximize the response to treat by homogenizing the cells in each cell cycle by causing G1 arrest and starving the cells. After 24 hours, it was changed to Opti-MEM reduced serum media, and Cp-asiRNA was treated without transfection reagent. After 24 hours, it was changed to Ham's F-12K (Kaighn's) Medium supplemented with 10% fetal bovine serum (FBS). After 24 hours, the cells were awakened with RIPA and western blot was performed.

도 7에 western blot 결과를 나타내었으며, 좀 더 간편하게 각 strand를 표시하기 위해 S-ori, S-OMe/F, S-F를 순서대로 1S, 2S, 3S로 표시하였으며, AS-ori, AS-OMe/F, AS-F를 순서대로 1AS, 2AS, 3AS로 나타내었다.The western blot results are shown in Figure 7, and in order to mark each strand more conveniently, S-ori, S-OMe/F, and SF were marked as 1S, 2S, and 3S in that order, and AS-ori, AS-OMe/ F and AS-F are indicated as 1AS, 2AS, and 3AS in order.

반복 실험에서도 위와 유사한 결과를 얻었고, 따라서 가장 좋은 knockdown efficiency를 보이는 #47의 센스 가닥-안티센스 가닥, 즉 2S-2AS(S-OMe/F, AS-OMe/F)에 대해 추가적인, 즉, 두 번째 modification을 진행하였다(표 6). Similar results were obtained in the replicate experiment, and therefore, an additional, i.e., second Modification was carried out (Table 6).

siRNAsiRNA NoNo sequence (5'→3')sequence (5'→3') cp-asiNRLcp-asiNRL #47#47 sensesense OMe/F-PS2
(이하, 2S-1)
OMe/F-PS2
(hereinafter referred to as 2S-1)
mC*(2'-F-G)*mG(2'-F-C)mG(2'-F-C)mU(2'-F-G)mG(2'-F-U)mC(2'-F-U)mC(2'-F-G)*mA*(2'-F-U)*-CholmC*(2'-FG)*mG(2'-FC)mG(2'-FC)mU(2'-FG)mG(2'-FU)mC(2'-FU)mC(2'-FG )*mA*(2'-FU)*-Chol
antisenseantisense OMe/F-P-PS1
(이하, 2AS-1)
OMe/FP-PS1
(hereinafter referred to as 2AS-1)
PmA(2'-F-U)mC(2'-F-G)mA(2'-F-G)mA(2'-F-C)mC(2'-F-A)mG(2'-F-C)mG(2'-F-C)mC(2'-F-G)mC(2'-F-G)mU(2'-F-C)mG*(2'-F-G)*mA*(2'-F-A)*mAPmA(2'-FU)mC(2'-FG)mA(2'-FG)mA(2'-FC)mC(2'-FA)mG(2'-FC)mG(2'-FC)mC (2'-FG)mC(2'-FG)mU(2'-FC)mG*(2'-FG)*mA*(2'-FA)*mA
OMe/F-P-PS2
(이하, 2AS-2)
OMe/FP-PS2
(hereinafter referred to as 2AS-2)
PmA*(2'-F-U)*mC(2'-F-G)mA(2'-F-G)mA(2'-F-C)mC(2'-F-A)mG(2'-F-C)mG(2'-F-C)mC(2'-F-G)mC(2'-F-G)mU(2'-F-C)mG*(2'-F-G)*mA*(2'-F-A)*mAPmA*(2'-FU)*mC(2'-FG)mA(2'-FG)mA(2'-FC)mC(2'-FA)mG(2'-FC)mG(2'-FC )mC(2'-FG)mC(2'-FG)mU(2'-FC)mG*(2'-FG)*mA*(2'-FA)*mA

*, m, 2'-F- 및 chol의 의미는 표 5에 설명된 바와 동일하며, P는 5'-Phosphate를 의미한다.The meanings of *, m, 2'-F- and chol are the same as those described in Table 5, and P means 5'-Phosphate.

두 번째 modification은 표 4의 #47의 센스 가닥, 2S에 추가적인 화학적 변형을 한 것으로, 구체적으로, 상기 센스 가닥의 5' 말단에 phosphorothioate modification을 추가한 것이며(이하, 2S-1이라 함), 표 4의 #47의 안티센스 가닥, 2AS에 추가적인 화학적 변형을 한 것으로, 구체적으로, 상기 안티 센스 가닥의 5' 말단에 phosphate modification 또는 phosphate 및 phosphorothioate modification을 추가한 것이다(이하, 2AS-1 및 2AS-2라 함). 안티센스 가닥의 5'-phosphorylation은 유전자 침묵과정에서 필수적인 RNA-induced silencing complex(RISC)에 loading을 위해 siRNA duplex 중 표적 mRNA와 상보적인 strand에 요구된다. 따라서 대부분의 경우에 합성 siRNA는 세포 내로 들어가면, phosphorylation이 일어난다. 그러나 더 확실한 RISC에 loading을 위하여 안티센스 가닥의 5'에 phosphate modification을 진행하였다(도 8).The second modification is an additional chemical modification to the sense strand and 2S of #47 in Table 4, specifically, a phosphorothioate modification added to the 5' end of the sense strand (hereinafter referred to as 2S-1), An additional chemical modification was made to the antisense strand of #47 of 4, 2AS, and specifically, phosphate modification or phosphate and phosphorothioate modifications were added to the 5' end of the antisense strand (hereinafter, 2AS-1 and 2AS-2). called). 5'-phosphorylation of the antisense strand is required for the strand complementary to the target mRNA in the siRNA duplex for loading into the RNA-induced silencing complex (RISC), which is essential for gene silencing. Therefore, in most cases, when synthetic siRNA enters the cell, phosphorylation occurs. However, phosphate modification was performed at 5' of the antisense strand for more reliable loading into RISC (FIG. 8).

센스 가닥으로 표 4의 #47 2S, 표 5의 2S-1을, 그리고 안티센스 가닥으로 표 4의 #47의 2AS, 표 5의 2AS-1, 2AS-2를 사용하여, 앞의 과정과 동일한 방식으로 실험을 수행한 뒤, western blot을 진행하였다. 도 9에 western blot 결과를 나타내었다. Using #47 2S of Table 4 and 2S-1 of Table 5 as the sense strand, and #47 2AS of Table 4 and 2AS-1 and 2AS-2 of Table 5 as the antisense strand, the same method as in the previous process. After performing the experiment, western blot was performed. The western blot results are shown in FIG. 9 .

실시예 5-2: 선택한 NRL cp-asiRNA의 knockdown efficiency 확인Example 5-2: Confirmation of knockdown efficiency of selected NRL cp-asiRNA

상기 실시예 5-1의 결과에 따라, knockdown efficiency가 가장 좋은 2S-2AS와 2S-2AS-1을 선택하였다. 2S-2AS와 2S-2AS-1사이의 차이는 안티센스 가닥의 5'에 phosphate의 유무이다.According to the results of Example 5-1, 2S-2AS and 2S-2AS-1 having the best knockdown efficiency were selected. The difference between 2S-2AS and 2S-2AS-1 is the presence or absence of phosphate at 5' of the antisense strand.

선택한 2S-2AS와 2S-2AS-1의 IC50 value와 maximum knockdown level을 구하기 위해 NRL cp-asiRNA의 농도를 다르게 처리하여(30nM부터 3000nM까지) 앞에서와 동일한 방식으로 western blot을 진행하였다. 5' phosphate가 첨가된 2S-2AS-1이 2S-2AS보다 knockdown efficiency가 좋으며, 2AS-1의 IC50 value는 대략 300nM 정도이고 최대 67%까지 knockdown 시킬 수 있는 것으로 확인되었다(도 10). NRL to obtain IC 50 values and maximum knockdown levels of the selected 2S-2AS and 2S-2AS-1 Western blot was performed in the same manner as before by treating different concentrations of cp-asiRNA (from 30 nM to 3000 nM). 2S-2AS-1 to which 5' phosphate is added has better knockdown efficiency than 2S- 2AS, and it has been confirmed that the IC 50 value of 2AS-1 is approximately 300 nM and can knockdown up to 67% ( FIG. 10 ).

한편, human NRL 서열에 따라, 안티센스 가닥의 길이를 25mer에서 26mer로 1mer 늘려 동일한 실험을 진행하였다. 구체적으로, 표 7에 본 실험을 위하여 제조한 asiRNA의 염기 서열을 나타내었으며, 도 11의 #47 cp-asiNRL 2S-2AS(sense:16mer/antisense:26mer, 이하, 1626) 및 #47 cp-asiNRL 2S-2AS-1(sense:16mer/antisense:26mer, 이하, 1626)의 서열 및 화학적 변형은 아래 표 8과 같다.Meanwhile, according to the human NRL sequence, the same experiment was performed by increasing the length of the antisense strand from 25mer to 26mer by 1mer. Specifically, Table 7 shows the nucleotide sequence of the asiRNA prepared for this experiment, and #47 cp-asiNRL 2S-2AS (sense:16mer/antisense:26mer, hereinafter, 1626) and #47 cp-asiNRL of FIG. 11 The sequence and chemical modifications of 2S-2AS-1 (sense:16mer/antisense:26mer, hereinafter, 1626) are shown in Table 8 below.

No.No. Sequence(5'->3')Sequence(5'->3') 서열번호SEQ ID NO: 7474 S(16mer)S(16mer) CGGCGCUGGUCUCGAUCGGCGCUGGUCUCGAU 9393 AS(26mer)AS (26mer) AUCGAGACCAGCGCCGCGUCGGAAAAAUCGAGACCAGCGCCGCGUCGGAAAA 155155

siRNAsiRNA NoNo sequence (5'→3')sequence (5'→3') cp-asiNRLcp-asiNRL #47#47 sense
(16mer)
sense
(16mer)
2S2S mC(2'-F-G)mG(2'-F-C)mG(2'-F-C)mU(2'-F-G)mG(2'-F-U)mC(2'-F-U)mC(2'-F-G)*mA*(2'-F-U)*-CholmC(2'-FG)mG(2'-FC)mG(2'-FC)mU(2'-FG)mG(2'-FU)mC(2'-FU)mC(2'-FG)* mA*(2'-FU)*-Chol
antisense
(26mer)
antisense
(26mer)
2AS2AS mA(2'-F-U)mC(2'-F-G)mA(2'-F-G)mA(2'-F-C)mC(2'-F-A)mG(2'-F-C)mG(2'-F-C)mC(2'-F-G)mC(2'-F-G)mU(2'-F-C)mG(2'-F-G)*mA*(2'-F-A)*mA*(2'-F-A)mA(2'-FU)mC(2'-FG)mA(2'-FG)mA(2'-FC)mC(2'-FA)mG(2'-FC)mG(2'-FC)mC (2'-FG)mC(2'-FG)mU(2'-FC)mG(2'-FG)*mA*(2'-FA)*mA*(2'-FA)
2AS-12AS-1 PmA(2'-F-U)mC(2'-F-G)mA(2'-F-G)mA(2'-F-C)mC(2'-F-A)mG(2'-F-C)mG(2'-F-C)mC(2'-F-G)mC(2'-F-G)mU(2'-F-C)mG(2'-F-G)*mA*(2'-F-A)*mA*(2'-F-A)PmA(2'-FU)mC(2'-FG)mA(2'-FG)mA(2'-FC)mC(2'-FA)mG(2'-FC)mG(2'-FC)mC (2'-FG)mC(2'-FG)mU(2'-FC)mG(2'-FG)*mA*(2'-FA)*mA*(2'-FA)

*, m, 2'-F-, chol, 및 P의 의미는 표 6에 설명된 바와 동일하다. The meanings of *, m, 2'-F-, chol, and P are the same as described in Table 6.

상기와 같이 안티센스 가닥이 26mer로 변형된 NRL cp-asiRNA는 안티센스 가닥이 25mer인 경우와 비슷한 수준의 knockdown efficiency를 보였으며, 안티센스 가닥이 26mer인 경우에도, 안티센스 가닥이 25mer인 경우와 마찬가지로 2S-2AS-1이 2S-2AS에 비해 더 나은 효과를 보여주었다. 도 11에 따르면, 안티센스 가닥이 26mer인 경우에도 2S-2AS-1(antisense: 26mer)의 IC50 value는 300nM에서 600nM 사이이며 최대 62%까지 knockdown 시킬 수 있는 것으로 확인되었다(도 11).As described above, the NRL cp-asiRNA in which the antisense strand is modified with the 26mer exhibited knockdown efficiency similar to that of the 25mer antisense strand, and even when the antisense strand is 26mer, the 2S-2AS -1 showed better effect than 2S-2AS. According to FIG. 11, even when the antisense strand is 26mer, the IC 50 value of 2S-2AS-1 (antisense: 26mer) is between 300 nM and 600 nM, and it was confirmed that it can knockdown up to 62% ( FIG. 11 ).

도 12는 #47 cp-asiNRL 2S-2AS-1(1626)를 sequence와 modification 정보를 나타낸 것이다. 12 shows the sequence and modification information of #47 cp-asiNRL 2S-2AS-1 (1626).

실시예 6:동물 모델을 이용한 cp-asiRNA의 NRL 발현 억제 효율 확인Example 6: Confirmation of NRL Expression Inhibition Efficiency of cp-asiRNA Using an Animal Model

#47 cp-asiNRL 2S-2AS-1(1626)를 대상으로 마우스 안구의 망막 조직 내에서의 타겟 단백질 억제 효력을 확인하였다. #47 cp-asiNRL 2S-2AS-1 (1626) was confirmed to inhibit the target protein in the retinal tissue of the mouse eye.

구체적으로, 본 실험은 C57BL/6 (7주령, 수컷, OrientBio) 마우스를 1주일간 순화시킨 7주령 마우스를 대상으로 수행하였다. #47 cp-asiNRL 2S-2AS-1(1626)는 0.5x PBS를 vehicle 용매로 사용하여 10 mg/ml stock solution으로 준비하였으며, 이를 60, 120, 180 그리고 210㎍/30 ㎕의 농도로 각각 희석하여, 마우스에 1 ㎕씩 안구 내 투여를 1회 실시하였다 (n=3/group).상기 후보 물질을 투여한 후 7일 및 14일째, 각 그룹의 마우스를 희생하고 curved forcep (FSC)을 사용하여 안구 적출하였다. 이후, 마우스로부터 수득한 각막에 구멍을 낸 뒤, micro scissor (FSC)를 이용하여 limbus line을 따라 절개하고 렌즈를 제거한 후 망막을 채취하였다. 채취한 망막 조직을 RIPA buffer (Thermo Fisher Scientific)에 넣고 pipetting을 하여 tissue lysis를 한 후, BCA protein assay kit (Invitrogen)로 NRL 단백질을 정량하였다. Western blotting을 통한 단백질 분석을 위해 10% SDS-PAGE를 사용하여 각 샘플마다 10 μg 단백질을 80 V에서 30분, 100 V에서 1시간 30분 분리한 후, PVDF membrane (Bio-Rad)으로 230 mA에서 2시간 동안 transfer하였다. 이후 transfer한 membrane을 3% BSA, 4℃에서 2시간 동안 blocking 준 후, NRL antibody (Santa cruz) 1:500으로 16시간, Anti-mouse IgG, HRP-linked Antibody (Santacruz) 1:10,000으로 1시간 반응시킨 뒤, ChemiDoc (Thermo)을 사용해 NRL 단백질 발현 정도를 확인하였다. 구체적으로, NRL 단백질의 발현 정도는 NRL/Vinculin 단백질의 비율로 정량화하였으며, 대조군으로는 0.5X PBS 투여 군을 이용하였다.Specifically, this experiment was performed on 7-week-old mice acclimatized to C57BL/6 (7-week-old, male, OrientBio) mice for 1 week. #47 cp-asiNRL 2S-2AS-1 (1626) was prepared as a 10 mg/ml stock solution using 0.5x PBS as a vehicle solvent, which was diluted to concentrations of 60, 120, 180 and 210 μg/30 μl, respectively. Therefore, intraocular administration of 1 μl to the mouse was performed once (n=3/group). On the 7th and 14th days after administration of the candidate substance, the mice of each group were sacrificed and curved forceps (FSC) were used. and the eyeball was removed. Thereafter, after making a hole in the cornea obtained from the mouse, an incision was made along the limbus line using a micro scissor (FSC), the lens was removed, and the retina was collected. The collected retinal tissue was placed in RIPA buffer (Thermo Fisher Scientific) and tissue lysis was performed by pipetting, and then NRL protein was quantified with a BCA protein assay kit (Invitrogen). For protein analysis by Western blotting, 10 μg of protein was separated from each sample for 30 minutes at 80 V and 1 hour and 30 minutes at 100 V using 10% SDS-PAGE, followed by a PVDF membrane (Bio-Rad) at 230 mA was transferred for 2 hours. After blocking the transferred membrane at 3% BSA, 4°C for 2 hours, NRL antibody (Santa cruz) 1:500 for 16 hours, Anti-mouse IgG, HRP-linked Antibody (Santacruz) 1:10,000 for 1 hour After the reaction, the expression level of the NRL protein was checked using ChemiDoc (Thermo). Specifically, the expression level of NRL protein was quantified as a ratio of NRL/Vinculin protein, and a 0.5X PBS administration group was used as a control group.

도 13 및 도 14는 마우스 안구의 망막 조직 내에서, #47 cp-asiNRL 2S-2AS-1(1626)의 투여에 따른 NRL의 발현 변화를 확인한 결과이다. 그 결과, 상기 후보 물질의 투여는 망막 조직 내 NRL 단백질의 발현을 억제시킴을 확인하였다. 구체적으로, 이러한 효과는 투여 후 7일째 뿐만 아니라 투여 후 14일째에도 유효하게 유지됨을 알 수 있었으며, 투여 농도에 의존하는 경향을 보여주었다. 13 and 14 are results of confirming the change in NRL expression according to the administration of #47 cp-asiNRL 2S-2AS-1 (1626) in the retinal tissue of the mouse eye. As a result, it was confirmed that the administration of the candidate material suppressed the expression of the NRL protein in the retinal tissue. Specifically, it was found that this effect was maintained effectively not only on the 7th day after administration, but also on the 14th day after administration, and showed a tendency dependent on the administration concentration.

이러한 실험 결과는 #47 cp-asiNRL 2S-2AS-1(1626) 물질이 in vivo 조건 하에서도 NRL 단백질의 발현을 억제할 수 있음을 나타내는 것이며, 이에 따라, 상기 후보 물질은 NRL-매개 안구 또는 망막질환 개선 또는 치료용 약학 조성물의 유효 성분으로 활용될 수 있음을 보여주는 것이다. These experimental results indicate that the #47 cp-asiNRL 2S-2AS-1(1626) substance can inhibit the expression of NRL protein even under in vivo conditions. It shows that it can be used as an active ingredient of a pharmaceutical composition for improving or treating diseases.

이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적 기술은 단지 바람직한 실시 양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.As described above in detail a specific part of the content of the present invention, for those of ordinary skill in the art, it is clear that this specific description is only a preferred embodiment, and the scope of the present invention is not limited thereby. will be. Accordingly, it is intended that the substantial scope of the present invention be defined by the appended claims and their equivalents.

<110> OliX Pharmaceuticals, Inc. <120> Asymmetric siRNA Inhibiting Expression of NRL <130> PN131281 <150> KR 2019-0006750 <151> 2019-01-18 <160> 155 <170> KoPatentIn 3.0 <210> 1 <211> 16 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 1 cggcugaagc agaggc 16 <210> 2 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 2 gccucugcuu cagccgcag 19 <210> 3 <211> 16 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 3 ggcugaagca gaggcg 16 <210> 4 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 4 cgccucugcu ucagccgca 19 <210> 5 <211> 16 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 5 aagcagaggc gccgca 16 <210> 6 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 6 ugcggcgccu cugcuucag 19 <210> 7 <211> 16 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 7 agcagaggcg ccgcac 16 <210> 8 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 8 gugcggcgcc ucugcuuca 19 <210> 9 <211> 16 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 9 cgcuccaagc ggcugc 16 <210> 10 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 10 gcagccgcuu ggagcgaca 19 <210> 11 <211> 16 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 11 gcuccaagcg gcugca 16 <210> 12 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 12 ugcagccgcu uggagcgac 19 <210> 13 <211> 16 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 13 acuuugacuu gaugaa 16 <210> 14 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 14 uucaucaagu caaagucau 19 <210> 15 <211> 16 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 15 cuuugacuug augaag 16 <210> 16 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 16 cuucaucaag ucaaaguca 19 <210> 17 <211> 16 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 17 uuugacuuga ugaagu 16 <210> 18 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 18 acuucaucaa gucaaaguc 19 <210> 19 <211> 16 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 19 uugacuugau gaaguu 16 <210> 20 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 20 aacuucauca agucaaagu 19 <210> 21 <211> 16 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 21 gccugucgcu ccaagc 16 <210> 22 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 22 gcuuggagcg acaggccug 19 <210> 23 <211> 16 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 23 ccugucgcuc caagcg 16 <210> 24 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 24 cgcuuggagc gacaggccu 19 <210> 25 <211> 16 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 25 gucgcuccaa gcggcu 16 <210> 26 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 26 agccgcuugg agcgacagg 19 <210> 27 <211> 16 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 27 ucgcuccaag cggcug 16 <210> 28 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 28 cagccgcuug gagcgacag 19 <210> 29 <211> 16 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 29 cuccaagcgg cugcag 16 <210> 30 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 30 cugcagccgc uuggagcga 19 <210> 31 <211> 16 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 31 ugacuugaug aaguuu 16 <210> 32 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 32 aaacuucauc aagucaaag 19 <210> 33 <211> 16 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 33 aggccugucg cuccaa 16 <210> 34 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 34 uuggagcgac aggccugcg 19 <210> 35 <211> 16 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 35 ggccugucgc uccaag 16 <210> 36 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 36 cuuggagcga caggccugc 19 <210> 37 <211> 16 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 37 ccuccuucac ccaccu 16 <210> 38 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 38 agguggguga aggaggcac 19 <210> 39 <211> 16 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 39 cuccuucacc caccuu 16 <210> 40 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 40 aaggugggug aaggaggca 19 <210> 41 <211> 16 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 41 uccuucaccc accuuc 16 <210> 42 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 42 gaaggugggu gaaggaggc 19 <210> 43 <211> 16 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 43 ccuucaccca ccuuca 16 <210> 44 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 44 ugaagguggg ugaaggagg 19 <210> 45 <211> 16 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 45 cuucacccac cuucag 16 <210> 46 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 46 cugaaggugg gugaaggag 19 <210> 47 <211> 16 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 47 uucacccacc uucagu 16 <210> 48 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 48 acugaaggug ggugaagga 19 <210> 49 <211> 16 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 49 ucacccaccu ucagug 16 <210> 50 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 50 cacugaaggu gggugaagg 19 <210> 51 <211> 16 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 51 cacccaccuu caguga 16 <210> 52 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 52 ucacugaagg ugggugaag 19 <210> 53 <211> 16 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 53 aauaugucaa ugacuu 16 <210> 54 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 54 aagucauuga cauauucca 19 <210> 55 <211> 16 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 55 auaugucaau gacuuu 16 <210> 56 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 56 aaagucauug acauauucc 19 <210> 57 <211> 16 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 57 uaugucaaug acuuug 16 <210> 58 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 58 caaagucauu gacauauuc 19 <210> 59 <211> 16 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 59 augucaauga cuuuga 16 <210> 60 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 60 ucaaagucau ugacauauu 19 <210> 61 <211> 16 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 61 ugucaaugac uuugac 16 <210> 62 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 62 gucaaaguca uugacauau 19 <210> 63 <211> 16 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 63 ugccuccuuc acccac 16 <210> 64 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 64 gugggugaag gaggcacug 19 <210> 65 <211> 16 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 65 gccuccuuca cccacc 16 <210> 66 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 66 ggugggugaa ggaggcacu 19 <210> 67 <211> 16 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 67 ucagugaacc aggcau 16 <210> 68 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 68 augccugguu cacugaagg 19 <210> 69 <211> 16 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 69 cagugaacca ggcaug 16 <210> 70 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 70 caugccuggu ucacugaag 19 <210> 71 <211> 16 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 71 agugaaccag gcaugg 16 <210> 72 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 72 ccaugccugg uucacugaa 19 <210> 73 <211> 16 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 73 gugaaccagg cauggu 16 <210> 74 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 74 accaugccug guucacuga 19 <210> 75 <211> 16 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 75 agcuguacug gcuggc 16 <210> 76 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 76 gccagccagu acagcuccu 19 <210> 77 <211> 16 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 77 ggcuggcuac ccugca 16 <210> 78 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 78 ugcaggguag ccagccagu 19 <210> 79 <211> 16 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 79 gcuggcuacc cugcag 16 <210> 80 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 80 cugcagggua gccagccag 19 <210> 81 <211> 16 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 81 cuggcuaccc ugcagc 16 <210> 82 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 82 gcugcagggu agccagcca 19 <210> 83 <211> 16 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 83 uggcuacccu gcagca 16 <210> 84 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 84 ugcugcaggg uagccagcc 19 <210> 85 <211> 16 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 85 ggcuacccug cagcag 16 <210> 86 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 86 cugcugcagg guagccagc 19 <210> 87 <211> 16 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 87 gcuacccugc agcagc 16 <210> 88 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 88 gcugcugcag gguagccag 19 <210> 89 <211> 16 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 89 cuacccugca gcagca 16 <210> 90 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 90 ugcugcugca ggguagcca 19 <210> 91 <211> 16 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 91 uacccugcag cagcag 16 <210> 92 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 92 cugcugcugc aggguagcc 19 <210> 93 <211> 16 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 93 cggcgcuggu cucgau 16 <210> 94 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 94 aucgagacca gcgccgcgu 19 <210> 95 <211> 16 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 95 gcgcuggucu cgaugu 16 <210> 96 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 96 acaucgagac cagcgccgc 19 <210> 97 <211> 16 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 97 cgcuggucuc gauguc 16 <210> 98 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 98 gacaucgaga ccagcgccg 19 <210> 99 <211> 16 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 99 accggcagcu gcgggg 16 <210> 100 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 100 ccccgcagcu gccgguuua 19 <210> 101 <211> 16 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 101 aggcgcugcg gcugaa 16 <210> 102 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 102 uucagccgca gcgccucgu 19 <210> 103 <211> 16 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 103 cgcugcggcu gaagca 16 <210> 104 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 104 ugcuucagcc gcagcgccu 19 <210> 105 <211> 16 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 105 cugcggcuga agcaga 16 <210> 106 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 106 ucugcuucag ccgcagcgc 19 <210> 107 <211> 16 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 107 ugcggcugaa gcagag 16 <210> 108 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 108 cucugcuuca gccgcagcg 19 <210> 109 <211> 16 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 109 gcggcugaag cagagg 16 <210> 110 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 110 ccucugcuuc agccgcagc 19 <210> 111 <211> 16 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 111 gcacgcugaa gaaccg 16 <210> 112 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 112 cgguucuuca gcgugcggc 19 <210> 113 <211> 16 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 113 cacgcugaag aaccgc 16 <210> 114 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 114 gcgguucuuc agcgugcgg 19 <210> 115 <211> 16 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 115 acgcugaaga accgcg 16 <210> 116 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 116 cgcgguucuu cagcgugcg 19 <210> 117 <211> 16 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 117 cgcugaagaa ccgcgg 16 <210> 118 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 118 ccgcgguucu ucagcgugc 19 <210> 119 <211> 16 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 119 gcugaagaac cgcggc 16 <210> 120 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 120 gccgcgguuc uucagcgug 19 <210> 121 <211> 16 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 121 cugaagaacc gcggcu 16 <210> 122 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 122 agccgcgguu cuucagcgu 19 <210> 123 <211> 16 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 123 ugaagaaccg cggcua 16 <210> 124 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 124 uagccgcggu ucuucagcg 19 <210> 125 <211> 16 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 125 gaagaaccgc ggcuac 16 <210> 126 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 126 guagccgcgg uucuucagc 19 <210> 127 <211> 16 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 127 aagaaccgcg gcuacg 16 <210> 128 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 128 cguagccgcg guucuucag 19 <210> 129 <211> 16 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 129 agaaccgcgg cuacgc 16 <210> 130 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 130 gcguagccgc gguucuuca 19 <210> 131 <211> 16 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 131 gaaccgcggc uacgcg 16 <210> 132 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 132 cgcguagccg cgguucuuc 19 <210> 133 <211> 16 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 133 acaaggcucg cuguga 16 <210> 134 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 134 ucacagcgag ccuuguaga 19 <210> 135 <211> 16 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 135 caaggcucgc ugugac 16 <210> 136 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 136 gucacagcga gccuuguag 19 <210> 137 <211> 16 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 137 aaggcucgcu gugacc 16 <210> 138 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 138 ggucacagcg agccuugua 19 <210> 139 <211> 16 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 139 aggcucgcug ugaccg 16 <210> 140 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 140 cggucacagc gagccuugu 19 <210> 141 <211> 16 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 141 ggcucgcugu gaccgg 16 <210> 142 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 142 ccggucacag cgagccuug 19 <210> 143 <211> 16 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 143 gcucgcugug accggc 16 <210> 144 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 144 gccggucaca gcgagccuu 19 <210> 145 <211> 16 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 145 cucgcuguga ccggcu 16 <210> 146 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 146 agccggucac agcgagccu 19 <210> 147 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> NRL primer <400> 147 gtcctgaaga ggccatggag 20 <210> 148 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> NRL primer <400> 148 gtttagctcc cgcacagaca 20 <210> 149 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Neo primer <400> 149 ttgcgcagct gtgctcgacg 20 <210> 150 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Neo primer <400> 150 aaggcgatgc gctgcgaatc 20 <210> 151 <211> 21 <212> RNA <213> Artificial Sequence <220> <223> si-Oct <400> 151 augaugcucu ugauuuuuut t 21 <210> 152 <211> 21 <212> RNA <213> Artificial Sequence <220> <223> si-Oct <400> 152 aaaaaaucaa gagcaucaut t 21 <210> 153 <211> 25 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 153 aucgagacca gcgccgcguc ggaaa 25 <210> 154 <211> 25 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 154 gacaucgaga ccagcgccgc gucgg 25 <210> 155 <211> 26 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 155 aucgagacca gcgccgcguc ggaaaa 26 <110> OliX Pharmaceuticals, Inc. <120> Asymmetric siRNA Inhibiting Expression of NRL <130> PN131281 <150> KR 2019-0006750 <151> 2019-01-18 <160> 155 <170> KoPatentIn 3.0 <210> 1 <211> 16 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 1 cggcugaagc agaggc 16 <210> 2 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 2 gccucugcuu cagccgcag 19 <210> 3 <211> 16 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 3 ggcugaagca gaggcg 16 <210> 4 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 4 cgccucugcu ucagccgca 19 <210> 5 <211> 16 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 5 aagcagaggc gccgca 16 <210> 6 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 6 ugcggcgccu cugcuucag 19 <210> 7 <211> 16 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 7 agcagaggcg ccgcac 16 <210> 8 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 8 gugcggcgcc ucugcuuca 19 <210> 9 <211> 16 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 9 cgcuccaagc ggcugc 16 <210> 10 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 10 gcagccgcuu ggagcgaca 19 <210> 11 <211> 16 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 11 gcuccaagcg gcugca 16 <210> 12 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 12 ugcagccgcu uggagcgac 19 <210> 13 <211> 16 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 13 acuuugacuu gaugaa 16 <210> 14 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 14 uucaucaagu caaagucau 19 <210> 15 <211> 16 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 15 cuuugacuug augaag 16 <210> 16 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 16 cuucaucaag ucaaaguca 19 <210> 17 <211> 16 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 17 uuugacuuga ugaagu 16 <210> 18 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 18 acuucaucaa gucaaaguc 19 <210> 19 <211> 16 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 19 uugacuugau gaaguu 16 <210> 20 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 20 aacuucauca agucaaagu 19 <210> 21 <211> 16 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 21 gccugucgcu ccaagc 16 <210> 22 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 22 gcuuggagcg acaggccug 19 <210> 23 <211> 16 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 23 ccugucgcuc caagcg 16 <210> 24 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 24 cgcuuggagc gacaggccu 19 <210> 25 <211> 16 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 25 gucgcuccaa gcggcu 16 <210> 26 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 26 agccgcuugg agcgacagg 19 <210> 27 <211> 16 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 27 ucgcuccaag cggcug 16 <210> 28 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 28 cagccgcuug gagcgacag 19 <210> 29 <211> 16 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 29 cuccaagcgg cugcag 16 <210> 30 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 30 cugcagccgc uuggagcga 19 <210> 31 <211> 16 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 31 ugacuugaug aaguuu 16 <210> 32 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 32 aaacuucauc aagucaaag 19 <210> 33 <211> 16 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 33 aggccugucg cuccaa 16 <210> 34 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 34 uuggagcgac aggccugcg 19 <210> 35 <211> 16 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 35 ggccugucgc uccaag 16 <210> 36 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 36 cuuggagcga caggccugc 19 <210> 37 <211> 16 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 37 ccuccuucac ccaccu 16 <210> 38 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 38 agguggguga aggaggcac 19 <210> 39 <211> 16 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 39 cuccuucacc caccuu 16 <210> 40 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 40 aaggugggug aaggaggca 19 <210> 41 <211> 16 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 41 uccuucaccc accuuc 16 <210> 42 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 42 gaaggugggu gaaggaggc 19 <210> 43 <211> 16 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 43 ccuucaccca ccuuca 16 <210> 44 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 44 ugaagguggg ugaaggagg 19 <210> 45 <211> 16 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 45 cuucacccac cuucag 16 <210> 46 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 46 cugaaggugg gugaaggag 19 <210> 47 <211> 16 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 47 uucacccacc uucagu 16 <210> 48 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 48 acugaaggug ggugaagga 19 <210> 49 <211> 16 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 49 ucacccaccu ucagug 16 <210> 50 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 50 cacugaaggu gggugaagg 19 <210> 51 <211> 16 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 51 cacccaccuu caguga 16 <210> 52 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 52 ucacugaagg ugggugaag 19 <210> 53 <211> 16 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 53 aauaugucaa ugacuu 16 <210> 54 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 54 aagucauuga cauauucca 19 <210> 55 <211> 16 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 55 auaugucaau gacuuu 16 <210> 56 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 56 aaagucauug acauauucc 19 <210> 57 <211> 16 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 57 uaugucaaug acuuug 16 <210> 58 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 58 caaagucauu gacauauuc 19 <210> 59 <211> 16 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 59 augucaauga cuuuga 16 <210> 60 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 60 ucaaagucau ugacauauu 19 <210> 61 <211> 16 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 61 uuugac uuugac 16 <210> 62 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 62 gucaaaguca uugacauau 19 <210> 63 <211> 16 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 63 ugccuccuuc acccac 16 <210> 64 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 64 gugggugaag gaggcacug 19 <210> 65 <211> 16 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 65 gccuccuuca cccacc 16 <210> 66 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 66 ggugggugaa ggaggcacu 19 <210> 67 <211> 16 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 67 ucagugaacc aggcau 16 <210> 68 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 68 augccugguu cacugaagg 19 <210> 69 <211> 16 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 69 cagugaacca ggcaug 16 <210> 70 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 70 caugccuggu ucacugaag 19 <210> 71 <211> 16 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 71 agugaaccag gcaugg 16 <210> 72 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 72 ccugccugg uucacugaa 19 <210> 73 <211> 16 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 73 gugaaccagg cauggu 16 <210> 74 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 74 accaugccug guucacuga 19 <210> 75 <211> 16 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 75 agcuguacug gcuggc 16 <210> 76 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 76 gccagccagu acagcuccu 19 <210> 77 <211> 16 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 77 ggcuggcuac ccugca 16 <210> 78 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 78 ugcaggguag ccagccagu 19 <210> 79 <211> 16 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 79 gcuggcuacc cugcag 16 <210> 80 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 80 cugcagggua gccagccag 19 <210> 81 <211> 16 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 81 cuggcuaccc ugcagc 16 <210> 82 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 82 gcugcagggu agccagcca 19 <210> 83 <211> 16 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 83 uggcuacccu gcagca 16 <210> 84 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 84 ugcugcaggg uagccagcc 19 <210> 85 <211> 16 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 85 ggcuacccug cagcag 16 <210> 86 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 86 cuggugcagg guagccagc 19 <210> 87 <211> 16 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 87 gcuacccugc agcagc 16 <210> 88 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 88 gcugcugcag gguagccag 19 <210> 89 <211> 16 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 89 cuacccugca gcagca 16 <210> 90 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 90 ugcugcugca ggguagcca 19 <210> 91 <211> 16 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 91 uacccugcag cagcag 16 <210> 92 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 92 cugcugcugc aggguagcc 19 <210> 93 <211> 16 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 93 cggcgcuggu cucgau 16 <210> 94 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 94 aucgagacca gcgccgcgu 19 <210> 95 <211> 16 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 95 gcgcuggucu cgaugu 16 <210> 96 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 96 acaucgagac cagcgccgc 19 <210> 97 <211> 16 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 97 cgcuggucuc gauguc 16 <210> 98 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 98 gacaucgaga ccagcgccg 19 <210> 99 <211> 16 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 99 accggcagcu gcgggg 16 <210> 100 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 100 ccccgcagcu gccgguuua 19 <210> 101 <211> 16 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 101 aggcgcugcg gcugaa 16 <210> 102 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 102 uucagccgca gcgccucgu 19 <210> 103 <211> 16 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 103 cgcugcggcu gaagca 16 <210> 104 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 104 ugcuucagcc gcagcgccu 19 <210> 105 <211> 16 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 105 cugcggcuga agcaga 16 <210> 106 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 106 ucugcuucag ccgcagcgc 19 <210> 107 <211> 16 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 107 ugcggcugaa gcagag 16 <210> 108 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 108 cucugcuuca gccgcagcg 19 <210> 109 <211> 16 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 109 gcggcugaag cagagg 16 <210> 110 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 110 ccucugcuuc agccgcagc 19 <210> 111 <211> 16 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 111 gcacgcugaa gaaccg 16 <210> 112 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 112 cgguucuuca gcgugcggc 19 <210> 113 <211> 16 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 113 cacgcugaag aaccgc 16 <210> 114 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 114 gcgguucuuc agcgugcgg 19 <210> 115 <211> 16 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 115 acgcugaaga accgcg 16 <210> 116 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 116 cgcgguucuu cagcgugcg 19 <210> 117 <211> 16 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 117 cgcugaagaa ccgcgg 16 <210> 118 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 118 ccgcgguucu ucagcgugc 19 <210> 119 <211> 16 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 119 gcugaagaac cgcggc 16 <210> 120 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 120 gccgcgguuc uucagcgug 19 <210> 121 <211> 16 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 121 cugaagaacc gcggcu 16 <210> 122 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 122 agccgcgguu cuucagcgu 19 <210> 123 <211> 16 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 123 ugaagaaccg cggcua 16 <210> 124 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 124 uagccgcggu ucuucagcg 19 <210> 125 <211> 16 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 125 gaagaaccgc ggcuac 16 <210> 126 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 126 guagccgcgg uucuucagc 19 <210> 127 <211> 16 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 127 aagaaccgcg gcuacg 16 <210> 128 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 128 cguagccgcg guucuucag 19 <210> 129 <211> 16 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 129 agaaccgcgg cuacgc 16 <210> 130 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 130 gcguagccgc gguucuuca 19 <210> 131 <211> 16 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 131 gaaccgcggc uacgcg 16 <210> 132 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 132 cgcguagccg cgguucuuc 19 <210> 133 <211> 16 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 133 acaaggcucg cuguga 16 <210> 134 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 134 ucacagcgag ccuuguaga 19 <210> 135 <211> 16 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 135 caaggcucgc ugugac 16 <210> 136 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 136 gucacagcga gccuuguag 19 <210> 137 <211> 16 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 137 aaggcucgcu gugacc 16 <210> 138 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 138 ggucacagcg agccuugua 19 <210> 139 <211> 16 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 139 aggcucccug ugaccg 16 <210> 140 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 140 cggucacagc gagccuugu 19 <210> 141 <211> 16 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 141 ggcucgcugu gaccgg 16 <210> 142 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 142 ccggucacag cgagccuug 19 <210> 143 <211> 16 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 143 gcuggcugug accggc 16 <210> 144 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 144 gccggucaca gcgagccuu 19 <210> 145 <211> 16 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 145 cucgcuguga ccggcu 16 <210> 146 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 146 agccggucac agcgagccu 19 <210> 147 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> NRL primer <400> 147 gtcctgaaga ggccatggag 20 <210> 148 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> NRL primer <400> 148 gtttagctcc cgcacagaca 20 <210> 149 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Neo primer <400> 149 ttgcgcagct gtgctcgacg 20 <210> 150 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Neo primer <400> 150 aaggcgatgc gctgcgaatc 20 <210> 151 <211> 21 <212> RNA <213> Artificial Sequence <220> <223> si-Oct <400> 151 augaugcucu ugauuuuuut t 21 <210> 152 <211> 21 <212> RNA <213> Artificial Sequence <220> <223> si-Oct <400> 152 aaaaaaucaa gagcaucaut t 21 <210> 153 <211> 25 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 153 aucgagacca gcgccgcguc ggaaa 25 <210> 154 <211> 25 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 154 gacaucgaga ccagcgccgc gucgg 25 <210> 155 <211> 26 <212> RNA <213> Artificial Sequence <220> <223> NRL asiRNA <400> 155 aucgagacca gcgccgcguc ggaaaa 26

Claims (17)

NRL(Neural retina leucine zipper)을 코딩하는 mRNA와 상보적인 서열을 포함하는 안티센스 가닥과, 상기 안티센스 가닥과 상보적 결합을 형성하는 센스 가닥을 포함하고, 상기 안티센스 가닥의 5' 말단 및 센스 가닥의 3' 말단은 블런트 말단(blunt end)을 형성하는 것을 특징으로 하는 siRNA로서,
상기 센스 가닥은 서열번호 93의 염기 서열을 포함하고, 상기 안티센스 가닥은 서열번호 94, 153, 또는 155의 염기 서열을 포함하는 것을 특징으로 하는 siRNA.
An antisense strand comprising a sequence complementary to an mRNA encoding a neural retina leucine zipper (NRL), and a sense strand forming a complementary bond with the antisense strand, the 5' end of the antisense strand and 3 of the sense strand ' The end is an siRNA, characterized in that it forms a blunt end,
siRNA, wherein the sense strand includes the nucleotide sequence of SEQ ID NO: 93, and the antisense strand includes the nucleotide sequence of SEQ ID NO: 94, 153, or 155.
제1항에 있어서, 상기 센스 가닥은 15 내지 17nt의 길이를 가지고, 상기 안티센스 가닥은 16nt 이상의 길이를 가지는 것을 특징으로 하는 siRNA.The siRNA according to claim 1, wherein the sense strand has a length of 15 to 17 nt, and the antisense strand has a length of 16 nt or more. 제2항에 있어서, 상기 안티센스 가닥은 16 내지 31nt의 길이를 가지는 것을 특징으로 하는 siRNA.The siRNA according to claim 2, wherein the antisense strand has a length of 16 to 31 nt. 제2항에 있어서, 상기 안티센스 가닥은 19 내지 26nt의 길이를 가지는 것을 특징으로 하는 siRNA.The siRNA according to claim 2, wherein the antisense strand has a length of 19 to 26 nt. 삭제delete 삭제delete 삭제delete 삭제delete 제1항에 있어서, 상기 siRNA의 센스 가닥 또는 안티센스 가닥은 하나 이상의 화학적 변형(chemical modification)을 포함하는 것을 특징으로 하는 siRNA.The siRNA according to claim 1, wherein the sense strand or the antisense strand of the siRNA comprises one or more chemical modifications. 제9항에 있어서, 상기 화학적 변형은 다음으로 구성된 군에서 선택된 하나 이상을 포함하는 것을 특징으로 하는 siRNA:
뉴클레오티드 내 당 구조의 2' 탄소 위치에서 -OH기가 -CH3(메틸), -OCH3(methoxy), -NH2, -F(불소), -O-2-메톡시에틸 -O-프로필(propyl), -O-2-메틸티오에틸(methylthioethyl), -O-3-아미노프로필, -O-3-디메틸아미노프로필로 치환;
뉴클레오티드 내 당(sugar) 구조의 산소가 황으로 치환;
뉴클레오티드 결합이 포스포로티오에이트(phosphorothioate), 보라노포스페이트(boranophosphate), 또는 메틸포스포네이트(methyl phosphonate)로 변형;
PNA(peptide nucleic acid), LNA(locked nucleic acid) 또는 UNA(unlocked nucleic acid) 형태로의 변형; 및
인산기(phosphate group), 친유성 화합물(lipophilic compound) 또는 세포 침투 펩타이드 결합.
10. The siRNA of claim 9, wherein the chemical modification comprises at least one selected from the group consisting of:
-OH group at the 2' carbon position of the sugar structure in the nucleotide is -CH 3 (methyl), -OCH 3 (methoxy), -NH 2 , -F (fluorine), -O-2-methoxyethyl -O-propyl ( propyl), -O-2-methylthioethyl, -O-3-aminopropyl, -O-3-dimethylaminopropyl;
replacement of oxygen in the nucleotide structure with sulfur;
nucleotide linkages are modified with phosphorothioate, boranophosphate, or methyl phosphonate;
transformation into peptide nucleic acid (PNA), locked nucleic acid (LNA) or unlocked nucleic acid (UNA) form; and
A phosphate group, a lipophilic compound, or a cell penetrating peptide bond.
제10항에 있어서, 상기 친유성 화합물(lipophilic compound)은 콜레스테롤, 토코페롤 및 탄소수 10개 이상의 장쇄지방산으로 구성된 군에서 선택되는 것을 특징으로 하는 siRNA.The siRNA according to claim 10, wherein the lipophilic compound is selected from the group consisting of cholesterol, tocopherol, and long-chain fatty acids having 10 or more carbon atoms. 제9항에 있어서, 센스 가닥 또는 안티센스 가닥 중 2개 이상의 뉴클레오티드 내 당 구조의 2' 탄소 위치에서 -OH기가 -OCH3(methoxy) 또는 -F(불소)로 치환되는 변형;
센스 또는 안티센스 가닥에서 10% 이상의 뉴클레오티드 결합이 포스포로티오에이트(phosphorothioate)로 변형;
센스 가닥의 3' 말단에 콜레스테롤 결합; 및
안티센스 가닥의 5' 말단에 인산기(phosphate group) 결합;으로 구성된 군에서 선택된 하나 이상의 변형을 포함하는 것을 특징으로 하는 siRNA.
10. The method according to claim 9, wherein the -OH group at the 2' carbon position of the sugar structure in two or more nucleotides of the sense strand or the antisense strand is substituted with -OCH 3 (methoxy) or -F (fluorine);
at least 10% of the nucleotide linkages in the sense or antisense strand are modified to phosphorothioate;
cholesterol binding to the 3' end of the sense strand; and
siRNA comprising one or more modifications selected from the group consisting of; phosphate group binding to the 5' end of the antisense strand.
제12항에 있어서, 상기 센스 가닥은 하기 표의 (a) 내지 (c) 및 (g)로 구성된 군에서 선택된 어느 하나이고, 및
상기 안티센스 가닥은 하기 표의 (h) 내지 (j) 및 (n) 내지 (q)로 구성된 군에서 선택된 어느 하나인 것을 특징으로 하는 siRNA:
Figure 112021042499533-pat00002

(상기 서열에서 *는 포스포로티오에이트 결합(phosphorothioated bond), m은 2'-O-메틸(Methyl), 2'-F-는 2'-플루오르(Fluoro), chol은 콜레스테롤, P는 5'-인산기(Phosphate group)를 의미함).
The method of claim 12, wherein the sense strand is any one selected from the group consisting of (a) to (c) and (g) of the table below, and
The antisense strand is an siRNA, characterized in that any one selected from the group consisting of (h) to (j) and (n) to (q) of the table below:
Figure 112021042499533-pat00002

(In the above sequence, * is a phosphorothioate bond, m is 2'-O-methyl (Methyl), 2'-F- is 2'-fluorine (Fluoro), chol is cholesterol, P is 5' -means a phosphate group).
제13항에 있어서, 상기 siRNA는, 상기 표의 (b) 염기 서열로 이루어지는 센스 가닥 및 상기 표의 (i) 염기 서열로 이루어지는 안티센스 가닥;
상기 표의 (b) 염기 서열로 이루어지는 센스 가닥 및 상기 표의 (n) 염기 서열로 이루어지는 안티센스 가닥;
상기 표의 (b) 염기 서열로 이루어지는 센스 가닥 및 상기 표의 (p) 염기 서열로 이루어지는 안티센스 가닥; 또는
상기 표의 (b) 염기 서열로 이루어지는 센스 가닥 및 상기 표의 (q) 염기 서열로 이루어지는 안티센스 가닥인 것인 siRNA.
The method according to claim 13, wherein the siRNA comprises: a sense strand consisting of (b) the nucleotide sequence of the table, and an antisense strand consisting of the nucleotide sequence (i) of the table;
a sense strand consisting of the nucleotide sequence (b) of the table above and an antisense strand consisting of the nucleotide sequence (n) of the table above;
a sense strand consisting of the nucleotide sequence (b) of the table above and an antisense strand consisting of the nucleotide sequence (p) of the table above; or
siRNA that is an antisense strand consisting of a sense strand consisting of the nucleotide sequence of (b) in the above table and an antisense strand consisting of the nucleotide sequence of (q) in the above table.
제1항에 있어서, 상기 siRNA는 세포 관통능(cell-penetrating ability)을 가지는 것을 특징으로 하는 siRNA.The siRNA according to claim 1, wherein the siRNA has a cell-penetrating ability. 제1항 내지 제4항, 제9항 내지 제15항 중 어느 한 항에 따른 siRNA를 포함하는 망막질환 개선 또는 치료용 약학 조성물.A pharmaceutical composition for improving or treating retinal diseases comprising the siRNA according to any one of claims 1 to 4, 9 to 15. 제16항에 있어서, 상기 망막질환은 어셔 증후군, 스타가트병(Stargardt disease), 바뎃-비들 증후군, 베스트병, 맥락막 결여, 맥락망막 위축(gyrate-atrophy), 망막색소변성증, 망막 황반성 퇴화증, 레베르선천성흑내장(Leber Congenital Amaurosis; Leber's Hereditary Optic Neuropathy), BCM(Blue-cone monochromacy), 망막층간 분리, ML(Malattia Leventinese), 오구치병(Oguchi disease) 또는 레프섬병(Refsum disease)인 것을 특징으로 하는 망막질환 개선 또는 치료용 약학 조성물.The method of claim 16, wherein the retinal disease is Usher's syndrome, Stargardt disease, Badette-Biddle syndrome, Best's disease, choroid deficiency, choroidal atrophy (gyrate-atrophy), retinitis pigmentosa, retinal macular degeneration. , Leber Congenital Amaurosis (Leber's Hereditary Optic Neuropathy), BCM (Blue-cone monochromacy), retinal interlayer separation, ML (Malattia Leventinese), Oguchi disease or Refsum disease A pharmaceutical composition for improving or treating retinal diseases.
KR1020200006755A 2019-01-18 2020-01-17 Asymmetric siRNA Inhibiting Expression of NRL KR102321425B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190006750 2019-01-18
KR20190006750 2019-01-18

Publications (2)

Publication Number Publication Date
KR20200090132A KR20200090132A (en) 2020-07-28
KR102321425B1 true KR102321425B1 (en) 2021-11-04

Family

ID=71613122

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200006755A KR102321425B1 (en) 2019-01-18 2020-01-17 Asymmetric siRNA Inhibiting Expression of NRL

Country Status (2)

Country Link
KR (1) KR102321425B1 (en)
WO (1) WO2020149702A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022026719A2 (en) * 2020-07-29 2022-02-03 Nayan Therapeutics, Inc. Nrl antisense oligonucleotides, compositions containing the same, and methods of their use
KR20220080597A (en) * 2020-12-07 2022-06-14 올릭스 주식회사 Composition for inducing or enhancing the production of cone cells or cone cell-like rod cells
WO2023049716A1 (en) * 2021-09-21 2023-03-30 Dtx Pharma, Inc. Compounds targeting nrl for the treatment of retinitis pigmentosa

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2193140B1 (en) * 2007-08-27 2016-11-02 1Globe Health Institute LLC Compositions of asymmetric interfering rna and uses thereof
KR101237036B1 (en) * 2009-11-04 2013-02-25 성균관대학교산학협력단 Novel siRNA Structure for Minimizing Off-target Effects by Antisense Strand and the Use Thereof
EP3599280B1 (en) * 2010-10-22 2022-11-02 OliX Pharmaceuticals, Inc. Nucleic acid molecules inducing rna interference, and uses thereof
CN104755620B (en) * 2012-05-22 2018-03-02 奥利克斯医药有限公司 Nucleic acid molecules of induction RNA interference with intracellular penetration capacity and application thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Clin. Genet.,제82권,446-452면 (2012) 1부.*
NCBI, GenBank accession no. NM_001354768.1 (2018.12.23.) 1부.*

Also Published As

Publication number Publication date
KR20200090132A (en) 2020-07-28
WO2020149702A1 (en) 2020-07-23

Similar Documents

Publication Publication Date Title
US10927376B2 (en) Compositions of asymmetric interfering RNA and uses thereof
JP6457645B2 (en) RNA interference agent for regulating GST-π gene
CA2781896C (en) Modulation of hsp47 expression
KR102321425B1 (en) Asymmetric siRNA Inhibiting Expression of NRL
EP2641970B1 (en) Modulation of gene expression by oligomers targeted to chromosomal DNA
US11390871B2 (en) SiRNA structures for high activity and reduced off target
US20220064645A1 (en) Double-stranded RNA Molecule Targeting CKIP-1 and Use Thereof
KR20190037166A (en) Pharmaceutical Composition for Preventing or Treating Age-related macular degeneration Comprising RNA Complexes That Target Connective tissue growth factor
KR20220080720A (en) Asymmetric nucleic acid molecules inducing RNA interference that Inhibits Expression of ROR-beta
JP6751185B2 (en) RNA interference agents for regulating the GST-π gene
TWI715594B (en) Rna interference agnets for gst-pi gene modulation
RU2788030C2 (en) Mirna structures with high activity and reduced exposure outside the target
KR20220080597A (en) Composition for inducing or enhancing the production of cone cells or cone cell-like rod cells
WO2023164285A1 (en) DISE-INDUCING sRNA-POLYPLEXES AND sRNA-LIPOPOLYPLEXES AND METHODS OF USING THE SAME TO TREAT CANCER
AU2015200064A1 (en) Modulation of hsp47 expression

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right