KR102318959B1 - 의료 영상을 해석하는 인공지능 모델을 이용한 폐암 발병 가능성 예측 방법 및 의료 영상 분석 장치 - Google Patents
의료 영상을 해석하는 인공지능 모델을 이용한 폐암 발병 가능성 예측 방법 및 의료 영상 분석 장치 Download PDFInfo
- Publication number
- KR102318959B1 KR102318959B1 KR1020190112244A KR20190112244A KR102318959B1 KR 102318959 B1 KR102318959 B1 KR 102318959B1 KR 1020190112244 A KR1020190112244 A KR 1020190112244A KR 20190112244 A KR20190112244 A KR 20190112244A KR 102318959 B1 KR102318959 B1 KR 102318959B1
- Authority
- KR
- South Korea
- Prior art keywords
- image
- neural network
- lung cancer
- pet
- fdg
- Prior art date
Links
- 206010058467 Lung neoplasm malignant Diseases 0.000 title claims abstract description 114
- 201000005202 lung cancer Diseases 0.000 title claims abstract description 114
- 208000020816 lung neoplasm Diseases 0.000 title claims abstract description 114
- 238000000034 method Methods 0.000 title claims abstract description 46
- 238000013473 artificial intelligence Methods 0.000 title claims abstract description 12
- 238000013528 artificial neural network Methods 0.000 claims abstract description 112
- ZCXUVYAZINUVJD-AHXZWLDOSA-N 2-deoxy-2-((18)F)fluoro-alpha-D-glucose Chemical compound OC[C@H]1O[C@H](O)[C@H]([18F])[C@@H](O)[C@@H]1O ZCXUVYAZINUVJD-AHXZWLDOSA-N 0.000 claims abstract description 53
- 238000010191 image analysis Methods 0.000 claims abstract description 26
- 238000012549 training Methods 0.000 claims abstract description 15
- AOYNUTHNTBLRMT-SLPGGIOYSA-N 2-deoxy-2-fluoro-aldehydo-D-glucose Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](F)C=O AOYNUTHNTBLRMT-SLPGGIOYSA-N 0.000 claims abstract description 10
- 210000004072 lung Anatomy 0.000 claims description 18
- 238000001514 detection method Methods 0.000 claims description 16
- 238000013527 convolutional neural network Methods 0.000 claims description 12
- 238000012360 testing method Methods 0.000 claims description 2
- 238000002591 computed tomography Methods 0.000 description 52
- 238000004458 analytical method Methods 0.000 description 27
- 238000003062 neural network model Methods 0.000 description 19
- 238000002600 positron emission tomography Methods 0.000 description 17
- 238000005516 engineering process Methods 0.000 description 16
- 230000008569 process Effects 0.000 description 16
- 238000011176 pooling Methods 0.000 description 13
- 230000006870 function Effects 0.000 description 9
- 238000004891 communication Methods 0.000 description 7
- 238000012545 processing Methods 0.000 description 7
- 238000011350 2-deoxy-2-(F-18)fluoro-D-glucose positron emission tomography Methods 0.000 description 5
- 238000003384 imaging method Methods 0.000 description 5
- 239000000470 constituent Substances 0.000 description 4
- 238000013135 deep learning Methods 0.000 description 4
- 238000003745 diagnosis Methods 0.000 description 4
- 239000000284 extract Substances 0.000 description 4
- 206010061218 Inflammation Diseases 0.000 description 3
- 238000013136 deep learning model Methods 0.000 description 3
- 230000002757 inflammatory effect Effects 0.000 description 3
- 230000004054 inflammatory process Effects 0.000 description 3
- 206010028980 Neoplasm Diseases 0.000 description 2
- 210000004027 cell Anatomy 0.000 description 2
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 2
- 230000003902 lesion Effects 0.000 description 2
- 238000010801 machine learning Methods 0.000 description 2
- 238000007781 pre-processing Methods 0.000 description 2
- 230000004083 survival effect Effects 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- ZCXUVYAZINUVJD-UKFBFLRUSA-N 2-deoxy-2-fluoro-alpha-D-glucose Chemical compound OC[C@H]1O[C@H](O)[C@H](F)[C@@H](O)[C@@H]1O ZCXUVYAZINUVJD-UKFBFLRUSA-N 0.000 description 1
- 108010074051 C-Reactive Protein Proteins 0.000 description 1
- 102100032752 C-reactive protein Human genes 0.000 description 1
- 230000006820 DNA synthesis Effects 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 102000015696 Interleukins Human genes 0.000 description 1
- 108010063738 Interleukins Proteins 0.000 description 1
- 102000005157 Somatostatin Human genes 0.000 description 1
- 108010056088 Somatostatin Proteins 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- 230000037354 amino acid metabolism Effects 0.000 description 1
- 239000000090 biomarker Substances 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 238000011976 chest X-ray Methods 0.000 description 1
- 230000012085 chronic inflammatory response Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000012239 gene modification Methods 0.000 description 1
- 230000005017 genetic modification Effects 0.000 description 1
- 235000013617 genetically modified food Nutrition 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 230000004153 glucose metabolism Effects 0.000 description 1
- 230000034659 glycolysis Effects 0.000 description 1
- 238000011478 gradient descent method Methods 0.000 description 1
- 210000004969 inflammatory cell Anatomy 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000000877 morphologic effect Effects 0.000 description 1
- 210000002569 neuron Anatomy 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 230000000306 recurrent effect Effects 0.000 description 1
- 230000011218 segmentation Effects 0.000 description 1
- 230000000391 smoking effect Effects 0.000 description 1
- NHXLMOGPVYXJNR-ATOGVRKGSA-N somatostatin Chemical compound C([C@H]1C(=O)N[C@H](C(N[C@@H](CO)C(=O)N[C@@H](CSSC[C@@H](C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC=2C=CC=CC=2)C(=O)N[C@@H](CC=2C=CC=CC=2)C(=O)N[C@@H](CC=2C3=CC=CC=C3NC=2)C(=O)N[C@@H](CCCCN)C(=O)N[C@H](C(=O)N1)[C@@H](C)O)NC(=O)CNC(=O)[C@H](C)N)C(O)=O)=O)[C@H](O)C)C1=CC=CC=C1 NHXLMOGPVYXJNR-ATOGVRKGSA-N 0.000 description 1
- 229960000553 somatostatin Drugs 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 238000003325 tomography Methods 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/20—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/02—Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
- A61B6/03—Computed tomography [CT]
- A61B6/032—Transmission computed tomography [CT]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/02—Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
- A61B6/03—Computed tomography [CT]
- A61B6/037—Emission tomography
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/52—Devices using data or image processing specially adapted for radiation diagnosis
- A61B6/5211—Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data
- A61B6/5217—Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data extracting a diagnostic or physiological parameter from medical diagnostic data
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0012—Biomedical image inspection
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0012—Biomedical image inspection
- G06T7/0014—Biomedical image inspection using an image reference approach
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/20—Image preprocessing
- G06V10/22—Image preprocessing by selection of a specific region containing or referencing a pattern; Locating or processing of specific regions to guide the detection or recognition
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/764—Arrangements for image or video recognition or understanding using pattern recognition or machine learning using classification, e.g. of video objects
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/77—Processing image or video features in feature spaces; using data integration or data reduction, e.g. principal component analysis [PCA] or independent component analysis [ICA] or self-organising maps [SOM]; Blind source separation
- G06V10/774—Generating sets of training patterns; Bootstrap methods, e.g. bagging or boosting
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/82—Arrangements for image or video recognition or understanding using pattern recognition or machine learning using neural networks
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16B—BIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
- G16B20/00—ICT specially adapted for functional genomics or proteomics, e.g. genotype-phenotype associations
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16B—BIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
- G16B40/00—ICT specially adapted for biostatistics; ICT specially adapted for bioinformatics-related machine learning or data mining, e.g. knowledge discovery or pattern finding
- G16B40/20—Supervised data analysis
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H30/00—ICT specially adapted for the handling or processing of medical images
- G16H30/40—ICT specially adapted for the handling or processing of medical images for processing medical images, e.g. editing
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H40/00—ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
- G16H40/60—ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices
- G16H40/67—ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for remote operation
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/30—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for calculating health indices; for individual health risk assessment
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/70—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for mining of medical data, e.g. analysing previous cases of other patients
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10072—Tomographic images
- G06T2207/10081—Computed x-ray tomography [CT]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10072—Tomographic images
- G06T2207/10104—Positron emission tomography [PET]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20076—Probabilistic image processing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20081—Training; Learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20084—Artificial neural networks [ANN]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20112—Image segmentation details
- G06T2207/20132—Image cropping
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30004—Biomedical image processing
- G06T2207/30061—Lung
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V2201/00—Indexing scheme relating to image or video recognition or understanding
- G06V2201/03—Recognition of patterns in medical or anatomical images
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16B—BIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
- G16B20/00—ICT specially adapted for functional genomics or proteomics, e.g. genotype-phenotype associations
- G16B20/20—Allele or variant detection, e.g. single nucleotide polymorphism [SNP] detection
Landscapes
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Medical Informatics (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Physics & Mathematics (AREA)
- Biomedical Technology (AREA)
- Theoretical Computer Science (AREA)
- Pathology (AREA)
- Data Mining & Analysis (AREA)
- Biophysics (AREA)
- Radiology & Medical Imaging (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Molecular Biology (AREA)
- Databases & Information Systems (AREA)
- Epidemiology (AREA)
- General Physics & Mathematics (AREA)
- Evolutionary Computation (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Primary Health Care (AREA)
- Animal Behavior & Ethology (AREA)
- Surgery (AREA)
- High Energy & Nuclear Physics (AREA)
- Veterinary Medicine (AREA)
- Heart & Thoracic Surgery (AREA)
- Optics & Photonics (AREA)
- Artificial Intelligence (AREA)
- Software Systems (AREA)
- Computing Systems (AREA)
- Multimedia (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Pulmonology (AREA)
- Physiology (AREA)
- Mathematical Physics (AREA)
- General Engineering & Computer Science (AREA)
- Computational Linguistics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Biotechnology (AREA)
- Spectroscopy & Molecular Physics (AREA)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020190112244A KR102318959B1 (ko) | 2019-09-10 | 2019-09-10 | 의료 영상을 해석하는 인공지능 모델을 이용한 폐암 발병 가능성 예측 방법 및 의료 영상 분석 장치 |
PCT/KR2020/004554 WO2021049729A1 (fr) | 2019-09-10 | 2020-04-03 | Procédé de prédiction de la probabilité de développer un cancer du poumon au moyen d'un modèle d'intelligence artificielle et dispositif d'analyse associé |
US17/641,692 US20220301714A1 (en) | 2019-09-10 | 2020-04-03 | Method for predicting lung cancer development based on artificial intelligence model, and analysis device therefor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020190112244A KR102318959B1 (ko) | 2019-09-10 | 2019-09-10 | 의료 영상을 해석하는 인공지능 모델을 이용한 폐암 발병 가능성 예측 방법 및 의료 영상 분석 장치 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20210030730A KR20210030730A (ko) | 2021-03-18 |
KR102318959B1 true KR102318959B1 (ko) | 2021-10-27 |
Family
ID=74867044
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020190112244A KR102318959B1 (ko) | 2019-09-10 | 2019-09-10 | 의료 영상을 해석하는 인공지능 모델을 이용한 폐암 발병 가능성 예측 방법 및 의료 영상 분석 장치 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20220301714A1 (fr) |
KR (1) | KR102318959B1 (fr) |
WO (1) | WO2021049729A1 (fr) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102501816B1 (ko) | 2022-05-23 | 2023-02-22 | 주식회사 피맥스 | 환자의 개인화 지표에 기초하는 인공지능을 이용한 폐기관 자동 분석 방법 및 기록매체 |
KR102501815B1 (ko) | 2022-05-23 | 2023-02-22 | 주식회사 피맥스 | 인공지능을 이용한 폐기관 자동 분석 방법 및 장치 |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115362470A (zh) * | 2020-01-17 | 2022-11-18 | 强生企业创新公司 | 用于预测未来肺癌的风险的系统和方法 |
US11810312B2 (en) | 2020-04-21 | 2023-11-07 | Daegu Gyeongbuk Institute Of Science And Technology | Multiple instance learning method |
CN111862255B (zh) * | 2020-07-17 | 2024-07-26 | 上海联影医疗科技股份有限公司 | 正则化图像重建方法、系统、可读存储介质和设备 |
KR102577161B1 (ko) * | 2021-04-12 | 2023-09-11 | 주식회사 루닛 | 엑스레이 이미지 내에서의 대상 병변의 크기 변화를 측정하는 방법 및 시스템 |
WO2022241608A1 (fr) * | 2021-05-17 | 2022-11-24 | 苏州思萃人工智能研究所有限公司 | Procédé et appareil de dépistage par intelligence artificielle ayant recours à la cytologie du cancer du poumon |
CN113160883A (zh) * | 2021-05-26 | 2021-07-23 | 深圳泰莱生物科技有限公司 | 一种肺癌多组学检测系统 |
KR102680537B1 (ko) * | 2021-12-07 | 2024-07-02 | 계명대학교 산학협력단 | 기계학습모델 기반 신생아의 f-18 fdg pet 영상을 이용하여 장래 뇌신경 발달 장애를 예측하는 방법 및 분석장치 |
KR20230099995A (ko) * | 2021-12-28 | 2023-07-05 | 가천대학교 산학협력단 | 자궁 경부암의 진단에 대한 정보 제공 방법 및 이를 이용한 자궁 경부암의 진단에 대한 정보 제공용 디바이스 |
WO2023239151A1 (fr) * | 2022-06-07 | 2023-12-14 | 서울대학교병원 | Procédé et dispositif de conversion de données de radiologie thoracique en vecteur numérique, et procédé et dispositif d'analyse de maladie les utilisant |
KR20240011089A (ko) | 2022-07-18 | 2024-01-25 | 고려대학교 산학협력단 | 심층 신경망의 선형 근사를 기반으로 하는 설명 맵 생성 장치 및 방법 |
KR102630064B1 (ko) * | 2023-07-20 | 2024-01-29 | (주)해우기술 | 인공지능 기반의 결핵 분류 시스템 및 그 방법 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7804990B2 (en) * | 2006-01-25 | 2010-09-28 | Siemens Medical Solutions Usa, Inc. | System and method for labeling and identifying lymph nodes in medical images |
US10216762B2 (en) * | 2014-06-04 | 2019-02-26 | Panasonic Corporation | Control method and non-transitory computer-readable recording medium for comparing medical images |
WO2017022908A1 (fr) * | 2015-08-04 | 2017-02-09 | 재단법인 아산사회복지재단 | Procédé et programme de calcul de l'âge osseux au moyen de réseaux neuronaux profonds |
KR101768812B1 (ko) | 2016-07-05 | 2017-08-17 | 고려대학교 산학협력단 | 흉부 단층영상에서 검색된 폐결절의 암 진단 보조 시스템 및 프로그램 |
US10582907B2 (en) * | 2016-10-31 | 2020-03-10 | Siemens Healthcare Gmbh | Deep learning based bone removal in computed tomography angiography |
KR20190049524A (ko) * | 2017-10-30 | 2019-05-09 | 삼성전자주식회사 | 의료 영상 전송 방법 및 그에 따른 의료 영상 장치 |
KR102215805B1 (ko) * | 2018-01-30 | 2021-02-17 | 연세대학교 원주산학협력단 | 딥러닝 기술을 통한 흉부 물질 분리 영상 획득 방법 및 시스템 |
JP7069359B2 (ja) * | 2018-06-18 | 2022-05-17 | グーグル エルエルシー | 深層学習を使用して癌検出を改善するための方法およびシステム |
EP4260236A1 (fr) * | 2020-12-09 | 2023-10-18 | Imidex, Inc. | Méthodes d'évaluation d'une affection pulmonaire dans des radiographies thoraciques |
WO2024073747A2 (fr) * | 2022-09-30 | 2024-04-04 | Micronoma, Inc. | Procédés et systèmes multimodaux de diagnostic de maladies |
-
2019
- 2019-09-10 KR KR1020190112244A patent/KR102318959B1/ko active IP Right Grant
-
2020
- 2020-04-03 WO PCT/KR2020/004554 patent/WO2021049729A1/fr active Application Filing
- 2020-04-03 US US17/641,692 patent/US20220301714A1/en active Pending
Non-Patent Citations (1)
Title |
---|
논문(Moritz Schwyzer 외 8명. Automated detection of lung cancer at ultralow dose PET/CT by deep neural networks - Initial results. Lung Cancer 126(2018) pp170-173. 2018.11.03. 공개)* |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102501816B1 (ko) | 2022-05-23 | 2023-02-22 | 주식회사 피맥스 | 환자의 개인화 지표에 기초하는 인공지능을 이용한 폐기관 자동 분석 방법 및 기록매체 |
KR102501815B1 (ko) | 2022-05-23 | 2023-02-22 | 주식회사 피맥스 | 인공지능을 이용한 폐기관 자동 분석 방법 및 장치 |
Also Published As
Publication number | Publication date |
---|---|
WO2021049729A1 (fr) | 2021-03-18 |
KR20210030730A (ko) | 2021-03-18 |
US20220301714A1 (en) | 2022-09-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102318959B1 (ko) | 의료 영상을 해석하는 인공지능 모델을 이용한 폐암 발병 가능성 예측 방법 및 의료 영상 분석 장치 | |
US11967072B2 (en) | Three-dimensional object segmentation of medical images localized with object detection | |
US12115015B2 (en) | Deep convolutional neural networks for tumor segmentation with positron emission tomography | |
KR102125127B1 (ko) | 딥러닝 기반 뇌 질환 진단 방법 | |
RU2667879C1 (ru) | Обработка и анализ данных на изображениях компьютерной томографии | |
KR102258756B1 (ko) | 의료 영상을 이용한 암의 병기 결정 방법 및 의료 영상 분석 장치 | |
CN112150442A (zh) | 基于深度卷积神经网络及多实例学习的新冠诊断系统 | |
JP7427080B2 (ja) | 細胞検出およびセグメンテーションのための弱教師ありマルチタスク学習 | |
CN107688815B (zh) | 医学图像的分析方法和分析系统以及存储介质 | |
KR20220151170A (ko) | 훈련 데이터에서 누락된 주석을 해결하기 위한 클래스별 손실 함수 | |
Platero et al. | Combining a patch-based approach with a non-rigid registration-based label fusion method for the hippocampal segmentation in Alzheimer’s disease | |
Almas et al. | A deep analysis of Google Net and AlexNet for lung cancer detection | |
Manikandan et al. | Automated classification of emphysema using data augmentation and effective pixel location estimation with multi-scale residual network | |
CN116129184A (zh) | 多期相病灶分类方法、装置、设备及可读存储介质 | |
US20240331139A1 (en) | Systems and methods for identifying cancer in pets | |
Akram et al. | Recognizing Breast Cancer Using Edge-Weighted Texture Features of Histopathology Images. | |
Akbaba et al. | Determination of Appropriate Thresholding Method in Segmentation Stage in Detecting Breast Cancer Cells | |
Sanjay et al. | Effective classification of alzheimer disease based on image tractography framework utilizing GM-ABC-NN | |
KR102650919B1 (ko) | 패치 단위 대조 학습 모델을 이용한 의료 영상 분석 방법 및 분석 장치 | |
US12125200B2 (en) | Methods, devices, and systems for determining presence of appendicitis | |
KR102608203B1 (ko) | 2차원 mri를 이용한 치매 예측 방법 및 분석장치 | |
US20220254012A1 (en) | Methods, devices, and systems for determining presence of appendicitis | |
Ferber et al. | Deep Learning-based COVID-19 diagnostics of low-quality CT images | |
CN116547707A (zh) | 用于识别宠物的癌症的系统和方法 | |
Pattanayak et al. | Prognosis of Pathological Complete Response to Neoadjuvant Chemotherapy in Breast Cancer Using DCE-MRI and InceptionV3 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |