KR102308934B1 - Method for diagnosing colorectal cancer based on metagenome and metabolome of extracellular vesicles - Google Patents

Method for diagnosing colorectal cancer based on metagenome and metabolome of extracellular vesicles Download PDF

Info

Publication number
KR102308934B1
KR102308934B1 KR1020200019537A KR20200019537A KR102308934B1 KR 102308934 B1 KR102308934 B1 KR 102308934B1 KR 1020200019537 A KR1020200019537 A KR 1020200019537A KR 20200019537 A KR20200019537 A KR 20200019537A KR 102308934 B1 KR102308934 B1 KR 102308934B1
Authority
KR
South Korea
Prior art keywords
colorectal cancer
extracellular vesicles
acid
bacteria
group
Prior art date
Application number
KR1020200019537A
Other languages
Korean (ko)
Other versions
KR20210030846A (en
Inventor
김윤근
Original Assignee
주식회사 엠디헬스케어
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엠디헬스케어 filed Critical 주식회사 엠디헬스케어
Priority to PCT/KR2020/012048 priority Critical patent/WO2021049834A1/en
Publication of KR20210030846A publication Critical patent/KR20210030846A/en
Application granted granted Critical
Publication of KR102308934B1 publication Critical patent/KR102308934B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/689Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for bacteria
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/5308Immunoassay; Biospecific binding assay; Materials therefor for analytes not provided for elsewhere, e.g. nucleic acids, uric acid, worms, mites
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6803General methods of protein analysis not limited to specific proteins or families of proteins
    • G01N33/6806Determination of free amino acids
    • G01N33/6812Assays for specific amino acids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/195Assays involving biological materials from specific organisms or of a specific nature from bacteria
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2570/00Omics, e.g. proteomics, glycomics or lipidomics; Methods of analysis focusing on the entire complement of classes of biological molecules or subsets thereof, i.e. focusing on proteomes, glycomes or lipidomes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/50Determining the risk of developing a disease

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Urology & Nephrology (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Hematology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Biophysics (AREA)
  • Cell Biology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Hospice & Palliative Care (AREA)
  • Oncology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

본 발명은 세포밖 소포의 메타게놈 및 대사체 기반 대장암 진단방법에 관한 것으로, 본 발명에 따른 대장암 진단방법은 장내 세균에서 분비되는 세포밖 소포의 메타게놈 분석 및 세포밖 소포에서의 대사체 분석을 통해 대장암을 조기에 진단 및 예측할 수 있으며, 대장암에서 유의하게 함량이 변화한 세균 유래 세포밖 소포 및 아미노산, 아미노알콜, 방향족알콜, 카복실산, 지방산 등의 대사물질을 확인하고, 이들의 연관성을 확인하여 바이오마커로 함께 사용함으로써 대장암 진단의 정확도를 향상시켜 대장암의 발병률을 낮추고 치료효과를 높일 수 있을 것으로 기대된다.The present invention relates to a method for diagnosing colon cancer based on metagenome and metabolites of extracellular vesicles, and the method for diagnosing colorectal cancer according to the present invention includes metagenome analysis of extracellular vesicles secreted from intestinal bacteria and metabolites in extracellular vesicles. Through analysis, colorectal cancer can be diagnosed and predicted early, and bacteria-derived extracellular vesicles with significantly changed content in colorectal cancer and metabolites such as amino acids, amino alcohols, aromatic alcohols, carboxylic acids, and fatty acids are identified, and their By confirming the correlation and using it together as a biomarker, it is expected that the accuracy of colorectal cancer diagnosis can be improved, thereby lowering the incidence of colorectal cancer and enhancing the therapeutic effect.

Description

세포밖 소포의 메타게놈 및 대사체 기반 대장암 진단방법 {Method for diagnosing colorectal cancer based on metagenome and metabolome of extracellular vesicles}Method for diagnosing colorectal cancer based on metagenome and metabolome of extracellular vesicles

본 발명은 세균 유래 세포밖 소포의 메타게놈 및 대사체 분석을 기반으로 대장암을 진단하는 방법에 관한 것이다.The present invention relates to a method for diagnosing colon cancer based on the metagenome and metabolite analysis of bacteria-derived extracellular vesicles.

대장암 (Colorectal cancer, CRC)은 가장 흔한 암 중 하나이며 전 세계적으로 암 관련 사망의 두 번째 주요 원인으로, 대부분의 대장암 사례는 산발적으로 발생하며 환경적 요인이 질병의 주요 원인으로 나타난다. 식이요법은 오랫동안 대장암의 가장 중요한 생활 습관 위험 요소로 간주되어 왔다. In vivo 및 in vitro 연구는 단백질 섭취가 대장암 위험에 미치는 영향을 조사했으며 고단백질 식이요법이 대장암에서 DNA 손상을 일으키고 대장 점막 두께를 감소시키며 대장 세포의 미소융모 높이를 감소시킬 수 있다고 보고된 바 있다. 이러한 식이요법으로 유도된 사람 장내 미생물의 변화로 인해 대장암 발병율이 증가한다는 우려가 커지고 있으며, 이에 연구자들은 종양이 주로 약 70%의 숙주 미생물 군집이 정착한 대장 말단과 직장에서 우선적으로 발생하기 때문에, 장내 미생물군집이 대장암의 시작과 진행에 중요하다고 밝혔다. 미생물은 인터루킨, 종양 괴사 인자-알파(TNF-alpha), 활성산소종과 같은 매개체를 분비하여 대장암 발병을 돕는 미세환경을 생성할 잠재성이 있으며, 장내 미생물의 대사물질은 대장암 발병 위험을 증가시킬 수 있다. 예를 들어, 장내 미생물에 의해 생산되는 아세트 알데히드의 함량이 높을 경우, 장내 엽산이 분해되어 대장암 위험이 증가할 수 있다.Colorectal cancer (CRC) is one of the most common cancers and the second leading cause of cancer-related death worldwide. Diet has long been considered the most important lifestyle risk factor for colorectal cancer. In vivo and in vitro studies investigated the effect of protein intake on colorectal cancer risk and reported that a high-protein diet could cause DNA damage in colorectal cancer, reduce colonic mucosal thickness, and decrease the height of microvilli in colon cells. there is a bar There is growing concern that the incidence of colorectal cancer is increased due to changes in the human gut microbiota induced by such a diet. , revealed that the gut microbiome is important for the initiation and progression of colorectal cancer. Microorganisms have the potential to create a microenvironment that helps the development of colorectal cancer by secreting mediators such as interleukin, tumor necrosis factor-alpha, and reactive oxygen species, and metabolites of intestinal microorganisms reduce the risk of colorectal cancer. can increase For example, if the content of acetaldehyde produced by the gut microbes is high, the intestinal folic acid is broken down, which may increase the risk of colorectal cancer.

초기 대장암의 경우에는 특별한 증상이 나타나지 않으나 증상이 없는 경우에도 눈에 띄지 않는 장 출혈로 혈액이 손실되어 빈혈이 생길 수 있고, 간혹 식욕부진과 체중감소가 나타나기도 한다. 암이 진행된 경우에는 배가 아프거나 설사 또는 변비가 생기는 등 배변습관의 변화가 나타나기도 하고 항문에서 피가 나오는 직장출혈의 증세가 나타나기도 하며, 혈액은 밝은 선홍색을 띄거나 검은 색으로 나타날 수 있다. 대장암이 진행이 된 경우에는 배에서 평소에 만져지지 않던 덩어리가 만져질 수 있다. 가장 주의해야 할 증상으로는 배변 습관의 변화, 혈변, 동통 및 빈혈이며, 특히 40세 이상의 성인에서 이와 같은 변화가 있을 때에는 철저히 조사할 필요가 있다. In the case of early colon cancer, there are no specific symptoms, but even if there are no symptoms, blood loss due to inconspicuous intestinal bleeding can lead to anemia, and sometimes loss of appetite and weight loss. If the cancer is advanced, changes in bowel habits such as stomach pain, diarrhea, or constipation may appear, and symptoms of rectal bleeding from the anus may appear, and the blood may appear bright red or black. If colorectal cancer has advanced, you may feel a lump that is not normally palpable in the stomach. The most important symptoms are changes in bowel habits, bloody stools, pain, and anemia, especially in adults over 40 years of age.

대장암의 확진은 대장 내시경 검사를 통한 조직검사를 통해 암세포를 발견해야 가능하다. 대부분 대장암은 조기에는 증상이 없으므로 진단이 상당히 어렵고, 현재 비침습적인 방법으로 대장암을 예측하는 방법은 전무하다. 기존 진단방법으로는 대장암 등의 고형암이 진행된 경우에 발견되는 경우가 많기 때문에, 대장암으로 인한 의료비용과 사망을 예방하기 위해선 대장암 발생 및 원인인자를 미리 예측하여, 고위험군에서 대장암 발생을 예방하는 방법을 제공하는 것이 효율적인 방법이다.The diagnosis of colorectal cancer is possible only when cancer cells are found through biopsy through colonoscopy. Since most colorectal cancers have no symptoms at an early stage, diagnosis is quite difficult, and there is currently no non-invasive method for predicting colorectal cancer. In order to prevent medical costs and death due to colorectal cancer, the occurrence of colorectal cancer and its causative factors are predicted in advance, and the occurrence of colorectal cancer in the high-risk group can be reduced by predicting the occurrence of colorectal cancer in advance. Providing a preventive measure is an effective way.

한편, 인체에 공생하는 미생물은 100조에 이르러 인간 세포보다 10배 많으며, 미생물의 유전자수는 인간 유전자수의 100배가 넘는 것으로 알려지고 있다. 미생물총(microbiota 혹은 microbiome)은 주어진 거주지에 존재하는 세균(bacteria), 고세균(archaea), 진핵생물(eukarya)을 포함한 미생물 군집(microbial community)을 말하고, 장내 미생물총은 사람의 생리현상에 중요한 역할을 하며, 인체 세포와 상호작용을 통해 인간의 건강과 질병에 큰 영향을 미치는 것으로 알려져 있다. 최근에는 metaloprotease와 같은 특정 독소를 갖는 장내 세균에 의해 대장암이 발생한다고 보고된 바 있다.On the other hand, it is known that the number of symbiotic microorganisms in the human body reaches 100 trillion, 10 times more than human cells, and the number of genes in microorganisms is more than 100 times the number of human genes. Microbiota or microbiome refers to a microbial community including bacteria, archaea, and eukaryotes that exist in a given habitat, and the gut microbiota plays an important role in human physiology. It is known to have a significant impact on human health and disease through interaction with human cells. Recently, it has been reported that colon cancer is caused by intestinal bacteria with specific toxins such as metaloprotease.

미생물 유래 세포밖 소포는 장내 미생물과 인간 건강의 교차점을 이해하는데 있어서 중요한 새로운 연구 주제로 부상하고 있다. 장내 미생물이 외막 소포체, 소포체 배출(shedding vesicles) 및 세포 사멸체(apoptotic body)를 포함하여 여러 종류의 세포밖 소포(extracellular vesicle, EV)를 분비한다는 것은 잘 알려져 있다. 세포밖 소포는 주로 지질, 단백질, 핵산 및 대사물질로 구성되고, 근본적인 메커니즘은 여전히 불분명하지만, 주된 역할은 장거리에서 활성 생체 분자를 세포 내로 이동시켜 표적 부위에 약물 전달을 제공하거나 숙주 세포 반응을 조절하는 것이다. Microbial-derived extracellular vesicles are emerging as important new research topics in understanding the intersection of gut microbiota and human health. It is well known that gut microbes secrete several types of extracellular vesicles (EVs), including outer membrane vesicles, shedding vesicles, and apoptotic bodies. Extracellular vesicles are mainly composed of lipids, proteins, nucleic acids and metabolites, and although the underlying mechanism remains unclear, their main role is to transport active biomolecules into cells over long distances to provide drug delivery to target sites or to modulate host cell responses. will do

최근의 연구는 대장암 진행에 있어서 장내 미생물의 관여에 대한 기계론적인 증거를 제공하고 있다. 생체 내 연구에서 유전적으로 대장암 발생에 영향을 받는 돌연변이 마우스가 기존의 미생물을 가진 마우스에 비해 무균 상태에서 현저히 적은 종양을 가지고 있음을 보여 주었다. 또한, Enterococcus faecalisEschelichia coli는 세포 외 유전 독성과 대장암 발생에 기여할 수 있는 DNA를 표적하는 자유 라디칼을 생성한다. 그러나, 장에서 세균이 어떤 질병의 유발 신호를 생성하는지는 아직 분명하게 밝혀진 바가 없다. Recent studies have provided mechanistic evidence for the involvement of the gut microbiota in colorectal cancer progression. In vivo studies have shown that mutant mice genetically affected for colorectal cancer development have significantly fewer tumors in aseptic conditions compared to mice with conventional microbes. In addition, Enterococcus faecalis and Eschelichia coli generate DNA-targeting free radicals that may contribute to extracellular genotoxicity and colorectal cancer development. However, it is not yet clear which disease-causing signals are generated by bacteria in the gut.

이에, 본 발명자들은 16S rDNA 앰플리콘 시퀀싱 및 대사체를 이용하여 대장암 환자와 정상인으로부터 세균 유래 세포밖 소포를 분리하여 이의 메타게놈 분석 및 대사체 분석을 통해 대장암을 진단하는 방법을 개발하였다.Accordingly, the present inventors developed a method for diagnosing colon cancer through metagenome analysis and metabolite analysis by isolating bacteria-derived extracellular vesicles from colorectal cancer patients and normal individuals using 16S rDNA amplicon sequencing and metabolites.

한국공개특허공보 10-2004-0039304호Korean Patent Publication No. 10-2004-0039304

본 발명자들은 대장암을 진단하기 위하여, 정상인 및 피검자의 대변 샘플에서 세균 유래 세포밖 소포를 분리하고 이로부터 유전자를 추출하여 메타게놈 분석을 수행함과 동시에 상기 세포밖 소포에서의 대사체 분석을 수행하여 대장암의 원인인자로 작용할 수 있는 세균 유래 세포밖 소포 및 대사물질을 동정하였는바, 이에 기초하여 본 발명을 완성하였다.In order to diagnose colorectal cancer, the present inventors isolate bacteria-derived extracellular vesicles from stool samples from normal persons and subjects, extract genes from them, perform metagenome analysis, and at the same time perform metabolite analysis in the extracellular vesicles. Bacterial-derived extracellular vesicles and metabolites that can act as causative factors for colorectal cancer were identified. Based on this, the present invention was completed.

이에, 본 발명은 (a) 정상인 및 피검자 샘플을 분리하는 단계;Accordingly, the present invention comprises the steps of: (a) separating a sample from a normal person and a subject;

(b) 상기 샘플로부터 세포밖 소포를 분리하는 단계; (b) isolating extracellular vesicles from the sample;

(c) 분리한 세포밖 소포로부터 DNA를 추출하여 메타게놈(metagenome) 분석을 통해 세균 유래 세포밖 소포의 함량 증감을 비교하는 단계; 및 (c) extracting DNA from the isolated extracellular vesicles and comparing the increase or decrease in the content of bacteria-derived extracellular vesicles through metagenome analysis; and

(d) 분리한 세포밖 소포에서의 대사체 분석을 통해 대사물질의 함량 증감을 비교하는 단계를 포함하는, 대장암 진단을 위한 정보제공방법을 제공하는 것을 목적으로 한다.An object of the present invention is to provide an information providing method for diagnosing colorectal cancer, including the step of comparing the increase and decrease in the content of metabolites through metabolite analysis in the isolated extracellular vesicles.

그러나, 본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 과제에 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 본 발명이 속하는 기술 분야의 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.However, the technical task to be achieved by the present invention is not limited to the tasks mentioned above, and other tasks not mentioned can be clearly understood by those of ordinary skill in the art to which the present invention belongs from the following description. There will be.

상기와 같은 목적을 달성하기 위해 본 발명은 하기의 단계를 포함하는, 대장암 진단을 위한 정보제공방법을 제공한다:In order to achieve the above object, the present invention provides an information providing method for diagnosing colorectal cancer, comprising the following steps:

(a) 정상인 및 피검자 샘플을 분리하는 단계;(a) separating normal and subject samples;

(b) 상기 샘플로부터 세포밖 소포를 분리하는 단계; (b) isolating extracellular vesicles from the sample;

(c) 분리한 세포밖 소포로부터 DNA를 추출하여 메타게놈(metagenome) 분석을 통해 세균 유래 세포밖 소포의 함량 증감을 비교하는 단계; 및 (c) extracting DNA from the isolated extracellular vesicles and comparing the increase or decrease in the content of bacteria-derived extracellular vesicles through metagenome analysis; and

(d) 분리한 세포밖 소포에서의 대사체 분석을 통해 대사물질의 함량 증감을 비교하는 단계.(d) comparing the increase or decrease in the content of metabolites through metabolite analysis in the isolated extracellular vesicles.

또한, 본 발명은 하기의 단계를 포함하는, 대장암 발병을 예측하기 위한 정보제공방법을 제공한다:In addition, the present invention provides an information providing method for predicting the onset of colorectal cancer, comprising the following steps:

(a) 정상인 및 피검자 샘플을 분리하는 단계;(a) separating normal and subject samples;

(b) 상기 샘플로부터 세포밖 소포를 분리하는 단계; (b) isolating extracellular vesicles from the sample;

(c) 분리한 세포밖 소포로부터 DNA를 추출하여 메타게놈(metagenome) 분석을 통해 세균 유래 세포밖 소포의 함량 증감을 비교하는 단계; 및 (c) extracting DNA from the isolated extracellular vesicles and comparing the increase or decrease in the content of bacteria-derived extracellular vesicles through metagenome analysis; and

(d) 분리한 세포밖 소포에서의 대사체 분석을 통해 대사물질의 함량 증감을 비교하는 단계.(d) comparing the increase or decrease in the content of metabolites through metabolite analysis in the isolated extracellular vesicles.

또한, 본 발명은 하기의 단계를 포함하는, 대장암 진단방법을 제공한다:In addition, the present invention provides a method for diagnosing colon cancer, comprising the steps of:

(a) 정상인 및 피검자 샘플을 분리하는 단계;(a) separating normal and subject samples;

(b) 상기 샘플로부터 세포밖 소포를 분리하는 단계; (b) isolating extracellular vesicles from the sample;

(c) 분리한 세포밖 소포로부터 DNA를 추출하여 메타게놈(metagenome) 분석을 통해 세균 유래 세포밖 소포의 함량 증감을 비교하는 단계; 및 (c) extracting DNA from the isolated extracellular vesicles and comparing the increase or decrease in the content of bacteria-derived extracellular vesicles through metagenome analysis; and

(d) 분리한 세포밖 소포에서의 대사체 분석을 통해 대사물질의 함량 증감을 비교하는 단계.(d) comparing the increase or decrease in the content of metabolites through metabolite analysis in the isolated extracellular vesicles.

본 발명의 일 구현예로서, 상기 샘플은 대변일 수 있으나, 이에 제한되지 않는다.In one embodiment of the present invention, the sample may be feces, but is not limited thereto.

본 발명의 다른 구현예로서, 상기 대사물질은 아미노산(amino acid), 아미노알콜(amino alcohol), 방향족알콜(aromatic alcohol), 카복실산(carboxylic acid), 및 지방산(fatty acid)으로 이루어진 군으로부터 선택되는 하나 이상일 수 있으나, 이에 제한되지 않는다.In another embodiment of the present invention, the metabolite is selected from the group consisting of amino acids, amino alcohols, aromatic alcohols, carboxylic acids, and fatty acids. It may be one or more, but is not limited thereto.

본 발명의 또 다른 구현예로서, 상기 (c) 단계에서 퍼미쿠테스(Firmicutes) 및 프로테오박테리아(Proteobacteria)로 이루어진 군으로부터 선택되는 하나 이상의 문(phylum) 세균 유래 세포밖 소포, 또는As another embodiment of the present invention, in step (c), Firmicutes ( Firmicutes ) and Proteobacteria ( Proteobacteria ) One or more phylum bacteria-derived extracellular vesicles selected from the group consisting of, or

액티노마이세스(Actinomyces), 비피도박테리움(Bifidobacterium), 로티아(Rothia), 프로피오니박테리움(Propionibacterium), 콜린셀라(Collinsella), 박테로이달레스(Bacteroidales) S24-7 그룹 (f), 클로로플라스트(Chloroplast) (o), 블라우티아(Blautia), 라치노클로스트리디움(Lachnoclostridium), 라치노스피라시에(Lachnospiraceae) NK4A136 그룹, 라치노스피라시에(Lachnospiraceae) UCG-008, 도레아(Dorea), 에우박테리움 코프로스타놀리게네스(Eubacterium coprostanoligenes) 그룹, 루미노코카시에(Ruminococcaceae) UCG-002, 루미노코커스(Ruminococcus) 2, 서브돌리그라눌럼(Subdoligranulum), 루미노코카시에(Ruminococcaceae) (f), 루미노코카시에(Ruminococcaceae) UCG-014, 패칼리박테리움(Faecalibacterium), 루미노코카시에(Ruminococcaceae) NK4A214 그룹, 스타필로코커스(Staphylococcus), 카테니박테리움(Catenibacterium), 파르비모나스(Parvimonas), 루미니클로스트리디움(Ruminiclostridium) 5, 메틸로박테리움(Methylobacterium), 솔라늄 멜로게나(Solanum Melongena), 스핑고모나스(Sphingomonas), 디아포로박터(Diaphorobacter), 에스케리치아-시겔라(Escherichia-shigella), 프로테우스(Proteus), 슈도모나스(Pseudomonas), 엔테로박터(Enterobacter), 사카리박테리아(Saccharibacteria) (p), 및 몰리쿠테스(Mollicutes) RF9 (o) 로 이루어진 군으로부터 선택되는 하나 이상의 속(genus) 세균 유래 세포밖 소포의 함량 증감을 비교할 수 있으나, 이에 제한되지 않는다.My solution Tino access (Actinomyces), Bifidobacterium (Bifidobacterium), Loti Ah (Rothia), propionic sludge tumefaciens (Propionibacterium), Colin Cellar (Collinsella), Les night interrogating two months (Bacteroidales) S24-7 group (f) , Chloroplast ( Chloroplast ) (o), Blautia ( Blautia ), Lachnoclostridium , Lachnospiraceae NK4A136 group, Lachnospiraceae UCG-008, Dorea ( Dorea ), Eubacterium coprostanoligenes group, Ruminococcaceae UCG-002, Ruminococcus 2, Subdoligranulum ( Subdoligranulum ), Rumi Ruminococcaceae (f), Ruminococcaceae UCG-014, Faecalibacterium , Ruminococcaceae NK4A214 group, Staphylococcus , Ka I'll tumefaciens (Catenibacterium), Parr ratio Pseudomonas (Parvimonas), Rumi Nicklaus tree Stadium (Ruminiclostridium) 5, methyl tumefaciens (Methylobacterium), Solar titanium Mello dehydrogenase (Solanum Melongena), Sphingomonas (Sphingomonas), dia captive bakteo ( Diaphorobacter ), Escherichia-shigella , Proteus ( Proteus ), Pseudomonas ( Pseudomonas ), Enterobacter ( Enterobacter ), Saccharibacteria ( Saccharibacteria ) (p), and Mollicutes RF9 (o) made of The increase or decrease in the content of extracellular vesicles derived from one or more genus bacteria selected from the gene group may be compared, but is not limited thereto.

본 발명의 또 다른 구현예로서, 상기 (c) 단계에서 정상인에 비해 퍼미쿠테스(Firmicutes) 문(phylum) 세균 유래 세포밖 소포, 또는As another embodiment of the present invention, in the step (c), compared to a normal person, Firmicutes ( Firmicutes ) phylum bacteria-derived extracellular vesicles, or

비피도박테리움(Bifidobacterium), 콜린셀라(Collinsella), 블라우티아(Blautia), 라치노클로스트리디움(Lachnoclostridium), 라치노스피라시에(Lachnospiraceae) UCG-008, 도레아(Dorea), 에우박테리움 코프로스타놀리게네스(Eubacterium coprostanoligenes) 그룹, 루미노코카시에(Ruminococcaceae) UCG-002, 루미노코커스(Ruminococcus) 2, 서브돌리그라눌럼(Subdoligranulum), 루미노코카시에(Ruminococcaceae) (f), 패칼리박테리움(Faecalibacterium), 루미노코카시에(Ruminococcaceae) NK4A214 그룹, 카테니박테리움(Catenibacterium), 파르비모나스(Parvimonas), 루미니클로스트리디움(Ruminiclostridium) 5, 디아포로박터(Diaphorobacter), 및 엔테로박터(Enterobacter)로 이루어진 군으로부터 선택되는 하나 이상의 속(genus) 세균 유래 세포밖 소포의 함량이 증가되어 있는 경우 대장암의 발병 위험도가 높을 것으로 예측할 수 있으나, 이에 제한되지 않는다.Bifidobacterium (Bifidobacterium), Colin Cellar (Collinsella), Blau Tia (Blautia), La Chino Clostridium (Lachnoclostridium), referred to at Chino Spira (Lachnospiraceae) UCG-008, Toray Ah (Dorea), Aust tumefaciens Lium coprostanoligenes group, Ruminococcaceae UCG-002, Ruminococcus 2, Subdoligranulum Subdoligranulum , Ruminococcaceae ( Ruminococcaceae ) ( f), Faecalibacterium , Ruminococcaceae NK4A214 group, Catenibacterium , Parvimonas , Ruminiclostridium 5, Diaphorobacter ( Diaphorobacter ), and Enterobacter ( Enterobacter ) When the content of one or more genus bacteria-derived extracellular vesicles selected from the group consisting of increased, it can be predicted that the risk of colorectal cancer is high, but is not limited thereto.

본 발명의 또 다른 구현예로서, 상기 (c) 단계에서 정상인에 비해 프로테오박테리아(Proteobacteria) 문(phylum) 세균 유래 세포밖 소포, 또는As another embodiment of the present invention, in the step (c), compared to normal people, Proteobacteria phylum bacteria-derived extracellular vesicles, or

액티노마이세스(Actinomyces), 로티아(Rothia), 프로피오니박테리움(Propionibacterium), 박테로이달레스(Bacteroidales) S24-7 그룹 (f), 클로로플라스트(Chloroplast) (o), 라치노스피라시에(Lachnospiraceae) NK4A136 그룹, 루미노코카시에(Ruminococcaceae) UCG-014, 스타필로코커스(Staphylococcus), 메틸로박테리움(Methylobacterium), 솔라늄 멜로게나(Solanum melongena), 스핑고모나스(Sphingomonas), 에스케리치아-시겔라(Escherichia-shigella), 프로테우스(Proteus), 슈도모나스(Pseudomonas), 사카리박테리아(Saccharibacteria) (p), 및 몰리쿠테스(Mollicutes) RF9 (o)로 이루어진 군으로부터 선택되는 하나 이상의 속(genus) 세균 유래 세포밖 소포의 함량이 감소되어 있는 경우 대장암의 발병 위험도가 높을 것으로 예측할 수 있으나, 이에 제한되지 않는다. Actinomyces ( Actinomyces ), Rotia ( Rothia ), Propionibacterium ( Propionibacterium ), Bacteroidales S24-7 group (f), chloroplast ( Chloroplast ) (o), Lachinospira when (Lachnospiraceae) at NK4A136 group, luminometer coca (Ruminococcaceae) UCG-014, Staphylococcus (Staphylococcus), tumefaciens (Methylobacterium), Solar titanium Mello dehydrogenase (Solanum melongena), Sphingomonas (Sphingomonas) to methyl , Escherichia - Shigella (Escherichia-shigella), Proteus (Proteus), Pseudomonas (Pseudomonas), four Kariya bacteria (Saccharibacteria) (p), and the mole Riku test (Mollicutes) is selected from the group consisting of RF9 (o) When the content of extracellular vesicles derived from one or more genus bacteria is reduced, it can be predicted that the risk of colorectal cancer is high, but is not limited thereto.

본 발명의 또 다른 구현예로서, 상기 (d) 단계에서 류신(Leucine), 이소류신(Isoleucine), 알라닌(Alanine), 리신(Lysine), 티라민(Tyramine), 아미노이소부티르산(Aminoisobutyric acid), 에탄올아민(Ethanolamine), 페놀(Phenol), 퓨로산(Furoic acid), 숙신산(Succinic acid), 옥살산(Oxalic acid), 부탄산(Butanoic acid), 헥산산(Hexanoic acid), 팔미트산(Palmitic acid), 및 올레산(Oleic acid)으로 이루어진 군으로부터 선택되는 하나 이상의 대사물질의 함량 증감을 비교할 수 있으나, 이에 제한되지 않는다.As another embodiment of the present invention, in step (d), leucine, isoleucine, alanine, lysine, tyramine, aminoisobutyric acid, ethanolamine (Ethanolamine), phenol (Phenol), furoic acid, succinic acid, oxalic acid, butanoic acid, hexanoic acid, palmitic acid, And it is possible to compare the increase or decrease in the content of one or more metabolites selected from the group consisting of oleic acid, but is not limited thereto.

본 발명의 또 다른 구현예로서, 상기 (d) 단계에서 정상인에 비해 류신(Leucine), 이소류신(Isoleucine), 알라닌(Alanine), 리신(Lysine), 티라민(Tyramine), 에탄올아민(Ethanolamine), 페놀(Phenol), 퓨로산(Furoic acid), 숙신산(Succinic acid), 옥살산(Oxalic acid), 헥산산(Hexanoic acid), 팔미트산(Palmitic acid), 및 올레산(Oleic acid)으로 이루어진 군으로부터 선택되는 하나 이상의 대사물질의 함량이 증가되어 있는 경우 대장암의 발병 위험도가 높을 것으로 예측할 수 있으나, 이에 제한되지 않는다.As another embodiment of the present invention, compared to normal persons in step (d), leucine, isoleucine, alanine, lysine, tyramine, ethanolamine, phenol (Phenol), furoic acid, succinic acid, oxalic acid, hexanoic acid, palmitic acid, and oleic acid selected from the group consisting of When the content of one or more metabolites is increased, it can be predicted that the risk of colorectal cancer is high, but is not limited thereto.

본 발명의 또 다른 구현예로서, 상기 (d) 단계에서 정상인에 비해 아미노이소부티르산(Aminoisobutyric acid) 또는 부탄산(Butanoic acid)의 함량이 감소되어 있는 경우 대장암의 발병 위험도가 높을 것으로 예측할 수 있으나, 이에 제한되지 않는다.As another embodiment of the present invention, when the content of aminoisobutyric acid or butanoic acid is reduced compared to normal persons in step (d), the risk of colorectal cancer can be predicted to be high, but , but not limited thereto.

본 발명의 또 다른 구현예로서, 상기 (c) 단계에서 정상인에 비해 콜린셀라(Collinsella) 속(genus) 세균 유래 세포밖 소포의 함량이 증가되어 있고 솔라늄 멜로게나(Solanum melongena)속(genus) 세균 유래 세포밖 소포의 함량이 감소되어 있으며,As another embodiment of the present invention, in the step (c), the content of extracellular vesicles derived from bacteria of the genus Collinsella is increased compared to normal people, and Solanum melongena genus (genus) The content of bacterial-derived extracellular vesicles is reduced,

상기 (d) 단계에서 정상인에 비해 류신(Leucine) 및 옥살산(Oxalic acid)이 증가되어 있는 경우 대장암의 발병 위험도가 높을 것으로 예측할 수 있으나, 이에 제한되지 않는다.If leucine and oxalic acid are increased in step (d) compared to normal people in step (d), it can be predicted that the risk of colorectal cancer is high, but is not limited thereto.

본 발명에 따른 대장암 진단방법은 장내 세균에서 분비되는 세포밖 소포의 메타게놈 분석 및 세포밖 소포에서의 대사체 분석을 통해 대장암을 조기에 진단 및 예측할 수 있으며, 대장암에서 유의하게 함량이 변화한 세균 유래 세포밖 소포 및 아미노산, 아미노알콜, 방향족알콜, 카복실산, 지방산 등의 대사물질을 확인하고, 이들의 연관성을 확인하여 바이오마커로 함께 사용함으로써 대장암 진단의 정확도를 향상시켜 대장암의 발병률을 낮추고 치료효과를 높일 수 있을 것으로 기대된다.The method for diagnosing colorectal cancer according to the present invention can diagnose and predict colorectal cancer at an early stage through metagenome analysis of extracellular vesicles secreted from intestinal bacteria and metabolite analysis in extracellular vesicles. Changed bacterial-derived extracellular vesicles and metabolites such as amino acids, amino alcohols, aromatic alcohols, carboxylic acids, and fatty acids are identified, and their correlation is confirmed and used together as biomarkers to improve the accuracy of colorectal cancer diagnosis. It is expected to reduce the incidence rate and increase the therapeutic effect.

도 1a는 본 발명의 일 구현예에 따른 대장암 환자 및 정상인 유래 세포밖 소포에서 Chao1 지수와 Shannon 지수를 이용하여 알파(alpha) 다양성을 비교한 결과를 나타낸 도면이다.
도 1b는 본 발명의 일 구현예에 따른 대장암 환자 및 정상인 유래 세포밖 소포에서 주요 좌표 분석(principal coordinate analysis, pCoA)을 통해 문(phylum)(왼쪽) 및 속(genus)(오른쪽) 수준에서 베타(beta) 다양성을 비교한 결과를 나타낸 도면이다.
도 2a 및 2b는 본 발명의 일 구현예에 따른 대장암 환자 및 정상인 유래 세포밖 소포의 메타게놈 분석을 통해 문(phylum) 수준에서 유의적으로 변화한 세균 유래 세포밖 소포의 분포를 나타낸 것으로, 도 2a는 히트 맵(heat map)으로 나타낸 도면이고 도 2b는 막대 그래프로 나타낸 도면이다.
도 2c 및 2d는 본 발명의 일 구현예에 따른 대장암 환자 및 정상인 유래 세포밖 소포의 메타게놈 분석을 통해 속(genus) 수준에서 유의적으로 변화한 세균 유래 세포밖 소포의 분포를 나타낸 것으로, 도 2c는 히트 맵(heat map)으로 나타낸 도면이고 도 2d는 막대 그래프로 나타낸 도면이다.
도 3a는 본 발명의 일 구현예에 따른 대장암 환자 및 정상인으로부터 분리한 세균 유래 세포밖 소포의 문(phylum) 수준에서의 분류학적 분석 결과를 나타낸 도면이다.
도 3b는 본 발명의 일 구현예에 따른 대장암 환자 및 정상인으로부터 분리한 세균 유래 세포밖 소포의 속(genus) 수준에서의 분류학적 분석 결과를 나타낸 도면이다.
도 4a 및 4b는 본 발명의 일 구현예에 따른 대장암 환자 및 정상인에서의 대사체를 가스 크로마토그래피 time-of-flight 질량 분석을 이용하여 분석한 결과를 확인한 것으로, 도 4a는 3차원 PCA의 스코어 플롯(score plot)을 나타낸 도면이고, 도 4b는 PC1 및 PC2의 로딩 플롯(loading plot)을 나타낸 도면이다.
도 5a는 본 발명의 일 구현예에 따른 세균 유래 세포밖 소포 및 대사물질의 연관성을 피어슨 상관관계 분석을 통해 확인한 도면이다.
도 5b는 본 발명의 일 구현예에 따른 세균 유래 세포밖 소포 및 대사물질 바이오마커에 대해 이원 로지스틱 회귀(binary logistic regression) 분석을 실시하여 receiver operation 곡선을 나타낸 도면이다.
1A is a view showing the results of comparing alpha (alpha) diversity using the Chao1 index and the Shannon index in extracellular vesicles derived from colorectal cancer patients and normal humans according to an embodiment of the present invention.
1B is a phylum (left) and genus (right) level through principal coordinate analysis (pCoA) in extracellular vesicles derived from colorectal cancer patients and normal humans according to an embodiment of the present invention. It is a diagram showing the result of comparing the beta (beta) diversity.
2a and 2b show the distribution of bacteria-derived extracellular vesicles significantly changed at the phylum level through metagenome analysis of extracellular vesicles derived from colorectal cancer patients and normal humans according to an embodiment of the present invention; FIG. 2A is a diagram represented by a heat map, and FIG. 2B is a diagram represented by a bar graph.
2c and 2d show the distribution of bacteria-derived extracellular vesicles significantly changed at the genus level through metagenome analysis of extracellular vesicles derived from colorectal cancer patients and normal humans according to an embodiment of the present invention; FIG. 2C is a diagram represented by a heat map, and FIG. 2D is a diagram represented by a bar graph.
3A is a view showing the results of taxonomic analysis at the phylum level of bacteria-derived extracellular vesicles isolated from colorectal cancer patients and normal people according to an embodiment of the present invention.
3B is a view showing the results of taxonomic analysis at the genus level of bacteria-derived extracellular vesicles isolated from colorectal cancer patients and normal people according to an embodiment of the present invention.
Figures 4a and 4b confirm the results of analysis of metabolites in colorectal cancer patients and normal people using gas chromatography time-of-flight mass spectrometry according to an embodiment of the present invention, and Figure 4a is a three-dimensional PCA It is a view showing a score plot, and FIG. 4B is a view showing a loading plot of PC1 and PC2.
5A is a view confirming the correlation between bacteria-derived extracellular vesicles and metabolites through Pearson correlation analysis according to an embodiment of the present invention.
Figure 5b is a view showing a receiver operation curve by performing binary logistic regression analysis on bacteria-derived extracellular vesicles and metabolite biomarkers according to an embodiment of the present invention.

본 발명은 하기의 단계를 포함하는, 대장암 진단을 위한 정보제공방법을 제공한다:The present invention provides an information providing method for diagnosing colon cancer, comprising the following steps:

(a) 정상인 및 피검자 샘플을 분리하는 단계;(a) separating normal and subject samples;

(b) 상기 샘플로부터 세포밖 소포를 분리하는 단계; (b) isolating extracellular vesicles from the sample;

(c) 분리한 세포밖 소포로부터 DNA를 추출하여 메타게놈(metagenome) 분석을 통해 세균 유래 세포밖 소포의 함량 증감을 비교하는 단계; 및 (c) extracting DNA from the isolated extracellular vesicles and comparing the increase or decrease in the content of bacteria-derived extracellular vesicles through metagenome analysis; and

(d) 분리한 세포밖 소포에서의 대사체 분석을 통해 대사물질의 함량 증감을 비교하는 단계.(d) comparing the increase or decrease in the content of metabolites through metabolite analysis in the isolated extracellular vesicles.

또한, 본 발명은 하기의 단계를 포함하는, 대장암 발병을 예측하기 위한 정보제공방법을 제공한다:In addition, the present invention provides an information providing method for predicting the onset of colorectal cancer, comprising the following steps:

(a) 정상인 및 피검자 샘플을 분리하는 단계;(a) separating normal and subject samples;

(b) 상기 샘플로부터 세포밖 소포를 분리하는 단계; (b) isolating extracellular vesicles from the sample;

(c) 분리한 세포밖 소포로부터 DNA를 추출하여 메타게놈(metagenome) 분석을 통해 세균 유래 세포밖 소포의 함량 증감을 비교하는 단계; 및 (c) extracting DNA from the isolated extracellular vesicles and comparing the increase or decrease in the content of bacteria-derived extracellular vesicles through metagenome analysis; and

(d) 분리한 세포밖 소포에서의 대사체 분석을 통해 대사물질의 함량 증감을 비교하는 단계.(d) comparing the increase or decrease in the content of metabolites through metabolite analysis in the isolated extracellular vesicles.

본 발명에 있어서, 상기 정상인 및 피검자 샘플은 대변일 수 있으나, 이에 제한되지 않는다.In the present invention, the normal person and the subject sample may be feces, but is not limited thereto.

본 발명에 있어서, 상기 (c) 단계에서 퍼미쿠테스(Firmicutes) 및 프로테오박테리아(Proteobacteria)로 이루어진 군으로부터 선택되는 하나 이상의 문(phylum) 세균 유래 세포밖 소포, 또는In the present invention, in the step (c) Firmicutes ( Firmicutes ) and Proteobacteria ( Proteobacteria ) One or more phylum bacteria-derived extracellular vesicles selected from the group consisting of, or

액티노마이세스(Actinomyces), 비피도박테리움(Bifidobacterium), 로티아(Rothia), 프로피오니박테리움(Propionibacterium), 콜린셀라(Collinsella), 박테로이달레스(Bacteroidales) S24-7 그룹 (f), 클로로플라스트(Chloroplast) (o), 블라우티아(Blautia), 라치노클로스트리디움(Lachnoclostridium), 라치노스피라시에(Lachnospiraceae) NK4A136 그룹, 라치노스피라시에(Lachnospiraceae) UCG-008, 도레아(Dorea), 에우박테리움 코프로스타놀리게네스(Eubacterium coprostanoligenes) 그룹, 루미노코카시에(Ruminococcaceae) UCG-002, 루미노코커스(Ruminococcus) 2, 서브돌리그라눌럼(Subdoligranulum), 루미노코카시에(Ruminococcaceae) (f), 루미노코카시에(Ruminococcaceae) UCG-014, 패칼리박테리움(Faecalibacterium), 루미노코카시에(Ruminococcaceae) NK4A214 그룹, 스타필로코커스(Staphylococcus), 카테니박테리움(Catenibacterium), 파르비모나스(Parvimonas), 루미니클로스트리디움(Ruminiclostridium) 5, 메틸로박테리움(Methylobacterium), 솔라늄 멜로게나(Solanum Melongena), 스핑고모나스(Sphingomonas), 디아포로박터(Diaphorobacter), 에스케리치아-시겔라(Escherichia-shigella), 프로테우스(Proteus), 슈도모나스(Pseudomonas), 엔테로박터(Enterobacter), 사카리박테리아(Saccharibacteria) (p), 및 몰리쿠테스(Mollicutes) RF9 (o) 로 이루어진 군으로부터 선택되는 하나 이상의 속(genus) 세균 유래 세포밖 소포의 함량 증감을 비교하는 단계를 통해 대장암을 진단할 수 있으나, 이에 제한되는 것은 아니다.My solution Tino access (Actinomyces), Bifidobacterium (Bifidobacterium), Loti Ah (Rothia), propionic sludge tumefaciens (Propionibacterium), Colin Cellar (Collinsella), Les night interrogating two months (Bacteroidales) S24-7 group (f) , Chloroplast ( Chloroplast ) (o), Blautia ( Blautia ), Lachnoclostridium , Lachnospiraceae NK4A136 group, Lachnospiraceae UCG-008, Dorea ( Dorea ), Eubacterium coprostanoligenes group, Ruminococcaceae UCG-002, Ruminococcus 2, Subdoligranulum ( Subdoligranulum ), Rumi Ruminococcaceae (f), Ruminococcaceae UCG-014, Faecalibacterium , Ruminococcaceae NK4A214 group, Staphylococcus , Ka I'll tumefaciens (Catenibacterium), Parr ratio Pseudomonas (Parvimonas), Rumi Nicklaus tree Stadium (Ruminiclostridium) 5, methyl tumefaciens (Methylobacterium), Solar titanium Mello dehydrogenase (Solanum Melongena), Sphingomonas (Sphingomonas), dia captive bakteo ( Diaphorobacter ), Escherichia-shigella , Proteus ( Proteus ), Pseudomonas ( Pseudomonas ), Enterobacter ( Enterobacter ), Saccharibacteria ( Saccharibacteria ) (p), and Mollicutes RF9 (o) made of Colorectal cancer may be diagnosed by comparing the increase or decrease in the content of extracellular vesicles derived from one or more genus bacteria selected from the group, but is not limited thereto.

본 발명에 있어서, 상기 세균들 중 특정 균 이름 뒤에 기재된 (p), (o), 또는 (f)는 문(phylum), 목(order), 또는 과(family)로서, 분석한 시퀀스가 문(phylum), 목(order), 또는 과(family) 수준까지만 매치된 균들에 한해 상기 (p), (o), 및 (f)를 표시하였으며, 이들은 모두 속(genus) 수준에서 확인된 균들에 속한다. 즉, 상기 균명에 (p), (o), 또는 (f)가 기재된 균들은 속(genus) 수준이 있으나 이를 파악하기 위한 시퀀스가 정확하지 않거나 DB 자체가 없는 등의 이유로, 속(genus) 수준에서 확인하였지만 문(phylum), 목(order), 또는 과(family) 수준까지만 매치되어 나타난 균들을 의미한다.In the present invention, (p), (o), or (f) described after a specific bacterial name among the bacteria is a phylum, an order, or a family, and the analyzed sequence is a phylum ( (p), (o), and (f) are indicated above only for bacteria matched up to the phylum), order, or family level, all of which belong to the bacteria identified at the genus level. . That is, the bacteria with (p), (o), or (f) described in the name have a genus level, but for reasons such as an inaccurate sequence or no DB itself, the genus level It refers to bacteria that have been identified in , but only matched up to the phylum, order, or family level.

본 발명에 있어서, 상기 (d) 단계에서 류신(Leucine), 이소류신(Isoleucine), 알라닌(Alanine), 리신(Lysine), 티라민(Tyramine), 아미노이소부티르산(Aminoisobutyric acid), 에탄올아민(Ethanolamine), 페놀(Phenol), 퓨로산(Furoic acid), 숙신산(Succinic acid), 옥살산(Oxalic acid), 부탄산(Butanoic acid), 헥산산(Hexanoic acid), 팔미트산(Palmitic acid), 및 올레산(Oleic acid)으로 이루어진 군으로부터 선택되는 하나 이상의 대사물질의 함량 증감을 비교하는 단계를 통해 대장암을 진단할 수 있으나, 이에 제한되는 것은 아니다.In the present invention, in the step (d), leucine, isoleucine, alanine, lysine, tyramine, aminoisobutyric acid, ethanolamine, Phenol, Furoic acid, Succinic acid, Oxalic acid, Butanoic acid, Hexanoic acid, Palmitic acid, and Oleic acid acid) may be diagnosed through the step of comparing the increase or decrease in the content of one or more metabolites selected from the group consisting of, but is not limited thereto.

본 발명에 있어서, 상기 방법은, 정상 대조군(정상인) 시료와 비교적으로 수행될 수 있으며, 상기 정상 대조군은 검사 대상인 잠재환자(즉, 상기 (a) 단계에서 검사 대상이 된 환자와 동일 개체)의 시료에서 정상인 부위로부터 채취된 시료 또는 다른 정상 개체(대장암이 없는 개체)로부터 채취된 시료를 모두 포함하는 의미이다. 이때 상기 잠재 환자(피검자)로부터 채취한 시료에서 정상인에 비해 퍼미쿠테스(Firmicutes) 문(phylum) 세균 유래 세포밖 소포, 또는In the present invention, the method can be performed relatively with a normal control (normal) sample, and the normal control is a test target of a potential patient (ie, the same subject as the test target in step (a)). In the sample, it is meant to include both samples collected from normal sites or samples collected from other normal subjects (individuals without colorectal cancer). At this time, in the sample collected from the potential patient (subject) compared to normal persons, Firmicutes phylum bacteria-derived extracellular vesicles, or

비피도박테리움(Bifidobacterium), 콜린셀라(Collinsella), 블라우티아(Blautia), 라치노클로스트리디움(Lachnoclostridium), 라치노스피라시에(Lachnospiraceae) UCG-008, 도레아(Dorea), 에우박테리움 코프로스타놀리게네스(Eubacterium coprostanoligenes) 그룹, 루미노코카시에(Ruminococcaceae) UCG-002, 루미노코커스(Ruminococcus) 2, 서브돌리그라눌럼(Subdoligranulum), 루미노코카시에(Ruminococcaceae) (f), 패칼리박테리움(Faecalibacterium), 루미노코카시에(Ruminococcaceae) NK4A214 그룹, 카테니박테리움(Catenibacterium), 파르비모나스(Parvimonas), 루미니클로스트리디움(Ruminiclostridium) 5, 디아포로박터(Diaphorobacter), 및 엔테로박터(Enterobacter)로 이루어진 군으로부터 선택되는 하나 이상의 속(genus) 세균 유래 세포밖 소포의 함량이 증가되어 있는 경우 대장암으로 판단할 수 있으나, 이에 제한되는 것은 아니다.Bifidobacterium (Bifidobacterium), Colin Cellar (Collinsella), Blau Tia (Blautia), La Chino Clostridium (Lachnoclostridium), referred to at Chino Spira (Lachnospiraceae) UCG-008, Toray Ah (Dorea), Aust tumefaciens Lium coprostanoligenes group, Ruminococcaceae UCG-002, Ruminococcus 2, Subdoligranulum Subdoligranulum , Ruminococcaceae ( Ruminococcaceae ) ( f), Faecalibacterium , Ruminococcaceae NK4A214 group, Catenibacterium , Parvimonas , Ruminiclostridium 5, Diaphorobacter ( Diaphorobacter ), and Enterobacter ( Enterobacter ) When the content of one or more genus bacteria-derived extracellular vesicles selected from the group consisting of increased, colorectal cancer may be determined, but is not limited thereto.

또한, 상기 잠재 환자(피검자)로부터 채취한 시료에서 정상인에 비해 프로테오박테리아(Proteobacteria) 문(phylum) 세균 유래 세포밖 소포, 또는In addition, in the sample taken from the potential patient (subject) compared to normal people, Proteobacteria phylum bacteria-derived extracellular vesicles, or

액티노마이세스(Actinomyces), 로티아(Rothia), 프로피오니박테리움(Propionibacterium), 박테로이달레스(Bacteroidales) S24-7 그룹 (f), 클로로플라스트(Chloroplast) (o), 라치노스피라시에(Lachnospiraceae) NK4A136 그룹, 루미노코카시에(Ruminococcaceae) UCG-014, 스타필로코커스(Staphylococcus), 메틸로박테리움(Methylobacterium), 솔라늄 멜로게나(Solanum melongena), 스핑고모나스(Sphingomonas), 에스케리치아-시겔라(Escherichia-shigella), 프로테우스(Proteus), 슈도모나스(Pseudomonas), 사카리박테리아(Saccharibacteria) (p), 및 몰리쿠테스(Mollicutes) RF9 (o)로 이루어진 군으로부터 선택되는 하나 이상의 속(genus) 세균 유래 세포밖 소포의 함량이 감소되어 있는 경우 대장암으로 판단할 수 있으나, 이에 제한되는 것은 아니다. Actinomyces ( Actinomyces ), Rotia ( Rothia ), Propionibacterium ( Propionibacterium ), Bacteroidales S24-7 group (f), chloroplast ( Chloroplast ) (o), Lachinospira when (Lachnospiraceae) at NK4A136 group, luminometer coca (Ruminococcaceae) UCG-014, Staphylococcus (Staphylococcus), tumefaciens (Methylobacterium), Solar titanium Mello dehydrogenase (Solanum melongena), Sphingomonas (Sphingomonas) to methyl , Escherichia - Shigella (Escherichia-shigella), Proteus (Proteus), Pseudomonas (Pseudomonas), four Kariya bacteria (Saccharibacteria) (p), and the mole Riku test (Mollicutes) is selected from the group consisting of RF9 (o) When the content of extracellular vesicles derived from one or more genus bacteria is reduced, it may be determined as colorectal cancer, but is not limited thereto.

또한, 상기 잠재 환자(피검자)로부터 채취한 시료에서 정상인에 비해 류신(Leucine), 이소류신(Isoleucine), 알라닌(Alanine), 리신(Lysine), 티라민(Tyramine), 에탄올아민(Ethanolamine), 페놀(Phenol), 퓨로산(Furoic acid), 숙신산(Succinic acid), 옥살산(Oxalic acid), 헥산산(Hexanoic acid), 팔미트산(Palmitic acid), 및 올레산(Oleic acid)으로 이루어진 군으로부터 선택되는 하나 이상의 대사물질의 함량이 증가되어 있는 경우 대장암으로 판단할 수 있으나, 이에 제한되는 것은 아니다.In addition, in samples collected from the potential patient (subject), leucine, isoleucine, alanine, lysine, tyramine, ethanolamine, and phenol compared to normal subjects. ), furoic acid, succinic acid, oxalic acid, hexanoic acid, palmitic acid, and at least one selected from the group consisting of oleic acid If the content of metabolites is increased, it may be determined as colon cancer, but is not limited thereto.

또한, 상기 잠재 환자(피검자)로부터 채취한 시료에서 정상인에 비해 아미노이소부티르산(Aminoisobutyric acid) 또는 부탄산(Butanoic acid)의 함량이 감소되어 있는 경우 대장암으로 판단할 수 있으나, 이에 제한되는 것은 아니다.In addition, if the content of aminoisobutyric acid or butanoic acid is reduced in the sample collected from the potential patient (subject) compared to normal persons, it can be determined as colorectal cancer, but is not limited thereto .

본 발명에 있어서, 대장암 진단시, 콜린셀라(Collinsella) 속(genus) 및 솔라늄 멜로게나(Solanum melongena)속(genus) 세균 유래 세포밖 소포, 및 류신(Leucine) 및 옥살산(Oxalic acid)을 바이오마커로 사용하여, 상기 세균 유래 세포밖 소포 및 대사산물을 조합한 두 가지 오믹스 바이오마커를 사용할 경우, 대장암 진단에 대한 정확도(AUC)를 높일 수 있다.In the present invention, when diagnosing colon cancer, Collinsella genus and Solanum melongena genus (genus) bacteria-derived extracellular vesicles, and leucine and oxalic acid When using two omics biomarkers that combine the bacteria-derived extracellular vesicles and metabolites as biomarkers, it is possible to increase the accuracy (AUC) for colorectal cancer diagnosis.

구체적으로, 상기 (c) 단계에서 정상인에 비해 콜린셀라(Collinsella) 속(genus) 세균 유래 세포밖 소포의 함량이 증가되어 있고 솔라늄 멜로게나(Solanum melongena)속(genus) 세균 유래 세포밖 소포의 함량이 감소되어 있으며,Specifically, in step (c), the content of extracellular vesicles derived from bacteria of the genus Collinsella is increased compared to that of normal individuals, and the extracellular vesicles derived from bacteria of the genus Solanum melongena are increased. content is reduced,

상기 (d) 단계에서 정상인에 비해 류신(Leucine) 및 옥살산(Oxalic acid)이 증가되어 있는 경우 대장암의 발병 위험도가 높을 것으로 예측할 수 있으나, 이에 제한되는 것은 아니다.When leucine and oxalic acid are increased in step (d) compared to normal people, it can be predicted that the risk of colorectal cancer is high, but is not limited thereto.

따라서 본 발명의 방법은 정확도(AUC)를 향상시키는 방법으로 이해될 수 있으며, 마커로서 콜린셀라(Collinsella) 속(genus) 및 솔라늄 멜로게나(Solanum melongena)속(genus) 세균 유래 세포밖 소포를 사용하는 경우, 또는 마커로서 류신(Leucine) 및 옥살산(Oxalic acid)을 사용하는 경우, 정확도가 90% 내지 100%, 바람직하게 정확도가 90% 내지 98% 수준을 나타내는 것일 수 있다. 상기 수준의 구체적 수치는 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% 및 100%로 이루어지는 군에서 선택되는 두 개의 숫자를 경계값으로 하는 범위값을 모두 포함한다. 본원 발명의 하나의 실시양태(embodiment)에서, 상기 수치범위 중 구체적으로 90% 및 98%의 경계값이 선택될 수 있고, 이에 따라 90% 내지 98% 범위에 있는 모든 값들이 본 발명에서 의도됨은 당업자에 자명하다. 또 다른 하나의 실시양태(ebodiment)에서 바람직하게는 마커로서 콜린셀라(Collinsella) 속(genus) 및 솔라늄 멜로게나(Solanum melongena)속(genus) 세균 유래 세포밖 소포를 사용하는 경우 95%의 정확도를 나타낼 수 있으며, 마커로서 류신(Leucine) 및 옥살산(Oxalic acid)을 사용하는 경우 92%의 정확도를 나타낼 수 있다.Therefore, the method of the present invention can be understood as a method of improving accuracy (AUC), and extracellular vesicles derived from bacteria of Collinsella genus and Solanum melongena genus as markers. When used, or when leucine and oxalic acid are used as markers, the accuracy may be 90% to 100%, preferably, the accuracy may be 90% to 98%. The specific value of the level is a boundary value of two numbers selected from the group consisting of 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% and 100%. Includes all values within the range. In one embodiment of the present invention, a boundary value of specifically 90% and 98% of the numerical range may be selected, and thus all values in the range of 90% to 98% are intended in the present invention. It is apparent to those skilled in the art. In another embodiment (ebodiment), preferably 95% accuracy when using extracellular vesicles derived from bacteria of the genus Collinsella and Solanum melongena as markers. , and when leucine and oxalic acid are used as markers, an accuracy of 92% may be exhibited.

또한, 본 발명에서 마커로서 콜린셀라(Collinsella) 속(genus) 및 솔라늄 멜로게나(Solanum melongena)속(genus) 세균 유래 세포밖 소포, 및 류신(Leucine) 및 옥살산(Oxalic acid)을 사용하는 경우, 정확도가 90% 내지 100%, 바람직하게 정확도가 95% 내지 100% 수준을 나타내는 것일 수 있다. 상기 수준의 구체적 수치는 95%, 96%, 97%, 98%, 99% 및 100%로 이루어지는 군에서 선택되는 두 개의 숫자를 경계값으로 하는 범위값을 모두 포함한다. 본원 발명의 하나의 실시양태(embodiment)에서, 상기 수치범위 중 구체적으로 95% 및 100%의 경계값이 선택될 수 있고, 이에 따라 95% 내지 100% 범위에 있는 모든 값들이 본 발명에서 의도됨은 당업자에 자명하다. 또 다른 하나의 실시양태(ebodiment)에서 바람직하게는 100%의 정확도를 나타낼 수 있다.In addition, when using extracellular vesicles derived from bacteria and leucine and oxalic acid as a marker in the present invention, Collinsella genus and Solanum melongena genus , an accuracy of 90% to 100%, preferably an accuracy of 95% to 100%. The specific numerical value of the level includes all values of a range having two numbers selected from the group consisting of 95%, 96%, 97%, 98%, 99% and 100% as a boundary value. In one embodiment of the present invention, a boundary value of specifically 95% and 100% of the numerical range may be selected, and thus all values in the range of 95% to 100% are intended in the present invention. It is apparent to those skilled in the art. In yet another ebodiment, an accuracy of preferably 100% may be exhibited.

본 발명에서 사용되는 용어, "대사물질(metabolites)"은 물질대사(metabolism)의 중간체와 생성물을 총칭하는 것으로, 본 발명에 있어서 상기 대사물질은 아미노산(amino acid), 아미노알콜(amino alcohol), 방향족알콜(aromatic alcohol), 카복실산(carboxylic acid), 및 지방산(fatty acid)으로 이루어진 군으로부터 선택되는 하나 이상일 수 있으나, 이에 제한되는 것은 아니다.As used herein, the term "metabolites" refers to intermediates and products of metabolism, and in the present invention, the metabolites are amino acids, amino alcohols, It may be one or more selected from the group consisting of aromatic alcohol, carboxylic acid, and fatty acid, but is not limited thereto.

본 발명에서 사용되는 용어, "대사체(metabolome)"는 세포, 조직, 체액과 같은 생물학적 시료 내에 존재하는 대사물질들의 총체를 의미하는 것으로, 본 발명에 있어서 상기 대사체는 대변 샘플로부터 분리한 세균 유래 세포밖 소포에 존재하는 대사물질들의 총체를 의미한다. As used herein, the term "metabolome" refers to the total of metabolites present in biological samples such as cells, tissues, and body fluids. In the present invention, the metabolites are bacteria isolated from fecal samples. It refers to the total of metabolites present in the derived extracellular vesicles.

본 발명에서 사용되는 용어, "대장암(colorectal cancer)"이란 대장(맹장, 결장, 직장)에 발생하는 악성 종양을 가리키며, 부위별의 명칭인 맹장암, 결장암, 직장암은 대장암에 포함된다.As used herein, the term "colorectal cancer" refers to a malignant tumor that occurs in the large intestine (caecum, colon, rectum), and the names of each site, such as appendic cancer, colon cancer, and rectal cancer, are included in colorectal cancer.

본 발명에서 사용되는 용어, "대장암 진단" 이란 환자에 대하여 대장암이 발병할 가능성이 있는지, 대장암이 발병할 가능성이 상대적으로 높은지, 또는 대장암이 이미 발병하였는지 여부를 판별하는 것을 의미한다. 본 발명의 방법은 임의의 특정 환자에 대한 대장암 발병 위험도가 높은 환자로써 특별하고 적절한 관리를 통하여 발병 시기를 늦추거나 발병하지 않도록 하는데 사용할 수 있다. 또한, 본 발명의 방법은 대장암을 조기에 진단하여 가장 적절한 치료방식을 선택함으로써 치료를 결정하기 위해 임상적으로 사용될 수 있다.As used herein, the term "diagnosis of colorectal cancer" means determining whether there is a possibility of developing colorectal cancer for a patient, whether the possibility of developing colorectal cancer is relatively high, or whether colorectal cancer has already occurred. . The method of the present invention can be used to delay or prevent the onset of disease through special and appropriate management as a patient with a high risk of colorectal cancer for any specific patient. In addition, the method of the present invention can be used clinically to determine treatment by diagnosing colon cancer at an early stage and selecting the most appropriate treatment method.

본 발명에서 사용되는 용어, "메타게놈(metagenome)"이란, "군유전체"라고도 하며, 흙, 동물의 장 등 고립된 지역 내의 모든 바이러스, 세균, 곰팡이 등을 포함하는 유전체의 총합을 의미하는 것으로, 주로 배양이 되지 않는 미생물을 분석하기 위해서 서열분석기를 사용하여 한꺼번에 많은 미생물을 동정하는 것을 설명하는 유전체의 개념으로 쓰인다. 특히, 메타게놈은 한 종의 게놈 또는 유전체를 말하는 것이 아니라, 한 환경단위의 모든 종의 유전체로서 일종의 혼합유전체를 말한다. 이는 오믹스적으로 생물학이 발전하는 과정에서 한 종을 정의할 때 기능적으로 기존의 한 종뿐만 아니라, 다양한 종이 서로 상호작용하여 완전한 종을 만든다는 관점에서 나온 용어이다. 기술적으로는 빠른 서열분석법을 이용해서, 종에 관계없이 모든 DNA, RNA를 분석하여, 한 환경 내에서의 모든 종을 동정하고, 상호작용, 대사작용을 규명하는 기법의 대상이다. 본 발명에서는 바람직하게 대변에서 분리한 세균 유래 세포밖 소포를 이용하여 메타게놈 분석을 실시하였다.As used in the present invention, the term "metagenome" is also referred to as "microgenome", and refers to the sum of genomes including all viruses, bacteria, fungi, etc. in isolated areas such as soil and animal intestine. , is mainly used as a concept of genome to describe the identification of many microorganisms at once using a sequencer to analyze microorganisms that cannot be cultured. In particular, the metagenome does not refer to the genome or genome of one species, but a kind of mixed genome as the genome of all species in one environmental unit. This is a term derived from the point of view that when defining a species in the process of omics development of biology, not only one functionally existing species but also various species interact with each other to create a complete species. Technically, it is the subject of a technique that uses rapid sequencing, analyzes all DNA and RNA regardless of species, identifies all species in one environment, and identifies interactions and metabolism. In the present invention, metagenome analysis was preferably performed using bacteria-derived extracellular vesicles isolated from feces.

본 발명의 실시예에서는 정상인 및 대장암환자의 대변 내 세균 유래 세포밖 소포에 존재하는 유전자에 대한 메타게놈 분석을 실시하였으며, 문(phylum) 및 속(genus) 수준에서 각각 분석하여 실제로 대장암 발생의 원인으로 작용할 수 있는 세균 유래 소포를 동정하였다.In an embodiment of the present invention, metagenome analysis was performed on genes present in bacteria-derived extracellular vesicles in feces of normal people and colorectal cancer patients, and the actual occurrence of colorectal cancer was analyzed at the phylum and genus level, respectively. Bacterial-derived vesicles that can act as the cause of the vesicles were identified.

보다 구체적으로 본 발명의 일 실험예에서는, 대변에 존재하는 세균 유래 소포 메타게놈을 문(phylum) 및 속(genus) 수준에서 분석한 결과, 퍼미쿠테스(Firmicutes) 및 프로테오박테리아(Proteobacteria) 문(phylum) 세균 유래 세포밖 소포, 및 액티노마이세스(Actinomyces), 비피도박테리움(Bifidobacterium), 로티아(Rothia), 프로피오니박테리움(Propionibacterium), 콜린셀라(Collinsella), 박테로이달레스(Bacteroidales) S24-7 그룹 (f), 클로로플라스트(Chloroplast) (o), 블라우티아(Blautia), 라치노클로스트리디움(Lachnoclostridium), 라치노스피라시에(Lachnospiraceae) NK4A136 그룹, 라치노스피라시에(Lachnospiraceae) UCG-008, 도레아(Dorea), 에우박테리움 코프로스타놀리게네스(Eubacterium coprostanoligenes) 그룹, 루미노코카시에(Ruminococcaceae) UCG-002, 루미노코커스(Ruminococcus) 2, 서브돌리그라눌럼(Subdoligranulum), 루미노코카시에(Ruminococcaceae) (f), 루미노코카시에(Ruminococcaceae) UCG-014, 패칼리박테리움(Faecalibacterium), 루미노코카시에(Ruminococcaceae) NK4A214 그룹, 스타필로코커스(Staphylococcus), 카테니박테리움(Catenibacterium), 파르비모나스(Parvimonas), 루미니클로스트리디움(Ruminiclostridium) 5, 메틸로박테리움(Methylobacterium), 솔라늄 멜로게나(Solanum Melongena), 스핑고모나스(Sphingomonas), 디아포로박터(Diaphorobacter), 에스케리치아-시겔라(Escherichia-shigella), 프로테우스(Proteus), 슈도모나스(Pseudomonas), 엔테로박터(Enterobacter), 사카리박테리아(Saccharibacteria) (p), 및 몰리쿠테스(Mollicutes) RF9 (o) 속(genus) 세균 유래 소포가 대장암환자와 정상인 사이에 유의한 차이가 있었다(실험예 1 참조).More specifically, in an experimental example of the present invention, as a result of analyzing the vesicle metagenome derived from bacteria present in feces at the phylum and genus level, Firmicutes and Proteobacteria phylum (phylum) germ cells derived from outside the package, and the liquid Martino My process (Actinomyces), Bifidobacterium (Bifidobacterium), Loti Ah (Rothia), propynyl sludge tumefaciens (Propionibacterium), choline Cellar (Collinsella), night interrogating two months less ( Bacteroidales ) S24-7 group (f), Chloroplast (o), Blautia ( Blautia ), Lachnoclostridium ( Lachnoclostridium ), Lachnospiraceae ( Lachnospiraceae ) NK4A136 group, Lachino Spiraceae ( Lachnospiraceae ) UCG-008, Dorea ( Dorea ), Eubacterium coprostanoligenes group, Ruminococcaceae UCG-002, Ruminococcus 2 , Subdoligranulum , Ruminococcaceae (f), Ruminococcaceae UCG-014, Faecalibacterium , Ruminococcaceae NK4A214 group, Staphylococcus (Staphylococcus), car'll tumefaciens (Catenibacterium), Parr ratio Pseudomonas (Parvimonas), Rumi Nicklaus tree Stadium (Ruminiclostridium) tumefaciens (Methylobacterium), Solar titanium Mello dehydrogenase (Solanum Melongena) to 5, methyl, Sphingomonas ( Sphingomonas ), Diaphorobacter ( Diaphorobacter ), Escherichia-Siegel Ra ( Escherichia-shigella ), Proteus ( Proteus ), Pseudomonas ( Pseudomonas ), Enterobacter ( Enterobacter ), Saccharibacteria (p), and Mollicutes ) from RF9 (o) genus bacteria There was a significant difference between the vesicles and colorectal cancer patients (see Experimental Example 1).

또한, 본 발명의 실시예에서는 정상인 및 대장암환자의 대변 내 세균 유래 세포밖 소포에 대해 gas chromatography time-of-flight mass spectrometry 분석을 이용하여 대사물질을 분석하였다.In addition, in the embodiment of the present invention, metabolites were analyzed using gas chromatography time-of-flight mass spectrometry analysis for bacteria-derived extracellular vesicles in the feces of normal persons and colorectal cancer patients.

보다 구체적으로 본 발명의 일 실험예에서는 정상인 및 대장암 환자의 대변 내 세균 유래 세포밖 소포에서 대사물질을 분석한 결과, 류신(Leucine), 이소류신(Isoleucine), 알라닌(Alanine), 리신(Lysine), 티라민(Tyramine), 아미노이소부티르산(Aminoisobutyric acid), 에탄올아민(Ethanolamine), 페놀(Phenol), 퓨로산(Furoic acid), 숙신산(Succinic acid), 옥살산(Oxalic acid), 부탄산(Butanoic acid), 헥산산(Hexanoic acid), 팔미트산(Palmitic acid), 및 올레산(Oleic acid)의 함량이 대장암 환자와 정상인 사이에 유의한 차이가 있었다(실험예 2 참조).More specifically, in an experimental example of the present invention, as a result of analyzing the metabolites in the bacteria-derived extracellular vesicles in the feces of normal people and colorectal cancer patients, leucine, isoleucine, alanine, lysine) , Tyramine, Aminoisobutyric acid, Ethanolamine, Phenol, Furoic acid, Succinic acid, Oxalic acid, Butanoic acid The contents of , hexanoic acid, palmitic acid, and oleic acid were significantly different between colorectal cancer patients and normal people (see Experimental Example 2).

가스 크로마토그래피 질량 분석(gas chromatography mass spectrometry, GC-MS)을 사용한 소분자 분석은 암 발달과 장내 미생물군집을 연결시키는데 사용될 수 있다. 본 발명의 일 실험예에서는 특히 GC-MS로 대장암 환자에서 상향 조절된 아미노산 집단을 확인하였으며, 강화된 아미노산 수준은 대장암 위험과 밀접한 관련이 있었다. 이의 원인으로는 오랫동안 대장암의 가장 중요한 생활 습관 위험 요소로 여겨져 왔던 고단백 섭취와 같은 식이 습관의 변화; 암 환자의 영양소 흡수를 감소시키는 염증; 대장암 환자의 원위 결장 내 박테리아를 발효시켜 음식물의 단백질의 분해로 대변 내 아미노산 대사물 수치가 높아짐 등이 있다. Small molecule analysis using gas chromatography mass spectrometry (GC-MS) can be used to link cancer development with the gut microbiome. In an experimental example of the present invention, an up-regulated amino acid group was identified in colorectal cancer patients by GC-MS, and the enhanced amino acid level was closely related to the colorectal cancer risk. Causes include changes in dietary habits, such as high protein intake, which have long been considered the most important lifestyle risk factor for colorectal cancer; inflammation that reduces nutrient absorption in cancer patients; Fermentation of bacteria in the distal colon of colorectal cancer patients causes the breakdown of protein in food, resulting in elevated levels of amino acid metabolites in feces.

본 발명의 일 실험예에서는 Pearson rank 연관성 분석을 통해 장내 미생물군집과 특정 대사물질 사이의 상관관계를 확인한 결과, 대부분의 대사물질의 함량이 Firmicutes 문(phylum) 세균들과 양의 상관 관계가 있었으며, Proteobacteria 문(phylum) 세균과는 음의 상관관계가 있었다(실험예 3 참조).In an experimental example of the present invention, as a result of confirming the correlation between the intestinal microbiome and specific metabolites through Pearson rank association analysis, the content of most metabolites had a positive correlation with the Firmicutes phylum bacteria, There was a negative correlation with bacteria of the phylum Proteobacteria (see Experimental Example 3).

Firmicutes는 에너지 재활용을 위해 아미노산을 촉매할 수 있는 반면, Proteobacteria는 소화되지 않는 단백질을 포함한 아미노산을 분해할 수 있다. 상기와 같은 장내 미생물 군집의 변화는 우선적으로 아미노산 대사에 영향을 미친다. 부탄산(Butanoic acid) 및 아미노이소부티르산(Aminoisobutyric acid)을 포함한 단쇄 지방산은 사람의 장에서 잘 확립된 에너지원이다. 이 미생물 대사물질은 숙주 대사 및 면역 반응을 조절하는 역할을 한다. 본 발명에서는 상기 실험예를 통해 식이 관련 단쇄 지방산이 질병을 예방하고 대장암에 대한 치료에 영향을 미치는 것을 증명하였다. Firmicutes can catalyze amino acids for energy recycling, while Proteobacteria can break down amino acids, including indigestible proteins. Such changes in the gut microbiome preferentially affect amino acid metabolism. Short-chain fatty acids, including butanoic acid and aminoisobutyric acid, are well-established energy sources in the human gut. These microbial metabolites play a role in regulating host metabolism and immune responses. In the present invention, through the above experimental examples, it was proved that diet-related short-chain fatty acids prevent disease and have an effect on treatment for colorectal cancer.

본 발명의 일 실험예에서는 이원 로지스틱 회귀(binary logistic regression) 분석을 통해 2가지 대사물질(leucine 및 oxalic acid) 및 2가지 속(genus) 세균(Collinsella Solanum melongena) 유래 세포밖 소포를 대장암 진단을 위한 최적의 바이오마커로 선택하고, 상기 바이오마커들의 조합을 사용하는 경우 단일 오믹스 바이오마커를 사용하는 경우에 비해 진단의 정확도가 높은 것을 확인하였다(실험예 4 참조).In an experimental example of the present invention, two metabolites (leucine and oxalic acid) and two genus bacteria ( Collinsella and Solanum melongena )-derived extracellular vesicles were diagnosed with colorectal cancer through binary logistic regression analysis was selected as an optimal biomarker for , and it was confirmed that when a combination of the biomarkers was used, the diagnosis accuracy was higher than when a single omics biomarker was used (see Experimental Example 4).

본 발명은 상기와 같은 실험예 결과를 통해, 대변으로부터 분리한 세균 유래 세포밖 소포에 대하여 메타게놈 분석을 실시함으로써 정상인 및 대장암 환자에서 세균 유래 세포밖 소포들의 함량 증감을 분석하고, 세포밖 소포에서 대사물질의 함량 증감을 분석함으로써 대장암을 진단할 수 있음을 확인하였다. 또한, 세균 유래 세포밖 소포에서 세균 및 대사물질 간의 연관성을 확인하여 장내 미생물 변화가 대사물질, 특히 아미노산의 대사를 변화시킬 수 있음을 알 수 있었으며, 상기 세균 유래 세포밖 소포 및 대사물질 바이오마커를 조합하여 두 가지 오믹스 바이오마커를 사용할 경우 대장암 진단의 정확도를 높일 수 있음을 확인하였다.The present invention analyzes the increase or decrease in the content of bacteria-derived extracellular vesicles in normal persons and colorectal cancer patients by performing metagenome analysis on bacterial-derived extracellular vesicles isolated from feces through the results of Experimental Examples as described above, and extracellular vesicles It was confirmed that colorectal cancer can be diagnosed by analyzing the increase or decrease in the content of metabolites. In addition, by confirming the association between bacteria and metabolites in bacteria-derived extracellular vesicles, it was found that changes in the intestinal microflora can change the metabolism of metabolites, particularly amino acids, and the bacteria-derived extracellular vesicles and metabolite biomarkers It was confirmed that the accuracy of colorectal cancer diagnosis can be improved when two omics biomarkers are used in combination.

본원 명세서 전체에서, 어떤 부분이 어떤 구성 요소를 “포함” 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성 요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다. 본원 명세서 전체에서 사용되는 정도의 용어 “~(하는) 단계” 또는 “~의 단계”는 “~ 를 위한 단계”를 의미하지 않는다.Throughout this specification, when a part "includes" a component, it means that other components may be further included, rather than excluding other components, unless otherwise stated. As used throughout this specification, the term “step of (to)” or “step of” does not mean “step for”.

이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 하기 실시예에 의해 본 발명의 내용이 한정되는 것은 아니다.Hereinafter, preferred examples are presented to help the understanding of the present invention. However, the following examples are only provided for easier understanding of the present invention, and the contents of the present invention are not limited by the following examples.

[실시예][Example]

실시예 1. 연구 개체Example 1. Study Subjects

서울대학교 분당 병원과 중앙대학교 병원에서 대장암 환자 32명과 해운대 백병원에서 건강한 대조군(이하, 정상인) 40명이 2016년 4월부터 2018년 4월까지 참여하였다. 대장암 환자는 2013년 국제암연합(International Union Against Cancer) 및 미국 암연합위원회(American Joint Committee on Cancer)에서 제시한 진단 기준에 따라 처음 진단받았다. 환자들은 나이, 성별, 병기, 종양 위치, 및 암배아성 항원(carcinoembryonic antigen, CEA) 검사와 같은 환자 특성을 검사받았으며, 건강한 피험자는 정기적인 건강 검진을 위해 병원을 방문하였다. 검진 후, 알려진 질병이없고 실험실 테스트 결과 정상인 것으로 확인된 건강한 대조군을 선택하였다. 건강한 대조군에 대한 제외 기준에는 장 질환 진단, 장 질환 치료제 복용 및 이전 대장암 진단이 포함되었다. 건강한 대조군의 경우, 연령, 성별 및 병력을 포함한 일반적인 특징이 기록되었다. 환자 및 건강한 대조군의 제외 기준은 수술 직후 대장암 재발, 화학요법, 대장암의 합병증으로 인한 다른 암이나 대사성 질환, 또는 샘플 채취 1 개월 이내의 항생제 치료가 포함되었다. 본 발명의 실험은 서울대학교 분당 병원 임상 시험위원회 (IRB No. B-1708/412-301) 및 해운대 백병원 (IRB No. 129792-2015-064)의 승인을 받아 진행하였으며, 모든 피검자로부터 정보 제공 동의를 얻었다.From April 2016 to April 2018, 32 colorectal cancer patients from Seoul National University Bundang Hospital and Chung-Ang University Hospital and 40 healthy controls (hereafter, normal persons) from Haeundae Paik Hospital participated. A colorectal cancer patient was first diagnosed in 2013 according to the diagnostic criteria presented by the International Union Against Cancer and the American Joint Committee on Cancer. Patients were screened for patient characteristics such as age, sex, stage, tumor location, and carcinoembryonic antigen (CEA) testing, and healthy subjects visited the hospital for regular health check-ups. After screening, a healthy control group with no known disease and normal laboratory test results was selected. Exclusion criteria for healthy controls included a diagnosis of intestinal disease, taking a treatment for intestinal disease, and a previous diagnosis of colorectal cancer. For healthy controls, general characteristics including age, sex and medical history were recorded. Exclusion criteria for patients and healthy controls included colorectal cancer recurrence immediately after surgery, chemotherapy, other cancers or metabolic diseases due to complications of colorectal cancer, or antibiotic treatment within 1 month of sample collection. The experiment of the present invention was conducted with the approval of the Seoul National University Bundang Hospital Clinical Trial Committee (IRB No. B-1708/412-301) and Haeundae Paik Hospital (IRB No. 129792-2015-064), and informed consent from all subjects got

실시예 2. 샘플 채취 및 세포밖 소포(EV) 분리Example 2. Sampling and Extracellular Vesicle (EV) Isolation

대변 샘플은 수술 또는 장 세척 전에 채취하였으며, 모든 피검자는 샘플을 채취하기 1 일 전에는 부드러운 음식을 섭취하고 금연, 금주하였다. 대변 샘플은 멸균된 면봉을 사용하여 대변의 중앙에서 수집하여 -20℃에서 보관하였으며, 대변 샘플로부터 세균의 세포밖 소포를 분리하기 전에, 대변 샘플(1g)을 10mL의 인산염 완충 식염수(PBS)로 유화시킨 다음 24시간 동안 진동시켰다. 그런 다음 인간 대변에서 세포밖 소포를 분리하기 위해 샘플을 배양하였으며, 대변 샘플의 세포밖 소포는 4 ℃에서 10분 동안 10,000 x g로 분획원심분리를 사용하여 분리하였다. 상층액에 함유된 세균(bacteria) 및 이물질은 직경이 0.22μm인 필터로 여과하여 완전히 제거하였다.Stool samples were collected before surgery or bowel lavage, and all subjects ate soft food, smoked, and abstained from alcohol 1 day before sample collection. A stool sample was collected from the center of the stool using a sterile cotton swab and stored at -20°C. Before isolating bacterial extracellular vesicles from the stool sample, the stool sample (1 g) was washed with 10 mL of phosphate-buffered saline (PBS). After emulsification, it was shaken for 24 hours. Then, samples were incubated to isolate extracellular vesicles from human feces, and extracellular vesicles from fecal samples were isolated using fractional centrifugation at 10,000 x g for 10 min at 4 °C. Bacteria and foreign substances contained in the supernatant were completely removed by filtration with a filter having a diameter of 0.22 μm.

실시예 3. 가스 크로마토그래피를 이용한 질량 분석Example 3. Mass Spectrometry Using Gas Chromatography

냉동한 세포밖 소포(EV) 샘플을 4℃에서 해동시키고 각 50μL의 샘플을 1mL의 acetonitrile : isopropanol : water (3:3:2) 혼합물로 희석시켰다. 그리고 나서 상기 혼합된 샘플을 5분간 교반한 후 4℃에서 18,341 x g로 5분 동안 원심 분리하였다. 그 후, 400μL의 상층액을 증발시켜 실온에서 완전히 건조시키고 50% acetonitrile을 이용하여 400μL로 재구성하였다. 상기와 같이 원심분리를 반복한 후 상층액을 증발시키고 피리딘(pyridine)에 녹인 메톡시아민(methoxyamine) 10μL로 재구성하였으며, 90분간 흔드는 동안 30℃를 유지시켜 주었다. 그런 다음 샘플을 실온으로 냉각시킨 후, MSTFA (N-Methyl-N-(trimethylsilyl) trifluoroacetamide) 및 FAME (fatty acid methyl esters)의 혼합물 90μL를 각각의 실험 샘플 및 혼합 품질관리 샘플에 첨가하였다. 이후 70℃에서 56분 동안 진탕 배양하고 샘플을 glass inserts로 autosampler 병에 옮겼다. 그 다음, 이를 Pegasus HT time-of-flight 질량 분석기 (Leco Corporation, St. Joseph, MI)에 연결된 Agilent 7890A 가스 크로마토그래프에 주입하였다. Frozen extracellular vesicle (EV) samples were thawed at 4°C, and 50 μL of each sample was diluted with 1 mL of an acetonitrile : isopropanol : water (3:3:2) mixture. Then, the mixed sample was stirred for 5 minutes and then centrifuged for 5 minutes at 18,341 x g at 4°C. Thereafter, 400 μL of the supernatant was evaporated, dried completely at room temperature, and reconstituted to 400 μL using 50% acetonitrile. After repeating the centrifugation as described above, the supernatant was evaporated and reconstituted with 10 μL of methoxyamine dissolved in pyridine, and maintained at 30° C. while shaking for 90 minutes. Then, after the samples were cooled to room temperature, 90 μL of a mixture of MSTFA ( N -Methyl- N -(trimethylsilyl) trifluoroacetamide) and FAME (fatty acid methyl esters) was added to each experimental sample and mixed quality control sample. Then, incubated with shaking at 70°C for 56 minutes, and the samples were transferred to an autosampler bottle with glass inserts. It was then injected into an Agilent 7890A gas chromatograph connected to a Pegasus HT time-of-flight mass spectrometer (Leco Corporation, St. Joseph, MI).

실시예 4. DNA 추출 및 시퀀싱Example 4. DNA Extraction and Sequencing

세균의 세포밖 소포 막으로부터 DNA를 추출하기 위해, 세균의 세포밖 소포를 40분간 100℃에서 끓였고, 남아있는 부유 입자 및 폐기물을 제거하기 위해 4℃에서 13,000rpm으로 30분 동안 원심분리한 후 상층액을 수득하였다. DNA는 Dneasy PowerSoil kit (QIAGEN, Germany)를 사용하여 추출하였으며, 표준 프로토콜은 키트 안내서에 따라 수행하였다. QIAxpert 시스템 (QIAGEN, Germany)을 사용하여 각 샘플에서 세균의 세포밖 소포로부터 DNA를 정량화하였고, 세균의 게놈 DNA는 16S rDNA 유전자의 V3-V4 초가변 영역에 특이적인 16S_V3_F (5′ -TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNGGCWGCAG -3′; 서열번호 1) 및 16S_V4_R (5′ -GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACTACHVGGGTATCTAATCC -3′; 서열번호 2) 프라이머로 증폭시켰다. 라이브러리는 MiSeq 시스템 가이드 (Illumina, USA)에 따라 PCR 생성물을 사용하여 준비하였으며, 각각의 앰플리콘(amplicon)을 정량하고 등몰비로 설정하고 혼합하였으며, 제조사의 지시에 따라 MiSeq 플랫폼 (Illumina, USA)상에서 서열을 분석하였다.To extract DNA from the bacterial extracellular vesicle membrane, bacterial extracellular vesicles were boiled at 100 °C for 40 minutes, and centrifuged at 4 °C at 13,000 rpm for 30 minutes to remove remaining suspended particles and waste. A supernatant was obtained. DNA was extracted using the Dneasy PowerSoil kit (QIAGEN, Germany), and standard protocols were performed according to the kit guide. DNA from bacterial extracellular vesicles in each sample was quantified using the QIAxpert system (QIAGEN, Germany), and bacterial genomic DNA was identified as 16S_V3_F (5′-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNGGCWGCAG -3 for the V3-V4 hypervariable region of the 16S rDNA gene). '; SEQ ID NO: 1) and 16S_V4_R (5' -GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACTACHVGGGTATCTAATCC -3'; SEQ ID NO: 2) was amplified with primers. Libraries were prepared using PCR products according to the MiSeq system guide (Illumina, USA), each amplicon was quantified, set to an equimolar ratio, and mixed, and the MiSeq platform (Illumina, USA) according to the manufacturer's instructions. sequence was analyzed on the

실시예 5. 생물정보학Example 5. Bioinformatics

어댑터 시퀀스를 매치하는 Paired-end reads는 cutadapt 1.1.6 버전에 의해 트리밍되었다. 그 결과로 Paired-end reads를 포함하는 FASTQ 파일은 CASPER와 병합되고, Bokulich에 의해 설명된 표준을 기반으로 한 Phred(Q) 점수로 품질이 필터링되었다. 병합 후 350bp보다 짧거나 550bp보다 더 긴 리드(read) 또한 제거하였다. 키메릭 서열(chimeric sequence)을 확인하기 위해, 참조 기반 키메라 검출 단계는 SILVA gold 데이터베이스에 반하여 VSEARCH로 수행하였다. 그 다음, 서열 판독은 97% 서열 유사성의 임계치 하에서 de novo 클러스터링(clustering) 알고리즘으로 VSEARCH를 사용하여 Operational Taxonamic Units (OTU)로 클러스터링 하였으며, 하나의 샘플에 하나의 서열을 포함하는 OTU는 추후 분석에서 제외되었다. OTU의 대표적인 서열은 최종적으로 UCLUST (script on QIIME version 1.9.1)를 갖는 SILVA 128 데이터베이스를 사용하여 분류하였으며, 총 카운트(total count) 방법을 사용하여 데이터 세트에 정규화(normalization)를 적용하였다. 각각의 taxa 풍부도(richness)를 평가할 수 있는 Chao 지수는 각 샘플의 알파 다양성을 측정하는 것으로 추측되었다. 진단 모델에 포함되기 위한 메타게놈(metagenome) 바이오마커의 선택은 속(genus) 수준에서 상대 존재비(relative abundance)에 기초하였다. Wilcoxon 테스트에 의해 결정된 FDR (false discovery rate)-조정된 p-value의 기준, 폴드-체인지(fold-changes) 및 평균 상대 존재비는 임의의 그룹에서 각각 0.05 미만, 2 배 초과 및 0.5 % 초과였다. 또한, 조정된 p-value가 0.05 미만이고 2배를 초과하여 변화한 대사체 바이오마커를 선택하였다. 모든 진단 모델은 80:20 비율로 무작위로 선택된 트레이닝(training) 및 테스트(test) 세트로 단계적 선택 방법을 사용하여 Akaike 정보 기준을 기반으로 하는 로지스틱 회귀 분석(logistic regression)으로 계산되었다. AUC, 민감도, 특이도, 및 정확도와 같은 성능 값은 밸리데이션(validation) 세트를 사용하여 보고되었다. 로지스틱 회귀 모델은 메타게놈 및 대사체 바이오마커로부터 각각의 오믹스(omics) 데이터를 사용하여 개발되었고, 이의 정확도는 메타게놈 및 대사체 바이오마커의 결합 모델과 비교되어 정상인으로부터 암을 구별하였다.Paired-end reads matching adapter sequences were trimmed by cutadapt version 1.1.6. As a result, FASTQ files containing paired-end reads were merged with CASPER and quality filtered by Phred(Q) scores based on the criteria described by Bokulich. Reads shorter than 350 bp or longer than 550 bp after merging were also removed. To confirm the chimeric sequence, the reference-based chimera detection step was performed with VSEARCH against the SILVA gold database. Then, sequence reads were clustered into Operational Taxonamic Units (OTUs) using VSEARCH with a de novo clustering algorithm under a threshold of 97% sequence similarity, and OTUs containing one sequence in one sample were analyzed later. excluded. Representative sequences of OTU were finally classified using the SILVA 128 database with UCLUST (script on QIIME version 1.9.1), and normalization was applied to the data set using the total count method. The Chao index, which can evaluate the richness of each taxa, was assumed to measure the alpha diversity of each sample. The selection of metagenome biomarkers for inclusion in the diagnostic model was based on relative abundance at the genus level. Baseline, fold-changes, and mean relative abundances of false discovery rate (FDR)-adjusted p-values determined by Wilcoxon test were less than 0.05, greater than 2-fold and greater than 0.5%, respectively, in any group. In addition, metabolite biomarkers with an adjusted p-value of less than 0.05 and a more than 2-fold change were selected. All diagnostic models were calculated by logistic regression based on the Akaike information criterion using a stepwise selection method with training and test sets randomly selected in an 80:20 ratio. Performance values such as AUC, sensitivity, specificity, and accuracy were reported using a validation set. A logistic regression model was developed using respective omics data from metagenomic and metabolite biomarkers, and its accuracy was compared with binding models of metagenomic and metabolite biomarkers to distinguish cancer from normal subjects.

실시예 6. 대사체학적 데이터에 대한 통계Example 6. Statistics on Metabolomic Data

Metaboanalyst 4.0을 사용하여 다변량(multivariate) 및 단변량(univariate) 분석을 실시하였으며, 로그 변환(log transformation) 및 파레토 스케일링(pareto scaling)을 사용하여 정규화된 데이터 세트를 분석하고 principal component analysis (PCA)를 수행하여 그룹 간의 전체 대사물질 프로파일의 차별화 여부를 조사하였다. FDR (false discovery rate)-조정된 p-value를 사용하여 단변량 분석을 통해 대사물질 후보를 선택하였다. 정상인 및 대장암(CRC) 환자군 사이의 유의한 차이는 연속 변수에 대한 Wilcoxon 테스트를 사용하여 결정되었으며, p-value가 0.05 미만일 경우 결과는 유의한 것으로 간주하였다. Multivariate and univariate analyzes were performed using Metaboanalyst 4.0, normalized data sets were analyzed using log transformations and Pareto scaling, and principal component analysis (PCA) was performed. was performed to investigate whether the overall metabolite profile was differentiated between groups. Metabolite candidates were selected through univariate analysis using false discovery rate (FDR)-adjusted p-values. Significant differences between normal and colorectal cancer (CRC) patients were determined using Wilcoxon's test for continuous variables, and results were considered significant if the p-value was less than 0.05.

실시예 7. 통계적 분석Example 7. Statistical Analysis

풍부도(richness) 및 균등도(evenness)에 대한 미생물 조성의 알파 다양성은 정상인과 대장암 환자군 사이에서 샘플의 종 다양성을 비교하기 위해, Chao1 지수와 Shannon 지수를 사용하여 측정하였다. 베타 다양성에 대한 Bray-Curtis 유사성 기반 주요 좌표 분석(Principal coordinate analysis, PCoA)을 사용하여 샘플 간의 관계를 시각화하였으며, 모든 통계 분석은 R version 3.5.1을 사용하여 수행하였다.Alpha diversity of microbial composition for richness and evenness was measured using Chao1 index and Shannon index to compare the species diversity of samples between normal and colorectal cancer patients. Relationships between samples were visualized using Bray-Curtis similarity-based principal coordinate analysis (PCoA) for beta diversity, and all statistical analyzes were performed using R version 3.5.1.

[실험예] [Experimental example]

실험예 1. 대장암 환자 및 정상인 대변 샘플에서 미생물 유래 세포밖 소포의 메타게놈 분석Experimental Example 1. Metagenomic analysis of extracellular vesicles derived from microorganisms in stool samples from colorectal cancer patients and normal people

대장암 환자 및 정상인으로부터 대변 유래 세포밖 소포의 미생물 조성을 조사하기 위해 16S rDNA 앰플리콘(amplicon) 시퀀싱을 기반으로 메타게놈(유전체) 분석을 수행하였으며, 상기 실시예 4에서와 같이 16S rDNA V3 및 V4 영역에 대한 시퀀싱 데이터를 사용하여 샘플당 10,000 리드의 rarefaction 정도를 분석하였다. To investigate the microbial composition of fecal extracellular vesicles from colorectal cancer patients and normal persons, metagenome (genomic) analysis was performed based on 16S rDNA amplicon sequencing, and 16S rDNA V3 and V4 as in Example 4 above. The degree of rarefaction of 10,000 reads per sample was analyzed using the sequencing data for the region.

도 1a는 대장암 환자 및 정상인의 알파(alpha) 다양성을 비교한 결과를 나타낸 것으로, Chao1과 Shannon 지수에 기초하였을 때 유의한 차이는 나타나지 않았다. 박스 내 위스커(whiskers)는 특이값(outlier)을 제외하고 모집단 내의 최소 및 최대 알파 다양성 값의 범위를 나타낸다. Figure 1a shows the results of comparing the alpha (alpha) diversity of colorectal cancer patients and normal people, based on the Chao1 and Shannon index did not show a significant difference. Whiskers in boxes represent the range of minimum and maximum alpha diversity values within a population, excluding outliers.

도 1b는 주요 좌표 분석(principal coordinate analysis, pCoA)을 통해 문(phylum) 및 속(genus) 수준에서의 베타(beta) 다양성을 나타낸 것으로, 붉은색 원은 정상인, 푸른색 원은 대장암 환자를 나타낸다. 베타 다양성 확인 결과, 속(genus) 수준에서의 베타 다양성의 비교는 문(phylum) 수준 클러스터(cluster)와 비교하여 그룹 간의 명확한 분리를 나타내었다.Figure 1b shows the beta (beta) diversity at the phylum and genus level through principal coordinate analysis (pCoA), the red circle is normal, the blue circle is colorectal cancer patients indicates. As a result of confirming beta diversity, comparison of beta diversity at the genus level showed clear separation between groups compared to the phylum level cluster.

또한, 히트 맵(Heat maps)을 이용하여 문(phylum)(도 2a) 및 속(genus)(도 2c) 수준에서 미생물 빈도(abundance)의 상대적인 변화를 시각화하여 도 2a 및 2c에 나타내었다.In addition, the relative changes in the microbial abundance at the phylum (Fig. 2a) and genus (Fig. 2c) level were visualized using heat maps and shown in Figs. 2a and 2c.

히트 맵은 대장암 환자 및 정상인에서 문(phylum) 수준 및 속(genus) 수준에서의 상대 빈도(relative abundance)를 나타낸다. 빈도 값이 0에 가까운 세포는 밝은 파란색으로 표시되고, 0.5보다 큰 세포는 어두운 파란색으로 표시된다. 총 빈도는 1이다. The heat map shows the relative abundance at the phylum level and the genus level in colorectal cancer patients and normal persons. Cells with a frequency value close to 0 are displayed in light blue, and cells with a frequency value greater than 0.5 are displayed in dark blue. The total frequency is 1.

도 2b 및 2d에 나타낸 막대 그래프는 대장암 환자 및 정상인의 문(phylum)(도 2b) 수준 및 속(genus)(도 2d) 수준에서의 비교에 기초하여 통계적으로 유의한 미생물 조성을 나타낸다. 회색 막대는 대장암 환자의 상대 빈도를 나타내고 검은 막대는 정상인의 상대 빈도를 나타낸다(대장암 환자 및 정상인 사이에서 **p<0.05, ***p<0.01).The bar graphs shown in FIGS. 2B and 2D show statistically significant microbial composition based on comparisons at phylum ( FIG. 2B ) level and genus ( FIG. 2D ) level of colorectal cancer patients and normal individuals. The gray bar represents the relative frequency of colorectal cancer patients and the black bar represents the relative frequency of normal people (**p<0.05, ***p<0.01 between colon cancer patients and normal people).

도 2b에 나타낸 바와 같이 문(phylum) 수준의 비교에서 대장암 환자에서는 Firmicutes가 유의적으로 증가한 반면, Proteobacteria는 감소하였으며, 정상인과 비교하여 대장암 환자의 속(genus) 수준에서 변화한 미생물 조성을 도 2d에서 막대 그래프로 나타내었다. 상기 데이터에 대한 자세한 기록은 하기 표 1에 나타내었다. As shown in Figure 2b, in the comparison of the phylum level, Firmicutes was significantly increased in colorectal cancer patients, whereas Proteobacteria was decreased. It is shown as a bar graph in 2d. A detailed record of the data is shown in Table 1 below.

문(phylum)phylum 속(genus)genus 정상인의 MAV (mean abundance value)
(%)
MAV (mean abundance value) of normal people
(%)
대장암 환자의 MAV
(%)
MAV in colorectal cancer patients
(%)
Log2
(Fold-change)
Log2
(Fold-change)
P-value
(Wilcoxon)
P-value
(Wilcoxon)
FDR adjusted p-value
(Wilcoxon)
FDR adjusted p-value
(Wilcoxon)
regulationregulation
ActinobacteriaActinobacteria ActinomycesActinomyces 0.6460.646 0.0530.053 -3.613-3.613 00 0.0010.001 DownDown BifidobacteriumBifidobacterium 0.8710.871 1.8321.832 1.0731.073 0.0010.001 0.0140.014 UpUp RothiaRothia 0.5330.533 0.0160.016 -5.099-5.099 00 00 DownDown PropionibacteriumPropionibacterium 0.6850.685 0.1640.164 -2.061-2.061 00 00 DownDown CollinsellaCollinsella 0.0650.065 0.9530.953 3.883.88 00 00 UpUp BacteroidetesBacteroidetes Bacteroidales S24-7Bacteroidales S24-7
group (f)group (f)
0.610.61 0.4910.491 -0.313-0.313 0.0030.003 0.0310.031 DownDown
CyanobacteriaCyanobacteria Chloroplast (o)Chloroplast (o) 0.5070.507 0.0590.059 -3.104-3.104 00 00 DownDown FirmicutesFirmicutes BlautiaBlautia 0.1870.187 0.5990.599 1.6771.677 00 00 UpUp LachnoclostridiumLachnoclostridium 0.0960.096 0.740.74 2.9432.943 00 00 UpUp LachnospiraceaeNK4A136 groupLachnospiraceaeNK4A136 group 0.5610.561 0.170.17 -1.718-1.718 0.0020.002 0.0190.019 DownDown LachnospiraceaeUCG-008LachnospiraceaeUCG-008 0.5910.591 1.0691.069 0.8550.855 00 00 UpUp DoreaDorea 0.450.45 0.510.51 0.1810.181 00 0.0080.008 UpUp [Eubacterium]coprostanoligenes[Eubacterium]coprostanoligenes
groupgroup
1.3321.332 5.6965.696 2.0962.096 00 00 UpUp
RuminococcaceaeUCG-002RuminococcaceaeUCG-002 0.4840.484 2.182.18 2.1712.171 00 0.0020.002 UpUp Ruminococcus 2Ruminococcus 2 0.530.53 2.3292.329 2.1362.136 00 0.0020.002 UpUp SubdoligranulumSubdoligranulum 0.5620.562 2.4082.408 2.0992.099 00 00 UpUp Ruminococcaceae(f)Ruminococcaceae (f) 0.3170.317 1.1871.187 1.9051.905 00 00 UpUp RuminococcaceaeUCG-014RuminococcaceaeUCG-014 1.0981.098 0.7060.706 -0.638-0.638 00 0.0040.004 DownDown FaecalibacteriumFaecalibacterium 4.6244.624 11.97411.974 1.3731.373 00 0.0030.003 UpUp RuminococcaceaeNK4A214 groupRuminococcaceaeNK4A214 group 0.2090.209 1.0451.045 2.3192.319 0.0010.001 0.0090.009 UpUp StaphylococcusStaphylococcus 0.8190.819 0.410.41 -0.998-0.998 0.0030.003 0.0330.033 DownDown CatenibacteriumCatnibacterium 0.0410.041 0.7290.729 4.1614.161 00 00 UpUp ParvimonasParvimonas 0.0280.028 0.8120.812 4.844.84 0.0010.001 0.0130.013 UpUp Ruminiclostridium 5Ruminiclostridium 5 0.0830.083 0.5270.527 2.6722.672 0.0010.001 0.010.01 UpUp ProteobacteriaProteobacteria MethylobacteriumMethylobacterium 2.8462.846 0.0270.027 -6.743-6.743 00 0.0070.007 DownDown Solanum melongena (eggplant)Solanum melongena (eggplant) 1.0461.046 0.1410.141 -2.887-2.887 00 00 DownDown SphingomonasSphinomonas 0.5480.548 0.1720.172 -1.674-1.674 00 00 DownDown DiaphorobacterDiaphorobacter 00 0.9740.974 12.39712.397 00 0.0010.001 UpUp Escherichia-ShigellaEscherichia-Shigella 3.4273.427 0.8710.871 -1.975-1.975 00 00 DownDown ProteusProteus 1.1691.169 00 <<<< 00 00 DownDown PseudomonasPseudomonas 2.9132.913 0.2420.242 -3.589-3.589 00 00 DownDown EnterobacterEnterobacter 0.1580.158 0.8160.816 2.372.37 0.0040.004 0.0350.035 UpUp SaccharibacteriaSaccaribacteria Saccharibacteria (p)Saccaribacteria (p) 0.540.54 0.1320.132 -2.029-2.029 0.0010.001 0.0170.017 DownDown TenericutesTenericutes Mollicutes RF9 (o)Mollicutes RF9 (o) 2.0532.053 0.2080.208 -3.304-3.304 0.0010.001 0.0110.011 DownDown

표 1에 나타낸 바와 같이, 대장암과 정상인 사이에 34개의 속(genus) 세균에서 유의한 차이가 관찰되었다. 그 중 Actinomyces, Rothia, Propionibacterium, Bacteroidiales S24-7 group (f), Chloroplast (o), Lachnospiraceae NK4A136 group, Ruminococcaceae UCG-014, Staphylococcus, Methylobacterium, Solanum melongena, Sphingomonas, Escherichia-shigella, Proteus, Pseudomonas, Saccharibacteria (p), Mollicutes RF9 (o) 속(genus) 세균의 비율은 정상인과 비교하여 대장암 환자에서 감소한 반면(p<0.05), Bifidobacterium, Collinsella, Blautia, Lachnoclostridium, Lachnospiraceae UCG-008, Dorea, Eubacterium coprostanoligenes group, Ruminococcus 2, Faecalibacterium, Ruminococcaceae NK4A214 group, Ruminococcaceae UCG-002, Subdoligranulum, Ruminococcaceae (f), Catenibacterium, Parvimonas, Ruminiclostridium 5, Enterobacter, 및 Diaphorobacter 속(genus) 세균의 비율은 유의적으로 증가하였다(p<0.05). As shown in Table 1, significant differences were observed in 34 genus bacteria between colon cancer and normal individuals. Among them, Actinomyces, Rothia, Propionibacterium, Bacteroidiales S24-7 group (f), Chloroplast (o), Lachnospiraceae NK4A136 group, Ruminococcaceae UCG-014, Staphylococcus, Methylobacterium, Solanum melongena, Sphingomonas, Escherichia-shigella, Proteus, Pseudomonas, Saccharibacteria ( p) , And Mollicutes RF9 (o) in (genus) ratio of the bacteria, whereas in comparison to normal subjects decreased in colon cancer patients (p <0.05), Bifidobacterium, Collinsella, Blautia, Lachnoclostridium, Lachnospiraceae UCG-008, Dorea, Eubacterium coprostanoligenes group, Ruminococcus 2 , Faecalibacterium , Ruminococcaceae NK4A214 group , Ruminococcaceae UCG-002 , Subdoligranulum , Ruminococcaceae (f) , Catenibacterium , Parvimonas , Ruminiclostridium 5 , Enterobacter , and Diaphorobacter genus (genus) were significantly increased (genus).

특히, Firmicutes의 경우, Lachnospiraceae NK4A136 group, Ruminococcaceae UCG-014, 및 Staphylococcus의 조성을 제외하고는 모두 대장암 환자에서 증가하였으며, Proteobacteria의 경우, DiaphorobacterEnterobacter를 제외하고 모두 대장암 환자에서 조성이 감소하였다. 또한, ProteobacteriaProteus spp. 는 대장암 환자에서 눈에 띄게 변화하였고 정상인에는 존재하지 않았다. 대장암 환자 및 정상인에서의 미생물 유래 세포밖 소포의 분류학적 프로파일은 도 3a(phylum)및 3b(genus)에 나타내었다.In particular, in the case of Firmicutes , except for the composition of Lachnospiraceae NK4A136 group , Ruminococcaceae UCG-014 , and Staphylococcus , all were increased in colorectal cancer patients, and in the case of Proteobacteria , the composition decreased in all colorectal cancer patients except for Diaphorobacter and Enterobacter. In addition, among Proteobacteria , Proteus spp. was remarkably changed in colorectal cancer patients and was not present in normal individuals. Taxonomic profiles of microbial-derived extracellular vesicles in colorectal cancer patients and normal individuals are shown in FIGS. 3a (phylum) and 3b (genus).

도 3a 및 3b는 16S rDNA V3 및 V4 영역 데이터에 대해 수행된 분석 데이터로, 샘플 당 10,000 리드의 rarefaction 정도를 분석하였다. 문(phylum) 수준(도 3a) 및 속(genus) 수준(도 3b)에서 대장암 환자 및 정상인에 대해 상대적인 분류학적 빈도를 표시하였으며, 각 개체는 가로 축을 따라 표시되고 상대적 분류 빈도는 세로 축에 표시된다.3A and 3B are analysis data performed on 16S rDNA V3 and V4 region data, and the degree of rarefaction of 10,000 reads per sample was analyzed. Relative taxonomic frequencies for colorectal cancer patients and normal individuals at the phylum level (Fig. 3a) and genus level (Fig. 3b) are indicated, each subject is shown along the horizontal axis and the relative classification frequency is on the vertical axis. is displayed

실험예 2. 대장암 환자 및 정상인 대변 유래 세포밖 소포의 대사물질 분석Experimental Example 2. Metabolite analysis of extracellular vesicles derived from feces of colorectal cancer patients and normal persons

미생물 유래 세포밖 소포에서 소분자 대사물질의 특성을 평가하기 위해, 상기 실시예 3의 방법으로 가스 크로마토그래피 time-of-flight 질량 분석(gas chromatography time-of-flight mass spectrometry)을 사용하여 글로벌(global) 대사체 분석을 실시한 결과, 도 4a에 나타낸 바와 같이 3차원 PCA 점수 그래프에서 3개의 PC(PC1, PC2, PC3)는 대장암 환자와 정상인의 대사체 프로파일을 명확하게 분리시켰다. To evaluate the properties of small molecule metabolites in microorganism-derived extracellular vesicles, global (global) using gas chromatography time-of-flight mass spectrometry in the method of Example 3 ) As a result of metabolite analysis, the three PCs (PC1, PC2, PC3) clearly separated the metabolite profiles of colorectal cancer patients and normal people in the three-dimensional PCA score graph, as shown in FIG. 4A .

도 4a에서 3차원 주성분 분석(principal component analysis, PCA)의 스코어 플롯(score plot)은 대변 세포밖 소포(EV) 샘플의 대사 패턴을 보여준다. 빨간색 원은 대장암을 나타내고 녹색 원은 정상인을 나타낸다(PC, 주성분(principal component)). A score plot of three-dimensional principal component analysis (PCA) in FIG. 4A shows the metabolic pattern of fecal extracellular vesicle (EV) samples. Red circles indicate colon cancer and green circles indicate normal individuals (PC, principal component).

다변량(multivariate) 분석으로 확인된 대사물질은 FDR에 대해 조정된 p-value인 Q-value에 따라 선택되었다. 통계적으로 유의하게 나타난(Q <0.05) 대사물질을 하기 표 2에 나타내었다.Metabolites identified by multivariate analysis were selected according to the Q-value, a p-value adjusted for FDR. Metabolites that were statistically significant (Q <0.05) are shown in Table 2 below.

도 4b에는 대장암 환자 대 정상인으로부터 차등적으로 축적되는 대사 산물의 PCA 결과로부터 PC1 및 PC2의 로딩 플롯(loading plot)을 나타내었으며, 상기 로딩 플롯은 대장암 환자를 정상인과 효과적으로 구별한 대사체를 보여주었다.Figure 4b shows a loading plot of PC1 and PC2 from the PCA results of metabolites differentially accumulated from colorectal cancer patients versus normal people, and the loading plots show metabolites that effectively differentiated colorectal cancer patients from normal people. showed

MetaboliteMetabolite ClassClass Fold-changefold-change p-valuep-value RegulationRegulation LeucineLeucine Amino acidamino acid 2.4332.433 5.75E-035.75E-03 UpUp IsoleucineIsoleucine 2.1922.192 5.23E-035.23E-03 UpUp AlanineAlanine 1.6671.667 4.31E-024.31E-02 UpUp LysineLysine 1.4411.441 1.48E-021.48E-02 UpUp TyramineTyramine 1.4231.423 1.57E-221.57E-22 UpUp Aminoisobutyric acidAminoisobutyric acid -1.116-1.116 6.66E-036.66E-03 DownDown EthanolamineEthanolamine Amino alcoholAmino alcohol 1.3841.384 4.56E-044.56E-04 UpUp PhenolPhenol Aromatic alcoholAromatic alcohol 1.5891.589 1.99E-121.99E-12 UpUp Furoic acidfuroic acid Carboxylic acidCarboxylic acid 1.4171.417 1.31E-291.31E-29 UpUp Succinic acidsuccinic acid 3.1543.154 4.46E-094.46E-09 UpUp Oxalic acidOxalic acid 1.3961.396 1.66E-031.66E-03 UpUp Butanoic acidButanoic acid Fatty acidFatty acid -1.300-1.300 2.26E-042.26E-04 DownDown Hexanoic acidHexanoic acid 1.3021.302 9.38E-069.38E-06 UpUp Palmitic acidPalmitic acid 1.4361.436 4.37E-254.37E-25 UpUp Oleic acidOleic acid 1.3171.317 3.09E-043.09E-04 UpUp

상기 표 2에 나타낸 대사물질 중 가장 비율이 높은 것은 아미노산이었으며, 대장암 환자에서 대부분 상향 조절되었다. 또한, 알코올 형태(에탄올아민(ethanolamine) 및 페놀(phenol)), 카르복실산(퓨로산(Furoic acid), 숙신산(succinic acid), 및 옥살산(oxalic acid)), 및 지방산(헥산산(hexanoic acid), 팔미트산(palmitic acid), 및 올레산(oleic acid))은 정상인에 비해 대장암 환자에서 향상되었으며, 아미노이소부티르산(aminoisobutyric acid) 및 부탄산(butanoic acid)과 같은 세균 대사물질은 감소되었다.Among the metabolites shown in Table 2, amino acids had the highest ratio, and most of them were upregulated in colorectal cancer patients. In addition, alcohol forms (ethanolamine and phenol), carboxylic acids (Furoic acid, succinic acid, and oxalic acid), and fatty acids (hexanoic acid) ), palmitic acid, and oleic acid) were improved in colorectal cancer patients compared to normal subjects, and bacterial metabolites such as aminoisobutyric acid and butanoic acid were decreased. .

실험예 3. 대변 유래 세포밖 소포에서 미생물 및 대사 프로파일 간의 연관성 확인Experimental Example 3. Confirmation of association between microorganisms and metabolic profiles in fecal extracellular vesicles

피어슨(Pearson) rank 연관성 분석은 장내 미생물군집과 특정 대사 산물 사이의 밀접한 상관관계를 보여 주었다. Pearson rank association analysis showed a close correlation between the gut microbiome and specific metabolites.

도 5a는 피어슨 연관성 분석을 수행하여 메타게놈 및 대사체 분석 데이터 간의 연관성을 조사한 결과를 나타낸 것으로, y축에는 통계적 비교를 통해 얻은 세균 유래 세포밖 소포의 메타게놈 분석 결과를 나타내었고 x축에는 대사체 바이오마커를 나타내었다. 각 사각형은 상관 계수 값을 나타낸다. 빨간색 사각형은 양의 상관관계를 나타내고 파란색 사각형은 미생물 및 대사물질 빈도 사이의 음의 상관관계를 나타낸다. Figure 5a shows the results of investigating the correlation between metagenome and metabolite analysis data by performing Pearson's association analysis. The y-axis shows the metagenome analysis results of bacteria-derived extracellular vesicles obtained through statistical comparison, and the x-axis shows the metabolism The sieve biomarkers are shown. Each square represents a correlation coefficient value. Red squares indicate positive correlations and blue squares indicate negative correlations between microbial and metabolite frequencies.

도 5a에 나타낸 바와 같이 대부분의 대사체 마커의 상대 빈도는 Firmicutes에 속하는 속(genus) 세균들과 큰 양의 상관 관계가 있었다. 특히, 대장암 환자의 장내 미생물군집의 일관된 조절에 따라 몇몇 아미노산이 증가하였으며, 이러한 세균은 티라민(tyramine), 페놀(phenol), 및 헥산산(hexanoic acid)과 유의한 관계가 있었다(r >|0.5|, P <0.05). 반면, Proteobacteria에 속하는 세균은 대사체 마커와 음의 상관관계가 있었고 이러한 Proteobacteria에 대한 관찰은 Firmicutes의 관찰 결과와 반대였다(r<|0.5|, P<0.05). 대사체 바이오마커 중에서 카르복실산(furoic acid, succinic acid, oxalic acid)과 장쇄 지방산(palmitic acid, oleic acid)은 전체 장내 미생물 수준과 유의적이지는 않으나 상관 관계가 있었다.As shown in Fig. 5a, the relative frequencies of most metabolite markers were positively correlated with bacteria belonging to the genus Firmicutes. In particular, some amino acids were increased according to the consistent regulation of the intestinal microbiome of colorectal cancer patients, and these bacteria had a significant relationship with tyramine, phenol, and hexanoic acid (r >| 0.5|, P <0.05). On the other hand, bacteria belonging to Proteobacteria had a negative correlation with metabolite markers, and this observation of Proteobacteria was opposite to that of Firmicutes (r<|0.5|, P<0.05). Among the metabolite biomarkers, carboxylic acids (furoic acid, succinic acid, oxalic acid) and long-chain fatty acids (palmitic acid, oleic acid) were correlated with the overall intestinal microbial levels, although not significantly.

실험예 4. 대변 유래 세포밖 소포에서 미생물 및 대사 프로파일에 기반한 대장암 진단 모델Experimental Example 4. Colorectal cancer diagnostic model based on microbial and metabolic profile in fecal extracellular vesicles

메타게놈 및 대사체 바이오마커로부터 유용한 바이오마커를 추가로 규정하기 위해, 이원 로지스틱 회귀(binary logistic regression) 분석 및 순방향 단계별 방법의 최적화된 알고리즘을 사용하여 정상인으로부터 대장암 양성 개체를 구별할 수 있는 바이오마커로 최적의 모델을 구축하였으며, 그 결과 AUC(area under curve)값을 고려하여 2가지 대사체(류신(leucine) 및옥살산(oxalic acid)) 및 2가지 속(genus) 세균( CollinsellaSolanum melongena) 유래 세포밖 소포가 선택되었다. In order to further define useful biomarkers from metagenome and metabolite biomarkers, a biomarker capable of distinguishing colorectal cancer-positive individuals from normal individuals using an optimized algorithm of binary logistic regression analysis and forward step-by-step methods. An optimal model was constructed with the marker, and as a result, two metabolites (leucine and oxalic acid) and two genus bacteria ( Collinsella and Solanum melongena) ) derived extracellular vesicles were selected.

도 5b는 leucine, oxalic acid 및 Collinsella, Solanum melongena 마커에 대한 로지스틱 회귀 모델의 수신자 조작 특성(receiver operation characteristic, ROC) 곡선을 나타내는 것으로, 이는 정상인으로부터 대장암 환자를 구분하는 능력에 기초한다. 빨간색 선은 대사체학 기반 모델을 나타내고 파란색 선은 메타게놈학 기반 모델을 나타내며, 녹색 선은 대사체학과 메타게놈학의 조합을 기반으로 한 모델을 나타낸다.Figure 5b shows the receiver operation characteristic (ROC) curve of a logistic regression model for leucine, oxalic acid and Collinsella , Solanum melongena markers, which is based on the ability to distinguish colorectal cancer patients from normal people. The red line represents the metabolomics-based model, the blue line represents the metagenomics-based model, and the green line represents the model based on the combination of metabolomics and metagenomics.

도 5b에 나타낸 로지스틱 회귀 모델의 ROC 곡선을 확인함으로써, 선택된 바이오마커를 사용하여 정상인으로부터 대장암 양성 샘플을 구별하였다. By confirming the ROC curve of the logistic regression model shown in FIG. 5B , the selected biomarkers were used to distinguish colorectal cancer-positive samples from normal subjects.

그 결과, 상기 2가지의 대사체 바이오마커를 사용하였을 때, 대장암의 예측 가능성은 80.0%의 민감도 및 100%의 특이도를 가져 92.0%로 나타났으며, 2가지의 선택된 메타게놈 바이오마커는 90.0%의 민감도와 100%의 특이도를 나타내어 AUC값(95.0%)이 약간 더 높았다. As a result, when the two metabolite biomarkers were used, the predictability of colorectal cancer was 92.0% with sensitivity of 80.0% and specificity of 100%, and the two selected metagenomic biomarkers were The AUC value (95.0%) was slightly higher, showing a sensitivity of 90.0% and a specificity of 100%.

또한, 상기 두 가지 오믹스 데이터 패널을 통합한 경우 대장암 양성 샘플과 정상인을 구별함에 있어서 관련된 정확도로 AUC가 100%로 나타났으며 트레이닝 세트(도 5b의 왼쪽 도면)과 테스트 세트(도 5b의 오른쪽 도면) 사이에 큰 차이는 없었다. AUC는 값이 높을수록 정상인은 정상인으로, 대장암 환자는 대장암으로 판단을 제대로 하는 비율이 높다는 것을 의미하기 때문에, 가장 높은 AUC를 가지는 마커들의 조합은 진단의 유의성이 가장 높은 것을 의미한다. In addition, when the two omics data panels were integrated, the AUC was 100% with the relevant accuracy in distinguishing the colorectal cancer-positive sample from the normal person, and the training set (left side of Fig. 5b) and the test set (Fig. 5b). There was no significant difference between the figures on the right). Since a higher AUC value means that a normal person is a normal person and a colorectal cancer patient correctly judges a colorectal cancer, the combination of markers with the highest AUC means the highest diagnostic significance.

이에, 이러한 데이터로부터 메타게놈 및 대사체 바이오마커의 조합인 대장암의 잠재적 대표 바이오마커가 단일 오믹스 바이오마커보다 대장암을 더 정확히 진단할 것으로 예상되었다.Accordingly, from these data, it was expected that a potential representative biomarker of colorectal cancer, which is a combination of metagenomic and metabolite biomarkers, would more accurately diagnose colorectal cancer than a single omics biomarker.

또한, 상기 결과들로부터, 장내 미생물(FirmicutesProteobacteria)의 빈도와 대사물질(주로 아미노산) 사이에는 강한 연관성이 있으며, 이는 대장암에서 다량 영양소 발효 및 분해 박테리아의 변경된 조성이 아미노산의 축적 및 에너지원의 고갈을 초래할 수 있음을 알 수 있었다. 또한, 장내 미생물에 의해 분비된 세포밖 소포가 질병의 존재 하에서 숙주의 영양 상태, 대사 및 면역 반응을 반영하는 동적 범위의 대사 정보를 전달한다는 것을 알 수 있었다.In addition, from the above results, there is a strong correlation between the frequency of intestinal microbes ( Firmicutes and Proteobacteria ) and metabolites (mainly amino acids), indicating that the altered composition of macronutrient fermentation and decomposing bacteria in colorectal cancer is responsible for the accumulation of amino acids and energy sources. was found to cause depletion of In addition, it has been shown that extracellular vesicles secreted by gut microbes convey a dynamic range of metabolic information that reflects the nutritional status, metabolism and immune response of the host in the presence of disease.

전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야 한다.The above description of the present invention is for illustration, and those of ordinary skill in the art to which the present invention pertains can understand that it can be easily modified into other specific forms without changing the technical spirit or essential features of the present invention. will be. Therefore, it should be understood that the embodiments described above are illustrative in all respects and not restrictive.

<110> MD Healthcare Inc. <120> Method for diagnosing colorectal cancer based on metagenome and metabolome of extracellular vesicles <130> MP19-203P1 <150> KR 10-2019-0111921 <151> 2019-09-10 <160> 2 <170> KoPatentIn 3.0 <210> 1 <211> 50 <212> DNA <213> Artificial Sequence <220> <223> 16S_V3_F <220> <221> misc_feature <222> (42) <223> n = a or g or c or t/u <400> 1 tcgtcggcag cgtcagatgt gtataagaga cagcctacgg gnggcwgcag 50 <210> 2 <211> 55 <212> DNA <213> Artificial Sequence <220> <223> 16S_V4_R <400> 2 gtctcgtggg ctcggagatg tgtataagag acaggactac hvgggtatct aatcc 55 <110> MD Healthcare Inc. <120> Method for diagnosing colorectal cancer based on metagenome and metabolome of extracellular vesicles <130> MP19-203P1 <150> KR 10-2019-0111921 <151> 2019-09-10 <160> 2 <170> KoPatentIn 3.0 <210> 1 <211> 50 <212> DNA <213> Artificial Sequence <220> <223> 16S_V3_F <220> <221> misc_feature <222> (42) <223> n = a or g or c or t/u <400> 1 tcgtcggcag cgtcagatgt gtataagaga cagcctacgg gnggcwgcag 50 <210> 2 <211> 55 <212> DNA <213> Artificial Sequence <220> <223> 16S_V4_R <400> 2 gtctcgtggg ctcggagatg tgtataagag acaggactac hvgggtatct aatcc 55

Claims (10)

하기의 단계를 포함하는, 대장암 진단을 위한 정보제공방법:
(a) 정상인 및 피검자로부터 분리된 샘플로부터 세포밖 소포를 분리하는 단계;
(b) 분리한 세포밖 소포로부터 DNA를 추출하여 메타게놈(metagenome) 분석을 통해 세균 유래 세포밖 소포의 함량 증감을 비교하는 단계; 및
(c) 분리한 세포밖 소포에서의 대사체 분석을 통해 대사물질의 함량 증감을 비교하는 단계로서, 류신(Leucine), 이소류신(Isoleucine), 알라닌(Alanine), 리신(Lysine), 티라민(Tyramine), 아미노이소부티르산(Aminoisobutyric acid), 에탄올아민(Ethanolamine), 페놀(Phenol), 퓨로산(Furoic acid), 숙신산(Succinic acid), 옥살산(Oxalic acid), 부탄산(Butanoic acid), 헥산산(Hexanoic acid), 팔미트산(Palmitic acid), 및 올레산(Oleic acid)으로 이루어진 군으로부터 선택되는 하나 이상의 대사물질의 함량 증감을 비교하는 단계.
A method for providing information for diagnosing colon cancer, comprising the steps of:
(a) isolating extracellular vesicles from samples isolated from normal persons and subjects;
(b) extracting DNA from the isolated extracellular vesicles and comparing the increase or decrease in the content of bacteria-derived extracellular vesicles through metagenome analysis; and
(c) a step of comparing the increase and decrease in the content of metabolites through metabolite analysis in the isolated extracellular vesicles, leucine, isoleucine, alanine, lysine, tyramine , Aminoisobutyric acid, Ethanolamine, Phenol, Furoic acid, Succinic acid, Oxalic acid, Butanoic acid, Hexanoic acid acid), palmitic acid, and comparing the increase or decrease in the content of one or more metabolites selected from the group consisting of oleic acid.
제1항에 있어서,
상기 샘플은 대변인 것을 특징으로 하는, 대장암 진단을 위한 정보제공방법.
According to claim 1,
The sample is characterized in that the spokesperson, information providing method for colorectal cancer diagnosis.
삭제delete 제1항에 있어서,
상기 (b) 단계에서 퍼미쿠테스(Firmicutes) 및 프로테오박테리아(Proteobacteria)로 이루어진 군으로부터 선택되는 하나 이상의 문(phylum) 세균 유래 세포밖 소포, 또는
액티노마이세스(Actinomyces), 비피도박테리움(Bifidobacterium), 로티아(Rothia), 프로피오니박테리움(Propionibacterium), 콜린셀라(Collinsella), 박테로이달레스(Bacteroidales) S24-7 그룹 (f), 클로로플라스트(Chloroplast) (o), 블라우티아(Blautia), 라치노클로스트리디움(Lachnoclostridium), 라치노스피라시에(Lachnospiraceae) NK4A136 그룹, 라치노스피라시에(Lachnospiraceae) UCG-008, 도레아(Dorea), 에우박테리움 코프로스타놀리게네스(Eubacterium coprostanoligenes) 그룹, 루미노코카시에(Ruminococcaceae) UCG-002, 루미노코커스(Ruminococcus) 2, 서브돌리그라눌럼(Subdoligranulum), 루미노코카시에(Ruminococcaceae) (f), 루미노코카시에(Ruminococcaceae) UCG-014, 패칼리박테리움(Faecalibacterium), 루미노코카시에(Ruminococcaceae) NK4A214 그룹, 스타필로코커스(Staphylococcus), 카테니박테리움(Catenibacterium), 파르비모나스(Parvimonas), 루미니클로스트리디움(Ruminiclostridium) 5, 메틸로박테리움(Methylobacterium), 솔라늄 멜로게나(Solanum Melongena), 스핑고모나스(Sphingomonas), 디아포로박터(Diaphorobacter), 에스케리치아-시겔라(Escherichia-shigella), 프로테우스(Proteus), 슈도모나스(Pseudomonas), 엔테로박터(Enterobacter), 사카리박테리아(Saccharibacteria) (p), 및 몰리쿠테스(Mollicutes) RF9 (o) 로 이루어진 군으로부터 선택되는 하나 이상의 속(genus) 세균 유래 세포밖 소포의 함량 증감을 비교하는 것을 특징으로 하는, 대장암 진단을 위한 정보제공방법.
According to claim 1,
In step (b), Firmicutes ( Firmicutes ) and Proteobacteria ( Proteobacteria ) One or more phylum bacteria-derived extracellular vesicles selected from the group consisting of, or
My solution Tino access (Actinomyces), Bifidobacterium (Bifidobacterium), Loti Ah (Rothia), propionic sludge tumefaciens (Propionibacterium), Colin Cellar (Collinsella), Les night interrogating two months (Bacteroidales) S24-7 group (f) , Chloroplast ( Chloroplast ) (o), Blautia ( Blautia ), Lachnoclostridium , Lachnospiraceae NK4A136 group, Lachnospiraceae UCG-008, Dorea ( Dorea ), Eubacterium coprostanoligenes group, Ruminococcaceae UCG-002, Ruminococcus 2, Subdoligranulum ( Subdoligranulum ), Rumi Ruminococcaceae (f), Ruminococcaceae UCG-014, Faecalibacterium , Ruminococcaceae NK4A214 group, Staphylococcus , Ka I'll tumefaciens (Catenibacterium), Parr ratio Pseudomonas (Parvimonas), Rumi Nicklaus tree Stadium (Ruminiclostridium) 5, methyl tumefaciens (Methylobacterium), Solar titanium Mello dehydrogenase (Solanum Melongena), Sphingomonas (Sphingomonas), dia captive bakteo ( Diaphorobacter ), Escherichia-shigella , Proteus ( Proteus ), Pseudomonas ( Pseudomonas ), Enterobacter ( Enterobacter ), Saccharibacteria ( Saccharibacteria ) (p), and Mollicutes RF9 (o) made of An information providing method for diagnosing colorectal cancer, characterized in that the increase or decrease in the content of extracellular vesicles derived from one or more genus bacteria selected from the gene group is compared.
제4항에 있어서,
상기 (b) 단계에서 정상인에 비해 퍼미쿠테스(Firmicutes) 문(phylum) 세균 유래 세포밖 소포, 또는
비피도박테리움(Bifidobacterium), 콜린셀라(Collinsella), 블라우티아(Blautia), 라치노클로스트리디움(Lachnoclostridium), 라치노스피라시에(Lachnospiraceae) UCG-008, 도레아(Dorea), 에우박테리움 코프로스타놀리게네스(Eubacterium coprostanoligenes) 그룹, 루미노코카시에(Ruminococcaceae) UCG-002, 루미노코커스(Ruminococcus) 2, 서브돌리그라눌럼(Subdoligranulum), 루미노코카시에(Ruminococcaceae) (f), 패칼리박테리움(Faecalibacterium), 루미노코카시에(Ruminococcaceae) NK4A214 그룹, 카테니박테리움(Catenibacterium), 파르비모나스(Parvimonas), 루미니클로스트리디움(Ruminiclostridium) 5, 디아포로박터(Diaphorobacter), 및 엔테로박터(Enterobacter)로 이루어진 군으로부터 선택되는 하나 이상의 속(genus) 세균 유래 세포밖 소포의 함량이 증가되어 있는 경우 대장암의 발병 위험도가 높을 것으로 예측하는 것을 특징으로 하는, 대장암 진단을 위한 정보제공방법.
5. The method of claim 4,
In the step (b) compared to normal people Firmicutes ( Firmicutes ) phylum bacteria-derived extracellular vesicles, or
Bifidobacterium (Bifidobacterium), Colin Cellar (Collinsella), Blau Tia (Blautia), La Chino Clostridium (Lachnoclostridium), referred to at Chino Spira (Lachnospiraceae) UCG-008, Toray Ah (Dorea), Aust tumefaciens Lium coprostanoligenes group, Ruminococcaceae UCG-002, Ruminococcus 2, Subdoligranulum Subdoligranulum , Ruminococcaceae ( Ruminococcaceae ) ( f), Faecalibacterium , Ruminococcaceae NK4A214 group, Catenibacterium , Parvimonas , Ruminiclostridium 5, Diaphorobacter ( Diaphorobacter ), and Enterobacter ( Enterobacter ) When the content of one or more genus bacteria-derived extracellular vesicles selected from the group is increased, the risk of colorectal cancer is predicted to be high, colorectal cancer How to provide information for diagnosis.
제4항에 있어서,
상기 (b) 단계에서 정상인에 비해 프로테오박테리아(Proteobacteria) 문(phylum) 세균 유래 세포밖 소포, 또는
액티노마이세스(Actinomyces), 로티아(Rothia), 프로피오니박테리움(Propionibacterium), 박테로이달레스(Bacteroidales) S24-7 그룹 (f), 클로로플라스트(Chloroplast) (o), 라치노스피라시에(Lachnospiraceae) NK4A136 그룹, 루미노코카시에(Ruminococcaceae) UCG-014, 스타필로코커스(Staphylococcus), 메틸로박테리움(Methylobacterium), 솔라늄 멜로게나(Solanum melongena), 스핑고모나스(Sphingomonas), 에스케리치아-시겔라(Escherichia-shigella), 프로테우스(Proteus), 슈도모나스(Pseudomonas), 사카리박테리아(Saccharibacteria) (p), 및 몰리쿠테스(Mollicutes) RF9 (o)로 이루어진 군으로부터 선택되는 하나 이상의 속(genus) 세균 유래 세포밖 소포의 함량이 감소되어 있는 경우 대장암의 발병 위험도가 높을 것으로 예측하는 것을 특징으로 하는, 대장암 진단을 위한 정보제공방법.
5. The method of claim 4,
In the step (b), compared to normal people, Proteobacteria phylum bacteria-derived extracellular vesicles, or
Actinomyces ( Actinomyces ), Rotia ( Rothia ), Propionibacterium ( Propionibacterium ), Bacteroidales S24-7 group (f), chloroplast ( Chloroplast ) (o), Lachinospira when (Lachnospiraceae) at NK4A136 group, luminometer coca (Ruminococcaceae) UCG-014, Staphylococcus (Staphylococcus), tumefaciens (Methylobacterium), Solar titanium Mello dehydrogenase (Solanum melongena), Sphingomonas (Sphingomonas) to methyl , Escherichia - Shigella (Escherichia-shigella), Proteus (Proteus), Pseudomonas (Pseudomonas), four Kariya bacteria (Saccharibacteria) (p), and the mole Riku test (Mollicutes) is selected from the group consisting of RF9 (o) An information providing method for diagnosing colorectal cancer, characterized in that when the content of extracellular vesicles derived from one or more genus bacteria is reduced, the risk of colorectal cancer is predicted to be high.
삭제delete 제1항에 있어서,
상기 (c) 단계에서 정상인에 비해 류신(Leucine), 이소류신(Isoleucine), 알라닌(Alanine), 리신(Lysine), 티라민(Tyramine), 에탄올아민(Ethanolamine), 페놀(Phenol), 퓨로산(Furoic acid), 숙신산(Succinic acid), 옥살산(Oxalic acid), 헥산산(Hexanoic acid), 팔미트산(Palmitic acid), 및 올레산(Oleic acid)으로 이루어진 군으로부터 선택되는 하나 이상의 대사물질의 함량이 증가되어 있는 경우 대장암의 발병 위험도가 높을 것으로 예측하는 것을 특징으로 하는, 대장암 진단을 위한 정보제공방법.
According to claim 1,
In step (c), leucine, isoleucine, alanine, lysine, tyramine, ethanolamine, phenol, and furoic acid compared to normal persons in step (c). ), succinic acid, oxalic acid, hexanoic acid, palmitic acid, and oleic acid The content of one or more metabolites selected from the group consisting of increased A method for providing information for diagnosing colorectal cancer, characterized in that predicting that the risk of developing colorectal cancer is high if present.
제1항에 있어서,
상기 (c) 단계에서 정상인에 비해 아미노이소부티르산(Aminoisobutyric acid) 또는 부탄산(Butanoic acid)의 함량이 감소되어 있는 경우 대장암의 발병 위험도가 높을 것으로 예측하는 것을 특징으로 하는, 대장암 진단을 위한 정보제공방법.
According to claim 1,
If the content of aminoisobutyric acid or butanoic acid is reduced in step (c) compared to normal people in step (c), the risk of colorectal cancer is predicted to be high, characterized in that for colorectal cancer diagnosis How to provide information.
제1항에 있어서,
상기 (b) 단계에서 정상인에 비해 콜린셀라(Collinsella) 속(genus) 세균 유래 세포밖 소포의 함량이 증가되어 있고 솔라늄 멜로게나(Solanum melongena)속(genus) 세균 유래 세포밖 소포의 함량이 감소되어 있으며,
상기 (c) 단계에서 정상인에 비해 류신(Leucine) 및 옥살산(Oxalic acid)이 증가되어 있는 경우 대장암의 발병 위험도가 높을 것으로 예측하는 것을 특징으로 하는, 대장암 진단을 위한 정보제공방법.

According to claim 1,
In step (b), the content of extracellular vesicles derived from bacteria of the genus Collinsella is increased and the content of extracellular vesicles derived from bacteria of the genus Solanum melongena is decreased compared to normal persons has been made,
In the step (c), when leucine and oxalic acid are increased compared to normal persons in step (c), it is characterized in that the risk of colorectal cancer is predicted to be high.

KR1020200019537A 2019-09-10 2020-02-18 Method for diagnosing colorectal cancer based on metagenome and metabolome of extracellular vesicles KR102308934B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2020/012048 WO2021049834A1 (en) 2019-09-10 2020-09-07 Method for diagnosing colorectal cancer on basis of metagenome and metabolite of extracellular vesicles

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190111921 2019-09-10
KR20190111921 2019-09-10

Publications (2)

Publication Number Publication Date
KR20210030846A KR20210030846A (en) 2021-03-18
KR102308934B1 true KR102308934B1 (en) 2021-10-06

Family

ID=75232448

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200019537A KR102308934B1 (en) 2019-09-10 2020-02-18 Method for diagnosing colorectal cancer based on metagenome and metabolome of extracellular vesicles

Country Status (1)

Country Link
KR (1) KR102308934B1 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1307565C (en) 2001-08-22 2007-03-28 皮尔雷斯系统公司 Output management system and method for enabling access to private network resources
EP2955232B1 (en) * 2014-06-12 2017-08-23 Peer Bork Method for diagnosing adenomas and/or colorectal cancer (CRC) based on analyzing the gut microbiome
KR20180070070A (en) * 2016-12-16 2018-06-26 강원대학교산학협력단 System and method for making inundation trace map using unmanned aerial vehicle

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Biochim Biophys Acta Rev Cancer, 1868(2): 372-393 (2017.06.29.)*
국내공개특허공보 10-2018-0070070 (2018.07.06.)*

Also Published As

Publication number Publication date
KR20210030846A (en) 2021-03-18

Similar Documents

Publication Publication Date Title
Lu et al. Tongue coating microbiome data distinguish patients with pancreatic head cancer from healthy controls
Opstelten et al. Gut microbial diversity is reduced in smokers with Crohn's disease
Lai et al. Bisphenol A alters gut microbiome: Comparative metagenomics analysis
KR101940426B1 (en) Method for diagnosis of colon tumor using analysis of bacteria metagenome
Halloran et al. Molecular phenotype of kidney transplant indication biopsies with inflammation in scarred areas
US20150211053A1 (en) Biomarkers for diabetes and usages thereof
Zhou et al. Gut microbiota profile in patients with type 1 diabetes based on 16S rRNA gene sequencing: a systematic review
KR102241357B1 (en) Method and apparatus for diagnosing colon plyp using machine learning model
Shi et al. Dysbiosis of gut microbiota in patients with neuromyelitis optica spectrum disorders: a cross sectional study
Lin et al. Proteomics and the microbiome: pitfalls and potential
US20230151430A1 (en) Methods and compositions for identifying and treating subjects at risk of poor cancer survival
CN110878349A (en) End stage renal disease biomarker and application thereof
Tao et al. Bacterial community mapping of the intestinal tract in acute pancreatitis rats based on 16S rDNA gene sequence analysis
CN112899368A (en) Biomarker for early diagnosis of primary hepatocellular carcinoma, detection reagent and application thereof
CN112553351B (en) Bile duct cancer non-invasive marker based on relative abundance of intestinal microorganisms, screening method and application
KR101942197B1 (en) Method for diagnosis of prostate disease using analysis of bacteria metagenome
KR102308934B1 (en) Method for diagnosing colorectal cancer based on metagenome and metabolome of extracellular vesicles
Feng et al. Gut microbial signatures of patients with primary hepatocellular carcinoma and their healthy first-degree relatives
WO2021049834A1 (en) Method for diagnosing colorectal cancer on basis of metagenome and metabolite of extracellular vesicles
KR101936006B1 (en) Method for diagnosis of bladder cancer using analysis of microbial metagenome
Taguer et al. Changes in Gut Bacterial Translation Occur before Symptom Onset and Dysbiosis in Dextran Sodium Sulfate-Induced Murine Colitis
US20220259640A1 (en) Method for diagnosing brain tumor through bacterial metagenomic analysis
Yilmaz et al. Is there a relationship between rosacea with gut dysbiosis?
KR101940950B1 (en) Method for diagnosis of bile duct cancer using analysis of bacteria metagenome
CN114410730B (en) Salivary microorganism-based thyroid cancer molecular marker and application thereof

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant