KR102307624B1 - Catalyst for production of hydrocarbon oxide using a support having a core-shell structure with enhanced thermal stability, preparation method thereof, and preparation method of hydrocarbon oxide using the same - Google Patents

Catalyst for production of hydrocarbon oxide using a support having a core-shell structure with enhanced thermal stability, preparation method thereof, and preparation method of hydrocarbon oxide using the same Download PDF

Info

Publication number
KR102307624B1
KR102307624B1 KR1020170163195A KR20170163195A KR102307624B1 KR 102307624 B1 KR102307624 B1 KR 102307624B1 KR 1020170163195 A KR1020170163195 A KR 1020170163195A KR 20170163195 A KR20170163195 A KR 20170163195A KR 102307624 B1 KR102307624 B1 KR 102307624B1
Authority
KR
South Korea
Prior art keywords
catalyst
producing
core
hydrocarbon
catalyst carrier
Prior art date
Application number
KR1020170163195A
Other languages
Korean (ko)
Other versions
KR20190063980A (en
Inventor
최종명
서명기
민형기
Original Assignee
롯데케미칼 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 롯데케미칼 주식회사 filed Critical 롯데케미칼 주식회사
Priority to KR1020170163195A priority Critical patent/KR102307624B1/en
Publication of KR20190063980A publication Critical patent/KR20190063980A/en
Application granted granted Critical
Publication of KR102307624B1 publication Critical patent/KR102307624B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/396Distribution of the active metal ingredient
    • B01J35/397Egg shell like
    • B01J35/008
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/08Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the alkali- or alkaline earth metals or beryllium
    • B01J23/04Alkali metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J35/0006
    • B01J35/1009
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/612Surface area less than 10 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D303/00Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
    • C07D303/02Compounds containing oxirane rings
    • C07D303/04Compounds containing oxirane rings containing only hydrogen and carbon atoms in addition to the ring oxygen atoms

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)

Abstract

본 발명은 열적 안정성이 향상된 코어-쉘 구조를 갖는 촉매담체를 이용한 산화 탄화수소(hydrocarbon oxide) 제조용 촉매, 이의 제조방법 및 이를 이용한 산화 탄화수소의 제조방법에 관한 것으로, 상기 촉매담체는 열전도도가 높은 SiC를 쉘에 포함하여 산화 탄화수소의 합성 후에도 촉매 금속의 소결을 억제하여 촉매의 수명이 연장될 수 있다.The present invention relates to a catalyst for producing hydrocarbon oxide using a catalyst carrier having a core-shell structure with improved thermal stability, a method for preparing the same, and a method for producing an oxidized hydrocarbon using the same, wherein the catalyst carrier is SiC having high thermal conductivity By including in the shell to suppress the sintering of the catalyst metal even after the synthesis of oxidized hydrocarbons, the life of the catalyst can be extended.

Description

열적 안정성이 향상된 코어-쉘 구조를 갖는 담체를 이용한 산화 탄화수소 제조용 촉매, 이의 제조방법 및 이를 이용한 산화 탄화수소의 제조방법 {CATALYST FOR PRODUCTION OF HYDROCARBON OXIDE USING A SUPPORT HAVING A CORE-SHELL STRUCTURE WITH ENHANCED THERMAL STABILITY, PREPARATION METHOD THEREOF, AND PREPARATION METHOD OF HYDROCARBON OXIDE USING THE SAME}Catalyst for producing oxidized hydrocarbon using a carrier having a core-shell structure with improved thermal stability, a method for preparing the same, and a method for producing an oxidized hydrocarbon using the same PREPARATION METHOD THEREOF, AND PREPARATION METHOD OF HYDROCARBON OXIDE USING THE SAME}

본 발명은 열적 안정성이 향상된 코어(core)-쉘(shell) 구조를 갖는 촉매담체를 이용한 산화 탄화수소(hydrocarbon oxide) 제조용 촉매, 이의 제조방법 및 이를 이용한 산화 탄화수소의 제조방법에 관한 것으로, 구체적으로는 비표면적이 작은 코어와 쉘의 구조를 갖고 쉘에 SiC를 포함하는 촉매담체에 금속을 담지한 산화 탄화수소 제조용 촉매, 이의 제조방법 및 이를 이용한 산화 탄화수소의 제조방법에 관한 것이다.The present invention relates to a catalyst for producing hydrocarbon oxide using a catalyst carrier having a core-shell structure with improved thermal stability, a method for preparing the same, and a method for producing an oxidized hydrocarbon using the same, specifically The present invention relates to a catalyst for producing an oxidized hydrocarbon having a core and a shell structure with a small specific surface area and supporting a metal on a catalyst carrier including SiC in the shell, a method for preparing the same, and a method for producing an oxidized hydrocarbon using the same.

본 발명은 탄화수소와 분자 상태의 산소 또는 산소 함유 혼합 기체로부터 기상반응으로 산화 탄화수소를 제조하는 데에 사용하는 금속, 예를 들어, 은(銀) 함유 촉매 및 이러한 촉매의 제조방법에 관한 것이다. 탄화수소, 예를 들어, 알킬렌의 에폭시화에 있어서 담체(擔體, support)에 은과 같은 금속을 부착시킨 이른바 담지 촉매(supported catalyst)가 사용되고 있음은 공지의 관용수단이다. 이러한 담지 촉매는 공업적으로 3년 내지 4년을 사용하기 때문에 촉매 수명이 매우 중요하다. 산화 탄화수소 합성 반응용 촉매의 비활성화의 주된 요인은 은과 같은 활성 금속의 소결 현상이라 알려져 있다. 이러한 소결 현상은 촉매 표면에서 발생하는 반응열에 의해 일어나는데, 이를 제거하지 않으면 촉매 표면에 부분적으로 핫 스팟을 생성하고, 이로 인해 활성 금속의 소결이 일어나게 된다, 활성 금속이 소결되면(활성 금속의 크기가 커지면) 노출되는 활성 금속의 면적이 감소하며, 이로 인해 촉매 활성이 감소하게 된다. The present invention relates to a catalyst containing a metal, for example, silver, which is used for producing an oxidized hydrocarbon from a hydrocarbon and molecular oxygen or oxygen-containing mixed gas in a gas phase reaction, and a method for producing such a catalyst. It is a known and customary means for the epoxidation of hydrocarbons, for example alkylene, using so-called supported catalysts in which a metal such as silver is attached to a support. Since these supported catalysts are industrially used for 3 to 4 years, the catalyst life is very important. It is known that the main factor of deactivation of catalysts for oxidative hydrocarbon synthesis reaction is sintering of active metals such as silver. This sintering phenomenon is caused by the reaction heat generated on the catalyst surface. If it is not removed, a hot spot is partially created on the catalyst surface, which causes sintering of the active metal. When the active metal is sintered (the size of the active metal is larger) decreases the area of active metal that is exposed, which leads to a decrease in catalytic activity.

본 발명에서는 열적 안정성이 증대된 코어(core)-쉘(shell) 구조의 촉매담체를 이용한 산화 탄화수소 제조용 촉매를 개발하였다. 코어에는 비표면적이 작은 무기물, 예를 들어, α-알루미나(α-Al2O3)를 사용하고, 쉘에는 열전도도가 매우 뛰어난 실리콘 카바이드(SiC)와 무기물, 예를 들어, θ-알루미나, α-알루미나 또는 이들의 혼합물을 사용하였다. α-Al2O3의 열전도도(thermal conductivity)는 30W/mK이며 SiC의 열전도도는 360 내지 490W/mK로서, SiC는 알루미나 대비 열전도율이 12배 이상 높기 때문에 효과적으로 반응열을 분산시킬 수 있다. 따라서, 촉매담체의 열적 안정성이 증대되면, 활성 금속이 소결되는 현상을 효과적으로 억제할 수 있다. 이에 본 발명에서는 열적 안정성이 향상된 촉매담체를 효율적으로 사용하여 높은 탄화수소 전환율과 산화 탄화수소 선택도를 유지하면서, Ag의 소결을 억제하는 방법을 제공하게 되었다.In the present invention, a catalyst for oxidized hydrocarbon production using a catalyst carrier having a core-shell structure with increased thermal stability was developed. For the core, an inorganic material with a small specific surface area, for example, α-alumina (α-Al 2 O 3 ) is used, and for the shell, silicon carbide (SiC) with excellent thermal conductivity and an inorganic material such as θ-alumina, α-alumina or a mixture thereof was used. The thermal conductivity of α-Al 2 O 3 is 30 W/mK, and the thermal conductivity of SiC is 360 to 490 W/mK. Since SiC has a thermal conductivity 12 times higher than that of alumina, the heat of reaction can be effectively dispersed. Accordingly, when the thermal stability of the catalyst carrier is increased, it is possible to effectively suppress the sintering of the active metal. Accordingly, the present invention provides a method of suppressing Ag sintering while maintaining a high hydrocarbon conversion rate and oxidized hydrocarbon selectivity by efficiently using a catalyst carrier with improved thermal stability.

본 발명은 탄화수소로부터 산화 탄화수소를 합성하기 위한 촉매에 있어서, 상기 촉매가 담지되는 담체의 열적 특성을 개선시켜 촉매의 열적 안정성을 향상시키는 것을 목적으로 한다.An object of the present invention is to improve the thermal stability of a catalyst for synthesizing an oxidized hydrocarbon from a hydrocarbon by improving the thermal properties of a carrier on which the catalyst is supported.

상기한 목적을 달성하기 위해, 본 발명은 In order to achieve the above object, the present invention

코어(core)-쉘(shell) 구조의 촉매담체에 금속 및 조촉매를 담지한 산화 탄화수소(hydrocarbon oxide) 제조용 촉매로서, A catalyst for producing hydrocarbon oxide in which a metal and a cocatalyst are supported on a catalyst carrier having a core-shell structure,

상기 쉘은 20 내지 40중량%의 SiC를 포함하고,The shell comprises 20 to 40% by weight of SiC,

상기 코어 및 쉘의 성분은 각각 독립적으로 실리카(silica), 알루미나(alumina), 지르코니아(zirconia) 및 타이타니아(titania)로 이루어진 군에서 선택되는 것인, 산화 탄화수소 제조용 촉매를 제공한다.Components of the core and the shell are each independently selected from the group consisting of silica, alumina, zirconia, and titania. It provides a catalyst for producing oxidized hydrocarbons.

또한, 본 발명은 Also, the present invention

(a) 촉매 금속 성분의 전구체와 에틸렌디아민(ethylenediamine)을 혼합하고 교반하는 단계;(a) mixing and stirring the precursor of the catalyst metal component and ethylenediamine;

(b) 본 발명에 따른 코어-쉘 구조의 촉매담체에 상기 촉매 금속 성분의 전구체 용액과 조촉매를 흡수시키는 단계;(b) absorbing the precursor solution of the catalyst metal component and the cocatalyst in the catalyst carrier having a core-shell structure according to the present invention;

(c) 상기 전구체 용액이 흡수된 촉매담체를 건조시키는 단계; 및(c) drying the catalyst carrier on which the precursor solution has been absorbed; and

(d) 상기 촉매담체를 공기 흐름(air flow) 하에 250℃에서 열처리하는 단계를 포함하는, 산화 탄화수소 제조용 촉매의 제조방법을 제공한다.(d) provides a method for preparing a catalyst for producing oxidized hydrocarbons, comprising the step of heat-treating the catalyst carrier at 250° C. under an air flow.

추가로, 본 발명은 본 발명의 산화 탄화수소 제조용 촉매를 반응기에 투입한 후, 이를 탄화수소 및 산소를 포함하는 혼합 가스와 반응시키는 단계를 포함하는, 산화 탄화수소의 제조방법을 제공한다.In addition, the present invention provides a method for producing an oxidized hydrocarbon, comprising the step of introducing the catalyst for producing an oxidized hydrocarbon of the present invention into a reactor, and then reacting it with a mixed gas containing hydrocarbon and oxygen.

종래의 기술에서는 2종의 무기물을 코어-쉘 구조로 된 하나의 담체로 합성하고 쉘에 SiC를 첨가하여 촉매담체의 열적 안정성을 향상시킨 기술이 없다. 본 발명에서는 코어-쉘 구조의 촉매담체의 쉘에 SiC를 최적의 함량으로 도입함으로써 촉매담체의 열전도도를 높여 활성 금속의 소결을 억제하여 촉매의 열적 안정성을 증가시키는 효과를 제공한다.In the prior art, there is no technique for improving the thermal stability of the catalyst carrier by synthesizing two inorganic materials into one carrier having a core-shell structure and adding SiC to the shell. In the present invention, SiC is introduced into the shell of the catalyst carrier having a core-shell structure in an optimal content, thereby increasing the thermal conductivity of the catalyst carrier to suppress sintering of the active metal, thereby increasing the thermal stability of the catalyst.

도 1은 본 발명의 일 실시양태에 따라 SiC를 쉘에 함유한 코어-쉘 구조의 촉매담체의 모식도이다.
도 2는 본 발명의 비교예 1에 따른 SiC를 함유하지 않는 코어-쉘 구조의 촉매담체에 담지된 Ag, 실시예 1에 따른 SiC를 30중량% 함유한 코어-쉘 구조의 촉매담체에 담지된 Ag, 및 비교예 2에 따른 SiC를 50중량% 함유한 코어-쉘 구조의 촉매담체에 담지된 Ag를 사용한 에틸렌 옥사이드의 합성 반응 후의 SEM 이미지이다.
1 is a schematic diagram of a catalyst carrier having a core-shell structure containing SiC in a shell according to an embodiment of the present invention.
2 is Ag supported on a core-shell structure catalyst carrier not containing SiC according to Comparative Example 1 of the present invention, and SiC according to Example 1 supported on a core-shell structure catalyst carrier containing 30 wt% This is an SEM image after the synthesis reaction of ethylene oxide using Ag and Ag supported on a core-shell structure catalyst carrier containing 50 wt% of SiC according to Comparative Example 2.

종래에 에틸렌으로부터 에틸렌 옥사이드를 합성하는 촉매로서 Ag 금속과 담체로서 α-Al2O3를 사용하는 것은 잘 알려져 있으며 널리 사용되었다. 에틸렌 옥사이드 합성 반응 및 부반응인 완전산화 반응은 발열량이 큰 반응이다. 따라서, 상기 반응이 진행됨에 따라 반응열에 의한 Ag의 소결이 일어나기 쉽다.Conventionally, the use of Ag metal as a catalyst for synthesizing ethylene oxide from ethylene and α-Al 2 O 3 as a carrier is well known and widely used. The ethylene oxide synthesis reaction and the side reaction, the complete oxidation reaction, are reactions with a large calorific value. Therefore, as the reaction proceeds, sintering of Ag by the heat of reaction tends to occur.

본 발명에서는 이러한 소결을 억제하기 위해 촉매담체의 열적 안정성을 증가시키기 위한 수단으로서, 코어에는 비표면적이 작은 무기물을 사용하고 쉘에는 SiC와 무기물을 첨가한 후 코어를 코팅한 형태인 코어-쉘 구조의 촉매담체를 개발하였다. 또한, 본 발명에서는 상기 촉매담체에 금속 및 조촉매를 담지한 산화 탄화수소 제조용 촉매를 개발하였다.In the present invention, as a means for increasing the thermal stability of the catalyst carrier in order to suppress such sintering, an inorganic material with a small specific surface area is used for the core and SiC and an inorganic material are added to the shell and then the core is coated with a core-shell structure. of the catalyst carrier was developed. In addition, in the present invention, a catalyst for oxidized hydrocarbon production in which a metal and a cocatalyst are supported on the catalyst carrier has been developed.

일 실시양태에서, 본 발명은 In one embodiment, the present invention provides

코어(core)-쉘(shell) 구조의 촉매담체에 금속 및 조촉매를 담지한 산화 탄화수소(hydrocarbon oxide) 제조용 촉매로서, A catalyst for producing hydrocarbon oxide in which a metal and a cocatalyst are supported on a catalyst carrier having a core-shell structure,

상기 쉘은 20 내지 40중량%의 SiC를 포함하고,The shell comprises 20 to 40% by weight of SiC,

상기 코어 및 쉘의 성분은 각각 독립적으로 실리카(silica), 알루미나(alumina), 지르코니아(zirconia) 및 타이타니아(titania)로 이루어진 군에서 선택되는 것인, 산화 탄화수소 제조용 촉매를 제공한다. 일 실시양태에서, 상기 산화 탄화수소는 알킬렌 옥사이드이다.Components of the core and the shell are each independently selected from the group consisting of silica, alumina, zirconia, and titania. It provides a catalyst for producing oxidized hydrocarbons. In one embodiment, the oxidized hydrocarbon is an alkylene oxide.

일 실시양태에서, 본 발명의 코어는 상기 성분 입자들의 집합체이고 상기 코어를 쉘의 상기 성분 입자들이 둘러 싸고 있고, 상기 쉘의 입자의 평균 직경 대 코어의 입자의 평균 직경은 1:80 내지 1:150 또는 1:90 내지 1:130이다.In one embodiment, the core of the present invention is an aggregate of the component particles and the core is surrounded by the component particles of the shell, and the average diameter of the particles of the shell to the average diameter of the particles of the core is from 1:80 to 1: 150 or 1:90 to 1:130.

본 발명에서 쉘 내의 SiC 함량이 20중량% 보다 낮으면 촉매의 열적 안정성 증가 효과가 미미하고, SiC 함량이 40중량% 보다 높으면 산화 탄화수소 수율이 감소한다.In the present invention, when the SiC content in the shell is lower than 20 wt%, the effect of increasing the thermal stability of the catalyst is insignificant, and when the SiC content is higher than 40 wt%, the oxidized hydrocarbon yield is reduced.

일 실시양태에서, 본 발명의 촉매담체는 비표면적이 0.8 내지 1.0㎡/g이다.In one embodiment, the catalyst carrier of the present invention has a specific surface area of 0.8 to 1.0 m 2 /g.

일 실시양태에서, 본 발명의 촉매담체에 담지되는 금속은 Ag, Pd 및 Pt로 이루어진 군에서 선택되는 1종 이상의 것이다.In one embodiment, the metal supported on the catalyst carrier of the present invention is at least one selected from the group consisting of Ag, Pd and Pt.

일 실시양태에서, 본 발명의 조촉매는 Cs, Re, Mo, Li, Zr 및 W로 이루어진 군에서 선택되는 1종 이상의 것이다.In one embodiment, the cocatalyst of the present invention is at least one selected from the group consisting of Cs, Re, Mo, Li, Zr and W.

일 실시양태에서, 본 발명의 코어의 성분은 α-알루미나(α-Al2O3)이다.In one embodiment, the component of the core of the invention is α-alumina (α-Al 2 O 3 ).

일 실시양태에서, 본 발명의 쉘의 성분은 θ-알루미나, α-알루미나 또는 이들의 혼합물이다.In one embodiment, the component of the shell of the present invention is θ-alumina, α-alumina, or mixtures thereof.

일 실시양태에서, 본 발명의 쉘의 SiC 함량은 25 내지 30중량%이다.In one embodiment, the SiC content of the shell of the present invention is 25 to 30% by weight.

일 실시양태에서, 본 발명은In one embodiment, the present invention provides

(a) 촉매 금속 성분의 전구체와 에틸렌디아민(ethylenediamine)을 혼합하고 교반하는 단계;(a) mixing and stirring the precursor of the catalyst metal component and ethylenediamine;

(b) 본 발명의 코어-쉘 구조의 촉매담체에 상기 촉매 금속 성분의 전구체 용액과 조촉매를 흡수시키는 단계;(b) absorbing the precursor solution of the catalyst metal component and the cocatalyst into the catalyst carrier having a core-shell structure of the present invention;

(c) 상기 전구체 용액이 흡수된 촉매담체를 건조시키는 단계; 및(c) drying the catalyst carrier on which the precursor solution has been absorbed; and

(d) 상기 촉매담체를 공기 흐름(air flow) 하에 250℃에서 열처리하는 단계를 포함하는, 산화 탄화수소 제조용 촉매의 제조방법을 제공한다.(d) provides a method for preparing a catalyst for producing oxidized hydrocarbons, comprising the step of heat-treating the catalyst carrier at 250° C. under an air flow.

일 실시양태에서, 상기 단계(b)에서의 촉매 금속 성분은 Ag, Pd 및 Pt로 이루어진 군에서 선택되는 1종 이상의 것이다. In one embodiment, the catalyst metal component in step (b) is at least one selected from the group consisting of Ag, Pd and Pt.

일 실시양태에서, 상기 단계(b)에서의 조촉매는 Cs, Re, Mo, Li, Zr 및 W로 이루어진 군에서 선택되는 1종 이상의 것이다.In one embodiment, the cocatalyst in step (b) is at least one selected from the group consisting of Cs, Re, Mo, Li, Zr and W.

일 실시양태에서, 본 발명은 본 발명의 산화 탄화수소 제조용 촉매를 반응기에 투입한 후, 이를 탄화수소 및 산소를 포함하는 혼합 가스와 반응시키는 단계를 포함하는, 산화 탄화수소의 제조방법을 제공한다. In one embodiment, the present invention provides a method for producing an oxidized hydrocarbon, comprising the step of introducing the catalyst for producing an oxidized hydrocarbon of the present invention into a reactor, and reacting it with a mixed gas comprising hydrocarbon and oxygen.

일 실시양태에서, 상기 방법에 따라 200 내지 250℃의 온도 및 3000 내지 5000h-1의 GHSV(gas hourly space velocity)에서 에틸렌 및 산소를 포함하는 혼합 가스를 본 발명의 촉매와 반응시켜 에틸렌 옥사이드를 제조할 수 있다. 다른 실시양태에서, 상기 방법에 따라 200 내지 430℃ 및 상압에서 프로필렌 및 산소를 포함하는 혼합 가스를 본 발명의 촉매와 반응시켜 프로필렌 옥사이드를 제조할 수 있다.In one embodiment, according to the above method, a mixed gas comprising ethylene and oxygen is reacted with the catalyst of the present invention at a temperature of 200 to 250 ° C and a gas hourly space velocity (GHSV) of 3000 to 5000 h -1 to prepare ethylene oxide can do. In another embodiment, according to the above method, propylene oxide may be prepared by reacting a mixed gas containing propylene and oxygen with the catalyst of the present invention at 200 to 430° C. and atmospheric pressure.

일 실시양태에서, 상기 혼합 가스는 클로로메탄(chloromethane), 디클로로메탄(dichloromethane), 클로로에탄(chloroethane), 에틸렌 디클로라이드(ethylene dichloride, EDC)와 같은 클로로하이드로카본을 더 포함할 수 있다.In one embodiment, the mixed gas may further include chlorohydrocarbons such as chloromethane, dichloromethane, chloroethane, and ethylene dichloride (EDC).

일 실시양태에서, 상기 혼합 가스는 에틸렌 디클로라이드(ethylene dichloride, EDC) 1 내지 5ppm을 포함한다.In one embodiment, the mixed gas comprises 1 to 5 ppm of ethylene dichloride (EDC).

일 실시양태에서, 상기 혼합 가스는 질소 및 메탄을 밸런스 가스로 사용한다.In one embodiment, the mixed gas uses nitrogen and methane as a balance gas.

일 실시양태에서, 본 발명은 본 발명의 코어-쉘 구조의 촉매담체에 Ag가 담지된 촉매 조성물로서, 15 내지 25중량%의 은(Ag), 100 내지 600ppm의 레늄(Re), 50 내지 400ppm의 몰리브덴(Mo), 400 내지 1000ppm의 세슘(Cs) 및 1 내지 300ppm의 리튬(Li)을 포함하는 촉매 조성물을 제공한다.In one embodiment, the present invention provides a catalyst composition in which Ag is supported on a catalyst carrier having a core-shell structure of the present invention, wherein 15 to 25% by weight of silver (Ag), 100 to 600 ppm of rhenium (Re), and 50 to 400 ppm It provides a catalyst composition comprising molybdenum (Mo) of 400 to 1000 ppm cesium (Cs) and 1 to 300 ppm lithium (Li).

이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나, 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. Hereinafter, embodiments of the present invention will be described in detail so that those of ordinary skill in the art can easily carry out the present invention. However, the present invention may be embodied in many different forms and is not limited to the embodiments described herein.

실시예 1: 코어-쉘 구조의 알루미나 담체의 합성 Example 1 : Synthesis of alumina carrier with core-shell structure

(1) 증류수(100ml)에 보헤마이트(boehmite; aluminium oxide hydroxide)와 SiC 30중량%를 넣고 교반하였다.(1) Boehmite (aluminium oxide hydroxide) and 30 wt% of SiC were added to distilled water (100ml) and stirred.

(2) (1)로부터의 혼합 용액에 질산(1.5ml)을 첨가하였다.(2) To the mixed solution from (1) was added nitric acid (1.5 ml).

(3) (2)로부터의 혼합액에 α-알루미나(α-Al2O3)를 첨가한 후 상온에서 30분간 교반하였다. (3) α-alumina (α-Al 2 O 3 ) was added to the mixture from (2) and stirred at room temperature for 30 minutes.

(4) (3)으로부터의 혼합액에 암모니아수(15ml)를 첨가한 후 상온에서 30분간 교반하여 겔화시켰다.(4) After adding aqueous ammonia (15 ml) to the mixed solution from (3), the mixture was stirred at room temperature for 30 minutes to gelation.

(5) (4)로부터의 합성된 담체를 체로 거르고 오븐(80)에서 24시간 건조시켰다. (5) The synthesized carrier from (4) was sieved and dried in an oven (80) for 24 hours.

(6) 건조된 담체를 공기 흐름(air flow) 하에 1100℃에서 10시간 동안 소성시켜 코어-쉘 구조(α-Al2O3/SiC+θ-알루미나와 α-알루미나의 혼합물)의 촉매담체를 제조하였다.(6) The dried carrier was calcined at 1100° C. for 10 hours under air flow to obtain a catalyst carrier having a core-shell structure (α-Al 2 O 3 /SiC+θ-alumina and α-alumina mixture). prepared.

비교예 1Comparative Example 1

SiC를 첨가하지 않는 것을 제외하고는 제조예 1과 동일한 방법으로 코어-쉘 구조(α-Al2O3/θ-알루미나와 α-알루미나의 혼합물)의 촉매담체를 제조하였다. A catalyst carrier having a core-shell structure (a mixture of α-Al 2 O 3 /θ-alumina and α-alumina) was prepared in the same manner as in Preparation Example 1 except that SiC was not added.

비교예 2Comparative Example 2

SiC를 50중량% 첨가하는 것을 제외하고는 제조예 1과 동일한 방법으로 코어-쉘 구조(α-Al2O3/SiC+θ-알루미나와 α-알루미나의 혼합물)의 촉매담체를 제조하였다. A catalyst carrier having a core-shell structure (a mixture of α-Al 2 O 3 /SiC+θ-alumina and α-alumina) was prepared in the same manner as in Preparation Example 1, except that 50% by weight of SiC was added.

실험예 1: 코어-쉘 구조의 촉매담체에 Ag 담지 Experimental Example 1 : Ag supported on a catalyst carrier having a core-shell structure

(1) 은 옥살레이트(silver oxalate) 분말 7g을 증류수(7ml)에 넣고 5℃로 냉각시키면서 교반하였다.(1) Silver oxalate (silver oxalate) powder 7g was put in distilled water (7ml) was stirred while cooling to 5 ℃.

(2) (1)로부터의 용액의 총 중량에 대해 92중량%의 에틸렌디아민(ethylenediamine)(8중량%는 H2O)을 3.5ml 넣고 5℃로 냉각시키면서 교반하였다.(2) 3.5 ml of 92% by weight of ethylenediamine (8% by weight is H 2 O) was added with respect to the total weight of the solution from (1) and stirred while cooling to 5°C.

(3) Re2O7(37.4mg)과 (NH4)6Mo7O24?4H2O(3.7mg)를 각각 에틸렌디아민과 암모니아수의 혼합액(1ml)에 용해시켰다.(3) Re 2 O 7 (37.4 mg) and (NH 4 ) 6 Mo 7 O 24 ? 4H 2 O (3.7 mg) were respectively dissolved in a mixed solution (1 ml) of ethylenediamine and aqueous ammonia.

(4) LiNO3(28mg)와 Cs2CO3(18.3mg)를 각각 증류수(1ml)에 용해시켰다.(4) LiNO 3 (28 mg) and Cs 2 CO 3 (18.3 mg) were each dissolved in distilled water (1 ml).

(5) (3)과 (4)의 Re, Mo, Li, Cs의 용액을 (2)의 교반 용액에 넣고 5℃로 냉각시키면서 교반하였다.(5) The solutions of Re, Mo, Li, and Cs of (3) and (4) were put into the stirred solution of (2) and stirred while cooling to 5°C.

(6) 실시예 1 및 비교예 1과 2에서 제조된 코어-쉘 구조의 촉매담체 15g에 (5)에서 완성된 전구체 용액을 모두 흡수시켰다.(6) All of the precursor solution completed in (5) was absorbed into 15 g of the catalyst carrier having a core-shell structure prepared in Example 1 and Comparative Examples 1 and 2.

(7) 상기 전구체 용액을 흡수한 촉매담체를 감압 건조시켰다.(7) The catalyst carrier absorbing the precursor solution was dried under reduced pressure.

(8) 감압 건조된 촉매담체를 공기 흐름 하에 250에서 10분 동안 열처리하였다. 완성된 (Re, Mo, Li, Cs)Ag/(?-Al2O3/SiC+θ-알루미나와 ?-알루미나의 혼합물) 촉매는 20중량%의 은(Ag)을 포함하며, 360ppm의 레늄(Re)을 포함하며, 100ppm의 몰리브덴(Mo)을 포함하며, 750ppm의 세슘(Cs)을 포함하고, 140ppm의 리튬(Li)을 포함한다.(8) The catalyst carrier dried under reduced pressure was heat-treated at 250° C. for 10 minutes under an air stream. The finished (Re, Mo, Li, Cs)Ag/(?-Al 2 O 3 /SiC+θ-alumina and ?-alumina mixture) catalyst contains 20 wt% of silver (Ag), and 360 ppm of rhenium It contains (Re), contains 100 ppm of molybdenum (Mo), contains 750 ppm of cesium (Cs), and contains 140 ppm of lithium (Li).

실험예 2: 에틸렌 옥사이드의 합성 Experimental Example 2 : Synthesis of ethylene oxide

에틸렌으로부터 에틸렌 옥사이드를 합성하는 산화탈수소 반응은 고정층 촉매 반응기를 이용하였으며 위의 실시예 1 및 비교예 1과 2에서 제조한 촉매를 투입한 후, 반응 온도 200 내지 250℃ 및 GHSV(Gas Hourly Space Velocity) 3500h-1의 조건에서 에틸렌 옥사이드의 합성 반응을 진행하였다.The oxidative dehydrogenation reaction for synthesizing ethylene oxide from ethylene used a fixed bed catalyst reactor, and after adding the catalysts prepared in Example 1 and Comparative Examples 1 and 2 above, the reaction temperature was 200 to 250° C. and GHSV (Gas Hourly Space Velocity) ) The synthesis reaction of ethylene oxide was carried out under the conditions of 3500h -1.

상기 촉매와의 반응물로는 에틸렌 15 내지 30용적% 및 에틸렌 디클로라이드(ethylene dichloride, EDC) 1 내지 5ppm을 포함하는 혼합 가스를 사용하였다. As a reactant with the catalyst, a mixed gas containing 15 to 30 vol% of ethylene and 1 to 5 ppm of ethylene dichloride (EDC) was used.

실시예 1 및 비교예 1과 2에 따라 제조한 담체에, 실험예 1에 따라 Ag를 담지하고, 상기 세 가지 담지 촉매 각각을 사용하여 실험예 2에 따라 에틸렌 옥사이드를 합성한 반응 결과와 반응 후 Ag 입자 크기를 아래 표 1에 나타냈다. Ag was supported according to Experimental Example 1 on the carrier prepared according to Example 1 and Comparative Examples 1 and 2, and ethylene oxide was synthesized according to Experimental Example 2 using each of the three supported catalysts. Ag particle sizes are shown in Table 1 below.

또한, 실시예 1, 비교예 1과 2에 따라 제조한 담체에, 실험예 1에 따라 Ag를 담지하고, 상기 세 가지 담지 촉매 각각을 사용하여 실험예 2에 따라 에틸렌 옥사이드 합성 반응시킨 후의 SEM 이미지를 도 2에 나타냈다.In addition, the SEM image after supporting Ag according to Experimental Example 1 on the carrier prepared according to Example 1 and Comparative Examples 1 and 2, and ethylene oxide synthesis reaction according to Experimental Example 2 using each of the three supported catalysts. is shown in FIG. 2 .

Figure 112017119819348-pat00001
Figure 112017119819348-pat00001

표 1은 쉘에 SiC가 첨가된 코어-쉘 구조의 알루미나 담체(실시예 1 및 비교예 2) 및 쉘에 SiC가 첨가되지 않은 코어-쉘 구조의 알루미나 담체(비교예 1)에 Ag를 담지하여 에틸렌 옥사이드 합성 반응에 촉매로 적용한 결과를 나타낸 것이다. 비교예 1과 실시예 1의 촉매담체에 Ag를 담지한 촉매의 에틸렌 옥사이드 합성 반응 결과(에틸렌 전환율, 에틸렌 옥사이드 선택도, 에틸렌 옥사이드 수율)는 차이가 없으나, 합성 반응 후 Ag 입자 크기는 SiC가 첨가된 실시예 1의 경우가 50nm 작았다. Table 1 shows that Ag was supported on an alumina carrier having a core-shell structure in which SiC was added to the shell (Example 1 and Comparative Example 2) and an alumina carrier having a core-shell structure in which SiC was not added to the shell (Comparative Example 1). Shows the results of applying as a catalyst to the ethylene oxide synthesis reaction. Although there is no difference in the ethylene oxide synthesis reaction results (ethylene conversion rate, ethylene oxide selectivity, ethylene oxide yield) of the catalyst carrying Ag on the catalyst carrier of Comparative Example 1 and Example 1, the Ag particle size after the synthesis reaction was added with SiC. The case of Example 1 was 50 nm smaller.

또한, 도 2의 SEM 이미지 결과에서 보듯이, 반응 후 Ag의 입자 크기가 비교예 1보다 실시예 1에서 더 작기 때문에 촉매담체에 SiC를 첨가함으로써 Ag 소결을 억제할 수 있음을 확인하였다.In addition, as shown in the SEM image result of FIG. 2 , it was confirmed that Ag sintering could be suppressed by adding SiC to the catalyst carrier because the particle size of Ag after the reaction was smaller in Example 1 than in Comparative Example 1.

하지만, SiC의 함량이 50중량%인 비교예 2의 경우, 에틸렌 전환율이 감소하여 에틸렌 옥사이드 수율이 감소하였다. 따라서, 에틸렌 옥사이드 합성 반응에서 촉매담체 중의 SiC의 함량이 30중량%인 경우는 에틸렌 옥사이드 수율에 영향을 주지 않고, 촉매의 열적 안정성을 증가시키는 긍정적인 효과가 있다는 것을 알 수 있다. However, in the case of Comparative Example 2 in which the SiC content was 50% by weight, the ethylene conversion rate was reduced, and thus the ethylene oxide yield was reduced. Therefore, it can be seen that when the content of SiC in the catalyst carrier is 30 wt% in the ethylene oxide synthesis reaction, there is a positive effect of increasing the thermal stability of the catalyst without affecting the ethylene oxide yield.

이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시 양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다. As described above in detail a specific part of the content of the present invention, for those of ordinary skill in the art, it is clear that this specific description is only a preferred embodiment, and the scope of the present invention is not limited thereby. something to do. Accordingly, it is intended that the substantial scope of the present invention be defined by the appended claims and their equivalents.

Claims (15)

코어(core)-쉘(shell) 구조의 촉매담체에 금속 및 조촉매를 담지한 산화 탄화수소(hydrocarbon oxide) 제조용 촉매로서,
상기 코어의 성분은 α-알루미나(α-Al2O3)이고,
상기 쉘의 성분은 θ-알루미나 및 α-알루미나의 혼합물이고,
상기 쉘은 20 내지 40중량%의 SiC를 포함하는, 산화 탄화수소 제조용 촉매.
A catalyst for producing hydrocarbon oxide in which a metal and a cocatalyst are supported on a catalyst carrier having a core-shell structure,
A component of the core is α-alumina (α-Al 2 O 3 ),
The component of the shell is a mixture of θ-alumina and α-alumina,
The shell comprises 20 to 40% by weight of SiC, a catalyst for producing oxidized hydrocarbons.
제1항에 있어서, 상기 촉매담체는 비표면적이 0.8 내지 1.0㎡/g인, 산화 탄화수소 제조용 촉매.The catalyst for producing oxidized hydrocarbons according to claim 1, wherein the catalyst carrier has a specific surface area of 0.8 to 1.0 m 2 /g. 제1항에 있어서, 상기 촉매담체에 담지되는 금속이 Ag, Pd 및 Pt로 이루어진 군에서 선택되는 1종 이상의 것인, 산화 탄화수소 제조용 촉매.The catalyst for producing an oxidized hydrocarbon according to claim 1, wherein the metal supported on the catalyst carrier is at least one selected from the group consisting of Ag, Pd and Pt. 제1항에 있어서, 상기 조촉매가 Cs, Re, Mo, Li, Zr 및 W로 이루어진 군에서 선택되는 1종 이상의 것인, 산화 탄화수소 제조용 촉매.According to claim 1, wherein the cocatalyst is Cs, Re, Mo, Li, Zr, and at least one selected from the group consisting of W, the catalyst for producing an oxidized hydrocarbon. 삭제delete 삭제delete 제1항에 있어서, 상기 쉘의 SiC 함량이 25 내지 30중량%인, 산화 탄화수소 제조용 촉매.The catalyst for producing an oxidized hydrocarbon according to claim 1, wherein the SiC content of the shell is 25 to 30% by weight. (a) 촉매 금속 성분의 전구체와 에틸렌디아민(ethylenediamine)을 혼합하고 교반하는 단계;
(b) 제1항에 기재된 코어-쉘 구조의 촉매담체에 상기 촉매 금속 성분의 전구체 용액과 조촉매를 흡수시키는 단계;
(c) 상기 전구체 용액이 흡수된 촉매담체를 건조시키는 단계; 및
(d) 상기 촉매담체를 공기 흐름(air flow) 하에 250℃에서 열처리하는 단계를 포함하는, 제1항에 따른 산화 탄화수소 제조용 촉매의 제조방법.
(a) mixing and stirring the precursor of the catalyst metal component and ethylenediamine;
(b) absorbing the precursor solution of the catalyst metal component and the cocatalyst into the catalyst carrier having a core-shell structure according to claim 1;
(c) drying the catalyst carrier on which the precursor solution has been absorbed; and
(d) a method for producing a catalyst for producing an oxidized hydrocarbon according to claim 1, comprising the step of heat-treating the catalyst carrier at 250° C. under an air flow.
제8항에 있어서, 상기 촉매 금속 성분이 Ag, Pd 및 Pt로 이루어진 군에서 선택되는 1종 이상의 것인, 산화 탄화수소 제조용 촉매의 제조방법.The method of claim 8, wherein the catalyst metal component is at least one selected from the group consisting of Ag, Pd and Pt. 제8항에 있어서, 상기 조촉매가 Cs, Re, Mo, Li, Zr 및 W로 이루어진 군에서 선택되는 1종 이상의 것인, 산화 탄화수소 제조용 촉매의 제조방법.The method of claim 8, wherein the cocatalyst is at least one selected from the group consisting of Cs, Re, Mo, Li, Zr and W. 제8항에 기재된 방법으로 제조된 산화 탄화수소 제조용 촉매를 반응기에 투입한 후, 이를 탄화수소 및 산소를 포함하는 혼합 가스와 반응시키는 단계를 포함하는, 산화 탄화수소의 제조방법.9. A method for producing an oxidized hydrocarbon, comprising the step of adding the catalyst for producing an oxidized hydrocarbon prepared by the method according to claim 8 into a reactor, and reacting it with a mixed gas containing hydrocarbon and oxygen. 제11항에 있어서, 상기 혼합 가스가 클로로메탄(chloromethane), 디클로로메탄(dichloromethane), 클로로에탄(chloroethane) 및 에틸렌 디클로라이드(ethylene dichloride, EDC)로 이루어진 군에서 선택되는 클로로하이드로카본을 더 포함하는 것인, 산화 탄화수소의 제조방법.12. The method of claim 11, wherein the mixed gas is chloromethane (chloromethane), dichloromethane (dichloromethane), chloroethane (chloroethane) and ethylene dichloride (ethylene dichloride, EDC) further comprising a chlorohydrocarbon selected from the group consisting of The method for producing an oxidized hydrocarbon. 제12항에 있어서, 상기 혼합 가스가 에틸렌 디클로라이드(ethylene dichloride, EDC) 1 내지 5ppm을 포함하는 것인, 산화 탄화수소의 제조방법.The method of claim 12, wherein the mixed gas contains 1 to 5 ppm of ethylene dichloride (EDC). 제11항에 있어서, 상기 혼합 가스가 질소 및 메탄을 밸런스 가스로 사용하는 것인, 산화 탄화수소의 제조방법.The method of claim 11, wherein the mixed gas uses nitrogen and methane as balance gases. 제1항에 기재된 촉매담체에 Ag가 담지된 촉매 조성물로서, 상기 촉매 조성물이 15 내지 25중량%의 은(Ag), 100 내지 600ppm의 레늄(Re), 50 내지 400ppm의 몰리브덴(Mo), 400 내지 1000ppm의 세슘(Cs) 및 1 내지 300ppm의 리튬(Li)을 포함하는 것인, 촉매 조성물.A catalyst composition in which Ag is supported on the catalyst carrier according to claim 1, wherein the catalyst composition comprises 15 to 25 wt% of silver (Ag), 100 to 600 ppm of rhenium (Re), 50 to 400 ppm of molybdenum (Mo), 400 to 1000 ppm of cesium (Cs) and 1 to 300 ppm of lithium (Li).
KR1020170163195A 2017-11-30 2017-11-30 Catalyst for production of hydrocarbon oxide using a support having a core-shell structure with enhanced thermal stability, preparation method thereof, and preparation method of hydrocarbon oxide using the same KR102307624B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170163195A KR102307624B1 (en) 2017-11-30 2017-11-30 Catalyst for production of hydrocarbon oxide using a support having a core-shell structure with enhanced thermal stability, preparation method thereof, and preparation method of hydrocarbon oxide using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170163195A KR102307624B1 (en) 2017-11-30 2017-11-30 Catalyst for production of hydrocarbon oxide using a support having a core-shell structure with enhanced thermal stability, preparation method thereof, and preparation method of hydrocarbon oxide using the same

Publications (2)

Publication Number Publication Date
KR20190063980A KR20190063980A (en) 2019-06-10
KR102307624B1 true KR102307624B1 (en) 2021-09-30

Family

ID=66848171

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170163195A KR102307624B1 (en) 2017-11-30 2017-11-30 Catalyst for production of hydrocarbon oxide using a support having a core-shell structure with enhanced thermal stability, preparation method thereof, and preparation method of hydrocarbon oxide using the same

Country Status (1)

Country Link
KR (1) KR102307624B1 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3313164B2 (en) * 1992-02-27 2002-08-12 株式会社日本触媒 Silver catalyst for producing ethylene oxide and method for producing the same
EP1981633B1 (en) * 2006-02-10 2020-08-05 Shell International Research Maatschappij B.V. A process for preparing a catalyst, the catalyst, and a process for the production of an olefin oxide, a 1,2-diol, a 1,2-diol ether, or an alkanolamine

Also Published As

Publication number Publication date
KR20190063980A (en) 2019-06-10

Similar Documents

Publication Publication Date Title
RU2476266C2 (en) Method of producing olefin oxide
RU2495715C2 (en) Mullite-containing support for ethylene oxide synthesis catalysts
TWI596091B (en) Start-up process for high selectivity ethylene oxide catalysts
KR101485955B1 (en) Start-up of high selectivity catalysts in olefin oxide plants
CN101085425A (en) Supported silver catalyst and an epoxidation process using the catalyst
JP2013237671A (en) Method of manufacturing ethylene oxide
JP2013534465A (en) Carrier for ethylene oxide catalyst
US11213806B1 (en) Catalyst supports—composition and process of manufacture
JP2004515331A (en) Ethylene oxide catalyst
JPS6045637B2 (en) Method for producing ethylene oxide
JP2015504361A (en) Catalyst support for ethylene oxide
WO2004039790A1 (en) Olefin oxide catalysts
JP2006503704A (en) Method for preparing olefin oxide, method for using the olefin oxide and catalyst composition
KR102307624B1 (en) Catalyst for production of hydrocarbon oxide using a support having a core-shell structure with enhanced thermal stability, preparation method thereof, and preparation method of hydrocarbon oxide using the same
JP2013215727A (en) Catalyst for partial oxidation of olefin, preparation method thereof and process for preparing alkylene oxide
RU2664116C2 (en) Catalyst and process for oxychlorination of ethylene to dichloroethane
TW201138960A (en) Epoxidation process and microstructure
TW576754B (en) Catalysts for oxychlorination of ethylene to 1,2-dichloroethane
JP2002136868A (en) Carrier of catalyst for manufacturing ethylene oxide, catalyst using the carrier for manufacturing ethylene oxide and method for manufacturing ethylene oxide
RU2169040C2 (en) Silver catalyst for production of ethylene oxide, method of preparing catalyst and ethylene oxide production process
CN107864652B (en) Post-treated silver catalyst for epoxidation
US5334789A (en) Oxychlorination catalyst process for preparing the catalyst and method of oxychlorination with use of the catalyst
KR20190063914A (en) Catalysts for production of hydrocarbon oxide using a support having a core-shell structure, preparation method thereof, and method for prepation of hydrocarbon oxide using the same
US20040138483A1 (en) Olefin oxide catalysts
CN1098122C (en) Butadiene-silver epoxide catalyst

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant