KR102306405B1 - Method for control of gray mold caused by Botrytis cinerea using oxalate-degrading bacteria - Google Patents
Method for control of gray mold caused by Botrytis cinerea using oxalate-degrading bacteria Download PDFInfo
- Publication number
- KR102306405B1 KR102306405B1 KR1020190061139A KR20190061139A KR102306405B1 KR 102306405 B1 KR102306405 B1 KR 102306405B1 KR 1020190061139 A KR1020190061139 A KR 1020190061139A KR 20190061139 A KR20190061139 A KR 20190061139A KR 102306405 B1 KR102306405 B1 KR 102306405B1
- Authority
- KR
- South Korea
- Prior art keywords
- strain
- gray mold
- present
- protein
- oxalic acid
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N1/00—Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
- C12N1/20—Bacteria; Culture media therefor
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N63/00—Biocides, pest repellants or attractants, or plant growth regulators containing microorganisms, viruses, microbial fungi, animals or substances produced by, or obtained from, microorganisms, viruses, microbial fungi or animals, e.g. enzymes or fermentates
- A01N63/10—Animals; Substances produced thereby or obtained therefrom
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12R—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
- C12R2001/00—Microorganisms ; Processes using microorganisms
- C12R2001/01—Bacteria or Actinomycetales ; using bacteria or Actinomycetales
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12R—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
- C12R2001/00—Microorganisms ; Processes using microorganisms
- C12R2001/01—Bacteria or Actinomycetales ; using bacteria or Actinomycetales
- C12R2001/38—Pseudomonas
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Zoology (AREA)
- Chemical & Material Sciences (AREA)
- Wood Science & Technology (AREA)
- Biotechnology (AREA)
- General Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Genetics & Genomics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Microbiology (AREA)
- Virology (AREA)
- Medicinal Chemistry (AREA)
- Tropical Medicine & Parasitology (AREA)
- Biomedical Technology (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- Dentistry (AREA)
- Environmental Sciences (AREA)
- Plant Pathology (AREA)
- Pest Control & Pesticides (AREA)
- Agronomy & Crop Science (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
본 발명은 옥살산 분해 활성이 있는 신규 균주, 잿빛 곰팡이병 방제용 조성물 및 그를 이용한 방제 방법에 관한 것으로, 더욱 상세하게는 대상작물에 옥살산 분해능이 있는 세균을 처리하는 잿빛곰팡이병 방제 기술에 관한 것이다. 본 발명에 따르면 잿빛 곰팡이병균의 병원성 인자인 옥살산을 분해하여 잿빛곰팡이병원균의 병원성을 나타내지 않도록 하여 감염이나 병진을 방지할 수 있으며, 살균제와 같은 화학 약품을 사용하지 않고 자연친화적인 미생물을 이용함으로써 환경오염을 발생시키지 않아 친환경적으로 방제할 수 있는 이점이 있다.The present invention relates to a novel strain having oxalic acid decomposition activity, a composition for controlling gray mold disease, and a control method using the same, and more particularly, to a gray mold disease control technique for treating bacteria having oxalic acid decomposition ability on a target crop. According to the present invention, it is possible to prevent infection or translation by decomposing oxalic acid, a pathogenic factor of the gray mold pathogen, so as not to show the pathogenicity of the gray mold pathogen. It has the advantage of being environmentally friendly because it does not cause pollution.
Description
본 발명은 옥살산 분해 활성이 있는 균주, 잿빛 곰팡이병 방제용 조성물 및 그를 이용한 방제 방법에 관한 것으로, 더욱 상세하게는 대상작물에 옥살산 분해능이 있는 세균을 처리하는 잿빛곰팡이병 방제 기술에 관한 것이다.The present invention relates to a strain having an oxalic acid decomposition activity, a composition for controlling gray mold disease, and a control method using the same, and more particularly, to a gray mold disease control technique for treating bacteria having oxalic acid decomposition ability on a target crop.
일반적으로 잿빛곰팡이병원균인 보트리티스 시네레아(Botrytis cinerea)는 상추, 오이, 토마토, 딸기, 호박 등의 채소 작물부터 장미, 백합 등 화훼 작물, 과실류인 블루베리, 산딸기 등의 작물에 이르기까지 수많은 작물에 잿빛곰팡이병을 일으키는 곰팡이성 미생물이다. 이러한 잿빛곰팡이 병원균은 기주범위가 대단히 넓고, 무성생식 포자의 비산에 의해 지속적인 2차감염이 가능하여 이 병에 의한 작물의 수확에 막대한 피해를 일으킨다. 뿐만 아니라, 이러하 작물들은 수확 후의 저장이나 유통 중에도 잿빛곰팡이병을 일으키기 때문에, 수확 후 질병관리에 많은 경제적 피해를 야기한다.In general, the gray mold pathogen Botrytis cinerea ( Botrytis cinerea ) is produced from vegetable crops such as lettuce, cucumber, tomato, strawberry, and pumpkin, to flower crops such as roses and lilies, and to crops such as blueberries and raspberries, which are fruits. It is a fungal microorganism that causes gray mold disease on crops. This gray mold pathogen has a very wide host range, and continuous secondary infection is possible by the scattering of asexual spores, causing enormous damage to crops due to this disease. In addition, since these crops cause gray mold disease during storage or distribution after harvest, it causes a lot of economic damage to disease management after harvest.
이러한 잿빛곰팡이병은 옥살산(oxalic acid)을 분비하여 침입부위의 pH를 낮추어 병원균이 분비하는 세포벽 분해효소들의 기능을 증가시키거나 옥살산에 의한 칼슘이온과 같은 2가 양이온들의 킬레이터로 작용하여 세포벽분해를 용이하게 하고 또한 식물의 방제기작을 무력화하여 병을 일으킨다(Manteau et al. 2003; Microbiol. Ecol. 43:359-366).This gray mold disease secretes oxalic acid to lower the pH of the invading site to increase the function of cell wall degrading enzymes secreted by pathogens, or acts as a chelator for divalent cations such as calcium ions by oxalic acid to degrade the cell wall. and also causes disease by incapacitating the control mechanism of plants (Manteau et al. 2003; Microbiol. Ecol. 43:359-366).
이러한 잿빛곰팡이병을 방제하기 위한 농약들이 개발되고 있으나, 화학적 성분의 농약에 의해 환경오염 등의 환경적인 문제점을 야기할 수 있다. 또한 시설재배 내의 농약살포는 오히려 온실환경의 과습을 조장할 수 있어 경우에 따라서는 더 많은 감염에 의한 피해를 일으킬 수 있다.Although pesticides for controlling such gray mold disease have been developed, it may cause environmental problems such as environmental pollution by chemical pesticides. In addition, spraying of pesticides in facility cultivation can rather promote over-humidification of the greenhouse environment, which in some cases can cause more damage due to infection.
친환경적인 방법의 하나로 길항미생물을 이용하여 방제하고자 하는 시도들이 있어 왔으나, 실용화를 위한 많은 노력들이 필요한 단계이다.There have been attempts to control using antagonistic microorganisms as one of the eco-friendly methods, but many efforts are needed for practical use.
이러한 잿빛곰팡이병을 방제하기 위한 옥살산 분해세균으로 Cupriavidus campinensis에 의한 잿빛곰팡이병 방제 방법이 개시되어 있다(Schoonbeek et al. 2007; MPMI 20:1535-1544). Oxalate oxidase 유전자를 식물에 적용한 공지 기술로는 EP0636181A1가 있다. 옥살산 분해능이 있는 Pseudomonas fluorescens PfMDU2 균주를 이용하여 벼잎집무늬마름병을 방제효과를 연구한 사례가 있다(Nagarajkumar et al. 2005; Microbiological Research 160:291-298). A method for controlling gray mold disease by Cupriavidus campinensis as an oxalic acid-degrading bacterium for controlling gray mold disease is disclosed (Schoonbeek et al. 2007; MPMI 20:1535-1544). A known technique for applying the oxalate oxidase gene to plants is EP0636181A1. There is a case in which the control effect of Pseudomonas fluorescens PfMDU2 strain capable of degrading oxalic acid was studied (Nagarajkumar et al. 2005; Microbiological Research 160:291-298).
이에 본 발명자들은 놀랍게도 옥살산 분해세균을 이용하여 특정 식물병원균, 특히 잿빛곰팡이균인 보트리티스 시네레아(Botrytis cinerea)에 의한 병을 방제하는 방법을 연구하던 중, 옥살산 분해능이 우수한 세균을 분리하였으며 이러한 옥살산 분해세균을 작물에 처리하면 잿빛곰팡이병의 발생이 억제되는 것을 규명하여 본 발명을 완성하였다.Accordingly, the present inventors surprisingly isolated a bacterium having excellent oxalic acid decomposition ability while studying a method for controlling a disease caused by a specific plant pathogen, particularly Botrytis cinerea , a gray mold fungus using oxalic acid-decomposing bacteria. The present invention was completed by identifying that the occurrence of gray mold disease was suppressed when oxalic acid-decomposing bacteria were treated on crops.
따라서, 본 발명의 목적은 대상 작물에 잿빛곰팡이병을 방제할 수 있는 신규 균주를 제공하는 것이다. Accordingly, it is an object of the present invention to provide a novel strain capable of controlling gray mold disease in target crops.
또한, 본 발명의 다른 목적은 대상 작물에 잿빛곰팡이병을 방제할 수 있는 단백질을 제공하는 것이다.Another object of the present invention is to provide a protein capable of controlling gray mold disease in a target crop.
또한, 본 발명의 다른 목적은 잿빛곰팡이병을 방제할 수 있는 조성물을 제공하는 것이다.Another object of the present invention is to provide a composition capable of controlling gray mold disease.
이상에서의 본 발명에 따른 목적은 상기에 한정되는 것은 아니며, 기타 본 발명의 목적들은 후술할 실시예 및 청구범위에 기재된 사항을 통하여 본 발명이 속하는 분야의 통상의 지식을 가진 자에 의하여 분명하게 이해될 수 있을 것이다.Objects according to the present invention in the above are not limited to the above, and other objects of the present invention are clearly defined by those of ordinary skill in the art to which the present invention pertains through the examples and claims to be described later. can be understood
전술한 목적을 달성하기 위해 본 발명의 일 실시예는 수도모나스 플루오레센스(Pseudomonas fluorescens) ODB5 균주(KACC 92230P), 수도모나스 에비에타니필라(Pseudomonas abietaniphila) ODB36 균주(KACC 92232P) 또는 메틸로박테리움 자트마니(Methylobacterium zatmanii) ODB35 균주(KACC 92231P)를 제공한다.In order to achieve the above object, one embodiment of the present invention is Pseudomonas fluorescens ODB5 strain (KACC 92230P), Pseudomonas abietaniphila ODB36 strain (KACC 92232P) or methylobacter provides Solarium jateu Mani (Methylobacterium zatmanii) ODB35 strain (KACC 92231P).
본 발명의 일실시예에서 상기 균주에서 분리된 PodA(Pseudomonas oxalate-degrading protein) 단백질을 제공한다.In one embodiment of the present invention provides a PodA ( Pseudomonas oxalate-degrading protein) protein isolated from the strain.
여기서, 상기 단백질은 서열번호 5으로 표시되는 아미노산 서열을 포함한다.Here, the protein includes an amino acid sequence represented by SEQ ID NO: 5.
또한, 상기 단백질은 서열번호 4로 표시되는 염기서열로 코딩되는 것일 수 있다.In addition, the protein may be encoded by the nucleotide sequence represented by SEQ ID NO: 4.
본 발명의 다른 일실시예에서 서열번호 4로 표시되는 염기서열을 포함하는 벡터를 제공한다.In another embodiment of the present invention, a vector comprising the nucleotide sequence represented by SEQ ID NO: 4 is provided.
또한, 상기 균주의 배양액 또는 배양여액을 제공한다.In addition, it provides a culture solution or a culture filtrate of the strain.
본 발명의 다른 일실시예에서 균주, PodA 단백질, 벡터 또는 배양액 또는 배양여액으로 이루어진 군으로부터 선택된 하나 이상을 포함하는 잿빛곰팡이병 방제용 조성물을 제공한다.In another embodiment of the present invention, it provides a composition for controlling gray mold disease comprising at least one selected from the group consisting of a strain, PodA protein, vector or culture medium or culture filtrate.
여기서, 상기 균주는 옥살산 분해능을 갖거나, 잿빛곰팡이 병원균의 포자에 대한 이병율 저하 효과를 갖는다.Here, the strain has the ability to degrade oxalic acid, or has the effect of reducing the morbidity rate against the spores of the gray mold pathogen.
또한, 본 발명의 다른 일실시예에서 상기 균주를 옥살산나트륨(sodium oxalate)이 첨가된 배지에서 배양하는 단계를 포함하는 잿빛곰팡이병 방제용 조성물 제조방법을 제공한다.In addition, in another embodiment of the present invention provides a method for producing a composition for controlling gray mold disease comprising the step of culturing the strain in a medium to which sodium oxalate (sodium oxalate) is added.
또한, 본 발명의 다른 일실시예에서 균주, PodA 단백질, 벡터 또는 배양액 또는 배양여액 중에 선택된 하나 이상을 대상작물 또는 경작지에 살포하는 단계를 포함하는 잿빛곰팡이병 방제 방법을 제공한다.In addition, in another embodiment of the present invention, it provides a method for controlling gray mold disease comprising the step of spraying one or more selected from the strain, PodA protein, vector or culture medium or culture filtrate to a target crop or cultivated land.
또한, 본 발명의 다른 일실시예에서 상기 벡터로 형질전환된 형질전환체를 제공한다.In another embodiment of the present invention, there is provided a transformant transformed with the vector.
전술한 바와 같은 본 발명에 따르면, 잿빛 곰팡이병균의 병원성 인자인 옥살산을 분해하여 잿빛곰팡이병원균의 병원성을 나타내지 않도록하여 감염이나 병진을 방지할 수 있는 효과가 있다.According to the present invention as described above, there is an effect of preventing infection or translation by decomposing oxalic acid, a pathogenic factor of the gray mold pathogen, so as not to show the pathogenicity of the gray mold pathogen.
또한, 본 발명에 따르면, 살균제와 같은 화학 약품을 사용하지 않고 자연친화적인 미생물을 이용함으로써 환경오염을 발생시키지 않는 친환경적인 방제를 이룰 수 있다.In addition, according to the present invention, it is possible to achieve eco-friendly control that does not cause environmental pollution by using nature-friendly microorganisms without using chemicals such as disinfectants.
이상에서의 본 발명에 따른 효과는 상기에 한정되는 것은 아니며, 기타 본 발명의 효과들은 후술할 실시예 및 청구범위에 기재된 사항을 통하여 본 발명이 속하는 분야의 통상의 지식을 가진 자에 의하여 분명하게 이해될 수 있을 것이다.The effects according to the present invention in the above are not limited to the above, and other effects of the present invention can be clearly identified by those of ordinary skill in the art through the examples and claims to be described later. can be understood
도 1은 본 발명의 옥살산 분해 세균 배양액의 흡광도를 나타낸 것으로 세균들의 성장을 나타낸 것이다.
도 2는 본 발명의 옥살산 분해 세균 배양액 내의 잔여 옥살산 농도 측정 결과를 나타낸 것이다.
도 3은 본 발명의 옥살산 분해 세균의 16s rRNA 서열 분석에 기초한 계통도를 나타낸 것이다.
도 4는 본 발명의 옥살산 분해 세균을 처리한 애기장대에서의 이병율 측정결과를 나타낸 것이다.
도 5는 본 발명의 podA 유전자의 단백질 발현 결과를 나타낸 것이다.
도 6은 본 발명의 PodA 단백질의 옥살산 분해능 측정 결과를 나타낸 것이다.Figure 1 shows the absorbance of the oxalic acid-decomposed bacterial culture of the present invention, showing the growth of bacteria.
Figure 2 shows the measurement result of the residual oxalic acid concentration in the oxalic acid-decomposing bacterial culture of the present invention.
3 shows a schematic diagram based on 16s rRNA sequence analysis of oxalic acid-degrading bacteria of the present invention.
Figure 4 shows the morbidity measurement results in Arabidopsis thaliana treated with the oxalic acid-decomposing bacteria of the present invention.
5 shows the protein expression results of the podA gene of the present invention.
6 shows the results of measuring the oxalic acid resolution of the PodA protein of the present invention.
이하, 본 발명에 대하여 보다 상세하게 설명하도록 한다.Hereinafter, the present invention will be described in more detail.
본 발명은 옥살산 분해 활성이 있는 균주, 잿빛 곰팡이병 방제용 조성물 및 그를 이용한 방제 방법에 관한 것으로, 대상작물에 옥살산 분해능이 있는 세균을 처리하여 잿빛곰팡이병을 방제할 수 있는 환경친화적인 잿빛곰팡이병 방제 기술에 관한 것이다.The present invention relates to a strain having oxalic acid decomposition activity, a composition for controlling gray mold disease, and a control method using the same. It is about control technology.
본 발명자들은 옥살산 분해세균을 이용하여 특정 식물병원균, 특히 잿빛곰팡이균인 보트리티스 시네레아(Botrytis cinerea)에 의한 병을 방제하는 방법을 연구하던 중, 옥살산 분해능이 우수한 세균을 분리하였으며, 본 발명에서 분리된 수도모나스 플루오레센스(Pseudomonas fluorescens) ODB5 균주, 수도모나스 에비에타니필라(Pseudomonas abietaniphila) ODB36 균주 및 메틸로박테리움 자트마니(Methylobacterium zatmanii) ODB35 균주를 각각 한국농업미생물자원센터 (Korean Agricultural Culture Collection, KACC)에 2018년 4월 20일자로 기탁하였다.While the present inventors were studying a method for controlling diseases caused by specific plant pathogens, particularly gray mold, Botrytis cinerea , using oxalic acid-decomposing bacteria, bacteria having excellent oxalic acid decomposition ability were isolated, and the present invention The Pseudomonas fluorescens ODB5 strain, Pseudomonas abietaniphila ODB36 strain and Methylobacterium zatmanii ODB35 strain isolated from Culture Collection, KACC) on April 20, 2018.
1) Pseudomonas fluorescens ODB5 (KACC 92230P)1) Pseudomonas fluorescens ODB5 (KACC 92230P)
2) Methylobacterium zatmanii ODB35 (KACC 92231P)2) Methylobacterium zatmanii ODB35 (KACC 92231P)
3) Pseudomonas abietaniphila ODB36 (KACC 92232P)3) Pseudomonas abietaniphila ODB36 (KACC 92232P)
본 발명에 따른 수도모나스 플루오레센스(Pseudomonas fluorescens) ODB5 균주(KACC 92230P), 수도모나스 에비에타니필라(Pseudomonas abietaniphila) ODB36 균주(KACC 92232P) 또는 메틸로박테리움 자트마니(Methylobacterium zatmanii) ODB35 균주(KACC 92231P)는 식물병 중에 특히, 잿빛곰팡이병에 탁월한 방제효과를 가지고 있으며, 특히 잿빛곰팡이균인 보트리티스 시네레아(Botrytis cinerea)에 의해 발생하는 곰팡이병을 방제 및 예방하는 생물농약의 미생물제제로 유용하게 사용될 수 있다.Also in accordance with the present invention Pseudomonas fluorescein sense (Pseudomonas fluorescens) ODB5 strain (KACC 92230P), also Pseudomonas EBI Tani pillar (Pseudomonas abietaniphila) ODB36 strain (KACC 92232P) or tumefaciens jateu Mani (Methylobacterium zatmanii) ODB35 strain of methyl ( KACC 92231P) has an excellent control effect on gray mold disease among plant diseases, and is a biological pesticide microbial agent that controls and prevents fungal diseases caused by the gray mold bacterium Botrytis cinerea in particular. It can be useful.
본 발명의 일 실시예에 따르면, 잿빛곰팡이병 대해 방제 활성이 있는 수도모나스 플루오레센스(Pseudomonas fluorescens) ODB5 균주(KACC 92230P), 수도모나스 에비에타니필라(Pseudomonas abietaniphila) ODB36 균주(KACC 92232P) 또는 메틸로박테리움 자트마니(Methylobacterium zatmanii) ODB35 균주(KACC 92231P)를 제공한다. According to an embodiment of the present invention, Pseudomonas fluorescens ODB5 strain (KACC 92230P), Pseudomonas abietaniphila ODB36 strain (KACC 92232P) or It provides tumefaciens jateu Mani (Methylobacterium zatmanii) ODB35 strain (KACC 92231P) methyl.
본 발명의 일 실시예에서 상기 균주 또는 이의 배양액 또는 배양여액을 유효성분으로 포함하는 식물병 방제용 조성물을 제공한다. 상기 배양물은 상기 균주가 정상적으로 성장할 수 있는 조건의 배지로부터 생성된 어떠한 배양물이라도 무방하다. 다만, 상기 식물병 방제용 조성물은 제제화 또는 보존을 위하여 통상적으로 사용되는 어떠한 첨가물도 첨가될 수 있다. 또한, 바람직하게는 식물병으로서 황색마름병, 황색마름병(yellow patch), 피시움성병해(Pythium blight), 라이족토니아병해(large patch), 달라스팟(dollar spot), 탄저병, 잿빛곰팡이병, 역병 및 시들음병의 방제를 위한 방제용 조성물에 유효한 양으로 첨가될 수 있다.In one embodiment of the present invention provides a composition for controlling plant diseases comprising the strain or its culture solution or culture filtrate as an active ingredient. The culture may be any culture produced from a medium under conditions in which the strain can grow normally. However, any additives commonly used for formulation or preservation may be added to the composition for controlling plant diseases. In addition, preferably as plant diseases, yellow blight, yellow blight (yellow patch), Pythium blight, rhizoctonia blight (large patch), dollar spot, anthrax, gray mold disease, late blight And it may be added in an effective amount to the control composition for the control of wilt disease.
본 발명의 일 실시예에 따르면 수도모나스 플루오레센스(Pseudomonas fluorescens) ODB5 균주(KACC 92230P), 수도모나스 에비에타니필라(Pseudomonas abietaniphila) ODB36 균주(KACC 92232P) 또는 메틸로박테리움 자트마니(Methylobacterium zatmanii) ODB35 균주(KACC 92231P) 중에 하나 이상의 균주 또는 이의 배양액 또는 이의 배양여액으로부터 분리하여 얻은 잿빛곰팡이병 천연길항물질을 제공한다.According to one embodiment of the present invention may also Pseudomonas fluorescein sense (Pseudomonas fluorescens) ODB5 strain (KACC 92230P), also Tani pillar in Pseudomonas EBI (Pseudomonas abietaniphila) ODB36 strain (KACC 92232P) or methyl tumefaciens jateu Mani (Methylobacterium zatmanii ) One or more strains of ODB35 strain (KACC 92231P) or a natural antagonist of gray mold disease obtained by separation from a culture solution thereof or a culture filtrate thereof is provided.
상기 쳔연길항물질은 수도모나스 플루오레센스(Pseudomonas fluorescens) ODB5 균주(KACC 92230P), 수도모나스 에비에타니필라(Pseudomonas abietaniphila) ODB36 균주(KACC 92232P) 또는 메틸로박테리움 자트마니(Methylobacterium zatmanii) ODB35 균주(KACC 92231P) 중에 하나 이상의 균주 또는 이의 배양액 또는 이의 배양여액으로부터 본 균주를 제거하고, 균주가 제거된 배양액에 추출용매를 처리하여 단백질을 추출함으로써 얻을 수 있다. 상기 추출용매는 탄소가 1 내지 4개의 알코올일 수 있으며, 바람직하게는 에탄올일 수 있으나, 이에 한정하는 것은 아니다.The chyeon Yanji wherein the material is also Pseudomonas fluorescein sense (Pseudomonas fluorescens) ODB5 strain (KACC 92230P), also Pseudomonas EBI to Tani pillar (Pseudomonas abietaniphila) ODB36 strain (KACC 92232P) or methyl tumefaciens jateu Mani (Methylobacterium zatmanii) ODB35 It can be obtained by removing the present strain from one or more strains among the strains (KACC 92231P) or its culture medium or its culture filtrate, and treating the culture medium from which the strain is removed with an extraction solvent to extract the protein. The extraction solvent may be an alcohol having 1 to 4 carbon atoms, preferably ethanol, but is not limited thereto.
본 발명의 일 실시예에서 균주가 제거된 배양액 및 에탄올을 혼합하여 반응시킨 후 단백질을 침전시키고 용액을 증발 건조시킴으로서 본 발명의 잿빛곰팡이병을 억제하는 천연길항물질을 얻을 수 있다. 본 발명에서 분리한 천연길항물질은 PodA(Pseudomonas oxalate-degrading protein) 단백질일 수 있다.In an embodiment of the present invention, a natural antagonist for inhibiting gray mold disease of the present invention can be obtained by mixing and reacting the culture solution from which the strain has been removed and ethanol, and then precipitating the protein and evaporating the solution to dryness. The natural antagonist isolated in the present invention may be PodA (Pseudomonas oxalate-degrading protein) protein.
본 발명의 일실시예에서 균주로부터 분리된 천연길항물질은 PodA(Pseudomonas oxalate-degrading protein) 단백질일 수 있으며, 상기 PodA 단백질은 서열번호 4로 표시되는 염기서열을 포함하는 유전자로 코딩되거나, 서열번호 5로 표시되는 아미노산 서열을 포함하는 것일 수 있다.In one embodiment of the present invention, the natural antagonist isolated from the strain may be a PodA (Pseudomonas oxalate-degrading protein) protein, wherein the PodA protein is encoded by a gene comprising the nucleotide sequence shown in SEQ ID NO: 4, or SEQ ID NO: It may include the amino acid sequence represented by 5.
본 발명에서 서열번호 4로 표시되는 염기서열을 이용한 벡터를 제공한다. 보다 상세하게 본 발명은 서열번호 4로 표시되는 염기서열을 포함하는 재조합 벡터를 제공할 수 있다. 본 발명의 벡터 시스템은 당업계에 공지된 다양한 방법을 통해 구축될 수 있으며, 이에 대한 구체적인 방법은 Sambrook et al., Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Laboratory Press(2001)에 개시된 방법으로 적용될 수 있으나, 이에 제한되는 것은 아니다.In the present invention, a vector using the nucleotide sequence represented by SEQ ID NO: 4 is provided. In more detail, the present invention may provide a recombinant vector comprising the nucleotide sequence represented by SEQ ID NO: 4. The vector system of the present invention can be constructed through various methods known in the art, and specific methods for this are applied to the method disclosed in Sambrook et al., Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Laboratory Press (2001). However, it is not limited thereto.
본 발명의 벡터는 전형적으로 클로닝을 위한 벡터 또는 발현을 위한 벡터로서 구축될 수 있다. 또한, 본 발명의 벡터는 원핵 세포 또는 진핵 세포를 숙주로 하여 구축될 수 있다. 바람직하게는 식물체를 숙주로하여 구축될 수 있다.Vectors of the present invention can typically be constructed as vectors for cloning or as vectors for expression. In addition, the vector of the present invention can be constructed using a prokaryotic cell or a eukaryotic cell as a host. Preferably, it can be constructed using a plant as a host.
본 발명에서 상기 벡터는 외래 유전자를 도입된 식물체 내에서 영구적으로 발현시킬 수 있는 형질전환용 바이너리 벡터로서, 프로모터의 하류(downstream)에 목적 단백질을 코딩하는 유전자를 작동 가능하게 연결시켜 제조된 식물체의 저장뿌리 특이 재조합 발현 벡터이다.In the present invention, the vector is a binary vector for transformation capable of permanently expressing a foreign gene in a plant into which a foreign gene is introduced. It is a storage root-specific recombinant expression vector.
본 발명에 따른 발현 벡터로는 단백질 발현에 사용되는 기존의 벡터를 기본 골격으로 하여 본 발명의 프로모터를 삽입하고 상기 프로모터의 하류(downstream) 쪽으로 목적 단백질을 코딩하는 염기서열을 삽입함으로써 제조할 수 있다.The expression vector according to the present invention can be prepared by inserting the promoter of the present invention using an existing vector used for protein expression as a basic backbone and inserting the nucleotide sequence encoding the target protein into the downstream side of the promoter. .
본 발명의 실시예에서는 pET21b 벡터 또는 pCAMBIA 1300 벡터를 이용하여 제조하였다.In the example of the present invention, it was prepared using the pET21b vector or the pCAMBIA 1300 vector.
본 발명의 일실시예에 따르면, 본 발명은 상기 재조합 벡터에 의해 형질전환된 형질전환체를 제공한다.According to one embodiment of the present invention, the present invention provides a transformant transformed by the recombinant vector.
본 발명의 형질전환체를 제조하기 위해서는 일반적으로 공지된 방법에 따라 실시될 수 있으며, 바람직한 구현예에 따르면 상기 형질전환체는 식물체 또는 미생물이다. 본 발명에 의한 PodA 유전자는 잿빛곰팡이병 방제활성을 부여하고자 어떤 식물에도 도입될 수 있으며, 식물에 대하여 제한되는 것은 아니다.In order to prepare the transformant of the present invention, it may be carried out according to a generally known method, and according to a preferred embodiment, the transformant is a plant or a microorganism. The PodA gene according to the present invention may be introduced into any plant to impart gray mold disease control activity, and is not limited to plants.
본 발명에 의한 PodA 유전자는 잿빛곰팡이병 방제활성을 가지고 있으므로 본 발명의 형질전환된 식물은 야생형 식물에 대해 잿빛곰팡이병에 대한 내성이 향상되는 것을 특징으로 할 수 있다. 본 발명에서 사용되는 용어 ‘식물’은 성숙한 식물체뿐만 아니라 성숙한 식물로 배양 또는 재배될 수 있는 식물 세포, 식물 조직 또는 식물의 종자 등을 모두 포함하는 의미일 것이다.Since the PodA gene according to the present invention has gray mold disease control activity, the transformed plant of the present invention may be characterized in that resistance to gray mold disease is improved for wild-type plants. The term 'plant' used in the present invention will be meant to include not only mature plants, but also plant cells, plant tissues, or seeds of plants that can be cultured or cultivated as mature plants.
한편, 본 발명의 일실시예에서 수도모나스 플루오레센스(Pseudomonas fluorescens) ODB5 균주(KACC 92230P), 수도모나스 에비에타니필라(Pseudomonas abietaniphila) ODB36 균주(KACC 92232P), 메틸로박테리움 자트마니(Methylobacterium zatmanii) ODB35 균주(KACC 92231P), 상기 균주로부터 분리된 PodA 단백질, 상기 벡터 또는 상기 배양액 또는 배양여액 중에서 선택된 하나 이상을 포함하는 잿빛곰팡이병 방제용 조성물을 제공한다.On the other hand, also in the embodiment of the present invention Pseudomonas fluorescein sense (Pseudomonas fluorescens) ODB5 strain (KACC 92230P), also Tani pillar in Pseudomonas EBI (Pseudomonas abietaniphila) ODB36 strain (KACC 92232P), bacterium methyl Solarium jateu Mani (Methylobacterium zatmanii ) ODB35 strain (KACC 92231P), PodA protein isolated from the strain, the vector, or the culture medium or culture filtrate, which provides a composition for controlling gray mold disease comprising at least one selected from the group consisting of.
본 발명의 잿빛곰팡이병 방제용 조성물은 수화제(wettable powder) 또는 액상수화제(suspension concentrate) 형태의 제형일 수 있다. 본 발명에 의한 잿빛곰팡이병 방제용 조성물은 액상 형태로 제조될 수 있으며, 이에 증량제를 첨가하여 가루분말의 형태로 이용하거나 이를 제형화하여 과립화시킬 수도 있다. 그러나 그 제형에 특별히 한정되지는 않는다. 본 발명의 수화제는 유효성분 (active ingredient)으로서 수도모나스 플루오레센스(Pseudomonas fluorescens) ODB5 균주(KACC 92230P), 수도모나스 에비에타니필라(Pseudomonas abietaniphila) ODB36 균주(KACC 92232P) 또는 메틸로박테리움 자트마니(Methylobacterium zatmanii) ODB35 균주(KACC 92231P) 중에 하나 이상의 균주 또는 이의 배양액, 흡습제로서 화이트 카본 (white carbon), 습윤제로서 소듐 비스[2-에틸헥실]설포숙시네이트, 분산제로서 소듐 리그노설포네이트 및 증량제로서 카올린으로 이루어질 수 있으며, 바람직하게는 10 중량%의 수도모나스 플루오레센스(Pseudomonas fluorescens) ODB5 균주(KACC 92230P), 수도모나스 에비에타니필라(Pseudomonas abietaniphila) ODB36 균주(KACC 92232P) 또는 메틸로박테리움 자트마니(Methylobacterium zatmanii) ODB35 균주(KACC 92231P) 중에 하나 이상의 균주 또는 이의 배양액, 1 중량% 화이트 카본 (white carbon), 1 중량% 소듐 비스[2-에틸헥실]설포숙시네이트, 1 중량% 소듐 리그노설포네이트 및 87 중량% 카올린으로 이루어질 수 있다.The composition for controlling gray mold disease of the present invention may be in the form of a wettable powder or a suspension concentrate. The composition for controlling gray mold according to the present invention may be prepared in a liquid form, and an extender may be added thereto to be used in the form of a powder, or it may be formulated and granulated. However, it is not particularly limited to the formulation. The wettable powder of the present invention as an active ingredient Pseudomonas fluorescens ODB5 strain (KACC 92230P), Pseudomonas abietaniphila ODB36 strain (KACC 92232P) or Methylobacterium jat Mani (Methylobacterium zatmanii) ODB35 strain one or more strains or the culture medium thereof (KACC 92231P), white carbon (white carbon), as a wetting agent as an absorbent sodium bis [2-ethylhexyl] sulfosuccinate, sodium league as a dispersant furnace sulfonate and kaolin as an extender, preferably 10% by weight of Pseudomonas fluorescens ODB5 strain (KACC 92230P), Pseudomonas abietaniphila ODB36 strain (KACC 92232P) or methyl a tumefaciens jateu Mani (Methylobacterium zatmanii) ODB35 strain (KACC 92231P) at least one strain or culture fluid thereof, 1% by weight of white carbon (white carbon), 1% by weight of the sodium bis [2-ethylhexyl] sulfosuccinate, 1 weight % sodium lignosulfonate and 87 weight % kaolin.
본 발명의 액상수화제는 유효성분(active ingredient)으로서 수도모나스 플루오레센스(Pseudomonas fluorescens) ODB5 균주(KACC 92230P), 수도모나스 에비에타니필라(Pseudomonas abietaniphila) ODB36 균주(KACC 92232P) 또는 메틸로박테리움 자트마니(Methylobacterium zatmanii) ODB35 균주(KACC 92231P) 중에 하나 이상의 균주 또는 이의 배양액, 습윤제 및 분산제로서 MBSC(Nonylphenol, ethoxylated, monoether with sulfuric acid, sodium salt, Sodium bis[20 ethylhexyl] sulfosuccinate Polyoxyethylene nonylphenol), 부형제로서 이소프로판올 및 증량제로서 물로 이루어질 수 있다. 상기 액상수화제는 바람직하게는 50 중량% 수도모나스 플루오레센스(Pseudomonas fluorescens) ODB5 균주(KACC 92230P), 수도모나스 에비에타니필라(Pseudomonas abietaniphila) ODB36 균주(KACC 92232P) 또는 메틸로박테리움 자트마니(Methylobacterium zatmanii) ODB35 균주(KACC 92231P) 중에 하나 이상의 균주 또는 각각의 배양액, 4 중량% MBSC, 30 중량% 이소프로판올 및 16 중량% 물로 이루어질 수 있으나, 이에 제한되지 않는다.The liquid hydration agent of the present invention as an active ingredient Pseudomonas fluorescens ODB5 strain (KACC 92230P), Pseudomonas abietaniphila ODB36 strain (KACC 92232P) or methylobacterium jateu Mani (Methylobacterium zatmanii) ODB35 strain (KACC 92231P) as one or more strain or culture fluid thereof, a wetting agent and a dispersant MBSC (nonylphenol, ethoxylated, monoether with sulfuric acid, sodium salt, Sodium bis [20 ethylhexyl] sulfosuccinate Polyoxyethylene nonylphenol), an excipient It may consist of isopropanol as an extender and water as an extender. The liquid wettable powder is preferably 50 wt% Pseudomonas fluorescens ODB5 strain (KACC 92230P), Pseudomonas abietaniphila ODB36 strain (KACC 92232P) or Methylobacterium jatmani ( Methylobacterium zatmanii) ODB35 strain (KACC 92231P) one or more strains or each culture solution in the 4% by weight MBSC, 30, but may be made of water% by weight isopropanol and 16% by weight, but is not limited thereto.
한편, 본 발명에서 '유효량'은 유익한 또는 원하는 결과를 일으키기에 충분한 양으로, 잿빛곰팡이병을 방제하기 위해 방제용 조성물을 물로 균일하게 희석한 후 동력살포기와 같은 적절한 살포장치를 이용하여 대상작물 및 경작지에 살포할 수 있다. 본 발명의 수화제 또는 액상수화제를 물에 희석하는 경우 수화제 또는 액상수화제의 농도는 유효성분이 생물학적으로 유효한 범위가 될 수 있도록 105 내지 1010 cfu/ml, 바람직하게는 108 cfu/ml 내외로 조절할 수 있으나, 이에 제한되지 않는다.On the other hand, in the present invention, the 'effective amount' is an amount sufficient to produce beneficial or desired results, and after uniformly diluting the control composition with water to control gray mold disease, the target crop and Can be sprayed on arable land. When the wettable powder or liquid wettable powder of the present invention is diluted in water, the concentration of the wettable powder or liquid wettable powder is adjusted to 10 5 to 10 10 cfu/ml, preferably 10 8 cfu/ml so that the active ingredient can be in a biologically effective range. can, but is not limited thereto.
이하, 본 발명의 실시예를 첨부된 도면을 참고하여 보다 상세하게 설명하도록 한다. 그러나, 하기의 실시예는 본 발명의 내용을 구체화 하기 위한 것일 뿐, 이에 의해 본 발명이 한정되는 것은 아닐 것이다.Hereinafter, embodiments of the present invention will be described in more detail with reference to the accompanying drawings. However, the following examples are only for specifying the contents of the present invention, and the present invention will not be limited thereby.
<실시예 1> 옥살산 분해 세균의 분리 및 옥살산 최소배지에서 성장<Example 1> Isolation of oxalic acid-degrading bacteria and growth in oxalic acid minimal medium
본 실시예는 옥살산이 다량 함유된 딸기와 시금치 등 식물 표면으로부터 유일탄소원으로 하는 세균을 분리하고자 하였다.This example was intended to isolate bacteria as the sole carbon source from the surface of plants, such as strawberries and spinach, which contain a large amount of oxalic acid.
멸균된 면봉을 사용하여 딸기과실 표면과 시금치 잎 표면을 문지르고 이것을 다시 옥살산 최소한천배지(Oxalate minimal agar medium: Na2C2O4 2g; K2HPO4 2.7g; NaH2PO4 0.9g; NH4Cl 0.9g; MgSO47H2O 0.27g; CaCl22H2O 0.009g; FeSO47H2O 0.0024g; Agar 15 g)에 옮기는 방법으로 세균을 분리하였다. 28℃ 배양기에서 7일간 배양후 자라난 세균 콜로니를 새로운 옥살산 최소한천배지에 접종하여 순수 분리하였다. 순수 분리된 세균들을 1/10 TSB (tryptic soy broth)에 0.2% sodium oxalate를 첨가한 액체배양기에 접종한 지 3일 후에 흡광도(optical density; OD600)를 이용하여 세균의 성장을 조사하였으며, 그 결과를 도 1에 나타내었다.Using a sterile cotton swab, rub the surface of the strawberry fruit and the spinach leaf, and then use this again to apply Oxalate minimal agar medium: Na 2 C 2 O 4 2 g; K 2 HPO 4 2.7 g; NaH 2 PO 4 0.9 g; NH Bacteria were isolated by transferring to 4 Cl 0.9 g; MgSO 4 7H 2 O 0.27 g; CaCl 2 2H 2 O 0.009 g; FeSO 4 7H 2 O 0.0024 g; Agar 15 g). After culturing for 7 days in an incubator at 28°C, the bacterial colonies that had grown were inoculated into a fresh oxalic acid minimum 1,000 medium, and pure separation was performed. 3 days after inoculating the purely isolated bacteria in a liquid incubator containing 0.2% sodium oxalate in 1/10 TSB (tryptic soy broth), the growth of bacteria was investigated using absorbance (optical density; OD 600 ), and the The results are shown in FIG. 1 .
<실시예 2> 옥살산 분해능 검정<Example 2> oxalic acid resolution assay
옥살산 분해 세균의 옥살산 분해능 검정은 일반적으로 널리 사용되는 옥살산 검정법을 이용하였고(Hodgkinson & Williams, 1972; Clinica Chimica Acta 36:127-132) 분석키트로 바이오비전사의 옥살산 염색 측정 분석 키트(K663-100 Oxalate Colorimetric Assay Kit)를 사용하였다.The oxalic acid degradation assay of oxalic acid-degrading bacteria was performed using a generally widely used oxalic acid assay (Hodgkinson & Williams, 1972; Clinica Chimica Acta 36:127-132) and Biovision's oxalic acid staining assay kit (K663-100 Oxalate). Colorimetric Assay Kit) was used.
1/10 TSB (tryptic soy broth)에 0.2% sodium oxalate를 첨가한 액체배양기에 접종한 지 3일이 지난 배양액을 원심분리기를 이용하여 13,000rpm에서 5분 동안 원심분리 한 후, 96 well plate에 상층액을 50㎕씩 옮겨 담았다.After 3 days of inoculation in a liquid incubator with 0.2% sodium oxalate added to 1/10 TSB (tryptic soy broth), the culture medium was centrifuged at 13,000 rpm for 5 minutes using a centrifuge, and the upper layer was placed in a 96 well plate. 50 μl of the solution was transferred.
키트에 포함된 Oxalate Converter를 2㎕씩 96 well plate에 넣고 섞어준 후 37℃ 항온기에서 1시간 반응 시켜주었다. 1시간 후 반응 혼합물(키트에 포함 된 Oxalate Development Buffer 46㎕; Oxalate Enzyme mix 2㎕; Oxalate Probe 2㎕)을 넣고 잘 섞어준 후 37℃ 항온기에서 1시간 반응 시켜주었다. 1시간 후 흡광도(optical density; OD450)를 측정하였다. 측정한 흡광도를 이용하여 반응 후 남아있는 옥살산의 농도를 다음 식을 통해 환산하였다.2 μl of the Oxalate Converter included in the kit was put into a 96-well plate, mixed, and reacted in a 37°C incubator for 1 hour. After 1 hour, the reaction mixture (46 μl of Oxalate Development Buffer included in the kit; 2 μl of Oxalate Enzyme mix; 2 μl of Oxalate Probe) was added and mixed well, followed by reaction in a 37°C incubator for 1 hour. After 1 hour, absorbance (optical density; OD 450 ) was measured. Using the measured absorbance, the concentration of oxalic acid remaining after the reaction was converted using the following equation.
도 2는 본 발명의 옥살산 분해 세균 배양액 내의 잔여 옥살산 농도 측정결과를 나타낸 것이다.Figure 2 shows the measurement result of the residual oxalic acid concentration in the oxalic acid-decomposing bacterial culture of the present invention.
도 2에 나타낸 바와 같이, 상기 식을 통해 환산한 옥살산 농도값을 통해 분해능을 측정하였을 때, 시금치표면에서 분리한 ODB5 균주와 딸기표면에서 분리한 ODB29, ODB31, ODB35, ODB36 균주의 시료 중 남아있는 옥살산 농도가 가장 낮았으며 이로써, 옥살산 분해능이 우수한 균주로 판단되었다.As shown in Figure 2, when the resolution was measured through the oxalic acid concentration value converted through the above formula, the remaining samples of the ODB5 strain isolated from the spinach surface and the ODB29, ODB31, ODB35, ODB36 strains isolated from the strawberry surface were The concentration of oxalic acid was the lowest, and thus, it was determined that the strain was excellent in oxalic acid decomposition ability.
<실시예 3> 옥살산 분해 세균의 동정 및 분자통계학적 분석<Example 3> Identification and molecular statistical analysis of oxalic acid-degrading bacteria
딸기와 시금치 표면으로부터 분리한 미생물 중에 옥살산 분해능이 우수한 5개 균주 ODB5, ODB29, ODB31, ODB35 및 ODB36를 선발하였다.Five strains ODB5, ODB29, ODB31, ODB35 and ODB36 with excellent oxalic acid decomposition ability were selected among microorganisms isolated from the surface of strawberries and spinach.
상기 선발된 균주는 분자통계학적 분석을 위하여 16S rDNA 염기서열 분석을 하였으며, 그 결과는 서열번호 1, 2 및 3으로 각각 표시되었다. NCBI BLAST 분석을 통해 해당 균주들을 동정하였는데, 각각 ODB5 균주는 수도모나스 플루오레센스(Pseudomonas fluorescens)와, ODB29, ODB31, ODB36 균주는 수도모나스 에비에타니필라(Pseudomonas abietaniphila)와, 그리고 ODB35 균주는 메틸로박테리움 자트마니(Methylobacterium zatmanii)의 16S rDNA염기서열과 높은 상동성(99%)을 가지는 것으로 나타났다. 16s rDNA 염기서열의 분자통계학적 유연관계 분석 결과는 도 3에 나타냈다.The selected strain was subjected to 16S rDNA sequencing for molecular statistical analysis, and the results are shown as SEQ ID NOs: 1, 2 and 3, respectively. Corresponding strains were identified through NCBI BLAST analysis. Each of the ODB5 strains was Pseudomonas fluorescens , the ODB29, ODB31, and ODB36 strains were Pseudomonas abietaniphila , and the ODB35 strain was methylated. It was found to have a tumefaciens jateu Mani 16S rDNA base sequence with high homology (99%) of (Methylobacterium zatmanii). The molecular statistical relationship analysis results of the 16s rDNA nucleotide sequence are shown in FIG. 3 .
도 3은 본 발명의 옥살산 분해 세균의 16s rRNA 서열 분석에 기초한 계통도를 나타낸 것이다.3 shows a schematic diagram based on 16s rRNA sequence analysis of oxalic acid-degrading bacteria of the present invention.
도 3에 나타낸 바와 같이, 상기 선발된 균주들에서 ODB5 균주는 수도모나스 플루오레센스(Pseudomonas fluorescens)와 동일한 그룹에 속하고, ODB29, ODB31, ODB36 균주는 수도모나스 에비에타니필라(Pseudomonas abietaniphila), 그리고 ODB35 균주는 메틸로박테리움 자트마니(Methylobacterium zatmanii)와 동일한 그룹에 속하는 것으로 확인된다.As shown in FIG. 3, from the selected strains, the ODB5 strain belongs to the same group as Pseudomonas fluorescens , and the ODB29, ODB31, and ODB36 strains are Pseudomonas abietaniphila , and ODB35 strain is identified as belonging to the same group as tumefaciens jateu Mani (Methylobacterium zatmanii) methyl.
본 발명에서 상기 선발된 ODB5 균주는 수도모나스 플루오레센스(Pseudomonas fluorescens)로 명명하였고, ODB29, ODB31, ODB36 균주는 수도모나스 에비에타니필라(Pseudomonas abietaniphila), 그리고 ODB35 균주는 메틸로박테리움 자트마니(Methylobacterium zatmanii)로 명명하였다.In the present invention, the ODB5 strain selected above was named Pseudomonas fluorescens , ODB29, ODB31, ODB36 strain Pseudomonas abietaniphila ( Pseudomonas abietaniphila ), and ODB35 strain Methylobacterium jatmani It was named (Methylobacterium zatmanii).
<실시예 4> 옥살산 분해 세균의 잿빛곰팡이병 억제효과<Example 4> Inhibitory effect of gray mold disease of oxalic acid-decomposing bacteria
잿빛곰팡이병 억제효과 검정은 Schoonbeek 등이 사용한 일반적인 방법을 이용하였다(MPMI 20:1535-1544). 상기 실시예 3에서 옥살산 분해능이 우수한 것으로 나타난 ODB5, ODB35, ODB36 균주를 일반적인 수도모나스 배양에 흔히 사용하는 King's B(KB) 배지에 3일간 배양하였고 멸균수에 희석하여 흡광도를 이용하여 세균 현탁액(OD600=0.8)을 제조하였다.The general method used by Schoonbeek et al. was used for the inhibition of gray mold disease (MPMI 20:1535-1544). The ODB5, ODB35, ODB36 strains, which were shown to have excellent oxalic acid decomposition ability in Example 3, were cultured for 3 days in King's B (KB) medium, which is commonly used for general Pseudomonas culture, and diluted in sterile water using absorbance to obtain a bacterial suspension (OD). 600 = 0.8) was prepared.
세균 현탁액을 애기장대에 살포한 3일 후 애기장대에 잿빛곰팡이 병원균인 보트리티스 시네레아(Botrytis cinerea)의 포자현탁액(5×105 포자/ml)을 접종하였다. 병이 발생된 이병율은 하기 식을 통해 계산하였으며, 그 결과는 도 4에 나타내었다.3 days after the bacterial suspension was sprayed on Arabidopsis thaliana, the gray mold pathogen Botrytis cinerea was inoculated with a spore suspension (5×10 5 spores/ml). The morbidity rate at which the disease occurred was calculated through the following formula, and the result is shown in FIG. 4 .
도 4는 본 발명의 옥살산 분해 세균을 처리한 애기장대에서의 이병율 측정결과를 나타낸 것이다.Figure 4 shows the morbidity measurement results in Arabidopsis thaliana treated with the oxalic acid-decomposing bacteria of the present invention.
도 4에 나타난 바와 같이 12일 후 무처리구(water)에는 잿빛곰팡이에 의한 병진전이 확인되었지만, 옥살산 분해 세균을 처리한 처리구에서는 병진전이 확인되지 않았다.As shown in FIG. 4 , after 12 days, the transformation by gray mold was confirmed in the non-treated group (water), but the translational progression was not confirmed in the treated group treated with oxalic acid decomposing bacteria.
16일 후에 ODB5와 ODB35 세균을 처리한 처리구에서 잿빛곰팡이 병발생이 서서히 진행되어 16%까지 확인된 반면, ODB36 세균을 처리한 처리구에서는 병이 무처리구에 비해 현저히 낮았다.After 16 days, the occurrence of gray mold disease progressed slowly in the treatment group treated with ODB5 and ODB35 bacteria and was confirmed up to 16%, whereas in the treatment group treated with ODB36 bacteria, the disease was significantly lower than that of the untreated group.
상기한 결과를 토대로, 수도모나스 에비에타니필라(Pseudomonas abietaniphila) ODB36은 잿빛곰팡이병균의 병원성 인자인 옥살산을 분해하여 잿빛곰팡이 병원균의 병원성을 억제하여 감염을 방지 할 수 있는 효과가 있는 것으로 판단되며, 이를 이용한 잿빛곰팡이 병 방제용 생물농약으로 활용가치가 있다고 여겨진다.Based on the above results, Pseudomonas abietaniphila ODB36 decomposes oxalic acid, a pathogenic factor of the gray mold fungus, and suppresses the pathogenicity of the gray mold pathogen to prevent infection. It is considered to have useful value as a biological pesticide for controlling gray mold disease using this.
<실시예 5> 옥살산 분해 단백질<Example 5> Oxalic acid degradation protein
잿빛곰팡이병원균의 방제에 가장 효과가 좋은 수도모나스 에비에타니필라(P. abietaniphila) ODB36 균주의 옥살산 분해유전자(oxalate decarboxylase)를 podA( P seudomonas oxalate-degrading protein)로 명명하였다(염기서열 4). podA유전자는 formylNdeI(5’-GGCCATATGCAAAAGCCTTTGCAAGGG-3’)과 formylXhoI(5’-GGCCTCGAGAATCAATCCGCGAGCGCGCCA-3’) 프라이머를 사용하여 PCR증폭시켰고, 일반적으로 사용하는 단백질 과발현용 벡터인 pET21b에 클로닝하였다. 단백질 과발현은 0.1 mM IPTG를 처리하여 28°C에서 3시간동안 배양하여 단백질 과발현하였다. 단백질 과발현 후 얻은 단백질은 glycine/NaOH (pH8.6)에서 용해시켜 가용화하였고, Ni-NTA column으로 정제하였으며, 그 결과를 도 5에 나타내었다.To be the most effective suppressors Pseudomonas EBI in control of gray mold pathogen Tani pillar (P. abietaniphila) oxalate degradation gene (oxalate decarboxylase) of ODB36 strain was named podA (P seudomonas o xalate- d egrading protein) (nucleotide sequence 4 ). The podA gene was PCR amplified using formylNdeI (5'-GGCCATATGCAAAAGCCTTTGCAAGGG-3') and formylXhoI (5'-GGCCTCGAGAATCAATCCGCGAGCGCGCCA-3') primers, and was cloned into pET21b, a commonly used vector for overexpression of proteins. Protein overexpression was treated with 0.1 mM IPTG and incubated at 28 °C for 3 hours to overexpress protein. The protein obtained after protein overexpression was solubilized by dissolving it in glycine/NaOH (pH8.6), and purified by a Ni-NTA column, and the results are shown in FIG. 5 .
정제된 PodA 단백질의 활성은 옥살산염색측정분석키트(K663-100 Oxalate Colorimetric Assay kit, Biovision)를 사용하여 측정하였다. 도 6은 본 발명의 옥살산 분해 단백질 PodA의 옥살산 분해효소 활성을 측정한 결과를 나타낸 것이다. 도 6에 나타낸 바와 같이, 환산한 옥살산농도를 통해 PodA의 분해능의 측정하였을 때, 약 1 mM의 단백질만으로도 75%의 옥살산을 분해함을 알 수 있다. 이로써, PodA 단백질은 잿빛곰팡이 병 방제용 단백질생물농약으로 활용가치가 있는 것으로 나타났다.The activity of the purified PodA protein was measured using an oxalate colorimetric assay kit (K663-100 Oxalate Colorimetric Assay kit, Biovision). 6 shows the results of measuring the oxalic acid-degrading enzyme activity of the oxalic acid-degrading protein PodA of the present invention. As shown in FIG. 6 , when the resolution of PodA is measured through the converted oxalic acid concentration, it can be seen that only about 1 mM protein decomposes 75% of oxalic acid. As a result, the PodA protein was found to be useful as a protein biological pesticide for the control of gray mold disease.
<실시예 6> <Example 6> podApodA 유전자 벡터제조 Gene vector production
잿빛곰팡이병의 주요 병원성 인자인 옥살산 분해 능력이 확인된 수도모나스 에비에타니필라(P. abietaniphila) ODB36의 podA 유전자를 식물형질전환용 벡터에 클로닝하여 형질전환하고자 하였다. ODB36균주의 옥살산 분해유전자 podA를 formylKpnI(5’-GGCGGTACCATGCAAAAGCCTTTGCAAGGG-3’)과 fomylBamHI(5’-GGCGGATCCTCAAATCAATCCGCGAGCGCG-3’) 프라이머를 사용하여 PCR증폭시켰고, 일반적으로 사용하는 식물형질전환벡터인 pCAMBIA 1300 (multi)에 클로닝 하였다. 본 실시예에서 클로닝된 벡터는 주요 작물에 형질전환시켜 잿빛곰팡이병 내성을 부여할 수 있다. The podA gene of P. abietaniphila ODB36, whose ability to degrade oxalic acid, a major pathogenic factor of gray mold disease, was confirmed, was cloned into a vector for plant transformation and transformed. The oxalic acid degradation gene podA of the ODB36 strain was PCR amplified using the primers formylKpnI (5'-GGCGGTACCATGCAAAAAGCCTTTGCAAGGG-3') and fomylBamHI (5'-GGCGGATCCTCAAATCAATCCGCGAGCGCG-3'), and a commonly used plant transformation vector, pCAMBIA 1300 (pCAMBIA 1300). ) was cloned into The vector cloned in this example can be transformed into a major crop to impart gray mold resistance.
이상에서 살펴본 바와 같이, 본 발명에 따른 옥살산 분해 활성이 있는 균주, 잿빛 곰팡이병 방제용 조성물 및 그를 이용한 방제 방법은 발명의 구체적인 실시예를 상세하게 설명되었으나, 본 발명의 사상을 이해하는 당업자는 동일한 사상의 범위 내에서 다른 구성요소를 추가, 변경, 삭제 등을 통하여, 퇴보적인 다른 발명이나 본 발명 사상의 범위 내에 포함되는 다른 실시예를 용이하게 제안할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 본 발명의 범위는 상술한 상세한 설명보다는 후술하는 특허청구의 범위에 의하여 나타내어지며, 특허청구의 범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.As described above, the strain having oxalic acid decomposition activity, the composition for controlling gray mold disease and the control method using the same according to the present invention have been described in detail in specific embodiments of the present invention, but those skilled in the art who understand the spirit of the present invention can use the same Other degenerative inventions or other embodiments included within the scope of the present invention may be easily proposed by adding, changing, deleting, etc. other elements within the scope of the spirit. Therefore, it should be understood that the embodiments described above are illustrative in all respects and not restrictive. The scope of the present invention is indicated by the following claims rather than the above detailed description, and all changes or modifications derived from the meaning and scope of the claims and their equivalents are included in the scope of the present invention. should be interpreted as
<110> INDUSTRY-ACADEMIC COOPERATION FOUNDATION GYEONGSANG NATIONAL UNIVERSITY <120> Method for control of gray mold caused by Botrytis cinerea using <130> PN1904-194 <150> KR 2018/0060338 <151> 2018-05-28 <160> 5 <170> KoPatentIn 3.0 <210> 1 <211> 1498 <212> DNA <213> Unknown <220> <223> Pseudomonas fluorescens ODB5 16S rRNA gene <400> 1 agagtttgat catggctcag attgaacgct ggcggcaggc ctaacacatg caagtcgagc 60 ggtagagaga agcttgcttc tcttgagagc ggcggacggg tgagtaatgc ctaggaatct 120 gcctggtagt gggggataac gttcggaaac ggacgctaat accgcatacg tcctacggga 180 gaaagcaggg gaccttcggg ccttgcgcta tcagatgagc ctaggtcgga ttagctagtt 240 ggtgaggtaa tggctcacca aggcgacgat ccgtaactgg tctgagagga tgatcagtca 300 cactggaact gagacacggt ccagactcct acgggaggca gcagtgggga atattggaca 360 atgggcgaaa gcctgatcca gccatgccgc gtgtgtgaag aaggtcttcg gattgtaaag 420 cactttaagt tgggaggaag ggcagttacc taatacgtga ttgttttgac gttaccgaca 480 gaataagcac cggctaactc tgtgccagca gccgcggtaa tacagagggt gcaagcgtta 540 atcggaatta ctgggcgtaa agcgcgcgta ggtggttagt taagttggat gtgaaatccc 600 cgggctcaac ctgggaactg cattcaaaac tgactgacta gagtatggta gagggtggtg 660 gaatttcctg tgtagcggtg aaatgcgtag atataggaag gaacaccagt ggcgaaggcg 720 accacctgga ctgatactga cactgaggtg cgaaagcgtg gggagcaaac aggattagat 780 accctggtag tccacgccgt aaacgatgtc aactagccgt tgggagcctt gagctcttag 840 tggcgcagct aacgcattaa gttgaccgcc tggggagtac ggccgcaagg ttaaaactca 900 aatgaattga cgggggcccg cacaagcggt ggagcatgtg gtttaattcg aagcaacgcg 960 aagaacctta ccaggccttg acatccaatg aactttctag agatagattg gtgccttcgg 1020 gaacattgag acaggtgctg catggctgtc gtcagctcgt gtcgtgagat gttgggttaa 1080 gtcccgtaac gagcgcaacc cttgtcctta gttaccagca cgttatggtg ggcactctaa 1140 ggagactgcc ggtgacaaac cggaggaagg tggggatgac gtcaagtcat catggccctt 1200 acggcctggg ctacacacgt gctacaatgg tcggtacaga gggttgccaa gccgcgaggt 1260 ggagctaatc ccacaaaacc gatcgtagtc cggatcgcag tctgcaactc gactgcgtga 1320 agtcggaatc gctagtaatc gcgaatcaga atgtcgcggt gaatacgttc ccgggccttg 1380 tacacaccgc ccgtcacacc atgggagtgg gttgcaccag aagtagctag tctaaccttc 1440 ggggggacgg ttaccacggt gtgattcatg actggggtga agtcgtaaca aggtagcc 1498 <210> 2 <211> 1446 <212> DNA <213> Unknown <220> <223> 16S rRNA gene Methylobacterium zatmanii ODB35 <400> 2 agagtttgat cctggctcag agcgaacgct ggcggcaggc ttaacacatg caagtcgaac 60 gggcacctcc gggtgtcagt ggcagacggg tgagtaacac gtgggaacgt gcccttcggt 120 tcggaataac tcagggaaac ttgagctaat accggatacg cccttttggg gaaaggttta 180 ctgccgaagg atcggcccgc gtctgattag cttgttggtg gggtaacggc ctaccaaggc 240 gacgatcagt agctggtctg agaggatgat cagccacact gggactgaga cacggcccag 300 actcctacgg gaggcagcag tggggaatat tggacaatgg gcgcaagcct gatccagcca 360 tgccgcgtga gtgatgaagg ccttagggtt gtaaagctct tttgtccggg acgataatga 420 cggtaccgga agaataagcc ccggctaact tcgtgccagc agccgcggta atacgaaggg 480 ggctagcgtt gctcggaatc actgggcgta aagggcgcgt aggcggccga ttaagtcggg 540 ggtgaaagcc tgtggctcaa ccacagaatt gccttcgata ctggttggct tgagaccgga 600 agaggacagc ggaactgcga gtgtagaggt gaaattcgta gatattcgca agaacaccag 660 tggcgaaggc ggctgtctgg tccggttctg acgctgaggc gcgaaagcgt ggggagcaaa 720 caggattaga taccctggta gtccacgccg taaacgatga atgccagccg ttggcctgct 780 tgcaggtcag tggcgccgct aacgcattaa gcattccgcc tggggagtac ggtcgcaaga 840 ttaaaactca aaggaattga cgggggcccg cacaagcggt ggagcatgtg gtttaattcg 900 aagcaacgcg cagaacctta ccatcccttg acatggcatg ttacctcgag agatcgggga 960 tcctcttcgg aggcgtgcac acaggtgctg catggctgtc gtcagctcgt gtcgtgagat 1020 gttgggttaa gtcccgcaac gagcgcaacc cacgtcctta gttgccatca ttcagttggg 1080 cactctaggg aggctgccgg tgataagccg cgaggaaggt gtggatgacg tcaagtcctc 1140 atggcccttg cgggatgggc tacacacgtg ctacaatggc ggtgacagtg ggacgcgaaa 1200 ccgcgaggtc gagcaaatcc ccaaaaaccg tctcagttcg gattgcactc tgcaactcgg 1260 gtgcatgaag gcggaatcgc tagtaatcgt ggatcagcac gccacggtga atacgttccc 1320 gggccttgta cacaccgccc gtcacaccat gggagttggt cttacccgac ggcgctgcgc 1380 caaccgcaag gaggcaggcg accacggtag ggtcagcgac tggggtgaag tcgtaacaag 1440 gtagcc 1446 <210> 3 <211> 1312 <212> DNA <213> Unknown <220> <223> 16S rRNA gene Pseudomonas abietaniphila ODB36 <400> 3 cctggtagtg ggggacaacg tctcgaaagg gacgctaata ccgcatacgt cctacgggag 60 aaagtggggg atcttcggac ctcacgctat cagatgagcc taggtcggat tagctagttg 120 gtgaggtaat ggctcaccaa ggcgacgatc cgtaactggt ctgagaggat gatcagtcac 180 actggaactg agacacggtc cagactccta cgggaggcag cagtggggaa tattggacaa 240 tgggcgaaag cctgatccag ccatgccgcg tgtgtgaaga aggtcttcgg attgtaaagc 300 actttaagtt gggaggaagg gcattaacct aatacgttag tgttttgacg ttaccgacag 360 aataagcacc ggctaactct gtgccagcag ccgcggtaat acagagggtg caagcgttaa 420 tcggaattac tgggcgtaaa gcgcgcgtag gtggtttgtt aagttggatg tgaaatcccc 480 ggggctcaac ctgggaactg catccaaaac tggcaagcta gagtagggca gagggtggtg 540 gaatttcctg tgtagcggtg aaatgcgtag atataggaag gaacaccagt ggcgaaggcg 600 accacctggg ctcatactga cactgaggtg cgaaagcgtg gggagcaaac aggattagat 660 accctggtag tccacgccgt aaacgatgtc aactagccgt tgggagtctt gaactcttag 720 tggcgcagct aacgcattaa gttgaccgcc tggggagtac ggccgcaagg ttaaaactca 780 aatgaattga cgggggcccg cacaagcggt ggagcatgtg gtttaattcg aagcaacgcg 840 aagaacctta ccaggccttg acatccaatg aactttccag agatggattg gtgccttcgg 900 gagcattgag acaggtgctg catggctgtc gtcagctcgt gtcgtgagat gttgggttaa 960 gtcccgtaac gagcgcaacc cttgtcctta gttaccagca cgttatggtg ggcactctaa 1020 ggagactgcc ggtgacaaac cggaggaagg tggggatgac gtcaagtcat catggccctt 1080 acggcctggg ctacacacgt gctacaatgg tcggtacaga gggttgccaa gccgcgaggt 1140 ggagctaatc ccacaaaacc gatcgtagtc cggatcgcag tctgcaactc gactgcgtga 1200 agtcggaatc gctagtaatc gcgaatcaga atgtcgcggt gaatacgttc ccgggccttg 1260 tacacaccgc ccgtcacacc atgggagtgg gttgcaccag aagtagctag tc 1312 <210> 4 <211> 1191 <212> DNA <213> Unknown <220> <223> Pseudomonas abietaniphila ODB36 podA gene <400> 4 atgcaaaagc ctttgcaagg gatccgggtc atcgagctcg ggcaactgat cgccgggccc 60 ttcgccgcca agatactggg tgagtttggg gctgacgtga tcaagatcga gccgccgggc 120 acaggtgatc cactgcgcaa atggcgcctg ctgcatgaag ggacgtccgt gtggtgggcc 180 gtgtcctcac gcaacaagcg ttcggtcacc cttgatttgc gtgaaccgga aggtcaggac 240 atcgtgcgca agctgatcgc cgaagccgac gtgctggtgg agaacttccg tcctggtacg 300 ctcgaaggct ggggcctggg ctggcaagaa ctgcatgcgc tcaatccgaa actggtgatg 360 ctgcgggtgt cagggtacgg ccagaccggt ccataccgtg atcgtccggg tttcggtgtg 420 gtcggtgagg ccatgggcgg tttgcgtcat ctgtcgggcg agccggaccg tacgccggtg 480 cgagtcggcg tttccatcgg cgattcgctg tcggccctgc atggcgtcat tggtgtgctg 540 ctcgcgctcc gccatcgtga ccagaacggt ggcgaaggtc aggaagtcga cgtggcgctg 600 tacgagtcgg tcttcaacat gatggaaagc ctgatccctg aattttcggt gttcggcgcc 660 gtgcgccagc cggcgggcag cagcctgccg ggcatcgcgc cgtccaatgc ctaccgttgc 720 cgcgacgggc gctatgcgct gattgcgggc aacggcgaca gtatctatca gcgtctgatg 780 gccttgatcg aacggcccga tctggccgct gatccggcgc tcgcgcataa cgatggacgg 840 gtgaagcagg ttgagctgat cgacgcggcg atttccgcct gggccgcgag cctggacctc 900 gacgaggtgc tggcaaagct caccgccgag cgaattccgg caggcaagat ctacgacgct 960 gccgacattg ccagtgaccc gcattacaag gcccgcgaca tgctgctgga cagtcgactg 1020 gatgacggca ccccggtcac gctgccgggg atcgtgccca aactgggcag cacgccgggc 1080 ggtgtcagtc gtcctgctcc gacgttgggg cagcacaccg acgaggtgct ggaacagctg 1140 ggtatcgacg ctgggcagcg tgccgaatgg cgcgctcgcg gattgatttg a 1191 <210> 5 <211> 396 <212> PRT <213> Unknown <220> <223> Pseudomonas abietaniphila ODB36 PodA protein <400> 5 Met Gln Lys Pro Leu Gln Gly Ile Arg Val Ile Glu Leu Gly Gln Leu 1 5 10 15 Ile Ala Gly Pro Phe Ala Ala Lys Ile Leu Gly Glu Phe Gly Ala Asp 20 25 30 Val Ile Lys Ile Glu Pro Pro Gly Thr Gly Asp Pro Leu Arg Lys Trp 35 40 45 Arg Leu Leu His Glu Gly Thr Ser Val Trp Trp Ala Val Ser Ser Arg 50 55 60 Asn Lys Arg Ser Val Thr Leu Asp Leu Arg Glu Pro Glu Gly Gln Asp 65 70 75 80 Ile Val Arg Lys Leu Ile Ala Glu Ala Asp Val Leu Val Glu Asn Phe 85 90 95 Arg Pro Gly Thr Leu Glu Gly Trp Gly Leu Gly Trp Gln Glu Leu His 100 105 110 Ala Leu Asn Pro Lys Leu Val Met Leu Arg Val Ser Gly Tyr Gly Gln 115 120 125 Thr Gly Pro Tyr Arg Asp Arg Pro Gly Phe Gly Val Val Gly Glu Ala 130 135 140 Met Gly Gly Leu Arg His Leu Ser Gly Glu Pro Asp Arg Thr Pro Val 145 150 155 160 Arg Val Gly Val Ser Ile Gly Asp Ser Leu Ser Ala Leu His Gly Val 165 170 175 Ile Gly Val Leu Leu Ala Leu Arg His Arg Asp Gln Asn Gly Gly Glu 180 185 190 Gly Gln Glu Val Asp Val Ala Leu Tyr Glu Ser Val Phe Asn Met Met 195 200 205 Glu Ser Leu Ile Pro Glu Phe Ser Val Phe Gly Ala Val Arg Gln Pro 210 215 220 Ala Gly Ser Ser Leu Pro Gly Ile Ala Pro Ser Asn Ala Tyr Arg Cys 225 230 235 240 Arg Asp Gly Arg Tyr Ala Leu Ile Ala Gly Asn Gly Asp Ser Ile Tyr 245 250 255 Gln Arg Leu Met Ala Leu Ile Glu Arg Pro Asp Leu Ala Ala Asp Pro 260 265 270 Ala Leu Ala His Asn Asp Gly Arg Val Lys Gln Val Glu Leu Ile Asp 275 280 285 Ala Ala Ile Ser Ala Trp Ala Ala Ser Leu Asp Leu Asp Glu Val Leu 290 295 300 Ala Lys Leu Thr Ala Glu Arg Ile Pro Ala Gly Lys Ile Tyr Asp Ala 305 310 315 320 Ala Asp Ile Ala Ser Asp Pro His Tyr Lys Ala Arg Asp Met Leu Leu 325 330 335 Asp Ser Arg Leu Asp Asp Gly Thr Pro Val Thr Leu Pro Gly Ile Val 340 345 350 Pro Lys Leu Gly Ser Thr Pro Gly Gly Val Ser Arg Pro Ala Pro Thr 355 360 365 Leu Gly Gln His Thr Asp Glu Val Leu Glu Gln Leu Gly Ile Asp Ala 370 375 380 Gly Gln Arg Ala Glu Trp Arg Ala Arg Gly Leu Ile 385 390 395 <110> INDUSTRY-ACADEMIC COOPERATION FOUNDATION GYEONGSANG NATIONAL UNIVERSITY <120> Method for control of gray mold caused by Botrytis cinerea using <130> PN1904-194 <150> KR 2018/0060338 <151> 2018-05-28 <160> 5 <170> KoPatentIn 3.0 <210> 1 <211> 1498 <212> DNA <213> Unknown <220> <223> Pseudomonas fluorescens ODB5 16S rRNA gene <400> 1 agagtttgat catggctcag attgaacgct ggcggcaggc ctaacacat caagtcgagc 60 ggtagagaga agcttgcttc tcttgagagc ggcggacggg tgagtaatgc ctaggaatct 120 gcctggtagt gggggataac gttcggaaac ggacgctaat accgcatacg tcctacggga 180 gaaagcaggg gaccttcggg ccttgcgcta tcagatgagc ctaggtcgga ttagctagtt 240 ggtgaggtaa tggctcacca aggcgacgat ccgtaactgg tctgagagga tgatcagtca 300 cactggaact gagacacggt ccagactcct acgggaggca gcagtgggga atattggaca 360 atgggcgaaa gcctgatcca gccatgccgc gtgtgtgaag aaggtcttcg gattgtaaag 420 cactttaagt tgggaggaag ggcagttacc taatacgtga ttgttttgac gttaccgaca 480 gaataagcac cggctaactc tgtgccagca gccgcggtaa tacagagggt gcaagcgtta 540 atcggaatta ctgggcgtaa agcgcgcgta ggtggttagt taagttggat gtgaaatccc 600 cgggctcaac ctgggaactg cattcaaaac tgactgacta gagtatggta gagggtggtg 660 gaatttcctg tgtagcggtg aaatgcgtag atataggaag gaacaccagt ggcgaaggcg 720 accacctgga ctgatactga cactgaggtg cgaaagcgtg gggagcaaac aggattagat 780 accctggtag tccacgccgt aaacgatgtc aactagccgt tgggagcctt gagctcttag 840 tggcgcagct aacgcattaa gttgaccgcc tggggagtac ggccgcaagg ttaaaactca 900 aatgaattga cggggggcccg cacaagcggt ggagcatgtg gtttaattcg aagcaacgcg 960 aagaacctta ccaggccttg acatccaatg aactttctag agatagattg gtgccttcgg 1020 gaacattgag acaggtgctg catggctgtc gtcagctcgt gtcgtgagat gttgggttaa 1080 gtcccgtaac gagcgcaacc cttgtcctta gttaccagca cgttatggtg ggcactctaa 1140 ggagactgcc ggtgacaaac cggaggaagg tggggatgac gtcaagtcat catggccctt 1200 acggcctggg ctacacacgt gctacaatgg tcggtacaga gggttgccaa gccgcgaggt 1260 ggagctaatc ccacaaaacc gatcgtagtc cggatcgcag tctgcaactc gactgcgtga 1320 agtcggaatc gctagtaatc gcgaatcaga atgtcgcggt gaatacgttc ccgggccttg 1380 tacacaccgc ccgtcacacc atgggagtgg gttgcaccag aagtagctag tctaaccttc 1440 ggggggacgg ttaccacggt gtgattcatg actggggtga agtcgtaaca aggtagcc 1498 <210> 2 <211> 1446 <212> DNA <213> Unknown <220> <223> 16S rRNA gene Methylobacterium zatmanii ODB35 <400> 2 agagtttgat cctggctcag agcgaacgct ggcggcaggc ttaacacat caagtcgaac 60 gggcacctcc gggtgtcagt ggcagacggg tgagtaacac gtgggaacgt gcccttcggt 120 tcggaataac tcagggaaac ttgagctaat accggatacg cccttttggg gaaaggttta 180 ctgccgaagg atcggcccgc gtctgattag cttgttggtg gggtaacggc ctaccaaggc 240 gacgatcagt agctggtctg agaggatgat cagccacact gggactgaga cacggcccag 300 actcctacgg gaggcagcag tggggaatat tggacaatgg gcgcaagcct gatccagcca 360 tgccgcgtga gtgatgaagg ccttagggtt gtaaagctct tttgtccggg acgataatga 420 cggtaccgga agaataagcc ccggctaact tcgtgccagc agccgcggta atacgaaggg 480 ggctagcgtt gctcggaatc actgggcgta aagggcgcgt aggcggccga ttaagtcggg 540 ggtgaaagcc tgtggctcaa ccacagaatt gccttcgata ctggttggct tgagaccgga 600 agaggacagc ggaactgcga gtgtagaggt gaaattcgta gatattcgca agaacaccag 660 tggcgaaggc ggctgtctgg tccggttctg acgctgaggc gcgaaagcgt ggggagcaaa 720 caggattaga taccctggta gtccacgccg taaacgatga atgccagccg ttggcctgct 780 tgcaggtcag tggcgccgct aacgcattaa gcattccgcc tggggagtac ggtcgcaaga 840 ttaaaactca aaggaattga cgggggcccg cacaagcggt ggagcatgtg gtttaattcg 900 aagcaacgcg cagaacctta ccatcccttg acatggcatg ttacctcgag agatcgggga 960 tcctcttcgg aggcgtgcac acaggtgctg catggctgtc gtcagctcgt gtcgtgagat 1020 gttgggttaa gtcccgcaac gagcgcaacc cacgtcctta gttgccatca ttcagttggg 1080 cactctaggg aggctgccgg tgataagccg cgaggaaggt gtggatgacg tcaagtcctc 1140 atggcccttg cgggatgggc tacacacgtg ctacaatggc ggtgacagtg ggacgcgaaa 1200 ccgcgaggtc gagcaaatcc ccaaaaaccg tctcagttcg gattgcactc tgcaactcgg 1260 gtgcatgaag gcggaatcgc tagtaatcgt ggatcagcac gccacggtga atacgttccc 1320 gggccttgta cacaccgccc gtcacaccat gggagttggt cttacccgac ggcgctgcgc 1380 caaccgcaag gaggcaggcg accacggtag ggtcagcgac tggggtgaag tcgtaacaag 1440 gtagcc 1446 <210> 3 <211> 1312 <212> DNA <213> Unknown <220> <223> 16S rRNA gene Pseudomonas abietaniphila ODB36 <400> 3 cctggtagtg ggggacaacg tctcgaaagg gacgctaata ccgcatacgt cctacgggag 60 aaagtggggg atcttcggac ctcacgctat cagatgagcc taggtcggat tagctagttg 120 gtgaggtaat ggctcaccaa ggcgacgatc cgtaactggt ctgagaggat gatcagtcac 180 actggaactg agacacggtc cagactccta cgggaggcag cagtggggaa tattggacaa 240 tgggcgaaag cctgatccag ccatgccgcg tgtgtgaaga aggtcttcgg attgtaaagc 300 actttaagtt gggaggaagg gcattaacct aatacgttag tgttttgacg ttaccgacag 360 aataagcacc ggctaactct gtgccagcag ccgcggtaat acagagggtg caagcgttaa 420 tcggaattac tgggcgtaaa gcgcgcgtag gtggtttgtt aagttggatg tgaaatcccc 480 ggggctcaac ctgggaactg catccaaaac tggcaagcta gagtagggca gagggtggtg 540 gaatttcctg tgtagcggtg aaatgcgtag atataggaag gaacaccagt ggcgaaggcg 600 accacctggg ctcatactga cactgaggtg cgaaagcgtg gggagcaaac aggattagat 660 accctggtag tccacgccgt aaacgatgtc aactagccgt tgggagtctt gaactcttag 720 tggcgcagct aacgcattaa gttgaccgcc tggggagtac ggccgcaagg ttaaaactca 780 aatgaattga cggggggcccg cacaagcggt ggagcatgtg gtttaattcg aagcaacgcg 840 aagaacctta ccaggccttg acatccaatg aactttccag agatggattg gtgccttcgg 900 gagcattgag acaggtgctg catggctgtc gtcagctcgt gtcgtgagat gttgggttaa 960 gtcccgtaac gagcgcaacc cttgtcctta gttaccagca cgttatggtg ggcactctaa 1020 ggagactgcc ggtgacaaac cggaggaagg tggggatgac gtcaagtcat catggccctt 1080 acggcctggg ctacacacgt gctacaatgg tcggtacaga gggttgccaa gccgcgaggt 1140 ggagctaatc ccacaaaacc gatcgtagtc cggatcgcag tctgcaactc gactgcgtga 1200 agtcggaatc gctagtaatc gcgaatcaga atgtcgcggt gaatacgttc ccgggccttg 1260 tacacaccgc ccgtcacacc atgggagtgg gttgcaccag aagtagctag tc 1312 <210> 4 <211> 1191 <212> DNA <213> Unknown <220> <223> Pseudomonas abietaniphila ODB36 podA gene <400> 4 atgcaaaagc ctttgcaagg gatccgggtc atcgagctcg ggcaactgat cgccgggccc 60 ttcgccgcca agatactggg tgagtttggg gctgacgtga tcaagatcga gccgccgggc 120 acaggtgatc cactgcgcaa atggcgcctg ctgcatgaag ggacgtccgt gtggtgggcc 180 gtgtcctcac gcaacaagcg ttcggtcacc cttgatttgc gtgaaccgga aggtcaggac 240 atcgtgcgca agctgatcgc cgaagccgac gtgctggtgg agaacttccg tcctggtacg 300 ctcgaaggct ggggcctggg ctggcaagaa ctgcatgcgc tcaatccgaa actggtgatg 360 ctgcgggtgt cagggtacgg ccagaccggt ccataccgtg atcgtccggg tttcggtgtg 420 gtcggtgagg ccatgggcgg tttgcgtcat ctgtcgggcg agccggaccg tacgccggtg 480 cgagtcggcg tttccatcgg cgattcgctg tcggccctgc atggcgtcat tggtgtgctg 540 ctcgcgctcc gccatcgtga ccagaacggt ggcgaaggtc aggaagtcga cgtggcgctg 600 tacgagtcgg tcttcaacat gatggaaagc ctgatccctg aattttcggt gttcggcgcc 660 gtgcgccagc cggcgggcag cagcctgccg ggcatcgcgc cgtccaatgc ctaccgttgc 720 cgcgacgggc gctatgcgct gattgcgggc aacggcgaca gtatctatca gcgtctgatg 780 gccttgatcg aacggcccga tctggccgct gatccggcgc tcgcgcataa cgatggacgg 840 gtgaagcagg ttgagctgat cgacgcggcg atttccgcct gggccgcgag cctggacctc 900 gacgaggtgc tggcaaagct caccgccgag cgaattccgg caggcaagat ctacgacgct 960 gccgacattg ccagtgaccc gcattacaag gcccgcgaca tgctgctgga cagtcgactg 1020 gatgacggca ccccggtcac gctgccgggg atcgtgccca aactgggcag cacgccgggc 1080 ggtgtcagtc gtcctgctcc gacgttgggg cagcacaccg acgaggtgct ggaacagctg 1140 ggtatcgacg ctgggcagcg tgccgaatgg cgcgctcgcg gattgatttg a 1191 <210> 5 <211> 396 <212> PRT <213> Unknown <220> <223> Pseudomonas abietaniphila ODB36 PodA protein <400> 5 Met Gln Lys Pro Leu Gln Gly Ile Arg Val Ile Glu Leu Gly Gln Leu 1 5 10 15 Ile Ala Gly Pro Phe Ala Ala Lys Ile Leu Gly Glu Phe Gly Ala Asp 20 25 30 Val Ile Lys Ile Glu Pro Pro Gly Thr Gly Asp Pro Leu Arg Lys Trp 35 40 45 Arg Leu Leu His Glu Gly Thr Ser Val Trp Trp Ala Val Ser Ser Arg 50 55 60 Asn Lys Arg Ser Val Thr Leu Asp Leu Arg Glu Pro Glu Gly Gln Asp 65 70 75 80 Ile Val Arg Lys Leu Ile Ala Glu Ala Asp Val Leu Val Glu Asn Phe 85 90 95 Arg Pro Gly Thr Leu Glu Gly Trp Gly Leu Gly Trp Gln Glu Leu His 100 105 110 Ala Leu Asn Pro Lys Leu Val Met Leu Arg Val Ser Gly Tyr Gly Gln 115 120 125 Thr Gly Pro Tyr Arg Asp Arg Pro Gly Phe Gly Val Val Gly Glu Ala 130 135 140 Met Gly Gly Leu Arg His Leu Ser Gly Glu Pro Asp Arg Thr Pro Val 145 150 155 160 Arg Val Gly Val Ser Ile Gly Asp Ser Leu Ser Ala Leu His Gly Val 165 170 175 Ile Gly Val Leu Leu Ala Leu Arg His Arg Asp Gln Asn Gly Gly Glu 180 185 190 Gly Gln Glu Val Asp Val Ala Leu Tyr Glu Ser Val Phe Asn Met Met 195 200 205 Glu Ser Leu Ile Pro Glu Phe Ser Val Phe Gly Ala Val Arg Gln Pro 210 215 220 Ala Gly Ser Ser Leu Pro Gly Ile Ala Pro Ser Asn Ala Tyr Arg Cys 225 230 235 240 Arg Asp Gly Arg Tyr Ala Leu Ile Ala Gly Asn Gly Asp Ser Ile Tyr 245 250 255 Gln Arg Leu Met Ala Leu Ile Glu Arg Pro Asp Leu Ala Ala Asp Pro 260 265 270 Ala Leu Ala His Asn Asp Gly Arg Val Lys Gln Val Glu Leu Ile Asp 275 280 285 Ala Ala Ile Ser Ala Trp Ala Ala Ser Leu Asp Leu Asp Glu Val Leu 290 295 300 Ala Lys Leu Thr Ala Glu Arg Ile Pro Ala Gly Lys Ile Tyr Asp Ala 305 310 315 320 Ala Asp Ile Ala Ser Asp Pro His Tyr Lys Ala Arg Asp Met Leu Leu 325 330 335 Asp Ser Arg Leu Asp Asp Gly Thr Pro Val Thr Leu Pro Gly Ile Val 340 345 350 Pro Lys Leu Gly Ser Thr Pro Gly Gly Val Ser Arg Pro Ala Pro Thr 355 360 365 Leu Gly Gln His Thr Asp Glu Val Leu Glu Gln Leu Gly Ile Asp Ala 370 375 380 Gly Gln Arg Ala Glu Trp Arg Ala Arg Gly Leu Ile 385 390 395
Claims (12)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20180060338 | 2018-05-28 | ||
KR1020180060338 | 2018-05-28 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020210042507A Division KR20210040904A (en) | 2018-05-28 | 2021-04-01 | Method for control of gray mold caused by Botrytis cinerea using oxalate-degrading bacteria |
KR1020210042508A Division KR20210040339A (en) | 2018-05-28 | 2021-04-01 | Method for control of gray mold caused by Botrytis cinerea using oxalate-degrading bacteria |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20190135421A KR20190135421A (en) | 2019-12-06 |
KR102306405B1 true KR102306405B1 (en) | 2021-09-30 |
Family
ID=68837361
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020190061139A KR102306405B1 (en) | 2018-05-28 | 2019-05-24 | Method for control of gray mold caused by Botrytis cinerea using oxalate-degrading bacteria |
KR1020210042507A KR20210040904A (en) | 2018-05-28 | 2021-04-01 | Method for control of gray mold caused by Botrytis cinerea using oxalate-degrading bacteria |
KR1020210042508A KR20210040339A (en) | 2018-05-28 | 2021-04-01 | Method for control of gray mold caused by Botrytis cinerea using oxalate-degrading bacteria |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020210042507A KR20210040904A (en) | 2018-05-28 | 2021-04-01 | Method for control of gray mold caused by Botrytis cinerea using oxalate-degrading bacteria |
KR1020210042508A KR20210040339A (en) | 2018-05-28 | 2021-04-01 | Method for control of gray mold caused by Botrytis cinerea using oxalate-degrading bacteria |
Country Status (1)
Country | Link |
---|---|
KR (3) | KR102306405B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20230100369A (en) | 2021-12-28 | 2023-07-05 | 강원특별자치도 | New Bacillus amyloliquefaciens strain and uses thereof |
-
2019
- 2019-05-24 KR KR1020190061139A patent/KR102306405B1/en active IP Right Grant
-
2021
- 2021-04-01 KR KR1020210042507A patent/KR20210040904A/en not_active Application Discontinuation
- 2021-04-01 KR KR1020210042508A patent/KR20210040339A/en not_active Application Discontinuation
Non-Patent Citations (2)
Title |
---|
Genbank Accession number WP_074749645 (2017.05.15.) |
Henk-jan Schoonbeek 등. MPMI. Vol. 20, No. 12, 페이지 1535-1544 (2007.)* |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20230100369A (en) | 2021-12-28 | 2023-07-05 | 강원특별자치도 | New Bacillus amyloliquefaciens strain and uses thereof |
Also Published As
Publication number | Publication date |
---|---|
KR20210040904A (en) | 2021-04-14 |
KR20190135421A (en) | 2019-12-06 |
KR20210040339A (en) | 2021-04-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4417998B2 (en) | Plant disease control method using Bacillus subtilis strain having antagonistic action | |
Cao et al. | Bacillus subtilis SQR 9 can control Fusarium wilt in cucumber by colonizing plant roots | |
KR101569737B1 (en) | Novel endophytic bacteria Bacillus oryzicola isolated from rice rhizosphere and development of a natural biopesticide and plant strengthener using same | |
EP2989217B1 (en) | A new bacterial lysobacter capsici strain and uses thereof | |
JPH0722506B2 (en) | Microbial strain having antibacterial activity | |
Khezri et al. | Characterization of some biofilm-forming Bacillus subtilis strains and evaluation of their biocontrol potential against Fusarium culmorum | |
WO2010004713A1 (en) | Novel microorganism, and plant disease control agent using the microorganism | |
KR102306405B1 (en) | Method for control of gray mold caused by Botrytis cinerea using oxalate-degrading bacteria | |
KR101181756B1 (en) | Bacillus subtilis HSB904 having antifungal activities and a formulation containing the same | |
Prathuangwong et al. | Bacillus amyloliquefaciens induced systemic resistance against bacterial pustule pathogen with increased phenols, phenylalanine ammonia lyase, peroxidases and 1, 3-β-glucanases in soybean plants | |
KR20210055179A (en) | Burkholderia spp. strain having antifungal activity against red pepper anthracnose and composition for controlling red pepper anthracnose | |
CN109476710B (en) | Novel proteins against fungal pathogens | |
KR101535893B1 (en) | New microorganism Bacillus amyloliquefaciens CC110 and Microbial agent biopesticide containing the same | |
KR101756769B1 (en) | Protease of sequence number 1 having algicidal activity, gene encoding the same and algicidal formulation comprising the same | |
KR101005484B1 (en) | Streptomyces sporoclivatus CJS-49 KCTC 11109BP active against plant fungal pathogens | |
WO2005079580A1 (en) | Pland disease controlling composition and microorganism | |
KR20110113992A (en) | Nematocide compound containing amino acids extracted by using chicken feather-degrading bacterium chryseobacterium sp. fbf-7 | |
KR100457025B1 (en) | Paenibacillus sp. SD17 producing anti-fungal agents for biological control and composition containing them thereof | |
US5961971A (en) | Biocontrol of fungal soilborne pathogens by Pythium oligandrum | |
AU2002324348B2 (en) | New biopesticide using gene from Erwinia pyrifoliaeWT#3, novel pathogen that affects Asian pear trees | |
CN110607311B (en) | DSF quorum sensing signal degradation gene and application thereof | |
KR100574346B1 (en) | Bacillus subtilis eb072 strain, microorganism formulation for controlling plant diseases containing same and method for controlling plant diseases using same | |
KR100403896B1 (en) | Antagonistic bacillus ehimensis against vegetables damping-off | |
RU2783426C1 (en) | Bacterial strain bacillus subtilis bs2017 vkpm b-13389, growth inhibitor of phytopathogenic fungi | |
KR101734159B1 (en) | Antimicrobial Bacillus Methylotrophicus for Blue Mold, and Process for Culturing Thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right |