KR102304068B1 - Lycopene production by expression of highly efficient MEP pathway enzymes from Vibrio sp. dhg - Google Patents
Lycopene production by expression of highly efficient MEP pathway enzymes from Vibrio sp. dhg Download PDFInfo
- Publication number
- KR102304068B1 KR102304068B1 KR1020200024806A KR20200024806A KR102304068B1 KR 102304068 B1 KR102304068 B1 KR 102304068B1 KR 1020200024806 A KR1020200024806 A KR 1020200024806A KR 20200024806 A KR20200024806 A KR 20200024806A KR 102304068 B1 KR102304068 B1 KR 102304068B1
- Authority
- KR
- South Korea
- Prior art keywords
- coli
- recombinant
- seq
- lycopene
- nucleotide sequence
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/70—Vectors or expression systems specially adapted for E. coli
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/0004—Oxidoreductases (1.)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/0004—Oxidoreductases (1.)
- C12N9/001—Oxidoreductases (1.) acting on the CH-CH group of donors (1.3)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/10—Transferases (2.)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/10—Transferases (2.)
- C12N9/1085—Transferases (2.) transferring alkyl or aryl groups other than methyl groups (2.5)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P5/00—Preparation of hydrocarbons or halogenated hydrocarbons
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P5/00—Preparation of hydrocarbons or halogenated hydrocarbons
- C12P5/007—Preparation of hydrocarbons or halogenated hydrocarbons containing one or more isoprene units, i.e. terpenes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y103/00—Oxidoreductases acting on the CH-CH group of donors (1.3)
- C12Y103/99—Oxidoreductases acting on the CH-CH group of donors (1.3) with other acceptors (1.3.99)
- C12Y103/99031—Phytoene desaturase (lycopene-forming) (1.3.99.31)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y205/00—Transferases transferring alkyl or aryl groups, other than methyl groups (2.5)
- C12Y205/01—Transferases transferring alkyl or aryl groups, other than methyl groups (2.5) transferring alkyl or aryl groups, other than methyl groups (2.5.1)
- C12Y205/01001—Dimethylallyltranstransferase (2.5.1.1)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y205/00—Transferases transferring alkyl or aryl groups, other than methyl groups (2.5)
- C12Y205/01—Transferases transferring alkyl or aryl groups, other than methyl groups (2.5) transferring alkyl or aryl groups, other than methyl groups (2.5.1)
- C12Y205/01032—15-Cis-phytoene synthase (2.5.1.32)
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Genetics & Genomics (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- Biotechnology (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Microbiology (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Medicinal Chemistry (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Plant Pathology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
본 발명은 라이코펜 생합성 대사 경로가 정교하게 조절된 라이코펜 고생산 균주 및 이를 이용한 라이코펜 생산방법에 관한 것이다. 본 발명에 따른 라이코펜 고생산 균주는 dxs 및 ispA 유전자가 도입된 것으로, 라이코펜의 생산성이 모균주에 비해 현저히 증가된 것을 확인하였다. 따라서 본 발명의 라이코펜 고생산 균주는 라이코펜이 활용되는 다양한 산업분야에서 광범위하게 적용할 수 있다.The present invention relates to a lycopene high-producing strain in which the lycopene biosynthesis and metabolic pathway is precisely regulated, and a lycopene production method using the same. The lycopene high-producing strain according to the present invention was introduced with the dxs and ispA genes, and it was confirmed that the productivity of lycopene was significantly increased compared to the parent strain. Therefore, the lycopene high-producing strain of the present invention can be widely applied in various industrial fields where lycopene is utilized.
Description
본 발명은 라이코펜 생합성 대사 경로가 정교하게 조절된 라이코펜 고생산 균주 및 이를 이용한 라이코펜 생산방법에 관한 것이다.The present invention relates to a lycopene high-producing strain in which the lycopene biosynthesis and metabolic pathway is precisely regulated, and a lycopene production method using the same.
카르테노이드계열 색소의 한 종류인 라이코펜은 높은 항산화 효과를 지닌 물질로 이 때문에 의학이나 약품관련 분야에서 그 수요가 늘어나고 있다. 이러한 잠재성 때문에 년간 3.5%의 시장 성장률과 2023년에는 시장 규모가 1억 3천만 달러를 넘을 것으로 여겨지고 있다. 라이코펜의 전통적인 생산방식은 주로 자연에서 나오는 붉은 색 과일인 토마토 및 수박에서 추출하는 것이다. 하지만 이런 추출을 이용한 방법은 이들의 제한된 공급과 균일하지 못한 함유량과 같은 문제를 지녀서 안정적인 공급을 하기 힘들다는 단점이 있다.Lycopene, a kind of carotenoid pigment, is a substance with high antioxidant effect, and for this reason, its demand is increasing in medicine and drug-related fields. Due to this potential, the market is expected to grow at a 3.5% annual growth rate and the market size will exceed $130 million by 2023. The traditional production method for lycopene is extraction from tomatoes and watermelons, which are naturally red fruits. However, the method using this extraction has problems such as limited supply and non-uniform content, so it is difficult to provide a stable supply.
대장균과 같은 라이코펜 비생산 미생물에 유래가 다른 유전자를 도입함으로써 라이코펜을 비롯한 카로티노이드를 생산하는 연구는 이미 여러 곳에서 진행되어 왔다. 로슈 비타민사(Roche Vitamins, Inc.)에서는 플라보박테리움 R1534 (Flavobacterium sp. R1534) 종에서 유래한 crtE, crtB, crtI 를 전환하여 라이코펜 함량이 0.5 mg/gDCW인 대장균을 만들었으며(Luis Pasamontes et al., US20040058410, 2004), 아모코사(Amoco Corporation)에서는 에르위니아 하이르비콜라(Erwinia herbicola)에서 유래한 crtI를 이용하여 효모에서 0.1 mg/gDCW의 함량을 갖도록 하였다(Rodney L. Ausich et al., US5,530,189, 1996). 그러나 상기의 연구들에 언급된 라이코펜의 함량은 매우 낮기 때문에 경제적인 생산공정의 개발이 쉽지 않다.Studies on the production of carotenoids including lycopene by introducing genes of different origins into non-lycopene-producing microorganisms such as E. coli have already been conducted in various places. Roche Vitamins, Inc. converted crtE, crtB, and crtI derived from Flavobacterium sp. R1534 species to create Escherichia coli with a lycopene content of 0.5 mg/gDCW (Luis Pasamontes et al.) al., US20040058410, 2004), Amoco Corporation used crtI derived from Erwinia herbicola to have a content of 0.1 mg/gDCW in yeast (Rodney L. Ausich et al. , US 5,530,189, 1996). However, since the content of lycopene mentioned in the above studies is very low, it is not easy to develop an economical production process.
이에 본 발명자들은 라이코펜을 고농도로 생산하는 균주에 대해 연구한 결과, 라이코펜 생산경로의 핵심 유전자, 프로모터 및 합성 5‘UTR이 도입된 라이코펜 고생산 균주를 구축함으로써, 본 발명을 완성하게 되었다.Accordingly, the present inventors completed the present invention by constructing a lycopene high-producing strain into which a key gene of the lycopene production pathway, a promoter, and a synthetic 5'UTR were introduced as a result of research on a strain that produces lycopene at a high concentration.
따라서 본 발명의 목적은, 서열번호 9의 염기서열로 표시되는 5′UTR(5’ Untranslated region); 서열번호 6의 염기서열로 표시되는 crtE 유전자; 서열번호 7의 염기서열로 표시되는 crtB 유전자; 및 서열번호 8의 염기서열로 표시되는 crtI 유전자;가 도입된 라이코펜 생산능이 향상된 재조합 대장균 및 이를 이용한 라이코펜 생산 방법을 제공하는 것이다.Therefore, an object of the present invention, 5'UTR (5' Untranslated region) represented by the nucleotide sequence of SEQ ID NO: 9; crtE gene represented by the nucleotide sequence of SEQ ID NO: 6; crtB gene represented by the nucleotide sequence of SEQ ID NO: 7; and crtI gene represented by the nucleotide sequence of SEQ ID NO: 8; to provide a recombinant Escherichia coli having improved lycopene-producing ability, and a lycopene production method using the same.
상기 목적을 달성하기 위하여, 본 발명은 서열번호 9의 염기서열로 표시되는 5′UTR; 서열번호 6의 염기서열로 표시되는 crtE 유전자; 서열번호 7의 염기서열로 표시되는 crtB 유전자; 및 서열번호 8의 염기서열로 표시되는 crtI 유전자;가 도입된 라이코펜 생산능이 향상된 재조합 대장균을 제공한다.In order to achieve the above object, the present invention provides a 5'UTR represented by the nucleotide sequence of SEQ ID NO: 9; crtE gene represented by the nucleotide sequence of SEQ ID NO: 6; crtB gene represented by the nucleotide sequence of SEQ ID NO: 7; and crtI gene represented by the nucleotide sequence of SEQ ID NO: 8; provides a recombinant E. coli having improved lycopene-producing ability introduced.
또한 본 발명은 상기 라이코펜 생산능이 향상된 재조합 대장균을 배양하는 단계를 포함하는 라이코펜 생산방법을 제공한다.The present invention also provides a lycopene production method comprising the step of culturing the recombinant E. coli having the improved lycopene production ability.
본 발명에 따른 라이코펜 고생산 균주는 dxs 및 ispA 유전자가 도입된 것으로, 라이코펜의 생산성이 모균주에 비해 현저히 증가된 것을 확인하였다. 따라서 본 발명의 라이코펜 고생산 균주는 라이코펜이 활용되는 다양한 산업분야에서 광범위하게 적용할 수 있다.The lycopene high-producing strain according to the present invention was introduced with the dxs and ispA genes, and it was confirmed that the productivity of lycopene was significantly increased compared to the parent strain. Therefore, the lycopene high-producing strain of the present invention can be widely applied in various industrial fields where lycopene is utilized.
도 1은 미생물에서 라이코펜의 생합성 경로 및 핵심 효소를 나타낸 모식도이다.
도 2는 라이코펜 생합성 경로 유전자들의 프로모터 배열을 바꾼 카세트를 포함한 벡터(p1EBI, p2EBI)를 형질전환시킨 균주 L1 및 L2의 라이코펜 생산량 및 세포 무게를 측정한 결과를 나타낸 도이다.
도 3은 본 발명의 L2 균주에 대장균 W3110 또는 Vibrio sp. dhg 균주의 dxs 유전자를 각각 도입한 L3 및 L4 균주와; 상기 균주의 ispA 유전자를 각각 도입한 L5 및 L6 균주와; 상기 균주의 dxs 및 ispA 유전자를 각각 도입한 L7 및 L8 균주;의 라이코펜 생산량을 확인한 결과를 나타낸 도이다.
도 4는 정제된 dxs 및 ispA 효소 및 상기 효소를 생산하는 균주의 세포 용해물을 SDS-PAGE를 통해 확인 및 효소 활성을 측정한 결과를 나타낸 도이다. 보다 상세하게는, 도 4A는 D1 및 D2 균주에서 dxs 효소를 확인한 결과이며, 도 4B는 V1 및 V2 균주에서 ispA 효소를 확인한 결과를 나타낸 도이다. 도 4A 및 4B의 화살표는 정제된 효소의 크기를 표시한 것이다. 또한 도 4C 는 dxs 및 ispA 효소의 물적 특성(kcat 및 Km)을 분석한 결과를 나타낸 도이다.1 is a schematic diagram showing the biosynthetic pathway and key enzymes of lycopene in microorganisms.
2 is a diagram showing the results of measuring the lycopene production and cell weight of strains L1 and L2 transformed with vectors (p1EBI, p2EBI) including a cassette in which the promoter sequences of lycopene biosynthesis pathway genes are changed.
3 is E. coli W3110 or Vibrio sp in the L2 strain of the present invention. L3 and L4 strains respectively introduced with the dxs gene of the dhg strain; L5 and L6 strains respectively introduced with the ispA gene of the strain; A diagram showing the results of confirming the lycopene production of the L7 and L8 strains respectively introduced with the dxs and ispA genes of the strain.
4 is a view showing the results of confirming the purified dxs and ispA enzymes and cell lysates of the strain producing the enzymes through SDS-PAGE and measuring the enzyme activity. More specifically, Figure 4A is a result of confirming the dxs enzyme in the strains D1 and D2, Figure 4B is a diagram showing the result of confirming the ispA enzyme in the strains V1 and V2. The arrows in FIGS. 4A and 4B indicate the size of the purified enzyme. In addition, FIG. 4C is a diagram showing the results of analyzing the physical properties (k cat and K m ) of the dxs and ispA enzymes.
이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.
본 발명의 양태에 따르면, 본 발명은 서열번호 9의 염기서열로 표시되는 5′UTR(5’ Untranslated region); 서열번호 6의 염기서열로 표시되는 crtE 유전자; 서열번호 7의 염기서열로 표시되는 crtB 유전자; 및 서열번호 8의 염기서열로 표시되는 crtI 유전자;가 도입된 라이코펜 생산능이 향상된 재조합 대장균을 제공한다.According to an aspect of the present invention, the present invention provides a 5'UTR (5' Untranslated region) represented by the nucleotide sequence of SEQ ID NO: 9; crtE gene represented by the nucleotide sequence of SEQ ID NO: 6; crtB gene represented by the nucleotide sequence of SEQ ID NO: 7; and crtI gene represented by the nucleotide sequence of SEQ ID NO: 8; provides a recombinant E. coli having improved lycopene-producing ability introduced.
본 발명에 있어서, 5'UTR(untranslated region)은 mRNA의 5' 말단과 3' 말단에 있는 비번역부위로, 일반적으로 mRNA의 5'UTR은 유전자 발현 과정에서 여러 가지 기능을 수행하나 이러한 기능 중, 가장 큰 특징은 mRNA 번역 효율 조절에 관여하는 것이다. 번역개시 코돈의 인접한 상부에 존재하는 5'UTR의 염기서열은 번역 단계의 효율에 영향을 미치는 것으로 보고되어 있다. 또한, 원핵생물에 5' UTR에 위치한 리보솜 결합 부위 시퀀스로 알려진 샤인-달가노 시퀀스 (Shine-Dalgarno sequence)와 같이 정해진 위치는 아니지만 진핵생물에서도 리보솜 결합 부위 시퀀스라 할 수 있는 5’UTR에 속한 시퀀스들에 관한 연구 결과가 보고된 바 있다.In the present invention, 5'UTR (untranslated region) is an untranslated region at the 5' and 3' ends of mRNA. In general, 5'UTR of mRNA performs various functions in the gene expression process, but among these functions , the biggest characteristic is that it is involved in the regulation of mRNA translation efficiency. It has been reported that the nucleotide sequence of the 5'UTR present in the upper portion adjacent to the translation initiation codon affects the efficiency of the translation step. In addition, a sequence belonging to the 5'UTR, which can be called a ribosome binding site sequence in eukaryotes, although it is not a fixed position like the Shine-Dalgarno sequence, which is known as a ribosome binding site sequence located at 5' UTR in prokaryotes. Research results have been reported on them.
상기 crtE 유전자는 제라닐제라닐 피로인산(Geranylgeranyl pyrophosphate)을 제라닐제라닐 피로인산(Geranylgeranyl pyrophosphate, 이하 GGPP)으로 전환하는데 관여하는 제라닐제라닐 피로인산 합성효소(Geranylgeranyl pyrophosphate synthase)를 코딩하는 유전자이며, crtB 유전자는 상기 GGPP를 피토엔(phytoene)으로 전환하는데 관여하는 피토엔 합성효소(Phytoene synthase)를 코딩하는 유전자이고, crtI 유전자는 상기 피토엔을 라이코펜(lycopene)으로 전환하는데 관여하는 피토엔 디세투레이즈(Phytoene desaturase)를 코딩하는 유전자이다.The crtE gene is a gene encoding a geranylgeranyl pyrophosphate synthase involved in converting geranylgeranyl pyrophosphate to geranylgeranyl pyrophosphate (hereinafter GGPP). and the crtB gene is a gene encoding a phytoene synthase involved in converting the GGPP into phytoene, and the crtI gene is a phytoene involved in converting the phytoene into lycopene. It is a gene that codes for phytoene desaturase.
본 발명에 있어서, 유전자(gene)는 최광의의 의미로 간주되어야 하며, 구조 단백질 또는 조절 단백질을 암호화할 수 있다. 이때, 조절단백질은 전사인자, 열 충격단백질 또는 DNA/RNA 복제, 전사 및/또는 번역에 관여하는 단백질을 포함한다. 본 발명에 있어서, 발현 억제의 대상이 되는 표적 유전자는 염색체 외 구성요소로서 존재할 수 있다.In the present invention, a gene (gene) should be considered in the broadest sense, and may encode a structural protein or a regulatory protein. In this case, the regulatory protein includes a transcription factor, a heat shock protein, or a protein involved in DNA/RNA replication, transcription and/or translation. In the present invention, the target gene to be suppressed may exist as an extrachromosomal component.
본 발명의 구체예에서, 상기 재조합 대장균은 서열번호 10 또는 11의 염기서열로 표시되는 5′UTR을 더 포함한다. In an embodiment of the present invention, the recombinant E. coli further comprises 5'UTR represented by the nucleotide sequence of SEQ ID NO: 10 or 11.
본 발명의 바람직한 구체예에서, 상기 재조합 대장균은 crtE, crtB 및 crtI 유전자가 모노 또는 폴리 시스트론으로 배열된 것일 수 있으며, 바람직하게는 상기 유전자가 모노 시스트론으로 배열된 것이 바람직하다.In a preferred embodiment of the present invention, in the recombinant Escherichia coli, crtE, crtB and crtI genes may be arranged in mono or poly cistrons, and preferably, the genes are arranged in mono cistrons.
본 발명에 있어서, 시스트론은 유전적으로 기능을 수행할 수 있는 구조유전자의 단위를 의미하며, 모노 시스트론 및 폴리 시스트론으로 나뉜다. 상기 모노 시스트론은 하나의 폴리 펩타이드만 암호화할 수 있는 종류의 mRNA를 만드는 유전자를 의미하며, 폴리 시스트론은 동일한 RNA 분자에서 하나 이상의 폴리 펩타이드를 생성할 수 있는 종류의 mRNA를 의미한다. 진핵 세포의 mRNA는 대부분 모노 시스트론으로 존재하며, 원핵생물의 mRNA는 대부분 폴리 시스트론으로 존재한다. 대표적인 폴리 시스트론의 예로는 대장균의 오페론이 있다.In the present invention, cistron means a unit of a structural gene capable of performing a genetic function, and is divided into monocistron and polycistron. The monocistron refers to a gene that makes a kind of mRNA that can encode only one polypeptide, and the polycistron refers to a kind of mRNA that can generate one or more polypeptides from the same RNA molecule. Most mRNAs in eukaryotes exist as monocistrons, and mRNAs in prokaryotes mostly exist as polycistronics. An example of a typical polycistron is an E. coli operon.
본 발명의 바람직한 구체예에서, 라이코펜의 생산능을 더욱 향상시키기 위하여 dxs 또는 ispA 유전자를 추가 도입할 수 있다. 상기 dxs 유전자는 1-데옥시-D-자일룰로스-5-포스페이트 합성효소(1-deoxy-D-xylulose-5-phosphate synthase)를 코딩하며, ispA 유전자는 파네실 이인산 합성효소(farnesyl diphosphate synthase)를 코딩한다. 또한 상기 dxs 및 ispA 유전자는 대장균 W3110 또는 Vibrio sp. dhg 균주 유래인 것인 바람직하며, 더 바람직하게는 Vibrio sp. dhg 균주 유래이다. 또한 상기 dxs 및 ispA 유전자는 crtEBI 유전자와 동시에 또는 순차적으로 도입할 수 있으나, 이에 제한되지 않는다.In a preferred embodiment of the present invention, a dxs or ispA gene may be further introduced to further improve the lycopene production ability. The dxs gene encodes 1-deoxy-D-xylulose-5-phosphate synthase, and the ispA gene encodes a farnesyl diphosphate synthase (farnesyl diphosphate). synthase) is coded. In addition, the dxs and ispA genes are E. coli W3110 or Vibrio sp. It is preferably derived from the dhg strain, more preferably Vibrio sp. dhg strain. In addition, the dxs and ispA genes may be introduced simultaneously or sequentially with the crtEBI gene, but is not limited thereto.
본 발명의 보다 바람직한 구체예에서, 상기 재조합 대장균은 서열번호 1의 염기서열로 표시되는 dxs 유전자를 더 포함할 수 있으며, 바람직하게는 서열번호 12의 염기서열로 표시되는 5′UTR을 더 포함할 수 있다.In a more preferred embodiment of the present invention, the recombinant E. coli may further include a dxs gene represented by the nucleotide sequence of SEQ ID NO: 1, and preferably further include 5'UTR represented by the nucleotide sequence of SEQ ID NO: 12. can
본 발명의 보다 바람직한 구체예에서, 상기 재조합 대장균은 서열번호 3의 염기서열로 표시되는 dxs 유전자를 더 포함할 수 있으며, 바람직하게는 서열번호 13의 염기서열로 표시되는 5′UTR을 더 포함할 수 있다.In a more preferred embodiment of the present invention, the recombinant E. coli may further include a dxs gene represented by the nucleotide sequence of SEQ ID NO: 3, and preferably further include 5'UTR represented by the nucleotide sequence of SEQ ID NO: 13. can
본 발명의 보다 바람직한 구체예에서, 상기 재조합 대장균은 서열번호 2의 염기서열로 표시되는 ispA 유전자를 더 포함할 수 있으며, 바람직하게는 서열번호 14의 염기서열로 표시되는 5′UTR을 더 포함할 수 있다.In a more preferred embodiment of the present invention, the recombinant Escherichia coli may further include the ispA gene represented by the nucleotide sequence of SEQ ID NO: 2, and preferably further include 5'UTR represented by the nucleotide sequence of SEQ ID NO: 14. can
본 발명의 보다 바람직한 구체예에서, 상기 재조합 대장균은 서열번호 4의 염기서열로 표시되는 ispA 유전자를 더 포함할 수 있으며, 바람직하게는 서열번호 15의 염기서열로 표시되는 5′UTR을 더 포함할 수 있다.In a more preferred embodiment of the present invention, the recombinant Escherichia coli may further include an ispA gene represented by the nucleotide sequence of SEQ ID NO: 4, and preferably further include 5'UTR represented by the nucleotide sequence of SEQ ID NO: 15. can
본 발명의 보다 바람직한 구체예에서, 상기 재조합 대장균은 서열번호 3의 염기서열로 표시되는 dxs 유전자; 및 서열번호 4의 염기서열로 표시되는 ispA 유전자;를 더 포함할 수 있으며, 바람직하게는 서열번호 12 또는 14의 염기서열로 표시되는 5′UTR을 더 포함할 수 있다.In a more preferred embodiment of the present invention, the recombinant E. coli is a dxs gene represented by the nucleotide sequence of SEQ ID NO: 3; and ispA gene represented by the nucleotide sequence of SEQ ID NO: 4; may further include, preferably, 5'UTR represented by the nucleotide sequence of SEQ ID NO: 12 or 14.
본 발명의 보다 바람직한 구체예에서, 상기 재조합 대장균은 서열번호 1의 염기서열로 표시되는 dxs 유전자; 및 서열번호 2의 염기서열로 표시되는 ispA 유전자;를 더 포함할 수 있으며, 바람직하게는 서열번호 13 또는 15의 염기서열로 표시되는 5′UTR을 더 포함할 수 있다.In a more preferred embodiment of the present invention, the recombinant E. coli is a dxs gene represented by the nucleotide sequence of SEQ ID NO: 1; and ispA gene represented by the nucleotide sequence of SEQ ID NO: 2; may further include, preferably, 5'UTR represented by the nucleotide sequence of SEQ ID NO: 13 or 15.
본 발명의 구체예에서, 상기 라이코펜 생산능이 향상된 재조합 대장균의 모균주는 야생형 대장균일 수 있다. 상기 야생형 대장균은 인공적인 유전자의 재조합, 치환, 돌연변이 등이 가해지지 않은 천연 상태의 대장균을 의미한다.In an embodiment of the present invention, the parent strain of recombinant E. coli having improved lycopene-producing ability may be wild-type E. coli. The wild-type E. coli refers to E. coli in a natural state to which artificial gene recombination, substitution, mutation, etc. have not been applied.
본 발명의 바람직한 구체예에서는, 라이코펜 생산능이 향상된 재조합 대장균의 모균주는 Escherichia coli W3110 균주인 것이 바람직하나, 이에 제한되지 않는다.In a preferred embodiment of the present invention, the parent strain of recombinant E. coli having improved lycopene-producing ability is preferably Escherichia coli W3110 strain, but is not limited thereto.
본 발명의 구체예에서, 본 발명에 따른 재조합 대장균은 라이코펜 생산 관련 유전자로 형질전환된 것을 말한다. 본 발명에서 형질전환은 본 발명에 따른 프로모터, 또는 추가적으로 목적 단백질을 코딩하는 유전자를 포함하는 벡터를 숙주세포 내에 도입 하는 것을 의미한다. 또한, 형질전환된 목적 단백질을 코딩하는 유전자는 숙주세포 내에 발현될 수 있기만 한다면, 숙주세포의 염색체 내에 삽입되어 위치하거나 염색체 외에 위치할 수 있다. In an embodiment of the present invention, the recombinant E. coli according to the present invention refers to one transformed with a lycopene production-related gene. Transformation in the present invention means introducing the promoter according to the present invention, or a vector including a gene encoding a target protein additionally, into a host cell. In addition, as long as the gene encoding the transformed target protein can be expressed in the host cell, it may be inserted into the chromosome of the host cell or located outside the chromosome.
본 발명의 다른 양태에 따르면, 본 발명은 상기 라이코펜 생산능이 향상된 재조합 대장균을 배양하는 단계를 포함하는 라이코펜 생산방법을 제공한다.According to another aspect of the present invention, the present invention provides a lycopene production method comprising the step of culturing the recombinant E. coli having the improved lycopene-producing ability.
본 발명의 구체예에서, 배지 및 기타 배양조건은 통상의 대장균의 배양에 사용되는 배지이면 어느 것이나 사용할 수 있다. 바람직하게는, 본 발명의 재조합 대장균을 적당한 탄소원, 질소원, 아미노산, 비타민 등을 함유한 통상의 배지 내에서 호기성 조건 하에서 온도, pH 등을 조절하면서 배양한다.In an embodiment of the present invention, any medium and other culture conditions may be used as long as it is a medium used for culturing E. coli. Preferably, the recombinant Escherichia coli of the present invention is cultured in a conventional medium containing an appropriate carbon source, nitrogen source, amino acid, vitamin, etc. under aerobic conditions while controlling temperature, pH, and the like.
본 발명의 바람직한 구체예에 있어서, 상기 배지는 탄소원으로서 당류 또는 당알코올을 포함할 수 있으며, 보다 상세하게는 포도당, 만니톨, 수크로오스, 아라비노스, 갈락토오스, 글리세롤, 자일로오스, 만노오스, 프락토오스, 락토오스, 말토오스, 수크로오스, 알긴산, 셀룰로오스, 덱스트린, 글리코겐, 히알루론산, 렌티난, 자이모산, 키토산, 글루칸, 리그닌 및 펙틴으로 이루어진 군에서 선택되는 1종 이상일 수 있으며, 바람직하게는 포도당, 만니톨, 알긴산, 수크로오스, 아라비노스, 갈락토오스 및 글리세롤로 이루어진 군에서 선택되는 1 종 이상을 포함할 수 있으나, 이에 제한되지 않는다. 무기화합물로는 염화나트륨, 염화칼슘, 염화철, 황산마그네슘, 황산철, 황산망간 및 탄산칼슘 등이 사용될 수 있으며, 그 외에 아미노산, 비타민 및 적절한 전구체 등이 포함될 수 있다. 이들 배지 또는 전구체는 배양물에 회분식 또는 연속식으로 첨가될 수 있다.In a preferred embodiment of the present invention, the medium may contain saccharides or sugar alcohols as a carbon source, and more specifically, glucose, mannitol, sucrose, arabinose, galactose, glycerol, xylose, mannose, fructose, It may be at least one selected from the group consisting of lactose, maltose, sucrose, alginic acid, cellulose, dextrin, glycogen, hyaluronic acid, lentinan, zymosan, chitosan, glucan, lignin and pectin, preferably glucose, mannitol, alginic acid , sucrose, arabinose, galactose, and may include one or more selected from the group consisting of glycerol, but is not limited thereto. As the inorganic compound, sodium chloride, calcium chloride, iron chloride, magnesium sulfate, iron sulfate, manganese sulfate and calcium carbonate may be used, and in addition, amino acids, vitamins and appropriate precursors may be included. These media or precursors may be added to the culture either batchwise or continuously.
배양 중에 수산화암모늄, 수산화칼륨, 암모니아, 인산 및 황산과 같은 화합물을 배양물에 적절한 방식으로 첨가하여, 배양물의 pH를 조정할 수 있다. 또한, 배양 중에는 지방산 폴리글리콜 에스테르와 같은 소포제를 사용하여 기포 생성을 억제할 수 있다. 또한, 배양물의 호기 상태를 유지하기 위하여, 배양물 내로 산소 또는 산소 함유 기체를 주입하거나 혐기 및 호기 상태를 유지하기 위해 기체의 주입없이 혹은 질소, 수소 또는 이산화탄소 가스를 주입할 수 있다.During the culture, compounds such as ammonium hydroxide, potassium hydroxide, ammonia, phosphoric acid and sulfuric acid can be added to the culture in an appropriate manner to adjust the pH of the culture. In addition, during culturing, an antifoaming agent such as fatty acid polyglycol ester may be used to suppress bubble formation. In addition, in order to maintain the aerobic state of the culture, oxygen or oxygen-containing gas may be injected into the culture, or nitrogen, hydrogen or carbon dioxide gas may be injected with or without gas to maintain anaerobic and aerobic conditions.
배양물의 온도는 보통 27℃ 내지 37℃, 바람직하게는 30℃ 내지 35℃로 설정할 수 있다. 배양 기간은 원하는 유용 물질의 생성량이 수득될 때까지 계속될 수 있으며, 바람직하게는 10 내지 100 시간 동안 배양할 수 있다.The temperature of the culture can be usually set at 27°C to 37°C, preferably 30°C to 35°C. The incubation period may be continued until a desired production amount of useful substances is obtained, and may preferably be cultured for 10 to 100 hours.
본 발명의 구체예에서, 상기 라이코펜 생산방법은 배양 단계에서 생산된 라이코펜을 추가로 정제 또는 회수하는 단계를 더 포함할 수 있으며, 재조합 대장균 또는 배양물로부터 라이코펜을 회수하는 방법은 당업계에 알려진 방법, 예컨대 원심분리, 여과, 음이온 교환 크로마토그래피, 결정화 및 HPLC 등이 사용될 수 있으나, 이에 제한되지 않는다. 상기 회수 단계는 정제 공정을 포함할 수 있으며, 당업자는 공지된 여러 정제 공정 중 필요에 따라 선택하여 활용할 수 있다.In an embodiment of the present invention, the method for producing lycopene may further include the step of further purifying or recovering lycopene produced in the culturing step, and the method for recovering lycopene from recombinant E. coli or culture is a method known in the art. , such as, but not limited to, centrifugation, filtration, anion exchange chromatography, crystallization, and HPLC. The recovery step may include a purification process, and a person skilled in the art may select and utilize it according to need among various known purification processes.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail through examples. These examples are only for illustrating the present invention, and it will be apparent to those skilled in the art that the scope of the present invention is not to be construed as being limited by these examples.
유전자, 균주 및 플라스미드Genes, strains and plasmids
대장균 Mach-T1R(Thermo Scientific,Waltham, MA, USA)은 일반적인 클로닝에 사용하였고, 대장균 W3110은 유전자 발현 및 라이코펜 생산 숙주로 사용하였다. 대장균 W3110 및 Vibrio sp. dhg 균주의 genomic DNA를 정제하여 dxs 및 ispA 유전자의 공급원으로 사용하였다. 또한 이전에 구축된 JYJ0 균주(Jung, Juyoung, et al. "Precise precursor rebalancing for isoprenoids production by fine control of gapA expression in Escherichia coli." Metabolic engineering 38 (2016): 401-408.) 및 pCDF_crtEBI 플라스미드는 라이코펜 생산에 이용되었다. 파네실트랜스퍼라제 (farnesyltransferase, PFTase)를 암호화하는 RAM1 유전자는 사카로마이세스 세레비지애(Saccharomyces cerevisiae)로부터 수득하였고, 대장균에서 사용하기 위해 코돈최적화하였다. 합성 프로모터(Ptac) 및 터미네이터(BBa_B1005)는 생물학적 부품등록기구(Registry of Standard Biological Parts; http://parts.igem.org)로부터 얻었다. 또한 합성 5′UTR은 최대 발현을 위해 UTR Designer로 설계하였다.E. coli Mach-T1R (Thermo Scientific, Waltham, MA, USA) was used for general cloning, and E. coli W3110 was used as a gene expression and lycopene production host. E. coli W3110 and Vibrio sp. The genomic DNA of the dhg strain was purified and used as a source of dxs and ispA genes. In addition, the previously constructed JYJ0 strain (Jung, Juyoung, et al. "Precise precursor rebalancing for isoprenoids production by fine control of gapA expression in Escherichia coli." Metabolic engineering 38 (2016): 401-408.) and the pCDF_crtEBI plasmid were lycopene was used for production. The RAM1 gene encoding farnesyltransferase (PFTase) was obtained from Saccharomyces cerevisiae and codon-optimized for use in E. coli. Synthetic promoter (Ptac) and terminator (BBa_B1005) were obtained from the Registry of Standard Biological Parts (http://parts.igem.org). In addition, the synthetic 5'UTR was designed with UTR Designer for maximum expression.
후술되는 실시예에서 사용된 유전자 정보는 표 1에, 플라스미드 및 균주에 대한 특성은 표 2에, 프라이머에 서열은 표 3에 나타내었다.Gene information used in Examples to be described later is shown in Table 1, properties for plasmids and strains are shown in Table 2, and primer sequences are shown in Table 3.
(서열번호 1) dxs from Vibrio sp. dhg
(SEQ ID NO: 1)
(서열번호 2) ispA from Vibrio sp. dhg
(SEQ ID NO: 2)
(서열번호 3)dxs from W3110
(SEQ ID NO: 3)
(서열번호 4)ispA from W3110
(SEQ ID NO: 4)
(서열번호 5)Codon-optimized RAM1 from S. cerevisiae
(SEQ ID NO: 5)
(서열번호 6)crtE gene
(SEQ ID NO: 6)
(서열번호 7)crtB gene
(SEQ ID NO: 7)
(서열번호 8)crtI gene
(SEQ ID NO: 8)
KCTC 13239BPLim, et, al. (2019),
KCTC 13239BP
실험예 1. 세포배양Experimental Example 1. Cell culture
실시예에 기재된 균주 및 재조합 균주는 별도의 언급이 없는 한 5 mL LB 배지에 넣은 후, 37°C, 200 rpm에서 배양하였고, 초기 세포 농도는 사전에 같은 배지에서 배양을 통해 준비된 세포를 OD600 농도 0.05로 희석하여 준비하였다.The strains and recombinant strains described in Examples were placed in 5 mL LB medium, and then incubated at 37 °C and 200 rpm, unless otherwise specified, and the initial cell concentration was OD 600 of cells prepared through incubation in the same medium in advance. It was prepared by dilution to a concentration of 0.05.
필요한 경우 플라스미드의 유지를 위하여 50ug/ml의 스트렙토마이신과 34ug/ml의 클로로암페니콜, 50ug/ml의 암피실린을 배지에 포함하였다.If necessary, 50 ug/ml of streptomycin, 34 ug/ml of chloroamphenicol, and 50 ug/ml of ampicillin were included in the medium for maintenance of the plasmid.
실험예 2. 세포 수 측정Experimental Example 2. Cell number measurement
배양 중의 세포 성장은 UV-1700 spectrophotometer를 이용하여 600 nM 파장의 흡광도를 측정하는 방법으로 정량하였고, 결과 값은 OD600 혹은 OD600 단위 1당 0.252 g DCW/L로 환산되어 나타내었다.Cell growth in culture was quantified by measuring the absorbance at a wavelength of 600 nM using a UV-1700 spectrophotometer, and the resulting value was converted to 0.252 g DCW/L per OD 600 or OD 600 unit.
실험예 3. 라이코펜 생산량 확인Experimental Example 3. Confirmation of lycopene production
라이코펜 생산량을 확인하기 위하여, 배양액 1 ml을 4℃에서 15,814g로 10분 동안 원심분리하였다. 원심분리 후 세포 펠렛을 수확하였다. 상기 세포 펠릿을 인산염 완충액으로 2회 세척하였다. 라이코펜을 추출하기 위하여 세포 펠렛을 순수한 아세톤 1 ml에 현탁시켰고, 65℃ 힛블럭(heat block)에서 15분 동안 배양하였다. 세포 파편을 제거하기 위하여, 상기 반응물을 실온에서 15,814g로 원심분리하였다. 원심분리 후 상청액을 수득하였다. 상기 상청액을 475 nm에서 흡광도를 측정하였다. 상기 흡광도 측정은 UV-1700 분광 광도계(Shimadzu, Kyoto, Japan)를 이용하였다. 라이코펜의 농도는 실제 라이코펜을 사용하여 작성된 표준 곡성으로 정량화 하였다. 또한 생물량(biomass)은 분광광도계로 600 nm의 흡광도를 측정한 후 라이코헨의 농도를 건조 세포 중량(DCW)로 정규화하였다. In order to check the lycopene production, 1 ml of the culture medium was centrifuged for 10 minutes at 15,814 g at 4 ℃. The cell pellet was harvested after centrifugation. The cell pellet was washed twice with phosphate buffer. To extract lycopene, the cell pellet was suspended in 1 ml of pure acetone, and incubated for 15 minutes in a heat block at 65°C. To remove cell debris, the reaction was centrifuged at 15,814 g at room temperature. After centrifugation, the supernatant was obtained. The absorbance of the supernatant was measured at 475 nm. The absorbance was measured using a UV-1700 spectrophotometer (Shimadzu, Kyoto, Japan). The concentration of lycopene was quantified with a standard curve created using real lycopene. In addition, the biomass was normalized to the dry cell weight (DCW) for the concentration of lycohen after measuring the absorbance at 600 nm with a spectrophotometer.
실시예 1. Example 1. crtEBIcrtEBI 유전자들의 이종 발현 조절을 통한 라이코펜 생산 증대 Increase lycopene production by regulating heterologous expression of genes
미생물에서 라이코펜의 생합성 경로는 도 1과 같으며, ispA, CrtEBI 등과 같은 핵심 효소가 관여한다. 선행연구에서 대장균 내에서의 라이코펜 생산을 위해 개발된 개량 균주 JYJ0는 L. purpurea 균주에서 도입된 crtEBI 유전자들을 폴리시스트론 배열을 통해 이종발현시켜서 세포 부담을 줄였다.The biosynthetic pathway of lycopene in microorganisms is shown in FIG. 1, and key enzymes such as ispA and CrtEBI are involved. The improved strain JYJ0, developed for the production of lycopene in E. coli in the previous study, reduced the cellular burden by heterogeneously expressing the crtEBI genes introduced from the L. purpurea strain through a polycistronic sequence.
본 실험에서는 해당 균주의 라이코펜 생산량을 더욱 늘리기 위해서 핵심 효소 유전자를 포함하는 발현 카세트의 디자인을 조정하였다. 이전 JYJ0 균주에 유도 가능한 tac 프로모터와 낮은 복제수를 지닌 pACYCduet-1 벡터를 도입해서 플라스미드의 안정성을 높이고 세포의 부담을 줄일 수 있는 균주를 개발했다. 또한, 이를 더욱 발전시키기 위해 각각의 crtE, crtB, crtI 유전자들의 발현을 최대화하기 위하여 각각의 유전자들을 tac 프로모터와 합성 5’UTR 하에서 모노시스트론 배열을 통해 발현시켰다.In this experiment, the design of the expression cassette containing the key enzyme gene was adjusted to further increase the lycopene production of the corresponding strain. Inducible tac to the previous JYJ0 strain By introducing the promoter and pACYCduet-1 vector with a low copy number, a strain that can increase the stability of the plasmid and reduce the burden on cells was developed. In addition, to further develop this, each gene was tac to maximize the expression of each crtE, crtB, crtI gene. It was expressed through a monocistronic arrangement under a promoter and synthetic 5'UTR.
합성 5’UTR의 경우 유전자의 발현량을 최대화할 수 있게 설계한 것으로써, UTR Designer를 통해 예측 발현량이 50만 이상이 되도록 설계하였다. 설계된 합성 5’UTR은 표 4에 나타내었다.In the case of synthetic 5'UTR, it was designed to maximize the expression level of the gene, and the predicted expression level was designed to exceed 500,000 through UTR Designer. The designed synthetic 5'UTR is shown in Table 4.
번호order
number
p1EBI는 pACYCduet-1 플라스미드를 주형으로 하여, pACYC_F/pACYC_R 프라이머 세트를 이용해 증폭하였고, crtE, crtB, crtI 유전자들은 Tac_crtE_F/R, crtB_F/R, crtI_F/R 프라이머 세트를 활용하여 증폭하였다. 각각의 증폭된 절편들은 Gibson assembly를 이용한 클로닝 방법으로 연결하여 pEB1 플라스미스를 제작하였다. 또한 p2EBI 플라스미드에 crtE, crtB, crtI 유전자는 Tac_crtE_F/crtE_R, Tac_crtB_F/crtB_R, Tac_crtI_F/crtI_R 프라이머 세트를 활용해 증폭하였고, 증폭된 절편과 증폭된 pACYCduet-1 플라스미드를 연결하여 제작하였다. p1EBI was amplified using the pACYCduet-1 plasmid as a template using the pACYC_F/pACYC_R primer set, and the crtE, crtB, and crtI genes were amplified using the Tac_crtE_F/R, crtB_F/R, and crtI_F/R primer sets. Each amplified fragment was ligated by cloning using Gibson assembly to construct a pEB1 plasmid. In addition, the crtE, crtB, and crtI genes in the p2EBI plasmid were amplified using the Tac_crtE_F/crtE_R, Tac_crtB_F/crtB_R, Tac_crtI_F/crtI_R primer set, and the amplified fragment and the amplified pACYCduet-1 plasmid were ligated and constructed.
이상의 과정을 통해 제작된 재조합 플라스미드 p1EBI 및 p2EBI을 대장균 W3110에 형질전환하여, 재조합 대장균 L1 및 L2를 각각 제작하였다. Recombinant plasmids p1EBI and p2EBI prepared through the above process were transformed into E. coli W3110 to prepare recombinant E. coli L1 and L2, respectively.
상기 언급한 재조합 균주들의 라이코펜의 생산을 확인하기 위해, 24시간동안 배양하여 라이코펜 생산량 및 세포의 무게를 확인하였다. 라이코펜 생산량 및 세포의 무게를 확인한 결과는 도 2에 나타내었다.In order to confirm the production of lycopene in the above-mentioned recombinant strains, lycopene production and cell weight were confirmed by culturing for 24 hours. The results of confirming the lycopene production and cell weight are shown in FIG. 2 .
도 2에 나타낸 바와 같이, L1 균주의 라이코펜 생산은 2.32mg/g DCW로 JYJ0 균주에 비해 1.28배 증가하였고, 세포 무게는 1.46 DCW/L로 JYJ0 균주에 비해 1.52배 증가하였다. 이는 대사의 부담이 감소하였다는 것을 의미한다.As shown in FIG. 2 , the lycopene production of the L1 strain was increased by 1.28 times compared to the JYJ0 strain at 2.32 mg/g DCW, and the cell weight was increased by 1.52 times compared to the JYJ0 strain at 1.46 DCW/L. This means that the metabolic burden is reduced.
L2 균주의 경우 L1 균주에서의 crtEBI의 발현을 모노시스트론으로 변환한 것이다. L2 균주는 세포 무게가 1.50g DCW/L로 L1 균주에 비해 거의 영향받지 않았고, 라이코펜 생산은 4.18mg/g DCW로 L1 균주에 비해 2.31배 증가했다.In the case of the L2 strain, the expression of crtEBI in the L1 strain was converted to monocistronic. The L2 strain had almost no effect compared to the L1 strain with a cell weight of 1.50 g DCW/L, and the lycopene production was 4.18 mg/g DCW, which increased 2.31 times compared to the L1 strain.
상기 결과는 crtB, crtI의 발현이 라이코펜 생산량을 크게 증가시킨다는 것을 의미한다. 후술되는 실시예에서는 L2 균주를 추가 엔지니어링하였다.The above results mean that the expression of crtB and crtI greatly increases the production of lycopene. In the examples described below, the L2 strain was further engineered.
실시예 2. Example 2. dxs, ispA dxs, ispA 유전자의 이종 발현을 통한 라이코펜의 생산증대 확인Confirmation of increased production of lycopene through heterologous expression of genes
기존 MEP 경로의 특징을 고려할 때, 빠른 생장속도를 가지는 미생물의 경우 해당 미생물들의 효소 활성이 높을 것이라 예측하였다. 이에 라이코펜 생산을 증대시키기 위하여, 실시예 1의 L2 균주에 대장균 W3110 균주 및 Vibrio sp. dhg 균주에서 분리된 dxs 및 ispA 유전자를 각각 도입하였다.Considering the characteristics of the existing MEP pathway, in the case of microorganisms having a fast growth rate, it was predicted that the enzyme activity of the microorganisms would be high. Accordingly, in order to increase lycopene production, E. coli W3110 strain and Vibrio sp. dxs and ispA genes isolated from the dhg strain were introduced, respectively.
구체적으로, 재조합 플라스미드 pdE, pdV, piE, piV, pdEiE, pdViV를 제작하였다. Specifically, recombinant plasmids pdE, pdV, piE, piV, pdEiE, and pdViV were constructed.
pdEiE 플라스미드를 제작하기 위해 대장균 W3110 균주를 주형으로 dxs, ispA 유전자를 증폭시켰다. 상기 dxs, ispA 유전자는 dxsE_F/R, ispAE_F/R 프라이머 세트로 증폭하였다. crtEBI_F/R 프라이머 세트를 이용하여 pEBI2 재조합 플라스미드를 증폭시켰다. 증폭된 유전자 및 벡터 절편을 연결하여 pdEiE 플라스미드를 제작하였다. To construct a pdEiE plasmid, the dxs and ispA genes were amplified using the E. coli W3110 strain as a template. The dxs and ispA genes were amplified with dxsE_F/R and ispAE_F/R primer sets. The pEBI2 recombinant plasmid was amplified using the crtEBI_F/R primer set. A pdEiE plasmid was constructed by ligating the amplified gene and vector fragment.
pdViV 플라스미드는 상기 pdEiE 플라스미드와 동일하게 제작하되, dxsV_F/R, ispAV_F/R 프라이머 세트로 Vibrio sp. dhg 균주의 dxs, ispA 유전자를 증폭시킨 절편을 이용하여 제작하였다.The pdViV plasmid was constructed in the same manner as the pdEiE plasmid, but Vibrio sp. It was prepared using the amplified fragment of the dxs and ispA genes of the dhg strain.
pdE, piE 플라스미드는 pdEiE 플라스미드를 각각 dxsE_F/crtEBI_R 및 crtEBI_F/ispAE_R 프라이머 세트로 증폭해서 제작하였다.The pdE and piE plasmids were constructed by amplifying the pdEiE plasmid with the dxsE_F/crtEBI_R and crtEBI_F/ispAE_R primer sets, respectively.
또한 pdV, piV 플라스미드는 dxsV_F/crtEBI_R, crtEBI_F/ispAV_R 프라이머 세트 및 pdViV 재조합 플라스미드를 이용해 제작하였다. In addition, pdV and piV plasmids were constructed using dxsV_F/crtEBI_R, crtEBI_F/ispAV_R primer sets and pdViV recombinant plasmids.
제작된 pdE, pdV, piE, piV, pdEiE 및 pdViV 플라스미드를 대장균 W3110 균주에 형질전환하였으며, 형질전환 균주를 L3 내지 L8로 명명하였다. The produced pdE, pdV, piE, piV, pdEiE and pdViV plasmids were transformed into E. coli W3110 strain, and the transformed strains were designated as L3 to L8.
제조된 형질전환 균주 L3 내지 L8에서 라이코펜의 생산을 확인하기 위해, 24시간 동안 세포를 배양하였다. 형질전환 균주 L3 내지 L8의 라이코펜 생산량을 확인한 결과는 도 3에 나타내었다.In order to confirm the production of lycopene in the prepared transformed strains L3 to L8, the cells were cultured for 24 hours. The results of confirming the lycopene production of the transformed strains L3 to L8 are shown in FIG. 3 .
도 3에 나타낸 바와 같이, L3 및 L4 균주는 각각 W3110 균주 또는 Vibrio sp. dhg 균주의 dxs 유전자를 도입해 과발현시킨 균주로, 실시예 1의 L2 균주보다 라이코펜 생산량이 각각 9.12 및 9.16 mg/g DCW로 2.22배 증가하였다.As shown in Figure 3, the L3 and L4 strains are W3110 strain or Vibrio sp. As a strain overexpressed by introducing the dxs gene of the dhg strain, the lycopene production was increased by 2.22 times to 9.12 and 9.16 mg/g DCW, respectively, compared to the L2 strain of Example 1.
또한 L5 및 L6 균주는 W3110 균주 또는 Vibrio sp. dhg 균주의 ispA 유전자를 도입해 과발현한 균주이다. 상기 L5 균주는 라이코펜 생산량이 4.66 mg/g DCW로 1.11배 증가했으며, L6 균주는 6.47 mg/g DCW로 1.55배 증가했다.In addition, the L5 and L6 strains are strains W3110 or Vibrio sp. This strain is overexpressed by introducing the ispA gene of the dhg strain. The L5 strain increased lycopene production by 1.11 times to 4.66 mg/g DCW, and the L6 strain increased 1.55 times to 6.47 mg/g DCW.
L7 균주는 W3110 균주의 dxs 및 ispA 유전자를 도입한 균주로 라이코펜 생산량(10.8 mg/g DCW)이 L2 균주보다 2.57배 증가했으나 L3 균주에 비해서는 1.18배만 증가했다. The L7 strain was a strain introduced with the dxs and ispA genes of the W3110 strain, and the lycopene production (10.8 mg/g DCW) increased 2.57 times than the L2 strain, but only 1.18 times more than the L3 strain.
L8 균주는 Vibrio sp. dhg 균주의 dxs 및 ispA 유전자를 발현시킨 균주로, 라이코펜 생산량이 0.3 mg/g DCW였다. 상기 L8 균주의 라이코펜 생산량은 L2 균주보다 4.85배, L6 균주보다 1.88배 높았다. 이는 기존 LB에서 추가적인 탄소 공급원이나 배양 조건의 조정없이 라이코펜을 생산한 것과 유사한 양이다.L8 strain is Vibrio sp. As a strain expressing the dxs and ispA genes of the dhg strain, the lycopene production was 0.3 mg/g DCW. The lycopene production of the L8 strain was 4.85 times higher than that of the L2 strain, and 1.88 times higher than that of the L6 strain. This is similar to the amount of lycopene produced in conventional LB without additional carbon source or adjustment of culture conditions.
실시예 3. 효소 분석(Enzyme assay)Example 3. Enzyme assay
핵심 대사 효소들의 이종발현을 통해 라이코펜 생산이 증가된 것임을 입증하기 위해 효소 분석을 수행하였다.Enzyme analysis was performed to prove that lycopene production was increased through heterologous expression of key metabolic enzymes.
pCDF_HF/R 프라미머 세트를 이용하여, pCDFduet-1 플라스미드를 증폭하였다. dxsE_his_F/R 및 ispAE_his_F/R 프라이머 세트로 대장균 W3110 유전자를 증폭하였다. 증폭된 벡터 절편 및 유전자 절편을 연결하여 pCdH, pCiEH 플라스미드들을 제작하였다. The pCDFduet-1 plasmid was amplified using the pCDF_HF/R primer set. The E. coli W3110 gene was amplified with the dxsE_his_F/R and ispAE_his_F/R primer sets. The amplified vector fragment and the gene fragment were ligated to construct pCdH and pCiEH plasmids.
상기 플라스미드 제작과 동일한 방법으로, pCdVH 및 pCiVH 플라스미드는 Vibrio sp. dhg 유전자를 dxsV_his_F/R과 ispAV_his_F/R 프라이머 세트로 증폭한 절편과 벡터 절편을 연결하여 제작하였다.In the same manner as the above plasmid construction, pCdVH and pCiVH plasmids were prepared using Vibrio sp. The dhg gene was constructed by linking the fragment amplified with the dxsV_his_F/R and ispAV_his_F/R primer sets and the vector fragment.
또한 pCPFT 플라스미드는 PFT_his_F/R 프라이머로 증폭된 유전자 절편을 이용하여 제작하였다.In addition, the pCPFT plasmid was prepared using the gene fragment amplified with the PFT_his_F/R primer.
이상의 과정을 통해 제작된 재조합 플라스미드를 대장균 W3110에 형질전환하여, 재조합 대장균 D1, V1, D2, V2 및 P를 각각 제작하였다.The recombinant plasmid prepared through the above process was transformed into E. coli W3110 to prepare recombinant E. coli D1, V1, D2, V2 and P, respectively.
상기 제조된 D1, D2, V1, V2 균주들은 실시예 1과 동일한 환경에서 Dxs, ispA 효소 정량을 위해 배양되었고, 기존에 알려진 방법을 통해 정량을 진행했다. The prepared D1, D2, V1, and V2 strains were cultured for quantification of Dxs and ispA enzymes in the same environment as in Example 1, and quantification was performed by a known method.
Dxs 효소 정량의 경우 0 내지 100 mM로 DL-글리세르알데하이드의 농도를 조절하며 37℃에서 각각 0, 20, 40 및 60분 동안 반응을 진행시킨 후 95℃에서 효소를 비활성화시켰다. 기질인 파이루베이트와 DL-글리세르알데하이드의 농도는 Ultimate 3000 high-performance liquid chromatography(HPLC)를 이용해서 측정하였다.In the case of Dxs enzyme quantification, the concentration of DL-glyceraldehyde was adjusted to 0 to 100 mM, and the reaction was carried out at 37° C. for 0, 20, 40, and 60 minutes, respectively, and then the enzyme was inactivated at 95° C. The concentrations of the substrates pyruvate and DL-glyceraldehyde were measured using Ultimate 3000 high-performance liquid chromatography (HPLC).
IspA 효소 정량의 경우 Dxs와 동일한 환경에서 정제된 PFTase 효소를 이용한 연속 정량을 통해 형광도(λexcitation: 340 nm, λemission: 505 nm)를 측정했다. 상기 형광도 측정은 VICTOR3 1420 Multilabel Plate Reader를 이용하였다. 활성도는 기질인 디메틸알릴 파이로포스페이트(DMAPP)와 아이소펜텐일 피로인산(IPP)대신 산물인 파네실 파이로포스페이트(FPP)를 기준으로 삼은 표준곡선을 이용해 측정하였다. In the case of IspA enzyme quantification, fluorescence (λ excitation : 340 nm, λ emission : 505 nm) was measured through continuous quantification using purified PFTase enzyme in the same environment as Dxs. The fluorescence was measured using a VICTOR 3 1420 Multilabel Plate Reader. The activity was measured using a standard curve based on the product farnesyl pyrophosphate (FPP) instead of the substrates dimethylallyl pyrophosphate (DMAPP) and isopentenyl pyrophosphate (IPP).
또한, 효소들의 활성 비교를 위해 물적 특성(kcat 및 Km)을 분석한 후 각 기질에 대한 실험값을 측정하였다. In addition, after analyzing the physical properties (k cat and K m) to compare the activity of the enzymes, the experimental values for each substrate were measured.
정제된 효소의 순도 확인 및 활성을 비교한 결과는 도 4에 나타내었다.The results of comparing the purity and activity of the purified enzyme are shown in FIG. 4 .
도 4A 및 4B에 나타낸 바와 같이, 재조합 대장균 D1, V1, D2 및 V2 균주는 정제된 dxs 및 ispA 효소와 동일한 위치에서 단백질이 확인되었다. 이는 핵심 대사 효소인 dxs 및 ispA의 이종발현을 통해 라이코펜 생산이 증가된 것임을 의미한다.As shown in FIGS. 4A and 4B , in the recombinant E. coli strains D1, V1, D2 and V2, proteins were identified at the same position as the purified dxs and ispA enzymes. This means that lycopene production was increased through heterologous expression of dxs and ispA, which are key metabolic enzymes.
도 4C에 나타낸 바와 같이, Dxs 효소는 W3110 균주의 유전자를 이용한 경우가 Vibrio sp. dhg 균주의 유전자를 이용한 경우에 비해 kcat 값이 1.52배 높았으나 DL-glyceraldehyde를 기준으로 측정한 Km값은 1.4배 높았으므로, 효소 활성은 약 1.08배 높았다. 이는 기존의 L3 및 L4 균주간의 큰 차이를 보이지 않는 라이코펜 생산량의 결과와도 일치했다. 또한, Vibrio sp. dhg 균주는 kcat 값이 높기 때문에 전구체의 밸런스를 맞추는 방법에 유용하게 활용될 수 있을 것이다. As shown in Fig. 4C, the Dxs enzyme is the case of using the gene of the W3110 strain, Vibrio sp. The k cat value was 1.52 times higher than when the dhg strain gene was used, but the K m value measured based on DL-glyceraldehyde was 1.4 times higher, so the enzyme activity was about 1.08 times higher. This was also consistent with the results of lycopene production, which did not show a significant difference between the existing L3 and L4 strains. In addition, Vibrio sp. Since the dhg strain has a high k cat value, it may be usefully utilized in a method of balancing precursors.
IspA 효소는 Vibrio sp. dhg 균주의 유전자를 이용한 경우 W3110 균주의 유전자를 이용한 경우에 비해 kcat 값은 1.35배 높았고 Km 값은 파이로포스페이트(DMAPP) 및 아이소펜텐일피로인산(IPP) 두 경우 모두에서 약간 낮았다. 즉, IspA 효소 활성은 Vibrio sp. dhg 균주의 유전자를 이용한 경우가 디메틸알릴 파이로포스페이트(DMAPP)와 아이소펜텐일 피로인산(IPP)에 비해 각각 1.38 및 1.44배 높았다. 이는 L5 및 L6 균주에서 라이코펜 생산량의 차이와 일치하며, Dxs 및 IspA 유전자를 동시 발현시켰을 때의 시너지 효과가 있음을 의미한다.IspA enzyme is Vibrio sp. When the gene of the dhg strain was used, the k cat value was 1.35 times higher than when the gene of the W3110 strain was used, and the K m value was slightly lower in both cases of pyrophosphate (DMAPP) and isopentenylpyrophosphate (IPP). That is, the IspA enzymatic activity was observed in Vibrio sp. The case of using the dhg strain gene was 1.38 and 1.44 times higher than that of dimethylallyl pyrophosphate (DMAPP) and isopentenyl pyrophosphate (IPP), respectively. This is consistent with the difference in lycopene production in the L5 and L6 strains, and it means that there is a synergistic effect when the Dxs and IspA genes are co-expressed.
상기 실험 결과는 Vibrio sp. dhg 균주 유래의 dxs 및 ispA 유전자를 대장균 내에서 이종발현시키는 것이 라이코펜 생산을 현저히 증가시킬 수 있음을 의미한다.The experimental result is Vibrio sp. It means that heterologous expression of dxs and ispA genes derived from the dhg strain in E. coli can significantly increase lycopene production.
종합적으로 본 발명자들은 Vibrio sp. dhg 균주 유래의 dxs 및 ispA 유전자가 도입된 형질전환 대장균을 제작하고, 이의 현저한 라이코펜 생산능을 확인하였다. 이는 본 발명의 형질전환 대장균은 라이코펜 생산 분야에서 다양하게 활용될 수 있다.Collectively, the present inventors described Vibrio sp. A transformed E. coli into which dxs and ispA genes derived from the dhg strain were introduced was prepared, and its remarkable lycopene-producing ability was confirmed. The transformed E. coli of the present invention can be used in various ways in the field of lycopene production.
이상, 본 발명내용의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적인 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의해 정의된다고 할 것이다. Above, specific parts of the present invention have been described in detail, for those of ordinary skill in the art, it is clear that these specific descriptions are only preferred embodiments, and the scope of the present invention is not limited thereby. something to do. Accordingly, it is intended that the substantial scope of the present invention be defined by the appended claims and their equivalents.
<110> POSTECH Research and Business Development Foundation <120> Lycopene production by expression of highly efficient MEP pathway enzymes from Vibrio sp. dhg <130> 1-84P <160> 48 <170> KoPatentIn 3.0 <210> 1 <211> 1866 <212> DNA <213> Vibrio sp. <400> 1 atgactcttg atatttcaaa gtacccaaca ctggcgttag caaatacacc ggaagagttg 60 cgtcttcttc ctaaagaaac attacctgct ctgtgtgatg agcttcgaac gtatctgcta 120 aattcagtga gccaatcaag cggacactta gcgtctggct taggcacagt agagctcaca 180 gttgccctgc attatgtata taacacacca gtagaccagt taatctggga tgttggtcat 240 caggcttacc cacataaaat cctgaccgga cgtcgtgaca aaatgccgac catccgtcag 300 aaaggtgggc ttcacccatt cccttggcgc tcagagagcg aatacgacac gctgtcggtt 360 ggtcactctt ccacttcaat cagtgctgga cttggcatgg ccatcagtgc acagaaagaa 420 ggtaaagggc gtaaggtcgt gagtgttatt ggtgacggcg ccattaccgc gggtatggca 480 ttcgaagcaa tgaaccacgc tggcgatgtt catccagata tgctggtgat tctgaacgat 540 aacgaaatgt cgatttcaga aaacgttggt gcgctaaaca accacttagc gaaattactg 600 tctggtagcc tgtatacgtc gattcgcgaa ggcggtaaaa aagtgctttc tggcgttccg 660 ccgatcaaag agctggttcg tcgtacagaa gaacacctca aaggcatggt cgtccctggc 720 acactattcg aagagttcgg atttaactac atcggcccaa ttgatgggca tgatgtcaat 780 gaactggttc agactctgaa gaacatgcgt gagttgaaag gccctcaatt cctgcacatc 840 atgaccaaaa aaggcaaagg ttatgagcca gcagagaaag accctatcgg ttaccatgct 900 gtaccaaagt tcgcaccatc aaataacagc ttgccaaaga gcagcggtgg taaaccaacg 960 ttctcaaaga tctttggtga cttcctatgc gatatggccg cgcaagatcc taagctgatg 1020 gcgattacgc cagcaatgcg tgaaggttct ggcatggtgc gtttctcgaa agagttccca 1080 gaacaatatt tcgatgttgc tatcgctgag cagcatgcag tgacgctcgc taccggtatg 1140 gcgattgctg gcaataaccc aatcgttgcc atttactcga ccttcttaca acgcggttat 1200 gatcagctca tccacgacat cgcaattatg gatttgccag tcatgttcgc tatcgaccga 1260 gcaggtttgg ttggtgctga tggtcagact caccaaggtg cgtttgactt gagctttatg 1320 cgctgcattc caaacatggt gatcatggca ccaagcgacg agaatgaatg tcgtcaaatg 1380 ctatacactg gtcacaagca cacgggtccg agcgcagttc gttaccctcg tggaaacggt 1440 atgggaaccg acatcgaaag tgaatttacc gcacttgaga tcggtaaagg ccgaattgta 1500 cgtcaaggcg aaaaagtcgc gatcctgagc tttggtacct tcctggggaa tgcgttagaa 1560 gccgctgaaa accttaatgc aacggttgct gacatgcgct ttgttaagcc actagatgaa 1620 acgttgattc gtcagctagc gagcgaacac gatgtactcg tgacactgga agagaatgcg 1680 attgctggcg gtgccggtgc aggtgttctt gaattcatga tgaaagaaaa aatcatcaag 1740 ccagtactca accttggctt acctgataag tttgttcatc aaggcactca ggatgagctg 1800 catgaagagc ttggtctgga tgcgaaagga attgaacaat ccatcaacga ttatctggcg 1860 aagtaa 1866 <210> 2 <211> 885 <212> DNA <213> Vibrio sp. <400> 2 atgcaacaga cattgacttc tttccaacaa agaaacaatc aacaattaaa cttgtggcta 60 gaacagcttc cttatcaaga acttccattg attgatgcaa tgaaatatgg ccttttgcta 120 ggcgggaaac gcgttcgccc ttttcttgtt tacatcacag gccaaatgtt cggttgtaaa 180 cctgaagatc tggacacacc agccgcagcg attgaatgca ttcacgctta ctcacttatt 240 catgatgacc tgccagcgat ggatgacgat gagttacgcc gtggtcaacc gacttgccat 300 attaagttcg atgaagcgac cgcaatactg actggtgacg ctctacaaac gctcgccttt 360 actattttgg cagatggttc tttaaatcca gaagctgaaa gccagcgtat caatatgata 420 aaagctctgg ctcattcgtc tggctctaac ggcatgtgtg tcggacaagc actggattta 480 agtgcagaga atcgtcaaat ttctctcgaa gaaatggaag aaatccatcg taaaaagacc 540 ggagccctaa ttgactgtgc ggttaaatta ggcgctttgg ccgctggtga taagggtatc 600 gcagttttac ctcatttaga gcgctattcg aaagcaattg gtttggcgtt tcaggttcaa 660 gacgatattc ttgatatcat tagtgacaca gaaacattgg gtaagcctca gggttctgat 720 caagaactca ataagagcac ttacccttcc ctgctgggtt tagagggagc gatagagaaa 780 gctcactctc tgttacagga agcacttcaa gcattggaag ctatcccata caatactcag 840 ttacttgaag agttcgcccg atatgtcatc gagcgcaaaa attaa 885 <210> 3 <211> 1863 <212> DNA <213> Escherichia coli <400> 3 atgagttttg atattgccaa atacccgacc ctggcactgg tcgactccac ccaggagtta 60 cgactgttgc cgaaagagag tttaccgaaa ctctgcgacg aactgcgccg ctatttactc 120 gacagcgtga gccgttccag cgggcacttc gcctccgggc tgggcacggt cgaactgacc 180 gtggcgctgc actatgtcta caacaccccg tttgaccaat tgatttggga tgtggggcat 240 caggcttatc cgcataaaat tttgaccgga cgccgcgaca aaatcggcac catccgtcag 300 aaaggcggtc tgcacccgtt cccgtggcgc ggcgaaagcg aatatgacgt attaagcgtc 360 gggcattcat caacctccat cagtgccgga attggtattg cggttgctgc cgaaaaagaa 420 ggcaaaaatc gccgcaccgt ctgtgtcatt ggcgatggcg cgattaccgc aggcatggcg 480 tttgaagcga tgaatcacgc gggcgatatc cgtcctgata tgctggtgat tctcaacgac 540 aatgaaatgt cgatttccga aaatgtcggc gcgctcaaca accatctggc acagctgctt 600 tccggtaagc tttactcttc actgcgcgaa ggcgggaaaa aagttttctc tggcgtgccg 660 ccaattaaag agctgctcaa acgcaccgaa gaacatatta aaggcatggt agtgcctggc 720 acgttgtttg aagagctggg ctttaactac atcggcccgg tggacggtca cgatgtgctg 780 gggcttatca ccacgctaaa gaacatgcgc gacctgaaag gcccgcagtt cctgcatatc 840 atgaccaaaa aaggtcgtgg ttatgaaccg gcagaaaaag acccgatcac tttccacgcc 900 gtgcctaaat ttgatccctc cagcggttgt ttgccgaaaa gtagcggcgg tttgccgagc 960 tattcaaaaa tctttggcga ctggttgtgc gaaacggcag cgaaagacaa caagctgatg 1020 gcgattactc cggcgatgcg tgaaggttcc ggcatggtcg agttttcacg taaattcccg 1080 gatcgctact tcgacgtggc aattgccgag caacacgcgg tgacctttgc tgcgggtctg 1140 gcgattggtg ggtacaaacc cattgtcgcg atttactcca ctttcctgca acgcgcctat 1200 gatcaggtgc tgcatgacgt ggcgattcaa aagcttccgg tcctgttcgc catcgaccgc 1260 gcgggcattg ttggtgctga cggtcaaacc catcagggtg cttttgatct ctcttacctg 1320 cgctgcatac cggaaatggt cattatgacc ccgagcgatg aaaacgaatg tcgccagatg 1380 ctctataccg gctatcacta taacgatggc ccgtcagcgg tgcgctaccc gcgtggcaac 1440 gcggtcggcg tggaactgac gccgctggaa aaactaccaa ttggcaaagg cattgtgaag 1500 cgtcgtggcg agaaactggc gatccttaac tttggtacgc tgatgccaga agcggcgaaa 1560 gtcgccgaat cgctgaacgc cacgctggtc gatatgcgtt ttgtgaaacc gcttgatgaa 1620 gcgttaattc tggaaatggc cgccagccat gaagcgctgg tcaccgtaga agaaaacgcc 1680 attatgggcg gcgcaggcag cggcgtgaac gaagtgctga tggcccatcg taaaccagta 1740 cccgtgctga acattggcct gccggacttc tttattccgc aaggaactca ggaagaaatg 1800 cgcgccgaac tcggcctcga tgccgctggt atggaagcca aaatcaaggc ctggctggca 1860 taa 1863 <210> 4 <211> 900 <212> DNA <213> Escherichia coli <400> 4 atggactttc cgcagcaact cgaagcctgc gttaagcagg ccaaccaggc gctgagccgt 60 tttatcgccc cactgccctt tcagaacact cccgtggtcg aaaccatgca gtatggcgca 120 ttattaggtg gtaagcgcct gcgacctttc ctggtttatg ccaccggtca tatgttcggc 180 gttagcacaa acacgctgga cgcacccgct gccgccgttg agtgtatcca cgcttactca 240 ttaattcatg atgatttacc ggcaatggat gatgacgatc tgcgtcgcgg tttgccaacc 300 tgccatgtga agtttggcga agcaaacgcg attctcgctg gcgacgcttt acaaacgctg 360 gcgttctcga ttttaagcga tgccgatatg ccggaagtgt cggaccgcga cagaatttcg 420 atgatttctg aactggcgag cgccagtggt attgccggaa tgtgcggtgg tcaggcatta 480 gatttagacg cggaaggcaa acacgtacct ctggacgcgc ttgagcgtat tcatcgtcat 540 aaaaccggcg cattgattcg cgccgccgtt cgccttggtg cattaagcgc cggagataaa 600 ggacgtcgtg ctctgccggt actcgacaag tatgcagaga gcatcggcct tgccttccag 660 gttcaggatg acatcctgga tgtggtggga gatactgcaa cgttgggaaa acgccagggt 720 gccgaccagc aacttggtaa aagtacctac cctgcacttc tgggtcttga gcaagcccgg 780 aagaaagccc gggatctgat cgacgatgcc cgtcagtcgc tgaaacaact ggctgaacag 840 tcactcgata cctcggcact ggaagcgcta gcggactaca tcatccagcg taataaataa 900 900 <210> 5 <211> 1296 <212> DNA <213> Saccharomyces cerevisiae <400> 5 atgcgccagc gtgttggtcg tagcattgcg cgcgcgaaat ttattaacac cgccttgctg 60 ggccgcaaac gtccggtgat ggaacgcgtg gtggatatcg cccatgttga ttccagcaaa 120 gcgattcagc cgctgatgaa agaactggaa accgatacca ccgaggcgcg ttataaagtg 180 ttgcagagcg tactggaaat ttatgacgat gaaaaaaata ttgagccggc gctgacgaaa 240 gaatttcata aaatgtatct ggacgtggcg tttgaaatca gcttgccgcc gcagatgacc 300 gcactggatg ccagccagcc gtggatgctg tactggattg ccaacagcct gaaggtaatg 360 gaccgcgact ggttaagtga tgataccaaa cgcaagattg ttgacaaact gtttaccatt 420 tctccgagcg gcggtccgtt cggtggcggg ccggggcaac tgagccatct ggcatccacc 480 tatgcggcga tcaacgccct gtcactgtgc gataacatcg atggctgctg ggatcgcatt 540 gatcgtaaag gcatctatca gtggctgatc agtctgaaag agccaaacgg cggcttcaaa 600 acctgcctgg aagttggcga agtggacacc cgcggcattt actgcgcgct ttccatcgcg 660 acgctgctca atatcctcac tgaagagctg accgaaggcg tgctgaatta cctgaaaaac 720 tgccagaact acgaaggtgg ttttggttcc tgcccgcacg tcgacgaagc gcacggcggt 780 tataccttct gcgccaccgc gtcgctggct attctgcgca gcatggatca gattaatgtt 840 gaaaagctgc tggagtggtc gagcgcccgt cagctgcaag aagaacgtgg tttctgtggt 900 cgcagtaaca aactggtgga tggttgctac agcttctggg tgggcggcag tgccgccatt 960 ctcgaagcct ttggctacgg tcagtgcttt aataaacatg cgctgcgtga ttatatcctg 1020 tattgctgtc aggaaaaaga gcaaccgggc ttacgcgata aaccgggtgc ccacagcgat 1080 ttttatcaca ccaactattg tctgctgggt ctggcggtgg cagaaagcag ctatagctgc 1140 accccgaacg acagcccgca taacattaaa tgcacgccgg accgtctgat tggcagcagt 1200 aaattaaccg acgttaaccc ggtttatggc ctgccgattg aaaacgtgcg taaaattatt 1260 cattatttta aaagcaacct gtcgtcgccg agttaa 1296 <210> 6 <211> 924 <212> DNA <213> Unknown <220> <223> L. purpurea <400> 6 atggtatctg gctcaaaggc tggcgtctcg ccacatcgcg aaattgaagt gatgcgccag 60 agcattgatg atcatctggc gggcctgctg ccggaaaccg atagccagga tattgtgagc 120 ctggcgatgc gcgaaggcgt gatggcgccg ggcaaacgca ttcgcccgct gctgatgctg 180 ctggcggcgc gcgatctgcg ctatcagggc agtatgccga ccctgctgga tctggcgtgc 240 gcggtggaac tgacccatac cgcgagcctg atgctggatg atatgccgtg catggataac 300 gcggaactgc gccgcggcca gccgaccacc cataaaaaat ttggcgaaag cgtggcgatt 360 ctggcgagcg tgggcctgct gagcaaagcg tttggcctga ttgcggcgac cggcgatctg 420 ccgggcgaac gccgcgcgca ggcggtgaac gaactgagca ccgcggtggg cgtgcagggc 480 ctggtgctgg gccagtttcg cgatctgaac gatgcggcgc tggatcgcac cccggatgcg 540 attctgagca ccaaccatct gaaaaccggc attctgttta gcgcgatgct gcagattgtg 600 gcgattgcga gcgcgagcag cccgagcacc cgcgaaaccc tgcacgcgtt tgcgctggat 660 tttggccagg cgtttcagct gctggatgat ctgcgcgatg atcatccgga aaccggcaaa 720 gatcgcaaca aagatgcggg caaaagcacc ctggtgaacc gcctgggcgc ggatgcggcg 780 cgccagaaac tgcgcgaaca tattgatagc gcggataaac atctgacctt tgcgtgcccg 840 cagggcggcg cgattcgcca gtttatgcat ctgtggtttg gccatcatct ggcggattgg 900 agcccggtga tgaaaattgc gtaa 924 <210> 7 <211> 930 <212> DNA <213> Unknown <220> <223> L. purpurea <400> 7 atgtcccaac cccccttgct agaccacgca acccagacga tggcgaacgg cagcaagagc 60 tttgcgaccg cggcgaaact gtttgatccg gcgacccgcc gcagcgtgct gatgctgtat 120 acctggtgcc gccattgcga tgatgtgatt gatgatcaga cgcatggctt tgcgagcgaa 180 gcggcggcgg aagaagaagc gacccagcgc ctggcgcgcc tgcgcaccct gaccctggcg 240 gcgtttgaag gcgcggaaat gcaggacccg gcgtttgcgg cgtttcagga agtggcgctg 300 acccacggca ttaccccgcg catggcgctg gatcatctgg atggctttgc gatggatgtg 360 gcgcagaccc gctatgtgac ctttgaagat accctgcgct attgctatca tgtggcgggc 420 gtggtgggcc tgatgatggc gcgcgtgatg ggcgtgcgcg atgaacgcgt gctggatcgc 480 gcgtgcgatc tgggcctggc gtttcagctg accaacattg cgcgcgatat tattgatgat 540 gcggcgattg atcgctgcta tctgccggcg gaatggctgc aggatgcggg cctgaccccg 600 gaaaactatg cggcgcgcga aaaccgcgcg gcgctggcgc gcgtggcgga acgcctgatt 660 gatgcggcgg aaccgtatta tattagcagc caggcgggcc tgcatgatct gccgccgcgc 720 tgcgcgtggg cgattgcgac cgcgcgcagc gtgtatcgcg aaattggcat taaagtgaaa 780 gcggcgggcg gcagcgcgtg ggatcgccgc cagcatacca gcaaaggcga aaaaattgcg 840 atgctgatgg cggcgccggg ccaggtgatt cgcgcgaaaa ccacccgcgt gaccccgcgc 900 ccggcgggcc tgtggcagcg cccggtgtaa 930 <210> 8 <211> 1479 <212> DNA <213> Unknown <220> <223> L. purpurea <400> 8 atgaaaaaaa cggttgtgat cggcgctggg ttcggcggcc tggcgctggc gattcgcctg 60 caggcggcgg gcattccgac cgtgctgctg gaacagcgcg ataaaccggg cggccgcgcg 120 tatgtgtggc atgatcaggg ctttaccttt gatgcgggcc cgaccgtgat taccgatccg 180 accgcgctgg aagcgctgtt taccctggcg ggccgccgca tggaagatta tgtgcgcctg 240 ctgccggtga aaccgtttta tcgcctgtgc tgggaaagcg gcaaaaccct ggattatgcg 300 aacgatagcg cggaactgga agcgcagatt acccagttta acccgcgcga tgtggaaggc 360 tatcgccgct ttctggcgta tagccaggcg gtgtttcagg aaggctatct gcgcctgggc 420 agcgtgccgt ttctgagctt tcgcgatatg ctgcgcgcgg gcccgcagct gctgaaactg 480 caggcgtggc agagcgtgta tcagagcgtg agccgcttta ttgaagatga acatctgcgc 540 caggcgttta gctttcatag cctgctggtg ggcggcaacc cgtttaccac cagcagcatt 600 tataccctga ttcatgcgct ggaacgcgaa tggggcgtgt ggtttccgga aggcggcacc 660 ggcgcgctgg tgaacggcat ggtgaaactg tttaccgatc tgggcggcga aattgaactg 720 aacgcgcgcg tggaagaact ggtggtggcg gataaccgcg tgagccaggt gcgcctggcg 780 gatggccgca tttttgatac cgatgcggtg gcgagcaacg cggatgtggt gaacacctat 840 aaaaaactgc tgggccatca tccggtgggc cagaaacgcg cggcggcgct ggaacgcaaa 900 agcatgagca acagcctgtt tgtgctgtat tttggcctga accagccgca tagccagctg 960 gcgcatcata ccatttgctt tggcccgcgc tatcgcgaac tgattgatga aatttttacc 1020 ggcagcgcgc tggcggatga ttttagcctg tatctgcata gcccgtgcgt gaccgatccg 1080 agcctggcgc cgccgggctg cgcgagcttt tatgtgctgg cgccggtgcc gcatctgggc 1140 aacgcgccgc tggattgggc gcaggaaggc ccgaaactgc gcgatcgcat ttttgattat 1200 ctggaagaac gctatatgcc gggcctgcgc agccagctgg tgacccagcg catttttacc 1260 ccggcggatt ttcatgatac cctggatgcg catctgggca gcgcgtttag cattgaaccg 1320 ctgctgaccc agagcgcgtg gtttcgcccg cataaccgcg atagcgatat tgcgaacctg 1380 tatctggtgg gcgcgggcac ccatccgggc gcgggcattc cgggcgtggt ggcgagcgcg 1440 aaagcgaccg cgagcctgat gatcgaagac ctgcagtaa 1479 <210> 9 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> crtE 5 UTR sequence <400> 9 gcggataaca attaaggagg taaac 25 <210> 10 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> crtB 5 UTR sequence <400> 10 gcggataaca attaaggagg tgatc 25 <210> 11 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> crtI 5 UTR sequence <400> 11 gcggataaca attaaggagg ccctc 25 <210> 12 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> dxsEC 5 UTR sequence <400> 12 gcggataaca attaaggagg ttgat 25 <210> 13 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> dxsVDHG 5 UTR sequence <400> 13 gcggataaca attaaggagg gagaa 25 <210> 14 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> ispAEC 5 UTR sequence <400> 14 gcggataaca attaaggagg aaaat 25 <210> 15 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> ispAVDHG 5 UTR sequence <400> 15 gcggataaca attaaggaga aatat 25 <210> 16 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RAM1 5 UTR sequence <400> 16 gataacaatt taaggaggaa atact 25 <210> 17 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> pACYC_F <400> 17 ccatgaattg gatatcggcc ccaccgctga gcaataacta 40 <210> 18 <211> 51 <212> DNA <213> Artificial Sequence <220> <223> pACYC_R <400> 18 cattatacga gccgatgatt aattgtcaag gccgcaagct tgtcgacctg c 51 <210> 19 <211> 111 <212> DNA <213> Artificial Sequence <220> <223> Tac_crtE_F <400> 19 gcaggtcgac aagcttgcgg ccttgacaat taatcatcgg ctcgtataat gtgtggaatt 60 gtgagcggat aacaattaag gaggtaaaca tggtatctgg ctcaaaggct g 111 <210> 20 <211> 41 <212> DNA <213> Artificial Sequence <220> <223> crtE_R <400> 20 cggatggagg agccacaccc ttacgcaatt ttcatcaccg g 41 <210> 21 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> crtB_F <400> 21 gggtgtggct cctccatccg atgtcccaac cccccttg 38 <210> 22 <211> 105 <212> DNA <213> Artificial Sequence <220> <223> Tac_crtB_F <400> 22 gggtgtggct cctccatccg ttgacaatta atcatcggct cgtataatgt gtggaattgt 60 gagcggataa caattaagga ggtgatcatg tcccaacccc ccttg 105 <210> 23 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> crtB_R <400> 23 gggctacgac gacggcaccg ttacaccggg cgctgccaca 40 <210> 24 <211> 42 <212> DNA <213> Artificial Sequence <220> <223> crtI_F <400> 24 cggtgccgtc gtcgtagccc atgaaaaaaa cggttgtgat cg 42 <210> 25 <211> 109 <212> DNA <213> Artificial Sequence <220> <223> Tac_crtI_F <400> 25 cggtgccgtc gtcgtagccc ttgacaatta atcatcggct cgtataatgt gtggaattgt 60 gagcggataa caattaagga ggccctcatg aaaaaaacgg ttgtgatcg 109 <210> 26 <211> 105 <212> DNA <213> Artificial Sequence <220> <223> crtI_R <400> 26 ggccgatatc caattcatgg gcggcgaaac cccgccgaag cggggtttgc ggcgttactg 60 caggtcttcg atcatcttga caattaatca tcggctcgta taatg 105 <210> 27 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> crtEBI_F <400> 27 gcaggtcgac aagcttgcgg cc 22 <210> 28 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> crtEBI_R <400> 28 ggccgatatc caattcatgg gc 22 <210> 29 <211> 113 <212> DNA <213> Artificial Sequence <220> <223> dxsE_F <400> 29 ctgcgaaatc gcgtggctac ttgacaatta atcatcggct cgtataatgt gtggaattgt 60 gagcggataa caattaagga ggttgatatg agttttgata ttgccaaata ccc 113 <210> 30 <211> 43 <212> DNA <213> Artificial Sequence <220> <223> dxsE_R <400> 30 ggccgcaagc ttgtcgacct gcttatgcca gccaggcctt gat 43 <210> 31 <211> 118 <212> DNA <213> Artificial Sequence <220> <223> dxsV_F <400> 31 ctgcgaaatc gcgtggctac ttgacaatta atcatcggct cgtataatgt gtggaattgt 60 gagcggataa caattaagga gggagaaatg actcttgata tttcaaagta cccaacac 118 <210> 32 <211> 43 <212> DNA <213> Artificial Sequence <220> <223> dxsV_R <400> 32 ggccgcaagc ttgtcgacct gcttacttcg ccagataatc gtt 43 <210> 33 <211> 111 <212> DNA <213> Artificial Sequence <220> <223> ispAE_F <400> 33 gcccatgaat tggatatcgg ccttgacaat taatcatcgg ctcgtataat gtgtggaatt 60 gtgagcggat aacaattaag gaggaaaata tggactttcc gcagcaactc g 111 <210> 34 <211> 55 <212> DNA <213> Artificial Sequence <220> <223> ispAE_R <400> 34 gtagccacgc gatttcgcag actagtttat ttattacgct ggatgatgta gtccg 55 <210> 35 <211> 114 <212> DNA <213> Artificial Sequence <220> <223> ispAV_F <400> 35 gcccatgaat tggatatcgg ccttgacaat taatcatcgg ctcgtataat gtgtggaatt 60 gtgagcggat aacaattaag gagaaatata tgcaacagac attgacttct ttcc 114 <210> 36 <211> 46 <212> DNA <213> Artificial Sequence <220> <223> ispAV_R <400> 36 gtagccacgc gatttcgcag ttaatttttg cgctcgatga catatc 46 <210> 37 <211> 94 <212> DNA <213> Artificial Sequence <220> <223> PFT_his_F <400> 37 ttgacaatta atcatcggct cgtataatgt gtggaattgt gagcggataa caatttaagg 60 aggaaatact atgcgccagc gtgttggtcg tagc 94 <210> 38 <211> 71 <212> DNA <213> Artificial Sequence <220> <223> PFT_his_R <400> 38 tgactagtct atgaaaaaaa aaccccgccg aagcggggtt tttttttgag ctcttaatgg 60 tggtggtgat g 71 <210> 39 <211> 114 <212> DNA <213> Artificial Sequence <220> <223> dxsE_his_F <400> 39 ttgacaatta atcatcggct cgtataatgt gtggaattgt gagcggataa caatttggac 60 gttcgtaatg catcatcacc atcaccacag ttttgatatt gccaaatacc cgac 114 <210> 40 <211> 74 <212> DNA <213> Artificial Sequence <220> <223> dxsE_his_R <400> 40 tgactagtct atgaaaaaaa aaccccgccg aagcggggtt tttttttgag ctcttatgcc 60 agccaggcct tgat 74 <210> 41 <211> 90 <212> DNA <213> Artificial Sequence <220> <223> ispAE_his_F <400> 41 ttgacaatta atcatcggct cgtataatgt gtggaattgt gagcggataa caattcgagg 60 tatgaaacaa aatggacttt ccgcagcaac 90 <210> 42 <211> 71 <212> DNA <213> Artificial Sequence <220> <223> ispAE_his_R <400> 42 tgactagtct atgaaaaaaa aaccccgccg aagcggggtt tttttttgag ctcttaatgg 60 tggtggtgat g 71 <210> 43 <211> 112 <212> DNA <213> Artificial Sequence <220> <223> dxsV_his_F <400> 43 ttgacaatta atcatcggct cgtataatgt gtggaattgt gagcggataa caattggtgg 60 cccaaacatg catcatcacc atcaccacac tcttgatatt tcaaagtacc ca 112 <210> 44 <211> 74 <212> DNA <213> Artificial Sequence <220> <223> dxsV_his_R <400> 44 tgactagtct atgaaaaaaa aaccccgccg aagcggggtt tttttttctc tagttacttc 60 gccagataat cgtt 74 <210> 45 <211> 91 <212> DNA <213> Artificial Sequence <220> <223> ispAV_his_F <400> 45 ttgacaatta atcatcggct cgtataatgt gtggaattgt gagcggataa caattgagaa 60 cccacagatg caacagacat tgacttcttt c 91 <210> 46 <211> 74 <212> DNA <213> Artificial Sequence <220> <223> ispAV_his_R <400> 46 tgactagtct atgaaaaaaa aaccccgccg aagcggggtt tttttttgag ctcttaatgg 60 tggtggtgat gatg 74 <210> 47 <211> 46 <212> DNA <213> Artificial Sequence <220> <223> pCDF_HF <400> 47 gggttttttt ttcatagact agtcaaacct caggcatttg agaagc 46 <210> 48 <211> 51 <212> DNA <213> Artificial Sequence <220> <223> pCDF_HR <400> 48 cattatacga gccgatgatt aattgtcaac ataagggaga gcgtcgagat c 51 <110> POSTECH Research and Business Development Foundation <120> Lycopene production by expression of highly efficient MEP pathway enzymes from Vibrio sp. dhg <130> 1-84P <160> 48 <170> KoPatentIn 3.0 <210> 1 <211> 1866 <212> DNA <213> Vibrio sp. <400> 1 atgactcttg atatttcaaa gtacccaaca ctggcgttag caaatacacc ggaagagttg 60 cgtcttcttc ctaaagaaac attacctgct ctgtgtgatg agcttcgaac gtatctgcta 120 aattcagtga gccaatcaag cggacactta gcgtctggct taggcacagt agagctcaca 180 gttgccctgc attatgtata taacacacca gtagaccagt taatctggga tgttggtcat 240 caggcttacc cacataaaat cctgaccgga cgtcgtgaca aaatgccgac catccgtcag 300 aaaggtgggc ttcacccatt cccttggcgc tcagagagcg aatacgacac gctgtcggtt 360 ggtcactctt ccacttcaat cagtgctgga cttggcatgg ccatcagtgc acagaaagaa 420 ggtaaagggc gtaaggtcgt gagtgttatt ggtgacggcg ccattaccgc gggtatggca 480 ttcgaagcaa tgaaccacgc tggcgatgtt catccagata tgctggtgat tctgaacgat 540 aacgaaatgt cgatttcaga aaacgttggt gcgctaaaca accacttagc gaaattactg 600 tctggtagcc tgtatacgtc gattcgcgaa ggcggtaaaa aagtgctttc tggcgttccg 660 ccgatcaaag agctggttcg tcgtacagaa gaacacctca aaggcatggt cgtccctggc 720 acactattcg aagagttcgg atttaactac atcggcccaa ttgatgggca tgatgtcaat 780 gaactggttc agactctgaa gaacatgcgt gagttgaaag gccctcaatt cctgcacatc 840 atgaccaaaa aaggcaaagg ttatgagcca gcagagaaag accctatcgg ttaccatgct 900 gtaccaaagt tcgcaccatc aaataacagc ttgccaaaga gcagcggtgg taaaccaacg 960 ttctcaaaga tctttggtga cttcctatgc gatatggccg cgcaagatcc taagctgatg 1020 gcgattacgc cagcaatgcg tgaaggttct ggcatggtgc gtttctcgaa agagttccca 1080 gaacaatatt tcgatgttgc tatcgctgag cagcatgcag tgacgctcgc taccggtatg 1140 gcgattgctg gcaataaccc aatcgttgcc atttactcga ccttcttaca acgcggttat 1200 gatcagctca tccacgacat cgcaattatg gatttgccag tcatgttcgc tatcgaccga 1260 gcaggtttgg ttggtgctga tggtcagact caccaaggtg cgtttgactt gagctttatg 1320 cgctgcattc caaacatggt gatcatggca ccaagcgacg agaatgaatg tcgtcaaatg 1380 ctatacactg gtcacaagca cacgggtccg agcgcagttc gttaccctcg tggaaacggt 1440 atgggaaccg acatcgaaag tgaatttacc gcacttgaga tcggtaaagg ccgaattgta 1500 cgtcaaggcg aaaaagtcgc gatcctgagc tttggtacct tcctggggaa tgcgttagaa 1560 gccgctgaaa accttaatgc aacggttgct gacatgcgct ttgttaagcc actagatgaa 1620 acgttgattc gtcagctagc gagcgaacac gatgtactcg tgacactgga agagaatgcg 1680 attgctggcg gtgccggtgc aggtgttctt gaattcatga tgaaagaaaa aatcatcaag 1740 ccagtactca accttggctt acctgataag tttgttcatc aaggcactca ggatgagctg 1800 catgaagagc ttggtctgga tgcgaaagga attgaacaat ccatcaacga ttatctggcg 1860 1866 <210> 2 <211> 885 <212> DNA <213> Vibrio sp. <400> 2 atgcaacaga cattgacttc tttccaacaa agaaacaatc aacaattaaa cttgtggcta 60 gaacagcttc cttatcaaga acttccattg attgatgcaa tgaaatatgg ccttttgcta 120 ggcgggaaac gcgttcgccc ttttcttgtt tacatcacag gccaaatgtt cggttgtaaa 180 cctgaagatc tggacacacc agccgcagcg attgaatgca ttcacgctta ctcacttatt 240 catgatgacc tgccagcgat ggatgacgat gagttacgcc gtggtcaacc gacttgccat 300 attaagttcg atgaagcgac cgcaatactg actggtgacg ctctacaaac gctcgccttt 360 actattttgg cagatggttc tttaaatcca gaagctgaaa gccagcgtat caatatgata 420 aaagctctgg ctcattcgtc tggctctaac ggcatgtgtg tcggacaagc actggattta 480 agtgcagaga atcgtcaaat ttctctcgaa gaaatggaag aaatccatcg taaaaagacc 540 ggagccctaa ttgactgtgc ggttaaatta ggcgctttgg ccgctggtga taagggtatc 600 gcagttttac ctcatttaga gcgctattcg aaagcaattg gtttggcgtt tcaggttcaa 660 gacgatattc ttgatatcat tagtgacaca gaaacattgg gtaagcctca gggttctgat 720 caagaactca ataagagcac ttacccttcc ctgctgggtt tagagggagc gatagagaaa 780 gctcactctc tgttacagga agcacttcaa gcattggaag ctatcccata caatactcag 840 ttacttgaag agttcgcccg atatgtcatc gagcgcaaaa attaa 885 <210> 3 <211> 1863 <212> DNA <213> Escherichia coli <400> 3 atgagttttg atattgccaa atacccgacc ctggcactgg tcgactccac ccaggagtta 60 cgactgttgc cgaaagagag tttaccgaaa ctctgcgacg aactgcgccg ctatttactc 120 gacagcgtga gccgttccag cgggcacttc gcctccgggc tgggcacggt cgaactgacc 180 gtggcgctgc actatgtcta caacaccccg tttgaccaat tgatttggga tgtggggcat 240 caggcttatc cgcataaaat tttgaccgga cgccgcgaca aaatcggcac catccgtcag 300 aaaggcggtc tgcacccgtt cccgtggcgc ggcgaaagcg aatatgacgt attaagcgtc 360 gggcattcat caacctccat cagtgccgga attggtattg cggttgctgc cgaaaaagaa 420 ggcaaaaatc gccgcaccgt ctgtgtcatt ggcgatggcg cgattaccgc aggcatggcg 480 tttgaagcga tgaatcacgc gggcgatatc cgtcctgata tgctggtgat tctcaacgac 540 aatgaaatgt cgatttccga aaatgtcggc gcgctcaaca accatctggc acagctgctt 600 tccggtaagc tttactcttc actgcgcgaa ggcgggaaaa aagttttctc tggcgtgccg 660 ccaattaaag agctgctcaa acgcaccgaa gaacatatta aaggcatggt agtgcctggc 720 acgttgtttg aagagctggg ctttaactac atcggcccgg tggacggtca cgatgtgctg 780 gggcttatca ccacgctaaa gaacatgcgc gacctgaaag gcccgcagtt cctgcatatc 840 atgaccaaaa aaggtcgtgg ttatgaaccg gcagaaaaag acccgatcac tttccacgcc 900 gtgcctaaat ttgatccctc cagcggttgt ttgccgaaaa gtagcggcgg tttgccgagc 960 tattcaaaaa tctttggcga ctggttgtgc gaaacggcag cgaaagacaa caagctgatg 1020 gcgattactc cggcgatgcg tgaaggttcc ggcatggtcg agttttcacg taaattcccg 1080 gatcgctact tcgacgtggc aattgccgag caacacgcgg tgacctttgc tgcgggtctg 1140 gcgattggtg ggtacaaacc cattgtcgcg atttactcca ctttcctgca acgcgcctat 1200 gatcaggtgc tgcatgacgt ggcgattcaa aagcttccgg tcctgttcgc catcgaccgc 1260 gcgggcattg ttggtgctga cggtcaaacc catcagggtg cttttgatct ctcttacctg 1320 cgctgcatac cggaaatggt cattatgacc ccgagcgatg aaaacgaatg tcgccagatg 1380 ctctataccg gctatcacta taacgatggc ccgtcagcgg tgcgctaccc gcgtggcaac 1440 gcggtcggcg tggaactgac gccgctggaa aaactaccaa ttggcaaagg cattgtgaag 1500 cgtcgtggcg agaaactggc gatccttaac tttggtacgc tgatgccaga agcggcgaaa 1560 gtcgccgaat cgctgaacgc cacgctggtc gatatgcgtt ttgtgaaacc gcttgatgaa 1620 gcgttaattc tggaaatggc cgccagccat gaagcgctgg tcaccgtaga agaaaacgcc 1680 attatgggcg gcgcaggcag cggcgtgaac gaagtgctga tggcccatcg taaaccagta 1740 cccgtgctga acattggcct gccggacttc tttattccgc aaggaactca ggaagaaatg 1800 cgcgccgaac tcggcctcga tgccgctggt atggaagcca aaatcaaggc ctggctggca 1860 taa 1863 <210> 4 <211> 900 <212> DNA <213> Escherichia coli <400> 4 atggactttc cgcagcaact cgaagcctgc gttaagcagg ccaaccaggc gctgagccgt 60 tttatcgccc cactgccctt tcagaacact cccgtggtcg aaaccatgca gtatggcgca 120 ttattaggtg gtaagcgcct gcgacctttc ctggtttatg ccaccggtca tatgttcggc 180 gttagcacaa acacgctgga cgcacccgct gccgccgttg agtgtatcca cgcttactca 240 ttaattcatg atgatttacc ggcaatggat gatgacgatc tgcgtcgcgg tttgccaacc 300 tgccatgtga agtttggcga agcaaacgcg attctcgctg gcgacgcttt acaaacgctg 360 gcgttctcga ttttaagcga tgccgatatg ccggaagtgt cggaccgcga cagaatttcg 420 atgatttctg aactggcgag cgccagtggt attgccggaa tgtgcggtgg tcaggcatta 480 gatttagacg cggaaggcaa acacgtacct ctggacgcgc ttgagcgtat tcatcgtcat 540 aaaaccggcg cattgattcg cgccgccgtt cgccttggtg cattaagcgc cggagataaa 600 ggacgtcgtg ctctgccggt actcgacaag tatgcagaga gcatcggcct tgccttccag 660 gttcaggatg acatcctgga tgtggtggga gatactgcaa cgttgggaaa acgccagggt 720 gccgaccagc aacttggtaa aagtacctac cctgcacttc tgggtcttga gcaagcccgg 780 aagaaagccc gggatctgat cgacgatgcc cgtcagtcgc tgaaacaact ggctgaacag 840 tcactcgata cctcggcact ggaagcgcta gcggactaca tcatccagcg taataaataa 900 900 <210> 5 <211> 1296 <212> DNA <213> Saccharomyces cerevisiae <400> 5 atgcgccagc gtgttggtcg tagcattgcg cgcgcgaaat ttattaacac cgccttgctg 60 ggccgcaaac gtccggtgat ggaacgcgtg gtggatatcg cccatgttga ttccagcaaa 120 gcgattcagc cgctgatgaa agaactggaa accgatacca ccgaggcgcg ttataaagtg 180 ttgcagagcg tactggaaat ttatgacgat gaaaaaaata ttgagccggc gctgacgaaa 240 gaatttcata aaatgtatct ggacgtggcg tttgaaatca gcttgccgcc gcagatgacc 300 gcactggatg ccagccagcc gtggatgctg tactggattg ccaacagcct gaaggtaatg 360 gaccgcgact ggttaagtga tgataccaaa cgcaagattg ttgacaaact gtttaccatt 420 tctccgagcg gcggtccgtt cggtggcggg ccggggcaac tgagccatct ggcatccacc 480 tatgcggcga tcaacgccct gtcactgtgc gataacatcg atggctgctg ggatcgcatt 540 gatcgtaaag gcatctatca gtggctgatc agtctgaaag agccaaacgg cggcttcaaa 600 acctgcctgg aagttggcga agtggacacc cgcggcattt actgcgcgct ttccatcgcg 660 acgctgctca atatcctcac tgaagagctg accgaaggcg tgctgaatta cctgaaaaac 720 tgccagaact acgaaggtgg ttttggttcc tgcccgcacg tcgacgaagc gcacggcggt 780 tataccttct gcgccaccgc gtcgctggct attctgcgca gcatggatca gattaatgtt 840 gaaaagctgc tggagtggtc gagcgcccgt cagctgcaag aagaacgtgg tttctgtggt 900 cgcagtaaca aactggtgga tggttgctac agcttctggg tgggcggcag tgccgccatt 960 ctcgaagcct ttggctacgg tcagtgcttt aataaacatg cgctgcgtga ttatatcctg 1020 tattgctgtc aggaaaaaga gcaaccgggc tacgcgata aaccgggtgc ccacagcgat 1080 ttttatcaca ccaactattg tctgctgggt ctggcggtgg cagaaagcag ctatagctgc 1140 accccgaacg acagcccgca taacattaaa tgcacgccgg accgtctgat tggcagcagt 1200 aaattaaccg acgttaaccc ggtttatggc ctgccgattg aaaacgtgcg taaaattatt 1260 cattatttta aaagcaacct gtcgtcgccg agttaa 1296 <210> 6 <211> 924 <212> DNA <213> Unknown <220> <223> L. purpurea <400> 6 atggtatctg gctcaaaggc tggcgtctcg ccacatcgcg aaattgaagt gatgcgccag 60 agcattgatg atcatctggc gggcctgctg ccggaaaccg atagccagga tattgtgagc 120 ctggcgatgc gcgaaggcgt gatggcgccg ggcaaacgca ttcgcccgct gctgatgctg 180 ctggcggcgc gcgatctgcg ctatcagggc agtatgccga ccctgctgga tctggcgtgc 240 gcggtggaac tgacccatac cgcgagcctg atgctggatg atatgccgtg catggataac 300 gcggaactgc gccgcggcca gccgaccacc cataaaaaat ttggcgaaag cgtggcgatt 360 ctggcgagcg tgggcctgct gagcaaagcg tttggcctga ttgcggcgac cggcgatctg 420 ccgggcgaac gccgcgcgca ggcggtgaac gaactgagca ccgcggtggg cgtgcagggc 480 ctggtgctgg gccagtttcg cgatctgaac gatgcggcgc tggatcgcac cccggatgcg 540 attctgagca ccaaccatct gaaaaccggc attctgttta gcgcgatgct gcagattgtg 600 gcgattgcga gcgcgagcag cccgagcacc cgcgaaaccc tgcacgcgtt tgcgctggat 660 tttggccagg cgtttcagct gctggatgat ctgcgcgatg atcatccgga aaccggcaaa 720 gatcgcaaca aagatgcggg caaaagcacc ctggtgaacc gcctgggcgc ggatgcggcg 780 cgccagaaac tgcgcgaaca tattgatagc gcggataaac atctgacctt tgcgtgcccg 840 cagggcggcg cgattcgcca gtttatgcat ctgtggtttg gccatcatct ggcggattgg 900 agcccggtga tgaaaattgc gtaa 924 <210> 7 <211> 930 <212> DNA <213> Unknown <220> <223> L. purpurea <400> 7 atgtcccaac cccccttgct agaccacgca acccagacga tggcgaacgg cagcaagagc 60 tttgcgaccg cggcgaaact gtttgatccg gcgacccgcc gcagcgtgct gatgctgtat 120 acctggtgcc gccattgcga tgatgtgatt gatgatcaga cgcatggctt tgcgagcgaa 180 gcggcggcgg aagaagaagc gacccagcgc ctggcgcgcc tgcgcaccct gaccctggcg 240 gcgtttgaag gcgcggaaat gcaggacccg gcgtttgcgg cgtttcagga agtggcgctg 300 acccacggca ttaccccgcg catggcgctg gatcatctgg atggctttgc gatggatgtg 360 gcgcagaccc gctatgtgac ctttgaagat accctgcgct attgctatca tgtggcgggc 420 gtggtgggcc tgatgatggc gcgcgtgatg ggcgtgcgcg atgaacgcgt gctggatcgc 480 gcgtgcgatc tgggcctggc gtttcagctg accaacattg cgcgcgatat tattgatgat 540 gcggcgattg atcgctgcta tctgccggcg gaatggctgc aggatgcggg cctgaccccg 600 gaaaactatg cggcgcgcga aaaccgcgcg gcgctggcgc gcgtggcgga acgcctgatt 660 gatgcggcgg aaccgtatta tattagcagc caggcgggcc tgcatgatct gccgccgcgc 720 tgcgcgtggg cgattgcgac cgcgcgcagc gtgtatcgcg aaattggcat taaagtgaaa 780 gcggcgggcg gcagcgcgtg ggatcgccgc cagcatacca gcaaaggcga aaaaattgcg 840 atgctgatgg cggcgccggg ccaggtgatt cgcgcgaaaa ccacccgcgt gaccccgcgc 900 ccggcgggcc tgtggcagcg cccggtgtaa 930 <210> 8 <211> 1479 <212> DNA <213> Unknown <220> <223> L. purpurea <400> 8 atgaaaaaaa cggttgtgat cggcgctggg ttcggcggcc tggcgctggc gattcgcctg 60 caggcggcgg gcattccgac cgtgctgctg gaacagcgcg ataaaccggg cggccgcgcg 120 tatgtgtggc atgatcaggg ctttaccttt gatgcgggcc cgaccgtgat taccgatccg 180 accgcgctgg aagcgctgtt taccctggcg ggccgccgca tggaagatta tgtgcgcctg 240 ctgccggtga aaccgtttta tcgcctgtgc tgggaaagcg gcaaaaccct ggattatgcg 300 aacgatagcg cggaactgga agcgcagatt acccagttta acccgcgcga tgtggaaggc 360 tatcgccgct ttctggcgta tagccaggcg gtgtttcagg aaggctatct gcgcctgggc 420 agcgtgccgt ttctgagctt tcgcgatatg ctgcgcgcgg gcccgcagct gctgaaactg 480 caggcgtggc agagcgtgta tcagagcgtg agccgcttta ttgaagatga acatctgcgc 540 caggcgttta gctttcatag cctgctggtg ggcggcaacc cgtttaccac cagcagcatt 600 tataccctga ttcatgcgct ggaacgcgaa tggggcgtgt ggtttccgga aggcggcacc 660 ggcgcgctgg tgaacggcat ggtgaaactg tttaccgatc tgggcggcga aattgaactg 720 aacgcgcgcg tggaagaact ggtggtggcg gataaccgcg tgagccaggt gcgcctggcg 780 gatggccgca tttttgatac cgatgcggtg gcgagcaacg cggatgtggt gaacacctat 840 aaaaaactgc tgggccatca tccggtgggc cagaaacgcg cggcggcgct ggaacgcaaa 900 agcatgagca acagcctgtt tgtgctgtat tttggcctga accagccgca tagccagctg 960 gcgcatcata ccatttgctt tggcccgcgc tatcgcgaac tgattgatga aatttttacc 1020 ggcagcgcgc tggcggatga ttttagcctg tatctgcata gcccgtgcgt gaccgatccg 1080 agcctggcgc cgccgggctg cgcgagcttt tatgtgctgg cgccggtgcc gcatctgggc 1140 aacgcgccgc tggattgggc gcaggaaggc ccgaaactgc gcgatcgcat ttttgattat 1200 ctggaagaac gctatatgcc gggcctgcgc agccagctgg tgacccagcg catttttacc 1260 ccggcggatt ttcatgatac cctggatgcg catctgggca gcgcgtttag cattgaaccg 1320 ctgctgaccc agagcgcgtg gtttcgcccg cataaccgcg atagcgatat tgcgaacctg 1380 tatctggtgg gcgcgggcac ccatccgggc gcgggcattc cgggcgtggt ggcgagcgcg 1440 aaagcgaccg cgagcctgat gatcgaagac ctgcagtaa 1479 <210> 9 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> crtE 5 UTR sequence <400> 9 gcggataaca attaaggagg taaac 25 <210> 10 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> crtB 5 UTR sequence <400> 10 gcggataaca attaaggagg tgatc 25 <210> 11 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> crtI 5 UTR sequence <400> 11 gcggataaca attaaggagg ccctc 25 <210> 12 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> dxsEC 5 UTR sequence <400> 12 gcggataaca attaaggagg ttgat 25 <210> 13 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> dxsVDHG 5 UTR sequence <400> 13 gcggataaca attaaggagg gagaa 25 <210> 14 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> ispAEC 5 UTR sequence <400> 14 gcggataaca attaaggagg aaaat 25 <210> 15 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> ispAVDHG 5 UTR sequence <400> 15 gcggataaca attaaggaga aatat 25 <210> 16 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> RAM1 5 UTR sequence <400> 16 gataacaatt taaggaggaa atact 25 <210> 17 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> pACYC_F <400> 17 ccatgaattg gatatcggcc ccaccgctga gcaataacta 40 <210> 18 <211> 51 <212> DNA <213> Artificial Sequence <220> <223> pACYC_R <400> 18 cattatacga gccgatgatt aattgtcaag gccgcaagct tgtcgacctg c 51 <210> 19 <211> 111 <212> DNA <213> Artificial Sequence <220> <223> Tac_crtE_F <400> 19 gcaggtcgac aagcttgcgg ccttgacaat taatcatcgg ctcgtataat gtgtggaatt 60 gtgagcggat aacaattaag gaggtaaaca tggtatctgg ctcaaaggct g 111 <210> 20 <211> 41 <212> DNA <213> Artificial Sequence <220> <223> crtE_R <400> 20 cggatggagg agccacaccc ttacgcaatt ttcatcaccg g 41 <210> 21 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> crtB_F <400> 21 gggtgtggct cctccatccg atgtcccaac cccccttg 38 <210> 22 <211> 105 <212> DNA <213> Artificial Sequence <220> <223> Tac_crtB_F <400> 22 gggtgtggct cctccatccg ttgacaatta atcatcggct cgtataatgt gtggaattgt 60 gagcggataa caattaagga ggtgatcatg tcccaacccc ccttg 105 <210> 23 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> crtB_R <400> 23 gggctacgac gacggcaccg ttacaccggg cgctgccaca 40 <210> 24 <211> 42 <212> DNA <213> Artificial Sequence <220> <223> crtI_F <400> 24 cggtgccgtc gtcgtagccc atgaaaaaaa cggttgtgat cg 42 <210> 25 <211> 109 <212> DNA <213> Artificial Sequence <220> <223> Tac_crtI_F <400> 25 cggtgccgtc gtcgtagccc ttgacaatta atcatcggct cgtataatgt gtggaattgt 60 gagcggataa caattaagga ggccctcatg aaaaaaacgg ttgtgatcg 109 <210> 26 <211> 105 <212> DNA <213> Artificial Sequence <220> <223> crtI_R <400> 26 ggccgatatc caattcatgg gcggcgaaac cccgccgaag cggggtttgc ggcgttactg 60 caggtcttcg atcatcttga caattaatca tcggctcgta taatg 105 <210> 27 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> crtEBI_F <400> 27 gcaggtcgac aagcttgcgg cc 22 <210> 28 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> crtEBI_R <400> 28 ggccgatatc caattcatgg gc 22 <210> 29 <211> 113 <212> DNA <213> Artificial Sequence <220> <223> dxsE_F <400> 29 ctgcgaaatc gcgtggctac ttgacaatta atcatcggct cgtataatgt gtggaattgt 60 gagcggataa caattaagga ggttgatatg agttttgata ttgccaaata ccc 113 <210> 30 <211> 43 <212> DNA <213> Artificial Sequence <220> <223> dxsE_R <400> 30 ggccgcaagc ttgtcgacct gcttatgcca gccaggcctt gat 43 <210> 31 <211> 118 <212> DNA <213> Artificial Sequence <220> <223> dxsV_F <400> 31 ctgcgaaatc gcgtggctac ttgacaatta atcatcggct cgtataatgt gtggaattgt 60 gagcggataa caattaagga gggagaaatg actcttgata tttcaaagta cccaacac 118 <210> 32 <211> 43 <212> DNA <213> Artificial Sequence <220> <223> dxsV_R <400> 32 ggccgcaagc ttgtcgacct gcttacttcg ccagataatc gtt 43 <210> 33 <211> 111 <212> DNA <213> Artificial Sequence <220> <223> ispAE_F <400> 33 gcccatgaat tggatatcgg ccttgacaat taatcatcgg ctcgtataat gtgtggaatt 60 gtgagcggat aacaattaag gaggaaaata tggactttcc gcagcaactc g 111 <210> 34 <211> 55 <212> DNA <213> Artificial Sequence <220> <223> ispAE_R <400> 34 gtagccacgc gatttcgcag actagtttat ttattacgct ggatgatgta gtccg 55 <210> 35 <211> 114 <212> DNA <213> Artificial Sequence <220> <223> ispAV_F <400> 35 gcccatgaat tggatatcgg ccttgacaat taatcatcgg ctcgtataat gtgtggaatt 60 gtgagcggat aacaattaag gagaaatata tgcaacagac attgacttct ttcc 114 <210> 36 <211> 46 <212> DNA <213> Artificial Sequence <220> <223> ispAV_R <400> 36 gtagccacgc gatttcgcag ttaatttttg cgctcgatga catatc 46 <210> 37 <211> 94 <212> DNA <213> Artificial Sequence <220> <223> PFT_his_F <400> 37 ttgacaatta atcatcggct cgtataatgt gtggaattgt gagcggataa caatttaagg 60 aggaaatact atgcgccagc gtgttggtcg tagc 94 <210> 38 <211> 71 <212> DNA <213> Artificial Sequence <220> <223> PFT_his_R <400> 38 tgactagtct atgaaaaaaa aaccccgccg aagcggggtt tttttttgag ctcttaatgg 60 tggtggtgat g 71 <210> 39 <211> 114 <212> DNA <213> Artificial Sequence <220> <223> dxsE_his_F <400> 39 ttgacaatta atcatcggct cgtataatgt gtggaattgt gagcggataa caatttggac 60 gttcgtaatg catcatcacc atcaccacag ttttgatatt gccaaatacc cgac 114 <210> 40 <211> 74 <212> DNA <213> Artificial Sequence <220> <223> dxsE_his_R <400> 40 tgactagtct atgaaaaaaa aaccccgccg aagcggggtt tttttttgag ctcttatgcc 60 agccaggcct tgat 74 <210> 41 <211> 90 <212> DNA <213> Artificial Sequence <220> <223> ispAE_his_F <400> 41 ttgacaatta atcatcggct cgtataatgt gtggaattgt gagcggataa caattcgagg 60 tatgaaacaa aatggacttt ccgcagcaac 90 <210> 42 <211> 71 <212> DNA <213> Artificial Sequence <220> <223> ispAE_his_R <400> 42 tgactagtct atgaaaaaaa aaccccgccg aagcggggtt tttttttgag ctcttaatgg 60 tggtggtgat g 71 <210> 43 <211> 112 <212> DNA <213> Artificial Sequence <220> <223> dxsV_his_F <400> 43 ttgacaatta atcatcggct cgtataatgt gtggaattgt gagcggataa caattggtgg 60 cccaaacatg catcatcacc atcaccacac tcttgatatt tcaaagtacc ca 112 <210> 44 <211> 74 <212> DNA <213> Artificial Sequence <220> <223> dxsV_his_R <400> 44 tgactagtct atgaaaaaaa aaccccgccg aagcggggtt tttttttctc tagttacttc 60 gccagataat cgtt 74 <210> 45 <211> 91 <212> DNA <213> Artificial Sequence <220> <223> ispAV_his_F <400> 45 ttgacaatta atcatcggct cgtataatgt gtggaattgt gagcggataa caattgagaa 60 cccacagatg caacagacat tgacttcttt c 91 <210> 46 <211> 74 <212> DNA <213> Artificial Sequence <220> <223> ispAV_his_R <400> 46 tgactagtct atgaaaaaaa aaccccgccg aagcggggtt tttttttgag ctcttaatgg 60 tggtggtgat gatg 74 <210> 47 <211> 46 <212> DNA <213> Artificial Sequence <220> <223> pCDF_HF <400> 47 gggttttttt ttcatagact agtcaaacct caggcatttg agaagc 46 <210> 48 <211> 51 <212> DNA <213> Artificial Sequence <220> <223> pCDF_HR <400> 48 cattatacga gccgatgatt aattgtcaac ataagggaga gcgtcgagat c 51
Claims (15)
서열번호 6의 염기서열로 표시되는 crtE(geranylgeranyl diphosphate synthase) 유전자;
서열번호 7의 염기서열로 표시되는 crtB(phytoene synthase) 유전자; 및
서열번호 8의 염기서열로 표시되는 crtI(phytoene desaturase) 유전자;가 도입되고,
상기 crtE, crtB 및 crtI 유전자는 모노 시스트론으로 배열된 것인,
라이코펜 생산능이 향상된 재조합 대장균.5'UTR (5' Untranslated region) represented by the nucleotide sequence of SEQ ID NO: 9;
crtE (geranylgeranyl diphosphate synthase) gene represented by the nucleotide sequence of SEQ ID NO: 6;
crtB (phytoene synthase) gene represented by the nucleotide sequence of SEQ ID NO: 7; and
crtI (phytoene desaturase) gene represented by the nucleotide sequence of SEQ ID NO: 8; is introduced,
The crtE, crtB and crtI genes are arranged in monocistronic,
Recombinant E. coli with improved lycopene-producing ability.
상기 재조합 대장균은 서열번호 10 또는 11의 염기서열로 표시되는 5′UTR을 더 포함하는, 재조합 대장균.According to claim 1,
The recombinant E. coli further comprises 5'UTR represented by the nucleotide sequence of SEQ ID NO: 10 or 11, recombinant E. coli.
상기 재조합 대장균은 서열번호 1의 염기서열로 표시되는 dxs 유전자를 더 포함하는 것인, 재조합 대장균.3. The method of claim 2,
The recombinant E. coli will further include a dxs gene represented by the nucleotide sequence of SEQ ID NO: 1, recombinant E. coli.
상기 재조합 대장균은 서열번호 12의 염기서열로 표시되는 5′UTR을 더 포함하는, 재조합 대장균.4. The method of claim 3,
The recombinant E. coli further comprises 5'UTR represented by the nucleotide sequence of SEQ ID NO: 12, recombinant E. coli.
상기 재조합 대장균은 서열번호 3의 염기서열로 표시되는 dxs 유전자를 더 포함하는 것인, 재조합 대장균.3. The method of claim 2,
The recombinant E. coli will further include a dxs gene represented by the nucleotide sequence of SEQ ID NO: 3, recombinant E. coli.
상기 재조합 대장균은 서열번호 13의 염기서열로 표시되는 5′UTR을 더 포함하는, 재조합 대장균.6. The method of claim 5,
The recombinant E. coli further comprises 5'UTR represented by the nucleotide sequence of SEQ ID NO: 13, recombinant E. coli.
상기 재조합 대장균은 서열번호 2의 염기서열로 표시되는 ispA 유전자를 더 포함하는 것인, 재조합 대장균.3. The method of claim 2,
The recombinant E. coli will further include the ispA gene represented by the nucleotide sequence of SEQ ID NO: 2, recombinant E. coli.
상기 재조합 대장균은 서열번호 14의 염기서열로 표시되는 5′UTR을 더 포함하는, 재조합 대장균.8. The method of claim 7,
The recombinant E. coli further comprises 5'UTR represented by the nucleotide sequence of SEQ ID NO: 14, recombinant E. coli.
상기 재조합 대장균은 서열번호 4의 염기서열로 표시되는 ispA 유전자를 더 포함하는 것인, 재조합 대장균.3. The method of claim 2,
The recombinant E. coli will further include the ispA gene represented by the nucleotide sequence of SEQ ID NO: 4, recombinant E. coli.
상기 재조합 대장균은 서열번호 15의 염기서열로 표시되는 5′UTR을 더 포함하는, 재조합 대장균.10. The method of claim 9,
The recombinant E. coli further comprises 5'UTR represented by the nucleotide sequence of SEQ ID NO: 15, recombinant E. coli.
상기 재조합 대장균은 서열번호 3의 염기서열로 표시되는 dxs 유전자; 및
서열번호 4의 염기서열로 표시되는 ispA 유전자;를 더 포함하는, 재조합 대장균.3. The method of claim 2,
The recombinant E. coli is a dxs gene represented by the nucleotide sequence of SEQ ID NO: 3; and
The ispA gene represented by the nucleotide sequence of SEQ ID NO: 4; further comprising, recombinant E. coli.
상기 재조합 대장균은 서열번호 12 또는 14의 염기서열로 표시되는 5′UTR을 더 포함하는, 재조합 대장균.12. The method of claim 11,
The recombinant E. coli further comprises 5'UTR represented by the nucleotide sequence of SEQ ID NO: 12 or 14, recombinant E. coli.
상기 재조합 대장균은 서열번호 1의 염기서열로 표시되는 dxs 유전자; 및 서열번호 2의 염기서열로 표시되는 ispA 유전자;를 더 포함하는, 재조합 대장균.3. The method of claim 2,
The recombinant E. coli is a dxs gene represented by the nucleotide sequence of SEQ ID NO: 1; And the ispA gene represented by the nucleotide sequence of SEQ ID NO: 2; Recombinant Escherichia coli further comprising.
상기 재조합 대장균은 서열번호 13 또는 15의 염기서열로 표시되는 5′UTR을 더 포함하는, 재조합 대장균.14. The method of claim 13,
The recombinant E. coli further comprises 5'UTR represented by the nucleotide sequence of SEQ ID NO: 13 or 15, recombinant E. coli.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020200024806A KR102304068B1 (en) | 2020-02-28 | 2020-02-28 | Lycopene production by expression of highly efficient MEP pathway enzymes from Vibrio sp. dhg |
PCT/KR2020/015884 WO2021172701A1 (en) | 2020-02-28 | 2020-11-12 | Lycopene production utilizing highly active mep cycle enzymes derived from dhg strains of genus vibrio |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020200024806A KR102304068B1 (en) | 2020-02-28 | 2020-02-28 | Lycopene production by expression of highly efficient MEP pathway enzymes from Vibrio sp. dhg |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20210109784A KR20210109784A (en) | 2021-09-07 |
KR102304068B1 true KR102304068B1 (en) | 2021-09-17 |
Family
ID=77491890
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020200024806A KR102304068B1 (en) | 2020-02-28 | 2020-02-28 | Lycopene production by expression of highly efficient MEP pathway enzymes from Vibrio sp. dhg |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR102304068B1 (en) |
WO (1) | WO2021172701A1 (en) |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101965330B1 (en) * | 2016-10-06 | 2019-04-03 | 포항공과대학교 산학협력단 | Lycopene-producing recombinant microorganism and method of producing lycopene using the same |
US11535854B2 (en) * | 2017-05-11 | 2022-12-27 | Postech Academy-Industry Foundation | Microorganism strain for high-performance metabolism of biomass-derived carbon source |
-
2020
- 2020-02-28 KR KR1020200024806A patent/KR102304068B1/en active IP Right Grant
- 2020-11-12 WO PCT/KR2020/015884 patent/WO2021172701A1/en active Application Filing
Non-Patent Citations (1)
Title |
---|
Metab Eng. 15:67-74 (2013.01.)* |
Also Published As
Publication number | Publication date |
---|---|
WO2021172701A1 (en) | 2021-09-02 |
KR20210109784A (en) | 2021-09-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1778843B1 (en) | Production of isoprenoids | |
EP1499709B1 (en) | Promoter and plasmid system for genetic engineering | |
WO2020129997A1 (en) | Genetically modified microorganism and method both for producing nicotinamide derivative, and vector for use in same | |
Jers et al. | Production of 3-hydroxypropanoic acid from glycerol by metabolically engineered bacteria | |
KR101392159B1 (en) | Method of producing retinoids from a microorganism | |
US20120122169A1 (en) | Mutant yqhd enzyme for the production of a biochemical by fermentation | |
EP2459710B1 (en) | Mutant methylglyoxal synthase (mgs) for the production of a biochemical by fermentation | |
US6316232B1 (en) | Microbial preparation of substances from aromatic metabolism/I | |
Shi et al. | Temperature influences β-carotene production in recombinant Saccharomyces cerevisiae expressing carotenogenic genes from Phaffia rhodozyma | |
US20090226986A1 (en) | Production of Coenzyme Q-10 | |
US7122341B1 (en) | Engineering of metabolic control | |
KR101483012B1 (en) | Method for production of 3-hydroxypropionic acid using recombinant E. coli with high yield | |
Li et al. | Heterologous production of α-Carotene in Corynebacterium glutamicum using a multi-copy chromosomal integration method | |
KR101965330B1 (en) | Lycopene-producing recombinant microorganism and method of producing lycopene using the same | |
US20190367930A1 (en) | Methods for decoupling cell growth from production of biochemicals and recombinant polypeptides | |
US20220049235A1 (en) | Engineering Bacteria for Ferulic Acid Production, Preparation Method and Use Thereof | |
KR102304068B1 (en) | Lycopene production by expression of highly efficient MEP pathway enzymes from Vibrio sp. dhg | |
Wang et al. | Rapid construction of Escherichia coli chassis with genome multi‐position integration of isopentenol utilization pathway for efficient and stable terpenoid accumulation | |
Jeon et al. | Production of tagatose by whole-cell bioconversion from fructose using Corynebacterium glutamicum | |
KR102546140B1 (en) | Kit for Selecting Host Cells Transformed with Target Gene using Clustered Regularly Interspaced Short Palindromic Repeats Interference System and Uses Thereof | |
Liu et al. | Engineering glucose-to-glycerol pathway in Klebsiella pneumoniae and boosting 3-hydroxypropionic acid production through crispr interference | |
KR101990104B1 (en) | Recombinant Microorganism for Increased 1,3-Propanediol Producing Ability and Method for Preparing 1,3-Propanediol Using the Same | |
US11746344B2 (en) | Method for producing isoprene using transformed E. coli | |
US20220228177A1 (en) | Recombinant microorganism having high ability to produce lutein and method for producing lutein using the same | |
KR101413143B1 (en) | Method for production of ribose with metabolically engineered E. coli in medium with optimum ratio of xylose and glucose |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |