KR102303126B1 - 사용자 선호에 따른 강화학습 기반 자율주행 최적화 방법 및 시스템 - Google Patents
사용자 선호에 따른 강화학습 기반 자율주행 최적화 방법 및 시스템 Download PDFInfo
- Publication number
- KR102303126B1 KR102303126B1 KR1020200009729A KR20200009729A KR102303126B1 KR 102303126 B1 KR102303126 B1 KR 102303126B1 KR 1020200009729 A KR1020200009729 A KR 1020200009729A KR 20200009729 A KR20200009729 A KR 20200009729A KR 102303126 B1 KR102303126 B1 KR 102303126B1
- Authority
- KR
- South Korea
- Prior art keywords
- autonomous driving
- learning
- robot
- computer system
- parameters
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
- B25J9/1656—Programme controls characterised by programming, planning systems for manipulators
- B25J9/1664—Programme controls characterised by programming, planning systems for manipulators characterised by motion, path, trajectory planning
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
- B25J9/1628—Programme controls characterised by the control loop
- B25J9/163—Programme controls characterised by the control loop learning, adaptive, model based, rule based expert control
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
- B25J9/1628—Programme controls characterised by the control loop
- B25J9/1653—Programme controls characterised by the control loop parameters identification, estimation, stiffness, accuracy, error analysis
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/10—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
Landscapes
- Engineering & Computer Science (AREA)
- Robotics (AREA)
- Mechanical Engineering (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Automation & Control Theory (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Feedback Control In General (AREA)
- Manipulator (AREA)
Abstract
사용자 선호에 따른 강화학습 기반 자율주행 최적화 방법 및 시스템이 개시된다. 자율주행 최적화 방법은, 시뮬레이션 상의 복수 개의 로봇 에이전트에 시스템에 의한 자동 설정 또는 관리자에 의한 직접 설정을 통해 서로 다른 자율주행 파라미터를 부여하여 로봇 자율주행을 학습하는 단계; 및 상기 자율주행 파라미터에 대한 선호 데이터(preference data)를 이용하여 상기 자율주행 파라미터를 최적화하는 단계를 포함한다.
Description
아래의 설명은 로봇의 자율주행 기술에 관한 것이다.
자율주행 로봇은 산업분야에 널리 사용되는 로봇이 응용된 기술로, 일례로 오도메트리(Odometry) 방식을 이용하여 속도 정보와 방위각 정보 등을 획득한 후 이전 위치에서 다음 위치까지의 이동 거리 및 방향에 대한 정보를 연산하여 자신의 위치와 방향을 인식할 수 있다.
예를 들어, 한국 등록특허 제10-1771643호(등록일 2017년 08월 21일)에는 절대 좌표를 인식하여 목적지까지 자동으로 이동할 수 있는 자율주행 로봇 및 이의 네비게이션 방법이 개시되어 있다.
사용자 선호도에 따른 강화학습(reinforcement learning) 기반 자율주행 최적화를 위한 기술을 제공한다.
재훈련 과정 없이 다양한 파라미터에 적응시키고 보상에 임할 수 있는 새로운 심층 강화학습 기반 자율주행 기술을 제공한다.
적은 수의 선호 데이터를 이용하여 사용 사례(use-case)에 맞는 자율주행 파라미터를 찾아낼 수 있는 기술을 제공한다.
컴퓨터 시스템에서 실행되는 자율주행 학습 방법에 있어서, 상기 컴퓨터 시스템은 메모리에 포함된 컴퓨터 판독가능한 명령들을 실행하도록 구성된 적어도 하나의 프로세서를 포함하고, 상기 자율주행 학습 방법은, 상기 적어도 하나의 프로세서에 의해, 시뮬레이션 상의 복수 개의 로봇 에이전트에 시스템에 의한 자동 설정 또는 관리자에 의한 직접 설정을 통해 서로 다른 자율주행 파라미터를 부여하여 로봇 자율주행을 학습하는 단계를 포함하는 자율주행 학습 방법을 제공한다.
일 측면에 따르면, 상기 학습하는 단계는, 상기 복수 개의 로봇 에이전트를 대상으로 랜덤 샘플링된 자율주행 파라미터를 입력으로 하는 강화학습(reinforcement learning)을 동시에 수행할 수 있다.
다른 측면에 따르면, 상기 학습하는 단계는, 완전 연결 계층(fully-connected layer)과 GRU(gated recurrent units)로 구성된 신경망을 이용하여 상기 복수 개의 로봇 에이전트의 자율주행을 동시에 학습할 수 있다.
또 다른 측면에 따르면, 상기 학습하는 단계는, 상기 로봇 자율주행의 학습을 위한 신경망의 입력으로 로봇으로부터 실시간으로 획득하는 센서 값과 자율주행 정책과 관련하여 랜덤하게 부여되는 자율주행 파라미터를 사용하는 단계를 포함할 수 있다.
또 다른 측면에 따르면, 상기 자율주행 학습 방법은, 상기 적어도 하나의 프로세서에 의해, 상기 자율주행 파라미터에 대한 선호 데이터(preference data)를 이용하여 상기 자율주행 파라미터를 최적화하는 단계를 더 포함할 수 있다.
또 다른 측면에 따르면, 상기 최적화하는 단계는, 상기 자율주행 파라미터가 서로 다르게 설정된 로봇의 주행 영상에 대한 피드백을 반영하여 상기 자율주행 파라미터를 최적화할 수 있다.
또 다른 측면에 따르면, 상기 최적화하는 단계는, 상기 자율주행 파라미터의 쌍별 비교(pairwise comparisons)를 통해 상기 자율주행 파라미터에 대한 선호도를 평가하는 단계를 포함할 수 있다.
또 다른 측면에 따르면, 상기 최적화하는 단계는, 베이지안 신경망(Bayesian neural network) 모델을 사용하여 상기 자율주행 파라미터에 대한 선호도를 모델링하는 단계를 포함할 수 있다.
또 다른 측면에 따르면, 상기 최적화하는 단계는, 선호도 모델의 불확실성(uncertainty)을 기반으로 상기 자율주행 파라미터의 쌍별 비교를 위한 쿼리(query)를 생성하는 단계를 포함할 수 있다.
상기 자율주행 학습 방법을 상기 컴퓨터 시스템에 실행시키기 위해 비-일시적인 컴퓨터 판독가능한 기록 매체에 저장되는 컴퓨터 프로그램을 제공한다.
상기 자율주행 학습 방법을 컴퓨터에 실행시키기 위한 프로그램이 기록되어 있는 비-일시적인 컴퓨터 판독 가능한 기록 매체를 제공한다.
컴퓨터 시스템에 있어서, 메모리에 포함된 컴퓨터 판독가능한 명령들을 실행하도록 구성된 적어도 하나의 프로세서를 포함하고, 상기 적어도 하나의 프로세서는, 시뮬레이션 상의 복수 개의 로봇 에이전트에 시스템에 의한 자동 설정 또는 관리자에 의한 직접 설정을 통해 서로 다른 자율주행 파라미터를 부여하여 로봇 자율주행을 학습하는 학습부; 및 상기 자율주행 파라미터에 대한 선호 데이터를 이용하여 상기 자율주행 파라미터를 최적화하는 최적화부를 포함하는 컴퓨터 시스템을 제공한다.
본 발명의 실시예들에 따르면, 여러 가지 환경에서의 강화학습을 동시에 진행하여 다양하고 예측 불가능한 실세계(real-world)에서의 학습 효과를 달성할 수 있으며 데이터 증가 없이 적응형 자율주행 알고리즘을 구현할 수 있다.
본 발명의 실시예들에 따르면, 로봇의 주행 영상에 대해 사용 사례로서 적절한지를 나타내는 선호도를 모델링한 후 모델의 불확실성을 기반으로 적은 수의 선호 데이터를 이용하여 자율주행 파라미터를 최적화할 수 있다.
도 1은 본 발명의 일실시예에 있어서 컴퓨터 시스템의 내부 구성의 일례를 설명하기 위한 블록도이다.
도 2는 본 발명의 일실시예에 따른 컴퓨터 시스템의 프로세서가 포함할 수 있는 구성요소의 예를 도시한 도면이다.
도 3은 본 발명의 일실시예에 따른 컴퓨터 시스템이 수행할 수 있는 자율주행 학습 방법의 예를 도시한 순서도이다.
도 4는 본 발명의 일실시예에 있어서 적응형 자율주행 정책 학습 알고리즘의 예를 도시한 것이다.
도 5는 본 발명의 일실시예에 있어서 적응형 자율주행 정책 학습을 위한 신경망의 예를 도시한 것이다.
도 6은 본 발명의 일실시예에 있어서 유틸리티 함수 학습을 위한 신경망의 예를 도시한 것이다.
도 7은 본 발명의 일실시예에 있어서 선호 데이터를 이용한 자율주행 파라미터 최적화 알고리즘의 예를 도시한 것이다.
도 2는 본 발명의 일실시예에 따른 컴퓨터 시스템의 프로세서가 포함할 수 있는 구성요소의 예를 도시한 도면이다.
도 3은 본 발명의 일실시예에 따른 컴퓨터 시스템이 수행할 수 있는 자율주행 학습 방법의 예를 도시한 순서도이다.
도 4는 본 발명의 일실시예에 있어서 적응형 자율주행 정책 학습 알고리즘의 예를 도시한 것이다.
도 5는 본 발명의 일실시예에 있어서 적응형 자율주행 정책 학습을 위한 신경망의 예를 도시한 것이다.
도 6은 본 발명의 일실시예에 있어서 유틸리티 함수 학습을 위한 신경망의 예를 도시한 것이다.
도 7은 본 발명의 일실시예에 있어서 선호 데이터를 이용한 자율주행 파라미터 최적화 알고리즘의 예를 도시한 것이다.
이하, 본 발명의 실시예를 첨부된 도면을 참조하여 상세하게 설명한다.
본 발명의 실시예들은 로봇의 자율주행 기술에 관한 것이다.
본 명세서에서 구체적으로 개시되는 것들을 포함하는 실시예들은 재훈련 과정 없이 다양한 파라미터에 적응시키고 보상에 임할 수 있는 새로운 심층 강화학습 기반 자율주행 기술을 제공할 수 있고, 적은 수의 선호 데이터를 이용하여 사용 사례에 맞는 자율주행 파라미터를 찾아낼 수 있다.
도 1은 본 발명의 일실시예에 따른 컴퓨터 시스템의 예를 도시한 블록도이다. 예를 들어, 본 발명의 실시예들에 따른 자율주행 학습 시스템은 도 1을 통해 도시된 컴퓨터 시스템(100)에 의해 구현될 수 있다.
도 1에 도시된 바와 같이 컴퓨터 시스템(100)은 본 발명의 실시예들에 따른 자율주행 학습 방법을 실행하기 위한 구성요소로서, 메모리(110), 프로세서(120), 통신 인터페이스(130) 그리고 입출력 인터페이스(140)를 포함할 수 있다.
메모리(110)는 컴퓨터에서 판독 가능한 기록매체로서, RAM(random access memory), ROM(read only memory) 및 디스크 드라이브와 같은 비소멸성 대용량 기록장치(permanent mass storage device)를 포함할 수 있다. 여기서 ROM과 디스크 드라이브와 같은 비소멸성 대용량 기록장치는 메모리(110)와는 구분되는 별도의 영구 저장 장치로서 컴퓨터 시스템(100)에 포함될 수도 있다. 또한, 메모리(110)에는 운영체제와 적어도 하나의 프로그램 코드가 저장될 수 있다. 이러한 소프트웨어 구성요소들은 메모리(110)와는 별도의 컴퓨터에서 판독 가능한 기록매체로부터 메모리(110)로 로딩될 수 있다. 이러한 별도의 컴퓨터에서 판독 가능한 기록매체는 플로피 드라이브, 디스크, 테이프, DVD/CD-ROM 드라이브, 메모리 카드 등의 컴퓨터에서 판독 가능한 기록매체를 포함할 수 있다. 다른 실시예에서 소프트웨어 구성요소들은 컴퓨터에서 판독 가능한 기록매체가 아닌 통신 인터페이스(130)를 통해 메모리(110)에 로딩될 수도 있다. 예를 들어, 소프트웨어 구성요소들은 네트워크(160)를 통해 수신되는 파일들에 의해 설치되는 컴퓨터 프로그램에 기반하여 컴퓨터 시스템(100)의 메모리(110)에 로딩될 수 있다.
프로세서(120)는 기본적인 산술, 로직 및 입출력 연산을 수행함으로써, 컴퓨터 프로그램의 명령을 처리하도록 구성될 수 있다. 명령은 메모리(110) 또는 통신 인터페이스(130)에 의해 프로세서(120)로 제공될 수 있다. 예를 들어 프로세서(120)는 메모리(110)와 같은 기록 장치에 저장된 프로그램 코드에 따라 수신되는 명령을 실행하도록 구성될 수 있다.
통신 인터페이스(130)은 네트워크(160)를 통해 컴퓨터 시스템(100)이 다른 장치와 서로 통신하기 위한 기능을 제공할 수 있다. 일례로, 컴퓨터 시스템(100)의 프로세서(120)가 메모리(110)와 같은 기록 장치에 저장된 프로그램 코드에 따라 생성한 요청이나 명령, 데이터, 파일 등이 통신 인터페이스(130)의 제어에 따라 네트워크(160)를 통해 다른 장치들로 전달될 수 있다. 역으로, 다른 장치로부터의 신호나 명령, 데이터, 파일 등이 네트워크(160)를 거쳐 컴퓨터 시스템(100)의 통신 인터페이스(130)를 통해 컴퓨터 시스템(100)으로 수신될 수 있다. 통신 인터페이스(130)를 통해 수신된 신호나 명령, 데이터 등은 프로세서(120)나 메모리(110)로 전달될 수 있고, 파일 등은 컴퓨터 시스템(100)이 더 포함할 수 있는 저장 매체(상술한 영구 저장 장치)로 저장될 수 있다.
통신 방식은 제한되지 않으며, 네트워크(160)가 포함할 수 있는 통신망(일례로, 이동통신망, 유선 인터넷, 무선 인터넷, 방송망)을 활용하는 통신 방식뿐만 아니라 기기들간의 근거리 유선/무선 통신 역시 포함될 수 있다. 예를 들어, 네트워크(160)는, PAN(personal area network), LAN(local area network), CAN(campus area network), MAN(metropolitan area network), WAN(wide area network), BBN(broadband network), 인터넷 등의 네트워크 중 하나 이상의 임의의 네트워크를 포함할 수 있다. 또한, 네트워크(160)는 버스 네트워크, 스타 네트워크, 링 네트워크, 메쉬 네트워크, 스타-버스 네트워크, 트리 또는 계층적(hierarchical) 네트워크 등을 포함하는 네트워크 토폴로지 중 임의의 하나 이상을 포함할 수 있으나, 이에 제한되지 않는다.
입출력 인터페이스(140)는 입출력 장치(150)와의 인터페이스를 위한 수단일 수 있다. 예를 들어, 입력 장치는 마이크, 키보드, 카메라 또는 마우스 등의 장치를, 그리고 출력 장치는 디스플레이, 스피커와 같은 장치를 포함할 수 있다. 다른 예로 입출력 인터페이스(140)는 터치스크린과 같이 입력과 출력을 위한 기능이 하나로 통합된 장치와의 인터페이스를 위한 수단일 수도 있다. 입출력 장치(150)는 컴퓨터 시스템(100)과 하나의 장치로 구성될 수도 있다.
또한, 다른 실시예들에서 컴퓨터 시스템(100)은 도 1의 구성요소들보다 더 적은 혹은 더 많은 구성요소들을 포함할 수도 있다. 그러나, 대부분의 종래기술적 구성요소들을 명확하게 도시할 필요성은 없다. 예를 들어, 컴퓨터 시스템(100)은 상술한 입출력 장치(150) 중 적어도 일부를 포함하도록 구현되거나 또는 트랜시버(transceiver), 카메라, 각종 센서, 데이터베이스 등과 같은 다른 구성요소들을 더 포함할 수도 있다.
최근에는 자율주행에 대한 심층 강화학습 방식이 활발하게 연구되고 있으며, 강화학습을 이용한 로봇의 자율주행 기술은 경로 계획(path planning) 기반 자율주행보다 높은 성능을 보이고 있다.
그러나, 기존 강화학습 방법은 로봇의 최대속력 및 보상 구성 요소 사이 트레이드오프(trade-off)를 나타내는 가중치와 같은 파라미터에 대해 고정된 값을 사용하여 학습한다(예를 들어, 목표에 대한 짧은 경로를 따르는 것과 큰 안전 거리를 유지하는 것).
바람직한 로봇 동작은 사용 사례에 따라 다르기 때문에 실제 시나리오에서 문제가 될 수 있다. 예를 들어, 병원 병동에 배치된 로봇은 정교한 장비와 충돌을 피하고 환자를 겁주지 않도록 주의해야 하는 반면, 창고 로봇의 최우선 과제는 가능한 한 빨리 목표에 도달하는 것이다. 고정 파라미터로 훈련된 로봇은 다양한 요건을 충족할 수 없으며 각 시나리오에 맞게 미세 조정하기 위한 재훈련이 필요하다. 게다가, 인간과 상호작용하는 로봇의 바람직한 행동은 종종 인간의 선호도에 따라 달라지는데, 이러한 선호 데이터를 수집하는데 많은 노력과 비용이 요구된다.
따라서, 다양한 파라미터에 적응할 수 있는 에이전트뿐만 아니라 적은 수의 인간 선호 데이터로부터 최적에 가까운 파라미터를 신속하고 정확하게 예측할 수 있는 방법이 필요하다.
도 2는 본 발명의 일실시예에 따른 컴퓨터 시스템의 프로세서가 포함할 수 있는 구성요소의 예를 도시한 도면이고, 도 3은 본 발명의 일실시예에 따른 컴퓨터 시스템이 수행할 수 있는 자율주행 학습 방법의 예를 도시한 순서도이다.
도 2에 도시된 바와 같이, 프로세서(120)는 학습부(201), 및 최적화부(202)를 포함할 수 있다. 이러한 프로세서(120)의 구성요소들은 적어도 하나의 프로그램 코드에 의해 제공되는 제어 명령에 따라 프로세서(120)에 의해 수행되는 서로 다른 기능들(different functions)의 표현들일 수 있다. 예를 들어, 프로세서(120)가 심층 강화학습을 기초로 로봇의 자율주행을 학습하도록 컴퓨터 시스템(100)을 제어하기 위해 동작하는 기능적 표현으로서 학습부(201)가 사용될 수 있다.
프로세서(120) 및 프로세서(120)의 구성요소들은 도 3의 자율주행 학습 방법이 포함하는 단계들(S310 내지 S320)을 수행할 수 있다. 예를 들어, 프로세서(120) 및 프로세서(120)의 구성요소들은 메모리(110)가 포함하는 운영체제의 코드와 상술한 적어도 하나의 프로그램 코드에 따른 명령(instruction)을 실행하도록 구현될 수 있다. 여기서, 적어도 하나의 프로그램 코드는 자율주행 학습 방법을 처리하기 위해 구현된 프로그램의 코드에 대응될 수 있다.
자율주행 학습 방법은 도시된 순서대로 발생하지 않을 수 있으며, 단계들 중 일부가 생략되거나 추가의 과정이 더 포함될 수 있다.
프로세서(120)는 자율주행 학습 방법을 위한 프로그램 파일에 저장된 프로그램 코드를 메모리(110)에 로딩할 수 있다. 예를 들어, 자율주행 학습 방법을 위한 프로그램 파일은 메모리(110)와는 구분되는 영구 저장 장치에 저장되어 있을 수 있고, 프로세서(120)는 버스를 통해 영구 저장 장치에 저장된 프로그램 파일로부터 프로그램 코드가 메모리(110)에 로딩되도록 컴퓨터 시스템(100)을 제어할 수 있다. 이때, 프로세서(120) 및 프로세서(120)가 포함하는 학습부(201), 및 최적화부(202) 각각은 메모리(110)에 로딩된 프로그램 코드 중 대응하는 부분의 명령을 실행하여 이후 단계들(S310 내지 S320)을 실행하기 위한 프로세서(120)의 서로 다른 기능적 표현들일 수 있다. 단계들(S310 내지 S320)의 실행을 위해, 프로세서(120) 및 프로세서(120)의 구성요소들은 직접 제어 명령에 따른 연산을 처리하거나 또는 컴퓨터 시스템(100)을 제어할 수 있다.
먼저, 강화학습 기반 자율주행 문제를 공식화하면 다음과 같다.
본 실시예에서는 경로추적(path-following) 자율주행 태스크를 고려한 것으로, 에이전트(즉, 로봇)는 목적지까지의 경로를 이동하고, 이때 경로는 일련의 경유지로 표현될 수 있다. 에이전트가 마지막 경유지(목적지)에 도달하면 새로운 목표와 경유지가 주어지고, 태스크를 마르코프 의사결정 프로세스(Markov decision process)(S, A, Ω, r, p trans, p obs)로 모델링한다. S는 상태(states), A는 액션(actions), Ω는 관측(observations), r은 보상 함수(reward function), p trans은 조건부 상태-전환(conditional state-transition), p obs은 관측 확률(observation probabilities)을 의미한다.
(1) 자율주행 파라미터(navigation parameters)
[수학식 1]
여기서, 은 충돌 또는 비상 정지 시 보상, 는 다른 에이전트와 충돌할 수 있는 최소 예상 시간, 은 을 위반한 것에 대한 보상, 는 최대 선형 속도(maximum linear speed), 는 선형 가속도(linear acceleration), 는 각 속도(angular speed), 는 각 가속도(angular acceleration)를 의미한다.
(2) 관측(observations)
에이전트의 관측 형식은 수학식 2와 같다.
[수학식 2]
여기서, 는 라이더(lidar)와 같은 거리 센서의 스캔 데이터로 구성된다. -180°에서 180°까지의 데이터를 20° 간격으로 임시 저장하여 각 빈(bin)에서 최소값을 취한다. 에이전트가 지각할 수 있는 최대 거리는 3m이다.
[수학식 3]
(3) 액션(actions)
에이전트의 액션은 에서의 벡터로서 간격 로 정규화된 로봇의 원하는 선형 속력을 나타내고, 각속도는 로 정규화된다. 로봇이 액션을 실행하면 의 각 가속도가 적용되며, 속도를 증가시킬 때는 선형 가속도가 이고 감소할 때는 이다.
(4) 보상 함수(reward function)
[수학식 4]
와 같이 설정되고, 이때 이고, 는 단계 t에서 경유지까지의 유클리드 거리(Euclidean distance), 는 단계의 지속 시간이다. 충돌 회피에 필요한 최단 경로에서 작은 편차에 대한 패널티를 줄이기 위해 제곱근을 사용한다. 에이전트와 현재 경유지 사이의 거리가 1m 미만일 경우 의 보상이 있고 경유지가 업데이트 된다.
로봇이 시뮬레이션과 실제 환경에서 최소 안전 거리를 유지하도록 하기 위해 장애물이나 다른 물체와 충돌할 것으로 추정되는 시간이 1초 미만인 경우, 또는 충돌이 발생한 경우, 의 보상이 주어지는 경우 선형 속도를 0m/s로 설정하여 로봇을 정지시킨다. 예상 충돌 시간은 현재 동작에서 주어진 목표 속도로 계산되며, 으로 대표되는 장애 지점을 활용하여 0.5m 변의 정사각형으로 로봇을 모델링한다.
다른 에이전트에 대한 예상 충돌 시간이 초보다 작을 때 보상 이 주어진다. 예상 충돌 시간은 스캔 데이터 대신 3m 범위 내의 다른 에이전트의 위치를 사용하는 것을 제외하고 에 대해 계산된다. 관측에 다른 에이전트의 위치를 포함시키지 않기 때문에 로봇은 스캔 데이터의 순서를 활용하여 다른 에이전트의 정적 장애물을 구별한다.
도 3을 참조하면, 본 발명에 따른 자율주행 학습 방법의 일례는 다음의 두 단계를 포함한다.
단계(S310)에서 학습부(201)는 재훈련 없이 광범위한 자율주행 파라미터에 적응할 수 있는 자율주행 정책을 학습하기 위해 시뮬레이션 환경에서 여러 대의 로봇에 자율주행 파라미터를 랜덤하게 부여하여 동시에 학습을 진행한다.
학습부(201)는 자율주행 학습을 위한 신경망의 입력으로 센서 데이터와 자율주행 파라미터를 사용할 수 있다. 센서 데이터는 로봇으로부터 실시간으로 획득하는 센서 값으로, 예를 들어 ToF(time of flight) 센서 값, 현재 속도, 오도메트리, 주행 방향, 장애물 위치 등을 포함할 수 있다. 자율주행 파라미터는 랜덤하게 부여되는 설정 값으로, 시스템에 의해 자동 설정되거나 관리자에 의해 직접 설정될 수 있다. 예를 들어 자율주행 파라미터는 충돌 시 보상, 충돌 회피에 필요한 안전 거리와 안전 거리에서의 보상, 최대 속도(직선 속도, 회전 속도), 최대 가속도(직선 가속도, 회전 가속도) 등을 포함할 수 있다. 파라미터 범위가 1~10이라고 가정할 때 파라미터 값이 1인 로봇부터 파라미터 값이 10인 로봇까지 총 10대의 로봇을 이용하여 시뮬레이션을 진행할 수 있다. 이때, 자율주행 파라미터는 이하에서 설명하게 될 선호도에 기초하여 지정될 수 있다.
학습부(201)는 시뮬레이션 상에서 각각의 로봇에 랜덤 샘플링된 파라미터를 부여하는 방식으로 여러 대의 로봇을 동시에 학습시킴으로써 재학습 없이 다양한 파라미터에 맞춰 자율주행이 가능하고 기존 학습에 사용되지 않았던 새로운 파라미터까지 일반화(generalization)가 가능하다.
일례로, 도 4의 알고리즘에 요약한 바와 같이 분산 다중 에이전트 훈련(decentralized multi-agent training) 방식을 적용할 수 있다. 각 에피소드마다 여러 에이전트를 공유 환경에 배치한다. 정책을 다양한 자율주행 파라미터에 맞게 조정하기 위해 각 에피소드가 시작될 때의 분포로부터 각 에이전트의 자율주행 파라미터를 랜덤하게 샘플링한다. 강화학습 알고리즘의 경우 파라미터 샘플링이 효율적이고 안정적이며, 보다 나은 성과의 정책을 생산한다.
도 5와 도 6은 본 발명의 일실시예에 있어서 자율주행 학습을 위한 신경망 구조의 일례를 도시한 것이다.
본 발명에 따른 자율주행 학습을 위한 신경망 아키텍처는 적응형 정책 학습 구조(도5)와 유틸리티 함수(utility function) 학습(도 6) 구조를 사용한다. FC는 완전 연결 계층(fully-connected layer)을 나타내고, BayesianFC는 베이지안 완전 연결 계층(Bayesian fully-connected layer)을 나타내고, 병합된 분기는 연결(concatenation)을 나타낸다. 유틸리티 함수 과 는 공유 가중치를 이용하여 계산된다.
도 5에 도시한 바와 같이, 네트워크에 대한 추가 입력으로서 에이전트의 자율주행 파라미터를 제공한다. 에이전트와 에이전트 환경의 시간 역학을 모델링하기 위해 LSTM(Long Short-Term Memory models)에 비해 적은 연산을 요구하는 동시에 경쟁적 성능을 제공하는 GRU(gated recurrent units)를 사용한다.
본 실시예들은 시뮬레이션 안에서 다양한 설정의 로봇을 동시에 학습시킴으로써 여러 입력에서의 강화학습을 동시에 진행할 수 있어 다양하고 예측 불가능한 실세계에서의 학습 효과를 얻을 수 있다. 자율주행 학습을 위한 설정으로 여러 개의 랜덤 샘플링된 파라미터를 이용하더라도 학습에 필요한 총 데이터 양은 하나의 고정 파라미터를 이용하는 경우와 동일하거나 유사한 수준이기 때문에 적은 데이터로 적응형 알고리즘을 만들 수 있다.
다시 도 3에서, 단계(S320)에서 최적화부(202)는 시뮬레이션 로봇의 주행 영상에 대한 선호 데이터를 이용하여 자율주행 파라미터를 최적화할 수 있다. 최적화부(202)는 사람이 로봇의 주행 영상을 보고 피드백을 주면 피드백 값을 반영하여 사람들이 선호하는 방식으로 자율주행 파라미터를 학습함으로써 사용자 선호에 대한 자율주행 파라미터를 최적화할 수 있다.
최적화부(202)는 자율주행 파라미터가 서로 다르게 설정된 로봇의 주행 영상에 대해 사람의 피드백을 받아서 반영하는 신경망을 활용할 수 있다. 도 6을 참조하면, 신경망의 입력은 자율주행 파라미터 가 되고, 출력은 소프트맥스(softmax) 계산에 따른 스코어로서 유틸리티 함수 가 된다. 즉, 사용자 피드백에 따라 소프트맥스를 1 또는 0으로 학습하고 스코어가 가장 높게 나오는 파라미터를 찾는 것이다.
광범위한 자율주행 파라미터에 적응할 수 있는 에이전트가 있더라도 주어진 사용 사례에 대해 최적인 자율주행 파라미터를 찾는 문제는 여전히 남아 있다. 따라서, 선호 데이터를 사용하여 자율주행 파라미터를 최적화하는 새로운 베이지안 접근방법을 제안한다. 본 실시예에서는 쉽게 도출 가능한 쌍별 비교(pairwise comparisons)를 통해 선호도를 평가할 수 있다.
[수학식 5]
여기서, 과 는 과 를 사용하여 수집한 로봇 궤적이고, 는 이 보다 선호되는 것을 나타내고, 은 유틸리티 함수이다. 정확한 선호도 평가를 위해서는 동일한 환경 및 경유지를 이용하여 궤적 과 를 수집한다. 선호 데이터에 유틸리티 함수 를 맞추고 이를 사용하여 새 자율주행 파라미터에 대한 환경 설정을 예측한다.
선호도 모델의 능동적 학습을 위해 파라미터 이 있는 베이지안 신경망에서 유틸리티 함수 을 학습한다. 특히, 능동적으로 쿼리를 생성하기 위해 예측 불확실성에 대한 추정치를 사용함으로써 쿼리의 수를 최소화할 수 있다.
도 7의 알고리즘에 나타낸 바와 같이 선호도 모델의 부정적인 로그 가능성(negative log-likelihood)(수학식 6)을 최소화하는 방향으로 신경망(도 6)를 훈련시킨다.
[수학식 6]
각 반복에서 이전 단계에서 파라미터 를 시작으로 단계씩 네트워크를 훈련시킨다. 일례로, 수학식 7과 같이 설정하여 새로운 쿼리를 적극적으로 샘플링하기 위해 변경된 UCB(upper-confidence bounds)를 사용할 수 있다.
[수학식 7]
균일하게 샘플링된 자율주행 파라미터 중 가 가장 높은 자율주행 파라미터를 사용하여 로봇의 궤적을 생성한다. 그런 다음, 의 새로운 선호도 쿼리를 능동적으로 생성한다. 이를 위해, 모든 자율주행 파라미터의 집합인 모든 에 대해 과 을 계산한다. 을 에서 가장 높은 의 로 하고, 를 에서 가장 높은 의 로 하여 샘플 집합이라 하자. 각각의 선호도 쿼리는 과 에서 과 가 균일하게 샘플링되는 자율주행 파라미터 쌍 으로 구성된다.
다시 말해, 최적화부(202)는 각기 다른 파라미터로 주행한 로봇의 영상 클립 두 개를 사용자들에게 보여주고 어떤 영상이 더 사용 사례에 적절한지에 대한 선호도를 조사한 뒤 선호도를 모델링 하여 모델의 불확실성을 기반으로 새로운 클립들을 생성함에 따라 적은 수의 선호 데이터로 만족도가 높은 파라미터를 찾아낼 수 있다. 신경망의 연결 강도를 매번 계산할 때마다 일정 분포에서 샘플링하고, 특히 베이지안 신경망을 활용하여 능동적으로 쿼리를 생성하는 과정에서 예측 결과의 불확실성이 높은 입력으로 학습을 유도하여 전체 학습에 필요한 쿼리 수를 효과적으로 줄일 수 있다.
이처럼 본 발명의 실시예들에 따르면, 여러 가지 환경에서의 강화학습을 동시에 진행하여 다양하고 예측 불가능한 실세계에서의 학습 효과를 달성할 수 있으며 데이터 증가 없이 적응형 자율주행 알고리즘을 구현할 수 있다. 더욱이, 본 발명의 실시예들에 따르면, 로봇의 주행 영상에 대해 사용 사례로서 적절한지를 나타내는 선호도를 모델링한 후 모델의 불확실성을 기반으로 적은 수의 선호 데이터를 이용하여 자율주행 파라미터를 최적화할 수 있다.
이상에서 설명된 장치는 하드웨어 구성요소, 소프트웨어 구성요소, 및/또는 하드웨어 구성요소 및 소프트웨어 구성요소의 조합으로 구현될 수 있다. 예를 들어, 실시예들에서 설명된 장치 및 구성요소는, 프로세서, 콘트롤러, ALU(arithmetic logic unit), 디지털 신호 프로세서(digital signal processor), 마이크로컴퓨터, FPGA(field programmable gate array), PLU(programmable logic unit), 마이크로프로세서, 또는 명령(instruction)을 실행하고 응답할 수 있는 다른 어떠한 장치와 같이, 하나 이상의 범용 컴퓨터 또는 특수 목적 컴퓨터를 이용하여 구현될 수 있다. 처리 장치는 운영 체제(OS) 및 상기 운영 체제 상에서 수행되는 하나 이상의 소프트웨어 어플리케이션을 수행할 수 있다. 또한, 처리 장치는 소프트웨어의 실행에 응답하여, 데이터를 접근, 저장, 조작, 처리 및 생성할 수도 있다. 이해의 편의를 위하여, 처리 장치는 하나가 사용되는 것으로 설명된 경우도 있지만, 해당 기술분야에서 통상의 지식을 가진 자는, 처리 장치가 복수 개의 처리 요소(processing element) 및/또는 복수 유형의 처리 요소를 포함할 수 있음을 알 수 있다. 예를 들어, 처리 장치는 복수 개의 프로세서 또는 하나의 프로세서 및 하나의 콘트롤러를 포함할 수 있다. 또한, 병렬 프로세서(parallel processor)와 같은, 다른 처리 구성(processing configuration)도 가능하다.
소프트웨어는 컴퓨터 프로그램(computer program), 코드(code), 명령(instruction), 또는 이들 중 하나 이상의 조합을 포함할 수 있으며, 원하는 대로 동작하도록 처리 장치를 구성하거나 독립적으로 또는 결합적으로(collectively) 처리 장치를 명령할 수 있다. 소프트웨어 및/또는 데이터는, 처리 장치에 의하여 해석되거나 처리 장치에 명령 또는 데이터를 제공하기 위하여, 어떤 유형의 기계, 구성요소(component), 물리적 장치, 컴퓨터 저장 매체 또는 장치에 구체화(embody)될 수 있다. 소프트웨어는 네트워크로 연결된 컴퓨터 시스템 상에 분산되어서, 분산된 방법으로 저장되거나 실행될 수도 있다. 소프트웨어 및 데이터는 하나 이상의 컴퓨터 판독 가능 기록 매체에 저장될 수 있다.
실시예에 따른 방법은 다양한 컴퓨터 수단을 통하여 수행될 수 있는 프로그램 명령 형태로 구현되어 컴퓨터 판독 가능 매체에 기록될 수 있다. 이때, 매체는 컴퓨터로 실행 가능한 프로그램을 계속 저장하거나, 실행 또는 다운로드를 위해 임시 저장하는 것일 수도 있다. 또한, 매체는 단일 또는 수 개의 하드웨어가 결합된 형태의 다양한 기록수단 또는 저장수단일 수 있는데, 어떤 컴퓨터 시스템에 직접 접속되는 매체에 한정되지 않고, 네트워크 상에 분산 존재하는 것일 수도 있다. 매체의 예시로는, 하드 디스크, 플로피 디스크 및 자기 테이프와 같은 자기 매체, CD-ROM 및 DVD와 같은 광기록 매체, 플롭티컬 디스크(floptical disk)와 같은 자기-광 매체(magneto-optical medium), 및 ROM, RAM, 플래시 메모리 등을 포함하여 프로그램 명령어가 저장되도록 구성된 것이 있을 수 있다. 또한, 다른 매체의 예시로, 어플리케이션을 유통하는 앱 스토어나 기타 다양한 소프트웨어를 공급 내지 유통하는 사이트, 서버 등에서 관리하는 기록매체 내지 저장매체도 들 수 있다.
이상과 같이 실시예들이 비록 한정된 실시예와 도면에 의해 설명되었으나, 해당 기술분야에서 통상의 지식을 가진 자라면 상기의 기재로부터 다양한 수정 및 변형이 가능하다. 예를 들어, 설명된 기술들이 설명된 방법과 다른 순서로 수행되거나, 및/또는 설명된 시스템, 구조, 장치, 회로 등의 구성요소들이 설명된 방법과 다른 형태로 결합 또는 조합되거나, 다른 구성요소 또는 균등물에 의하여 대치되거나 치환되더라도 적절한 결과가 달성될 수 있다.
그러므로, 다른 구현들, 다른 실시예들 및 특허청구범위와 균등한 것들도 후술하는 특허청구범위의 범위에 속한다.
Claims (20)
- 컴퓨터 시스템에서 실행되는 자율주행 학습 방법에 있어서,
상기 컴퓨터 시스템은 메모리에 포함된 컴퓨터 판독가능한 명령들을 실행하도록 구성된 적어도 하나의 프로세서를 포함하고,
상기 자율주행 학습 방법은,
상기 적어도 하나의 프로세서에 의해, 시뮬레이션 상의 복수 개의 로봇 에이전트에 시스템에 의한 자동 설정 또는 관리자에 의한 직접 설정을 통해 서로 다른 자율주행 파라미터를 부여하여 로봇 자율주행을 학습하는 단계; 및
상기 적어도 하나의 프로세서에 의해, 상기 자율주행 파라미터에 대한 선호 데이터(preference data)를 이용하여 상기 자율주행 파라미터를 최적화하는 단계
를 포함하는 자율주행 학습 방법. - 제1항에 있어서,
상기 학습하는 단계는,
상기 복수 개의 로봇 에이전트를 대상으로 랜덤 샘플링된 자율주행 파라미터를 입력으로 하는 강화학습(reinforcement learning)을 동시에 수행하는 것
을 특징으로 하는 자율주행 학습 방법. - 제1항에 있어서,
상기 학습하는 단계는,
완전 연결 계층(fully-connected layer)과 GRU(gated recurrent units)로 구성된 신경망을 이용하여 상기 복수 개의 로봇 에이전트의 자율주행을 동시에 학습하는 것
을 특징으로 하는 자율주행 학습 방법. - 제1항에 있어서,
상기 학습하는 단계는,
상기 로봇 자율주행의 학습을 위한 신경망의 입력으로 로봇으로부터 실시간으로 획득하는 센서 값과 자율주행 정책과 관련하여 랜덤하게 부여되는 자율주행 파라미터를 사용하는 단계
를 포함하는 자율주행 학습 방법. - 삭제
- 제1항에 있어서,
상기 최적화하는 단계는,
상기 자율주행 파라미터가 서로 다르게 설정된 로봇의 주행 영상에 대한 피드백을 반영하여 상기 자율주행 파라미터를 최적화하는 것
을 특징으로 하는 자율주행 학습 방법. - 제1항에 있어서,
상기 최적화하는 단계는,
상기 자율주행 파라미터의 쌍별 비교(pairwise comparisons)를 통해 상기 자율주행 파라미터에 대한 선호도를 평가하는 단계
를 포함하는 자율주행 학습 방법. - 제1항에 있어서,
상기 최적화하는 단계는,
베이지안 신경망(Bayesian neural network) 모델을 사용하여 상기 자율주행 파라미터에 대한 선호도를 모델링하는 단계
를 포함하는 자율주행 학습 방법. - 제8항에 있어서,
상기 최적화하는 단계는,
선호도 모델의 불확실성(uncertainty)을 기반으로 상기 자율주행 파라미터의 쌍별 비교를 위한 쿼리(query)를 생성하는 단계
를 포함하는 자율주행 학습 방법. - 제1항 내지 제4항, 제6항 내지 제9항 중 어느 한 항의 자율주행 학습 방법을 상기 컴퓨터 시스템에 실행시키기 위해 비-일시적인 컴퓨터 판독가능한 기록 매체에 저장되는 컴퓨터 프로그램.
- 제1항 내지 제4항, 제6항 내지 제9항 중 어느 한 항의 자율주행 학습 방법을 컴퓨터에 실행시키기 위한 프로그램이 기록되어 있는 비-일시적인 컴퓨터 판독 가능한 기록 매체.
- 컴퓨터 시스템에 있어서,
메모리에 포함된 컴퓨터 판독가능한 명령들을 실행하도록 구성된 적어도 하나의 프로세서
를 포함하고,
상기 적어도 하나의 프로세서는,
시뮬레이션 상의 복수 개의 로봇 에이전트에 시스템에 의한 자동 설정 또는 관리자에 의한 직접 설정을 통해 서로 다른 자율주행 파라미터를 부여하여 로봇 자율주행을 학습하는 학습부; 및
상기 자율주행 파라미터에 대한 선호 데이터를 이용하여 상기 자율주행 파라미터를 최적화하는 최적화부
를 포함하는 컴퓨터 시스템. - 제12항에 있어서,
상기 학습부는,
상기 복수 개의 로봇 에이전트를 대상으로 랜덤 샘플링된 자율주행 파라미터를 입력으로 하는 강화학습을 동시에 수행하는 것
을 특징으로 하는 컴퓨터 시스템. - 제12항에 있어서,
상기 학습부는,
완전 연결 계층과 GRU로 구성된 신경망을 이용하여 상기 복수 개의 로봇 에이전트의 자율주행을 동시에 학습하는 것
을 특징으로 하는 컴퓨터 시스템. - 제12항에 있어서,
상기 학습부는,
상기 로봇 자율주행의 학습을 위한 신경망의 입력으로 로봇으로부터 실시간으로 획득하는 센서 값과 자율주행 정책과 관련하여 랜덤하게 부여되는 자율주행 파라미터를 사용하는 것
을 특징으로 하는 컴퓨터 시스템. - 삭제
- 제12항에 있어서,
상기 최적화부는,
상기 자율주행 파라미터가 서로 다르게 설정된 로봇의 주행 영상에 대한 피드백을 반영하여 상기 자율주행 파라미터를 최적화하는 것
을 특징으로 하는 컴퓨터 시스템. - 제12항에 있어서,
상기 최적화부는,
상기 자율주행 파라미터의 쌍별 비교를 통해 상기 자율주행 파라미터에 대한 선호도를 평가하는 것
을 특징으로 하는 컴퓨터 시스템. - 제12항에 있어서,
상기 최적화부는,
베이지안 신경망 모델을 사용하여 상기 자율주행 파라미터에 대한 선호도를 모델링하는 것
을 특징으로 하는 컴퓨터 시스템. - 제12항에 있어서,
상기 최적화부는,
선호도 모델의 불확실성을 기반으로 상기 자율주행 파라미터의 쌍별 비교를 위한 쿼리를 생성하는 것
을 특징으로 하는 컴퓨터 시스템.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022519438A JP7459238B2 (ja) | 2019-10-24 | 2020-08-25 | ユーザ選好による強化学習基盤の自律走行最適化方法およびシステム |
EP20878770.5A EP4019202A4 (en) | 2019-10-24 | 2020-08-25 | METHOD AND SYSTEM FOR OPTIMIZING AUTONOMOUS DRIVING BASED ON REINFORCEMENT LEARNING AS A FUNCTION OF USER PREFERENCES |
PCT/KR2020/011304 WO2021080151A1 (ko) | 2019-10-24 | 2020-08-25 | 사용자 선호에 따른 강화학습 기반 자율주행 최적화 방법 및 시스템 |
US17/657,878 US20220229435A1 (en) | 2019-10-24 | 2022-04-04 | Method and system for optimizing reinforcement-learning-based autonomous driving according to user preferences |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020190132808 | 2019-10-24 | ||
KR20190132808 | 2019-10-24 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20210048969A KR20210048969A (ko) | 2021-05-04 |
KR102303126B1 true KR102303126B1 (ko) | 2021-09-17 |
Family
ID=75913945
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020200009729A KR102303126B1 (ko) | 2019-10-24 | 2020-01-28 | 사용자 선호에 따른 강화학습 기반 자율주행 최적화 방법 및 시스템 |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR102303126B1 (ko) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20230045826A (ko) * | 2021-09-29 | 2023-04-05 | 네이버랩스 주식회사 | 센서 구성과 로봇 형태에 적응 가능한 강화학습 기반 자율주행 방법, 컴퓨터 시스템, 및 컴퓨터 프로그램 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102363443B1 (ko) * | 2021-07-23 | 2022-02-14 | 국방과학연구소 | 강화학습 기반 자율 주행 장치 및 그 방법 |
KR20230022762A (ko) | 2021-08-09 | 2023-02-16 | 충북대학교 산학협력단 | 영역 확장을 이용한 강화 학습에 기반한 물류 로봇 학습 방법 및 장치 |
KR102676016B1 (ko) | 2021-08-11 | 2024-06-17 | 충북대학교 산학협력단 | 강화 학습에 기반한 복수 로봇 물류 수송 학습 방법 및 장치 |
CN114084154B (zh) * | 2021-09-30 | 2024-03-15 | 广州文远知行科技有限公司 | 一种自动驾驶系统参数的配置方法、装置及系统 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20190286979A1 (en) * | 2018-03-14 | 2019-09-19 | Electronic Arts Inc. | Reinforcement Learning for Concurrent Actions |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20180070103A (ko) * | 2016-12-16 | 2018-06-26 | 삼성전자주식회사 | 인식 방법 및 인식 장치 |
KR102503757B1 (ko) * | 2018-04-03 | 2023-02-23 | 엘지전자 주식회사 | 각각의 인공지능을 탑재한 복수의 로봇을 포함하는 로봇 시스템 |
-
2020
- 2020-01-28 KR KR1020200009729A patent/KR102303126B1/ko active IP Right Grant
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20190286979A1 (en) * | 2018-03-14 | 2019-09-19 | Electronic Arts Inc. | Reinforcement Learning for Concurrent Actions |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20230045826A (ko) * | 2021-09-29 | 2023-04-05 | 네이버랩스 주식회사 | 센서 구성과 로봇 형태에 적응 가능한 강화학습 기반 자율주행 방법, 컴퓨터 시스템, 및 컴퓨터 프로그램 |
WO2023054929A1 (ko) * | 2021-09-29 | 2023-04-06 | 네이버랩스 주식회사 | 센서 구성과 로봇 형태에 적응 가능한 강화학습 기반 자율주행 방법, 컴퓨터 시스템, 및 컴퓨터 프로그램 |
KR102617418B1 (ko) * | 2021-09-29 | 2023-12-27 | 네이버랩스 주식회사 | 센서 구성과 로봇 형태에 적응 가능한 강화학습 기반 자율주행 방법, 컴퓨터 시스템, 및 컴퓨터 프로그램 |
Also Published As
Publication number | Publication date |
---|---|
KR20210048969A (ko) | 2021-05-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102303126B1 (ko) | 사용자 선호에 따른 강화학습 기반 자율주행 최적화 방법 및 시스템 | |
Chang et al. | Reinforcement based mobile robot path planning with improved dynamic window approach in unknown environment | |
KR102267316B1 (ko) | 심층 강화 학습에 기반한 자율주행 에이전트의 학습 방법 및 시스템 | |
US11318952B2 (en) | Feedback for an autonomous vehicle | |
Portugal et al. | Cooperative multi-robot patrol with Bayesian learning | |
Jesus et al. | Deep deterministic policy gradient for navigation of mobile robots in simulated environments | |
WO2018120739A1 (zh) | 路径规划方法、装置及机器人 | |
KR20210074366A (ko) | 자율주행 차량 계획 및 예측 | |
WO2019111608A1 (ja) | 制御装置、無人システム、制御方法及びプログラム | |
US11514363B2 (en) | Using a recursive reinforcement model to determine an agent action | |
JP2009288934A (ja) | データ処理装置、データ処理方法、及びプログラム | |
KR102622243B1 (ko) | 리스크 척도를 나타내는 파라미터에 기반하여 훈련된 모델을 사용하여, 주어진 상황에 대한 디바이스의 행동을 결정하는 방법 및 시스템 | |
US11467598B2 (en) | Method of estimating position in local area of large space and robot and cloud server implementing thereof | |
CN114667494A (zh) | 机器人控制模型学习方法、机器人控制模型学习装置、机器人控制模型学习程序、机器人控制方法、机器人控制装置、机器人控制程序以及机器人 | |
Quinones-Ramirez et al. | Robot path planning using deep reinforcement learning | |
Anas et al. | Comparison of deep Q-learning, Q-learning and SARSA reinforced learning for robot local navigation | |
KR102617418B1 (ko) | 센서 구성과 로봇 형태에 적응 가능한 강화학습 기반 자율주행 방법, 컴퓨터 시스템, 및 컴퓨터 프로그램 | |
Smart et al. | Reinforcement learning for robot control | |
Yao et al. | Local navigation among movable obstacles with deep reinforcement learning | |
JP7459238B2 (ja) | ユーザ選好による強化学習基盤の自律走行最適化方法およびシステム | |
KR101055282B1 (ko) | 계층 구조적 예측 모델을 이용한 로봇의 상황예측장치 및 그 방법 | |
CN115081612A (zh) | 用以改进机器人策略学习的设备和方法 | |
Wei et al. | Deep reinforcement learning with heuristic corrections for UGV navigation | |
Tsai et al. | Quadrotor mapless navigation in static and dynamic environments based on deep reinforcement learning | |
US20230132280A1 (en) | Robotic navigation and transport of objects |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
E902 | Notification of reason for refusal | ||
E90F | Notification of reason for final refusal | ||
E701 | Decision to grant or registration of patent right |