KR102290292B1 - Electrolyte composition comprising ionic liquids substituted with ether group having improved ion conductivity for hybrid lithium-based redox flow battery - Google Patents

Electrolyte composition comprising ionic liquids substituted with ether group having improved ion conductivity for hybrid lithium-based redox flow battery Download PDF

Info

Publication number
KR102290292B1
KR102290292B1 KR1020200046062A KR20200046062A KR102290292B1 KR 102290292 B1 KR102290292 B1 KR 102290292B1 KR 1020200046062 A KR1020200046062 A KR 1020200046062A KR 20200046062 A KR20200046062 A KR 20200046062A KR 102290292 B1 KR102290292 B1 KR 102290292B1
Authority
KR
South Korea
Prior art keywords
electrolyte composition
redox flow
flow battery
meoc
hybrid lithium
Prior art date
Application number
KR1020200046062A
Other languages
Korean (ko)
Inventor
김병수
주소경
최혁
예상학
박재형
김세종
Original Assignee
에이치엘비제약 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에이치엘비제약 주식회사 filed Critical 에이치엘비제약 주식회사
Priority to KR1020200046062A priority Critical patent/KR102290292B1/en
Application granted granted Critical
Publication of KR102290292B1 publication Critical patent/KR102290292B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/08Hybrid cells; Manufacture thereof composed of a half-cell of a fuel-cell type and a half-cell of the secondary-cell type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • H01M4/382Lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9008Organic or organo-metallic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0045Room temperature molten salts comprising at least one organic ion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Secondary Cells (AREA)

Abstract

According to the present invention, disclosed is an electrolyte composition for a hybrid lithium redox flow battery having increased ionic conductivity including an ether group-substituted ionic liquid. According to the present invention, the electrolyte composition increases ionic conductivity by including both TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl) and an ether group-substituted ionic liquid so as to realize a hybrid lithium redox flow battery having high energy density. According to the present invention, the hybrid lithium redox flow battery including the electrolyte composition has a higher discharging voltage and higher energy density than the existing things to be frequently used as a large-scale energy storage device with high output and high durability and to obtain long-term charge/discharge stability so as to have excellent battery life characteristics.

Description

에테르기 치환된 이온성 액체를 포함하는 증진된 이온전도도를 갖는 하이브리드 리튬 레독스 흐름전지용 전해액 조성물 {Electrolyte composition comprising ionic liquids substituted with ether group having improved ion conductivity for hybrid lithium-based redox flow battery}Electrolyte composition comprising ionic liquids substituted with ether group having improved ion conductivity for hybrid lithium-based redox flow battery

본 발명은 에테르기 치환된 이온성 액체를 포함하는 증진된 이온전도도를 갖는 하이브리드 리튬 레독스 흐름전지용 전해액 조성물에 관한 것으로, 더 상세하게는 TEMPO (2,2,6,6-테트라메틸피페리딘-1-옥실; 2,2,6,6-tetramethyl-piperidine-1-oxyl)와 특정 에테르기 치환된 이온성 액체를 함께 포함함에 의하여 이온전도도가 증진되어서 높은 에너지 밀도를 갖는 하이브리드 리튬 레독스 흐름전지를 구현케 하는 전해액 조성물에 관한 것이다.The present invention relates to an electrolyte composition for a hybrid lithium redox flow battery having improved ionic conductivity comprising an ether group-substituted ionic liquid, and more particularly, TEMPO (2,2,6,6-tetramethylpiperidine Hybrid lithium redox flow with high energy density because ionic conductivity is improved by including -1-oxyl; 2,2,6,6-tetramethyl-piperidine-1-oxyl) and an ionic liquid substituted with a specific ether group It relates to an electrolyte composition for realizing a battery.

레독스 흐름전지(Redox Flow Battery)는 전해질의 산화·환원반응에 의해 충·방전이 일어나는 이차전지이다. 일반적인 전지와의 가장 큰 차이점은 에너지가 저장되는 전해질을 순환시키면서 충·방전이 이루어진다는 점이다. 현재까지 레독스 흐름전지의 수계 시스템을 일부 상용화하기 위해 국내외 관련 기업들이 매진하고 있으나, 낮은 에너지 밀도와 낮은 셀 전압의 문제가 있으며 2종의 금속염을 활물질로 사용으로 크로스오버(crossover) 현상의 발생이 단점으로 지적되어 왔다.A redox flow battery is a secondary battery in which charging and discharging occur by oxidation and reduction reactions of electrolytes. The biggest difference from general batteries is that charging and discharging occur while circulating the electrolyte in which energy is stored. Until now, domestic and foreign related companies are striving to commercialize some of the redox flow battery aqueous systems, but there are problems with low energy density and low cell voltage, and crossover occurs due to the use of two types of metal salts as active materials. This has been pointed out as a drawback.

대표적인 레독스 흐름전지로는 전바나듐계 레독스 흐름전지로서 산화가가 차이나는 V(Ⅱ), V(Ⅲ), VO2+(Ⅳ), VO2+(Ⅴ)등의 바나듐 이온들 중 2종이 각각 양극 활물질과 음극 활물질로 사용된다. 전바나듐계 레독스 흐름전지는 양전해액과 음전해액에 바나듐 염을 주로 물에 용해하여 사용하므로(수계 시스템), 물의 전위창인 1.23V보다 높은 전위에서 전지를 구동하게 되면 용매의 분해로 인한 전해액의 손실이 발생하여 작동전압에 한계점을 갖고 전지의 수명도 상대적으로 짧다. 또한 물의 열역학적 특성에 의해 0℃ 이하에서 구동하기 어렵고, 40℃ 이상의 고온에서는 양극 활물질인 바나듐 이온이 V2O5로 침전이 일어나는 것이 보고된 바 있다(공개특허 10-2016-0035369호). As a representative redox flow battery, it is an all-vanadium-based redox flow battery, and 2 out of vanadium ions such as V(II), V(III), VO 2+ (IV), VO 2+ (V), which have different oxidation values. Paper is used as a positive electrode active material and a negative electrode active material, respectively. Since all-vanadium-based redox flow batteries mainly dissolve vanadium salts in water in positive and negative electrolytes (aqueous system), if the battery is driven at a potential higher than 1.23V, which is the potential window of water, electrolytes caused by solvent decomposition It has a limit to the operating voltage and the battery life is also relatively short. In addition, it has been reported that it is difficult to drive at 0° C. or lower due to the thermodynamic properties of water, and that at a high temperature of 40° C. or higher, precipitation of vanadium ions, which is a positive active material, as V 2 O 5 occurs (Patent Publication No. 10-2016-0035369).

이와 같은 수계 레독스 흐름전지의 문제점을 극복하기 위하여 유기 용매를 사용하는 비수계 전바나듐계 레독스 흐름전지가 개발되었으나, 낮은 에너지 밀도와 전지 전압의 문제가 여전히 있으며 2종의 염을 활물질로 사용함에 따라서 크로스오버 현상이 발생하여, 고용량(고 에너지 밀도)이 요구되는 중대형 에너지 저장시스템에 전바나듐계 레독스 흐름전지를 적용하기에 충분치 않아 이를 극복하기 위해 금속에 관능기로 치환된 리간드를 결합한 금속-리간드 배위화합물을 활물질로 사용하는 등의 개선방안이 개발되고 있으나(공개특허 10-2016-0035368호) 여전히 대안이 요구되고 있는 실정이다.In order to overcome such problems of the aqueous redox flow battery, a non-aqueous all-vanadium-based redox flow battery using an organic solvent has been developed, but there are still problems of low energy density and battery voltage, and two salts are used as active materials. As a result, crossover occurs, and it is not enough to apply all-vanadium-based redox flow batteries to medium and large-sized energy storage systems that require high capacity (high energy density). - Improvement measures such as using a ligand coordination compound as an active material are being developed (Patent Publication No. 10-2016-0035368), but an alternative is still required.

본 발명자들은 상기와 같은 종래 수계/유기계 레독스 흐름전지의 문제점을 보완하고자 지속적으로 연구한 결과, 하이브리드 리튬 레독스 흐름전지(Li-RFB)의 활용성이 매우 높을 것으로 예측하고 이에 사용시 높은 에너지 밀도를 구현할 수 있게 하는 증진된 이온전도도를 갖는 전해액 조성물을 개발하여 본 발명을 완성하게 되었다.As a result of continuous research to supplement the problems of the conventional water-based/organic redox flow battery as described above, the present inventors predicted that the utility of the hybrid lithium redox flow battery (Li-RFB) would be very high, and high energy density when used The present invention has been completed by developing an electrolyte composition having improved ionic conductivity that can be realized.

따라서 본 발명의 목적은 높은 에너지 밀도를 구현하는 하이브리드 리튬 레독스 흐름전지용 에테르기 치환된 이온성 액체를 포함하는 증진된 이온전도도를 갖는 전해액 조성물을 제공하는 것이다. Accordingly, it is an object of the present invention to provide an electrolyte composition having improved ionic conductivity comprising an ether group-substituted ionic liquid for a hybrid lithium redox flow battery implementing a high energy density.

본 발명의 또 다른 목적은 상기 에테르기 치환된 이온성 액체를 포함하는 증진된 이온전도도를 갖는 전해액 조성물을 포함하는 높은 에너지 밀도를 구현하는 하이브리드 리튬 레독스 흐름전지를 제공하는 것이다.Another object of the present invention is to provide a hybrid lithium redox flow battery implementing a high energy density comprising an electrolyte composition having improved ionic conductivity including the ether group-substituted ionic liquid.

상기 목적을 달성하기 위하여, 본 발명에 따른 에테르기 치환된 이온성 액체를 포함하는 증진된 이온전도도를 갖는 하이브리드 리튬 레독스 흐름전지용 전해액 조성물은 양극 활물질로서 TEMPO (2,2,6,6-테트라메틸피페리딘-1-옥실; 2,2,6,6-tetramethylpiperidine-1-oxyl), 특정 에테르기 치환된 이온성 액체, 지지전해질, 및 유기용매를 포함하는 것을 특징으로 한다. In order to achieve the above object, the electrolyte composition for a hybrid lithium redox flow battery having improved ionic conductivity comprising an ether group-substituted ionic liquid according to the present invention is TEMPO (2,2,6,6-tetra Methylpiperidine-1-oxyl; 2,2,6,6-tetramethylpiperidine-1-oxyl), an ionic liquid substituted with a specific ether group, a supporting electrolyte, and an organic solvent.

본 발명에서 하이브리드 리튬 레독스 흐름전지는 그 일례로서 도 1에 도시된 바와 같이, 양극 활물질은 액체의 유기 용매에 용해된 TEMPO이며, 음극 활물질은 고체인 산화환원 활성 리튬 금속(Li metal)인 것을 특징으로 한다. 이와 같이 액체/고체 하이브리드 형태로서, 양극 활물질을 포함하는 전해액 조성물은 전지에 작동가능하게 연결된 외부 공급원으로부터 흐름이 제공되도록 구성될 수 있다. 각 전극의 반응은 다음과 같다:As an example of the hybrid lithium redox flow battery in the present invention, as shown in FIG. 1 , the positive electrode active material is TEMPO dissolved in a liquid organic solvent, and the negative electrode active material is a solid redox active lithium metal (Li metal). characterized. As such, in a liquid/solid hybrid form, the electrolyte composition comprising the positive electrode active material may be configured to provide a flow from an external source operably connected to the cell. The reaction of each electrode is as follows:

Figure 112020039264730-pat00001
Figure 112020039264730-pat00001

충전과정에서는 니트록사이드(니트록실) 라디칼에서 옥소암모늄 양이온(oxoammonium cation)으로 반응이 진행되면서 전자가 발생하고, 생성된 전자는 외부회로를 통해서 반대 전극으로 이동하여 리튬 이온을 리튬 금속으로 환원시킨다. 방전 과정은 충전과 반대 방향으로 반응이 진행된다.In the charging process, electrons are generated as the reaction proceeds from the nitroxide (nitroxyl) radical to oxoammonium cation, and the generated electrons move to the opposite electrode through an external circuit to reduce lithium ions to lithium metal. . In the discharging process, the reaction proceeds in the opposite direction to that of charging.

상기 하이브리드 리튬 레독스 흐름전지는 음극 활물질로 리튬 금속을 사용함에 의해 표준환원 전위의 차가 높아 고 전압을 구현할 수 있으며, 양극 활물질이 전자를 충분히 제공할 경우 리튬 금속과 반응으로 41Wh/L 이상의 고 에너지 밀도를 갖는 큰 저장용량을 갖는 레독스 흐름전지 시스템을 구축케 할 수 있다.The hybrid lithium redox flow battery uses lithium metal as an anode active material, thereby realizing a high voltage due to a high difference in standard reduction potential. It is possible to build a redox flow battery system with a large storage capacity having a density.

본 발명의 전해액 조성물에서, 양극 활물질로서 TEMPO (2,2,6,6-테트라메틸피페리딘-1-옥실)는 0.01 ~ 2.5 M의 농도로 포함될 수 있으며, 바람직하게는 0.5 ~ 2.0 M의 농도로 포함될 수 있으며, 가장 바람직하게는 0.5 M의 농도로 포함될 수 있다.In the electrolyte composition of the present invention, TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl) as a positive electrode active material may be included in a concentration of 0.01 to 2.5 M, preferably 0.5 to 2.0 M It may be included in a concentration, and most preferably may be included in a concentration of 0.5 M.

본 발명의 전해액 조성물에서 상기 활물질과 함께 사용될 수 있는 특정 에테르기 치환된 이온성 액체는 다음과 같은 양이온과 음이온으로 이루어진다.A specific ether group-substituted ionic liquid that can be used together with the active material in the electrolyte composition of the present invention consists of the following cations and anions.

양이온: N,N,N-트리에틸-4-메톡시부탄-1-아미늄 [N,N,N-triethyl-4-methoxybutan-1-aminium; MeOC4TEA]Cation: N,N,N-triethyl-4-methoxybutan-1-aminium [N,N,N-triethyl-4-methoxybutan-1-aminium; MeOC 4 TEA]

음이온: 비스(플루오로설포닐)이미드 [bis(fluorosulfonyl)imide; FSI], 비스(트리플루오로메틸설포닐)이미드 [bis(trifluoromethylsulfonyl)imide; TFSI], 또는 헥사플루오로포스페이트 [hexafluorophosphate; PF6] Anion: bis(fluorosulfonyl)imide [bis(fluorosulfonyl)imide; FSI], bis(trifluoromethylsulfonyl)imide [bis(trifluoromethylsulfonyl)imide; TFSI], or hexafluorophosphate; PF 6 ]

바람직하게는 본 발명에서 사용되는 에테르기 치환된 이온성 액체는 하기와 같은 구조식을 갖는 MeOC4TEA-FSI [N,N,N-트리에틸-4-메톡시부탄-1-아미늄 비스(플루오로설포닐)이미드; N,N,N-triethyl-4-methoxybutan-1-aminium bis(fluorosulfonyl)imide], MeOC4TEA-TFSI [N,N,N-트리에틸-4-메톡시부탄-1-아미늄 비스(트리플루오로메틸설포닐)이미드; N,N,N-triethyl-4-methoxybutan-1-aminium bis(trifluoromethylsulfonyl)imide], 및 MeOC4TEA-PF6 [N,N,N-트리에틸-4-메톡시부탄-1-아미늄 헥사플루오로포스페이트; N,N,N-triethyl-4-methoxybutan-1-aminium hexafluorophosphate] 이며, 가장 바람직하게는 MeOC4TEA-FSI이다: Preferably, the ether group-substituted ionic liquid used in the present invention is MeOC 4 TEA-FSI [N,N,N-triethyl-4-methoxybutan-1-aminium bis(fluoro rosulfonyl) imide; N,N,N-triethyl-4-methoxybutan-1-aminium bis(fluorosulfonyl)imide], MeOC 4 TEA-TFSI [N,N,N-triethyl-4-methoxybutan-1-aminium bis(tri fluoromethylsulfonyl)imide; N,N,N-triethyl-4-methoxybutan-1-aminium bis(trifluoromethylsulfonyl)imide], and MeOC 4 TEA-PF 6 [N,N,N-triethyl-4-methoxybutan-1-aminium hexa fluorophosphate; N,N,N-triethyl-4-methoxybutan-1-aminium hexafluorophosphate], most preferably MeOC 4 TEA-FSI:

Figure 112020039264730-pat00002
Figure 112020039264730-pat00002

본 발명에서 에테르기 치환된 이온성 액체는 총 전해액 조성물을 100 중량%로 할 때 1 ~ 15 중량%로 포함된다. In the present invention, the ionic liquid substituted with an ether group is included in an amount of 1 to 15% by weight when the total electrolyte composition is 100% by weight.

본 발명에서 사용되는 에테르기 치환된 이온성 액체는 양이온과 음이온만으로 이루어지고, 할라이드 함유량이 20ppm 이하, 수분 함유량이 30ppm 이하, 그 외 불순물을 포함하지 않는 것이 바람직하다.It is preferable that the ether group-substituted ionic liquid used in the present invention consists only of cations and anions, and has a halide content of 20 ppm or less, a moisture content of 30 ppm or less, and no other impurities.

본 발명의 전해액 조성물에서 유기 용매로는 카보네이트계 용매가 사용될 수 있다. 카보네이트계 용매로는 프로필렌 카보네이트(Propylene Carbonate; PC), 에틸렌 카보네이트(Ethylene carbonate; EC), 및 디에틸 카보네이트(Diethyl carbonate; DEC)으로 이루어지는 군에서 선택된 하나 이상이 사용될 수 있고, 바람직하게는 PC 용매 또는 EC/DEC 혼합용매가 사용될 수 있다. 상기 EC/DEC 혼합용매에서 혼합비는 EC : DEC가 7~1 : 3~1 (v/v)이며, 바람직하게는 EC : DEC가 7 : 3으로 혼합된다. 가장 바람직하게는 PC 용매를 사용한다. As the organic solvent in the electrolyte composition of the present invention, a carbonate-based solvent may be used. As the carbonate-based solvent, at least one selected from the group consisting of propylene carbonate (PC), ethylene carbonate (EC), and diethyl carbonate (DEC) may be used, and preferably a PC solvent Alternatively, an EC/DEC mixed solvent may be used. In the EC/DEC mixed solvent, a mixing ratio of EC:DEC is 7 to 1:3 to 1 (v/v), and preferably, EC:DEC is 7:3. Most preferably, a PC solvent is used.

유기 활물질이 전해액에 혼합시 저항이 높아져서 이온전도도가 떨어져서 높은 용량의 고 에너지 밀도를 구비하는 하이브리드 리튬 레독스 흐름전지의 구현이 어려웠다. When the organic active material is mixed with the electrolyte, the resistance is increased and the ionic conductivity is lowered, making it difficult to implement a hybrid lithium redox flow battery having a high capacity and high energy density.

본 발명에서 지지전해질로는 LiPF6, LiBF4, LiAsF6, LiClO4, LiCF3SO3, LiCF3SO3, LiC(SO2CF3)3, LiN(CF3SO2)2 및 LiCH(CF3SO2)2 중에서 1종 이상의 리튬염이 사용될 수 있으며, 가장 바람직하게는 LiPF6이다. 본 발명의 전해액 조성물에 지지전해질은 0.1 ~ 1.0 M으로 포함될 수 있다.As the supporting electrolyte in the present invention, LiPF 6 , LiBF 4 , LiAsF 6 , LiClO 4 , LiCF 3 SO 3 , LiCF 3 SO 3 , LiC(SO 2 CF 3 ) 3 , LiN(CF 3 SO 2 ) 2 and LiCH(CF) Among 3 SO 2 ) 2 , one or more lithium salts may be used, and most preferably LiPF 6 . In the electrolyte composition of the present invention, the supporting electrolyte may be included in an amount of 0.1 to 1.0 M.

본 발명의 전해액 조성물은, 필요에 따라서, 안정성을 향상시키기 위한 알려진 첨가제를 추가로 포함할 수 있다.The electrolyte composition of the present invention may further include a known additive for improving stability, if necessary.

상기와 같이 조성된 본 발명에 따른 전해액 조성물은 양극 활물질인 TEMPO와 함께 상기와 같은 특정 에테르기 치환된 이온성 액체를 포함함에 의하여 이온전도도가 최대 7.94%까지 증진되었다 (표 4, 도 2 ~ 도4). The electrolyte composition according to the present invention composed as described above has improved ionic conductivity by up to 7.94% by including the ionic liquid substituted with a specific ether group as described above together with TEMPO, which is a positive electrode active material (Table 4, FIGS. 4).

이는 상기와 같은 특정 에테르기 치환된 이온성 액체가 양극 활물질인 TEMPO의 해리도를 향상하고 이온의 이동도(transference number)를 향상시킴에 의한 것으로 추측된다. 또한 상기 에테르기 치환된 이온성 액체의 비휘발성 특성으로 인하여 활물질인 TEMPO의 휘발성이 억제되어 전해액 내에 TEMPO가 안정적으로 존재할 수 있어, 장기 충/방전 안정성이 확보될 수 있어서 우수한 전지 수명 특성을 구비하게 한다. This is presumed to be due to the fact that the ionic liquid substituted with a specific ether group as described above improves the degree of dissociation of TEMPO, which is a positive active material, and improves the mobility of ions (transference number). In addition, due to the non-volatile characteristics of the ether group-substituted ionic liquid, the volatility of the active material, TEMPO, is suppressed, so that TEMPO can be stably present in the electrolyte, so that long-term charge/discharge stability can be ensured, so that it has excellent battery life characteristics. do.

또한 본 발명에 따른 전해액 조성물은 5.32~9.42 cP (0.00532~0.00942 Pa·s)의 저점도이어서 방전용량 및 가역효율을 증대시켜 충방전의 전지 효율을 향상시킬 수 있다 (표 6). In addition, the electrolyte composition according to the present invention has a low viscosity of 5.32 to 9.42 cP (0.00532 to 0.00942 Pa·s), thereby increasing the discharge capacity and reversible efficiency, thereby improving the battery efficiency of charging and discharging (Table 6).

본 발명의 또 다른 목적에 따라서, 본 발명은 상기 에테르기 치환된 이온성 액체를 포함하는 증진된 이온전도도를 갖는 전해액 조성물을 포함하는 것을 특징으로 하는 하이브리드 리튬 레독스 흐름전지를 제공한다.According to another object of the present invention, the present invention provides a hybrid lithium redox flow battery comprising an electrolyte composition having improved ionic conductivity comprising the ether group-substituted ionic liquid.

하이브리드 리튬 레독스 흐름전지는 상기에서 기술되고 도 1에 일례로 예시된 바와 같은 구조를 포함할 수 있다. 집전체, 다공성 분리막, 전해액, 외부 공급원 등의 구성 및 조립은 당업계의 기술분야에서 통상적인 것으로 수행할 수 있다.The hybrid lithium redox flow battery may include a structure as described above and illustrated by way of example in FIG. 1 . The construction and assembly of the current collector, the porous separator, the electrolyte, and an external source may be conventionally performed in the art.

본 발명에 따른 에테르기 치환된 이온성 액체를 포함하는 증진된 이온전도도를 갖는 전해액 조성물을 포함하는 하이브리드 리튬 레독스 흐름전지는 높은 방전 전압과 높은 에너지 밀도를 가질 수 있으므로, 대규모 에너지 저장 장치로서의 활용가능하다. 아울러 유기 활물질인 TEMPO에서 나타나는 장기 충/방전에 따른 휘발성 문제가 현저히 보완되어 장기 안정성으로 전지의 장수명이 개선되는 이점도 구비할 수 있다.The hybrid lithium redox flow battery comprising the electrolyte composition having improved ionic conductivity including the ether group-substituted ionic liquid according to the present invention can have a high discharge voltage and high energy density, so it can be used as a large-scale energy storage device possible. In addition, the volatility problem caused by long-term charging/discharging in TEMPO, which is an organic active material, is remarkably supplemented, so that it can have the advantage of improving long-term battery life through long-term stability.

본 발명에 따른 전해액 조성물은 TEMPO를 양극 활물질로 사용함에도 이온전도도를 증진시켜서 고 에너지 밀도를 구현할 수 있는 하이브리드 리튬 레독스 흐름전지의 전해액으로 사용하기에 적합하다. The electrolyte composition according to the present invention is suitable for use as an electrolyte for a hybrid lithium redox flow battery capable of realizing high energy density by enhancing ionic conductivity even when TEMPO is used as a positive electrode active material.

또한 본 발명에 따른 전해액 조성물은 점도가 낮아서 방전용량 및 가역효율을 증대시켜 충방전의 전지 효율을 향상시킬 수 있다.In addition, since the electrolyte composition according to the present invention has a low viscosity, it is possible to increase the discharge capacity and reversible efficiency, thereby improving the battery efficiency of charging and discharging.

본 발명에 따른 전해액 조성물을 포함하는 하이브리드 리튬 레독스 흐름전지는 종래에 비하여 높은 방전 전압과 높은 에너지 밀도를 가질 수 있으므로, 고출력 및 고내구성의 대규모 에너지 저장장치로서의 활용성이 높고, 장기 충/방전 안정성이 확보될 수 있어서 우수한 전지 수명 특성을 구비할 수 있다.The hybrid lithium redox flow battery comprising the electrolyte composition according to the present invention can have a higher discharge voltage and higher energy density than in the prior art, so it has high utility as a large-scale energy storage device with high output and high durability, and long-term charge/discharge Since stability can be secured, excellent battery life characteristics can be provided.

도 1은 본 발명에 따른 전해액 조성물이 사용되는 하이브리드 리튬 레독스 흐름전지의 구성의 일례를 보여주는 모식도이다.
도 2는 PC 용매에서, 활물질이 TEMPO이며 이온성 액체의 양이온이 [MeOC4TEA]일 때 에테르기 치환된 이온성 액체의 음이온 변화에 따른 전해액 조성물 (실시예 1~3)의 이온전도도 증감률과, 활물질이 옥소-TEMPO이며 이온성 액체의 양이온이 [MeOC4TEA]일 때 에테르기 치환된 이온성 액체의 음이온 변화에 따른 전해액 조성물 (비교예 1~3)의 이온전도도 증감률을 비교한 그래프이다.
도 3은 EC/DEC(7/3) 혼합용매에서, 활물질이 TEMPO이며 이온성 액체의 양이온이 [MeOC4TEA]일 때 에테르기 치환된 이온성 액체의 음이온 변화에 따른 전해액 조성물 (실시예 1~3)의 이온전도도 증감률과, 활물질이 옥소-TEMPO이며 이온성 액체의 양이온이 [MeOC4TEA]일 때 에테르기 치환된 이온성 액체의 음이온 변화에 따른 전해액 조성물 (비교예 1~3)의 이온전도도 증감률을 비교한 그래프이다.
도 4는 EC/DEC(1/1) 혼합용매에서, 활물질이 TEMPO이며 이온성 액체의 양이온이 [MeOC4TEA]일 때 에테르기 치환된 이온성 액체의 음이온 변화에 따른 전해액 조성물 (실시예 1~3)의 이온전도도 증감률과, 활물질이 옥소-TEMPO이며 이온성 액체의 양이온이 [MeOC4TEA]일 때 에테르기 치환된 이온성 액체의 음이온 변화에 따른 전해액 조성물 (비교예 1~3)의 이온전도도 증감률을 비교한 그래프이다.
도 5는 PC 용매에서 이온성 액체의 양이온이 [MeOC4MMor] 또는 [MeOC4MPyr]일 때 에테르기 치환된 이온성 액체의 음이온 변화에 따른 전해액 조성물의 이온전도도 증감률을 나타낸 그래프이다.
도 6은 EC/DEC(7/3) 혼합용매에서 이온성 액체의 양이온이 [MeOC4MMor] 또는 [MeOC4MPip]일 때 에테르기 치환된 이온성 액체의 음이온 변화에 따른 전해액 조성물의 이온전도도 증감률을 나타낸 그래프이다.
도 7은 EC/DEC(1/1) 혼합용매에서 이온성 액체의 양이온이 [MeOC4MPip] 또는 [MeOC4MIm]일 때 에테르기 치환된 이온성 액체의 음이온 변화에 따른 전해액 조성물의 이온전도도 증감률을 나타낸 그래프이다.
1 is a schematic diagram showing an example of the configuration of a hybrid lithium redox flow battery in which an electrolyte composition according to the present invention is used.
2 is a PC solvent, when the active material is TEMPO and the cation of the ionic liquid is [MeOC 4 TEA], the ionic conductivity increase/decrease rate of the electrolyte composition (Examples 1 to 3) according to the anion change of the ether group-substituted ionic liquid And, when the active material is oxo-TEMPO and the cation of the ionic liquid is [MeOC 4 TEA], the ionic conductivity increase/decrease rate of the electrolyte composition (Comparative Examples 1-3) according to the anion change of the ether group-substituted ionic liquid was compared It is a graph.
3 is an electrolytic solution composition according to the anion change of the ether group-substituted ionic liquid when the active material is TEMPO and the cation of the ionic liquid is [MeOC 4 TEA] in the EC/DEC (7/3) mixed solvent (Example 1 ~3) of ion conductivity increase/decrease rate and electrolyte composition according to the change in anion of the ether group-substituted ionic liquid when the active material is oxo-TEMPO and the cation of the ionic liquid is [MeOC 4 TEA] (Comparative Examples 1-3) It is a graph comparing the increase/decrease rate of ionic conductivity of
Figure 4 is an electrolytic solution composition according to the anion change of the ether group-substituted ionic liquid when the active material is TEMPO and the cation of the ionic liquid is [MeOC 4 TEA] in the EC/DEC (1/1) mixed solvent (Example 1 ~3) of ion conductivity increase/decrease rate and electrolyte composition according to the change in anion of the ether group-substituted ionic liquid when the active material is oxo-TEMPO and the cation of the ionic liquid is [MeOC 4 TEA] (Comparative Examples 1-3) It is a graph comparing the increase/decrease rate of ionic conductivity of
5 is a graph showing the ionic conductivity increase/decrease rate of the electrolyte composition according to the anion change of the ether group-substituted ionic liquid when the cation of the ionic liquid in the PC solvent is [MeOC 4 MMor] or [MeOC 4 MPyr].
6 is an EC/DEC (7/3) mixed solvent, when the cation of the ionic liquid is [MeOC 4 MMor] or [MeOC 4 MPip], the ionic conductivity of the electrolyte composition according to the anion change of the ether group-substituted ionic liquid It is a graph showing the increase/decrease rate.
Figure 7 is the ionic conductivity of the electrolyte composition according to the anion change of the ether group-substituted ionic liquid when the cation of the ionic liquid is [MeOC 4 MPip] or [MeOC 4 MIm] in the EC/DEC (1/1) mixed solvent It is a graph showing the increase/decrease rate.

이하 본 발명을 실시예에 의하여 더욱 상세하게 설명한다. 이들 제조예 및 실시예는 단지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 범위가 이들 실시예에 국한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail by way of Examples. These preparations and examples are only for illustrating the present invention in more detail, and it will be apparent to those of ordinary skill in the art that the scope of the present invention is not limited to these examples.

제조예 1: 에테르기 치환된 이온성 액체를 포함하는 전해액 조성물의 제조Preparation Example 1: Preparation of an electrolyte composition comprising an ether group-substituted ionic liquid

<재료> <Material>

(1) 활물질로서 다음과 같은 2종을 준비하였다: (1) The following two types were prepared as active materials:

TEMPO (Alfa aesar 또는 TCI), TEMPO (Alfa aesar or TCI),

옥소-TEMPO (4-Oxo-2,2,6,6-tetramethylpiperidine 1-oxyl; TCI) Oxo-TEMPO (4-Oxo-2,2,6,6-tetramethylpiperidine 1-oxyl; TCI)

(2) 용매 : PC (Panax Etec Co. Ltd),(2) Solvent: PC (Panax Etec Co. Ltd),

EC : DEC의 혼합용매 (7 : 3 (v/v)) (Panax Etec Co. Ltd) EC : Mixed solvent of DEC (7 : 3 (v/v)) (Panax Etec Co. Ltd)

EC : DEC의 혼합용매 (1 : 1 (v/v)) (Panax Etec Co. Ltd) EC : DEC mixed solvent (1 : 1 (v/v)) (Panax Etec Co. Ltd)

(3) 지지전해질: LiPF6 (Panax Etec Co. Ltd)(3) Supporting electrolyte: LiPF 6 (Panax Etec Co. Ltd)

(4) 에테르기 치환된 이온성 액체는 다음과 같이 양이온 4종, 음이온 3종의 조합으로 합성하여 11종을 준비하였다((주)메디포럼제약):(4) The ionic liquid substituted with an ether group was synthesized by combining 4 types of cations and 3 types of anions as follows, and 11 types were prepared (Mediforum Pharmaceutical Co., Ltd.):

이온성 액체ionic liquid 화학명 (full name)Chemical name (full name) 구조식constitutional formula MeOC4TEA-FSI MeOC 4 TEA-FSI N,N,N-트리에틸-4-메톡시부탄-1-아미늄 비스(플루오로설포닐)이미드
N,N,N-triethyl-4-methoxybutan-1-aminium bis(fluorosulfonyl)imide
N,N,N-triethyl-4-methoxybutan-1-aminium bis(fluorosulfonyl)imide
N,N,N-triethyl-4-methoxybutan-1-aminium bis(fluorosulfonyl)imide

Figure 112020039264730-pat00003
Figure 112020039264730-pat00003
MeOC4TEA-TFSIMeOC 4 TEA-TFSI N,N,N-트리에틸-4-메톡시부탄-1-아미늄 비스(트리플루오로메틸설포닐)이미드
N,N,N-triethyl-4-methoxybutan-1-aminium bis(trifluoromethylsulfonyl)imide
N,N,N-triethyl-4-methoxybutan-1-aminium bis(trifluoromethylsulfonyl)imide
N,N,N-triethyl-4-methoxybutan-1-aminium bis(trifluoromethylsulfonyl)imide
Figure 112020039264730-pat00004
Figure 112020039264730-pat00004
MeOC4TEA-PF6 MeOC 4 TEA-PF 6 N,N,N-트리에틸-4-메톡시부탄-1-아미늄 헥사플루오로포스페이트
N,N,N-triethyl-4-methoxybutan-1-aminium hexafluorophosphate
N,N,N-triethyl-4-methoxybutane-1-aminium hexafluorophosphate
N,N,N-triethyl-4-methoxybutan-1-aminium hexafluorophosphate
Figure 112020039264730-pat00005
Figure 112020039264730-pat00005
MeOC4MMor-FSIMeOC 4 MMor-FSI 4-(4-메톡시부틸)-4-메틸모르포린-4-이움 비스(플루오로설포닐)이미드
4-(4-methoxybutyl)-4-methylmorpholin-4-ium bis(fluorosulfonyl)imide
4-(4-Methoxybutyl)-4-methylmorpholine-4-ium bis(fluorosulfonyl)imide
4-(4-methoxybutyl)-4-methylmorpholin-4-ium bis(fluorosulfonyl)imide
Figure 112020039264730-pat00006
Figure 112020039264730-pat00006
MeOC4MPyr-TFSIMeOC 4 MPyr-TFSI 1-(4-메톡시부틸)-1-메틸피롤리딘-1-이움 비스(트리플루오로메틸설포닐)이미드1-(4-methoxybutyl)-1-methylpyrrolidin-1-ium bis(trifluoromethylsulfonyl)imide1-(4-methoxybutyl)-1-methylpyrrolidin-1-ium bis(trifluoromethylsulfonyl)imide 1-(4-methoxybutyl)-1-methylpyrrolidin-1-ium bis(trifluoromethylsulfonyl) imide
Figure 112020039264730-pat00007
Figure 112020039264730-pat00007
MeOC4MMor-PF6 MeOC 4 MMor-PF 6 4-(4-메톡시부틸)-4-메틸모르포린-4-이움 헥사플루오로포스페이트4-(4-methoxybutyl)-4-methylmorpholin-4-ium hexafluorophosphate4-(4-methoxybutyl)-4-methylmorpholin-4-ium hexafluorophosphate 4-(4-methoxybutyl)-4-methylmorpholin-4-ium hexafluorophosphate
Figure 112020039264730-pat00008
Figure 112020039264730-pat00008
MeOC4MPip-FSIMeOC 4 MPip-FSI 1-(4-메톡시부틸)-1-메틸피페리딘-1-이움 비스(플루오로설포닐)이미드1-(4-methoxybutyl)-1-methylpiperidin-1-ium bis(fluorosulfonyl)imide1-(4-methoxybutyl)-1-methylpiperidin-1-ium bis(fluorosulfonyl)imide 1-(4-methoxybutyl)-1-methylpiperidin-1-ium bis(fluorosulfonyl)imide
Figure 112020039264730-pat00009
Figure 112020039264730-pat00009
MeOC4MPip-TFSIMeOC 4 MPip-TFSI 1-(4-메톡시부틸)-1-메틸피페리딘-1-이움 비스(트리플루오로메틸설포닐)이미드1-(4-methoxybutyl)-1-methylpiperidin-1-ium bis(trifluoromethylsulfonyl)imide1-(4-methoxybutyl)-1-methylpiperidin-1-ium bis(trifluoromethylsulfonyl)imide 1-(4-methoxybutyl)-1-methylpiperidin-1-ium bis(trifluoromethylsulfonyl) imide
Figure 112020039264730-pat00010
Figure 112020039264730-pat00010
MeOC4MPip-PF6 MeOC 4 MPip-PF 6 1-(2-메톡시부틸)-1-메틸피페리딘-1-이움 헥사플루오로포스페이트1-(2-methoxybutyl)-1-methylpiperidin-1-ium hexafluorophosphate1-(2-methoxybutyl)-1-methylpiperidin-1-ium hexafluorophosphate 1-(2-methoxybutyl)-1-methylpiperidin-1-ium hexafluorophosphate
Figure 112020039264730-pat00011
Figure 112020039264730-pat00011
MeOC4MIm-FSIMeOC 4 MIm-FSI 1-(4-메톡시부틸)-3-메틸-1H-이미다졸-3-이움 비스(플루오로설포닐)이미드1-(4-methoxybutyl)-3-methyl-1H-imidazol-3-ium bis(fluorosulfonyl)imide1-(4-Methoxybutyl)-3-methyl-1H-imidazol-3-ium Bis(fluorosulfonyl)imide 1-(4-methoxybutyl)-3-methyl-1H-imidazol-3-ium bis(fluorosulfonyl)imide
Figure 112020039264730-pat00012
Figure 112020039264730-pat00012
MeOC4MIm-TFSIMeOC 4 MIm-TFSI 1-(4-메톡시부틸)-3-메틸-1H-이미다졸-3-이움 비스(트리플루오로메틸설포닐)이미드1-(4-methoxybutyl)-3-methyl-1H-imidazol-3-ium bis(trifluoromethylsulfonyl)imide 1-(4-methoxybutyl)-3-methyl-1H-imidazol-3-ium bis(trifluoromethylsulfonyl)imide 1-(4-methoxybutyl)-3-methyl-1H-imidazol-3 -ium bis(trifluoromethylsulfonyl)imide
Figure 112020039264730-pat00013
Figure 112020039264730-pat00013

<제조 방법><Production method>

다음 표 2의 조성과 같이, 상기 3종의 용매 각각에 1M LiPF6를 혼합하여 용해한 용액에 이온성 액체 3종 MeOC4TEA-FSI, MeOC4TEA-TFSI 및 MeOC4TEA-PF6 (양이온이 [MeOC4TEA]이고 음이온이 서로 상이함)을 각각 5 중량%로 첨가한 후 15초간 볼텍싱으로 혼합한 후, 2종의 활물질 TEMPO와 옥소-TEMPO 각각을 0.5 M의 농도로 첨가하여 30~40초간 볼텍싱으로 혼합하여 전해액 조성물을 제조하였다. As shown in the composition of Table 2 below, in a solution obtained by mixing and dissolving 1M LiPF 6 in each of the three solvents, three ionic liquids MeOC 4 TEA-FSI, MeOC 4 TEA-TFSI and MeOC 4 TEA-PF 6 (cation [MeOC 4 TEA] and the anions are different) were added at 5 wt %, respectively, and mixed by vortexing for 15 seconds, and then two active materials TEMPO and oxo-TEMPO were added at a concentration of 0.5 M, respectively, and 30 ~ The electrolyte composition was prepared by mixing by vortexing for 40 seconds.

용매menstruum 활물질 (0.5M)Active material (0.5M) 지지
전해질
support
electrolyte
이온성 액체(5w%)Ionic liquid (5w%)
실시예 1Example 1 PCPC TEMPOTEMPO 1.0M
LiPF6
1.0M
LiPF 6
IL-1 (MeOC4TEA-FSI )IL-1 (MeOC 4 TEA-FSI)
실시예 2Example 2 IL-2 (MeOC4TEA-TFSI )IL-2 (MeOC 4 TEA-TFSI) 실시예 3Example 3 IL-3 (MeOC4TEA-PF6)IL-3 (MeOC 4 TEA-PF 6 ) 비교예 1Comparative Example 1 PCPC 옥소-TEMPOOxo-TEMPO 1.0M
LiPF6
1.0M
LiPF 6
IL-1 (MeOC4TEA-FSI )IL-1 (MeOC 4 TEA-FSI)
비교예 2Comparative Example 2 IL-2 (MeOC4TEA-TFSI )IL-2 (MeOC 4 TEA-TFSI) 비교예 3Comparative Example 3 IL-3 (MeOC4TEA-PF6)IL-3 (MeOC 4 TEA-PF 6 ) 실시예 4Example 4 EC/DEC
(7/3)
EC/DEC
(7/3)
TEMPOTEMPO 1.0M
LiPF6
1.0M
LiPF 6
IL-1 (MeOC4TEA-FSI )IL-1 (MeOC 4 TEA-FSI)
실시예 5Example 5 IL-2 (MeOC4TEA-TFSI )IL-2 (MeOC 4 TEA-TFSI) 실시예 6Example 6 IL-3 (MeOC4TEA-PF6)IL-3 (MeOC 4 TEA-PF 6 ) 비교예 4Comparative Example 4 EC/DEC
(7/3)
EC/DEC
(7/3)
옥소-TEMPOOxo-TEMPO 1.0M
LiPF6
1.0M
LiPF 6
IL-1 (MeOC4TEA-FSI )IL-1 (MeOC 4 TEA-FSI)
비교예 5Comparative Example 5 IL-2 (MeOC4TEA-TFSI )IL-2 (MeOC 4 TEA-TFSI) 비교예 6Comparative Example 6 IL-3 (MeOC4TEA-PF6)IL-3 (MeOC 4 TEA-PF 6 ) 실시예 7Example 7 EC/DEC
(1/1)
EC/DEC
(1/1)
TEMPOTEMPO 1.0M
LiPF6
1.0M
LiPF 6
IL-1 (MeOC4TEA-FSI )IL-1 (MeOC 4 TEA-FSI)
실시예 8Example 8 IL-2 (MeOC4TEA-TFSI )IL-2 (MeOC 4 TEA-TFSI) 실시예 9Example 9 IL-3 (MeOC4TEA-PF6)IL-3 (MeOC 4 TEA-PF 6 ) 비교예 7Comparative Example 7 EC/DEC
(1/1)
EC/DEC
(1/1)
옥소-TEMPOOxo-TEMPO 1.0M
LiPF6
1.0M
LiPF 6
IL-1 (MeOC4TEA-FSI )IL-1 (MeOC 4 TEA-FSI)
비교예 8Comparative Example 8 IL-2 (MeOC4TEA-TFSI )IL-2 (MeOC 4 TEA-TFSI) 비교예 9Comparative Example 9 IL-3 (MeOC4TEA-PF6)IL-3 (MeOC 4 TEA-PF 6 )

다음 표 3과 같이, 상기 3종의 음이온과 양이온 [MeOC4MMor], [MeOC4MPyr], [MeOC4MPip], 또는 [MeOC4MIm]과 조합한 이온성 액체 9종을 사용하는 것을 제외하고는 상기와 동일한 방식으로 전해액 조성물을 제조하였다. As shown in Table 3 below, 9 types of ionic liquids in combination with the above 3 types of anions and cations [MeOC 4 MMor], [MeOC 4 MPyr], [MeOC 4 MPip], or [MeOC 4 MIm] were used except that And the electrolyte composition was prepared in the same manner as above.

용매menstruum 활물질 (0.5M)Active material (0.5M) 지지
전해질
support
electrolyte
이온성 액체(5w%)Ionic liquid (5w%)
비교예 10Comparative Example 10 PCPC TEMPOTEMPO 1.0M
LiPF6
1.0M
LiPF 6
MeOC4MMor-FSIMeOC 4 MMor-FSI
비교예 11Comparative Example 11 MeOC4MPyr-TFSIMeOC 4 MPyr-TFSI 비교예 12Comparative Example 12 MeOC4MMor-PF6 MeOC 4 MMor-PF 6 비교예 13Comparative Example 13 EC/DEC
(7/3)
EC/DEC
(7/3)
TEMPOTEMPO 1.0M
LiPF6
1.0M
LiPF 6
MeOC4MPip-FSIMeOC 4 MPip-FSI
비교예 14Comparative Example 14 MeOC4MMor-PF6 MeOC 4 MMor-PF 6 비교예 15Comparative Example 15 MeOC4MPip-TFSIMeOC 4 MPip-TFSI 비교예 16Comparative Example 16 EC/DEC
(1/1)
EC/DEC
(1/1)
TEMPOTEMPO 1.0M
LiPF6
1.0M
LiPF 6
MeOC4MPip-PF6 MeOC 4 MPip-PF 6
비교예 17Comparative Example 17 MeOC4MIm-FSIMeOC 4 MIm-FSI 비교예 18Comparative Example 18 MeOC4MIm-TFSIMeOC 4 MIm-TFSI

또한 이온전도도 증감을 분석하기 위하여 이온성 액체를 첨가하지 않고 동일한 방식으로 제조하여 실시예 1~9 및 비교예 1~18 각각의 참조 전해액 조성물도 제조하였다. In addition, in order to analyze the increase or decrease in ionic conductivity, the reference electrolyte compositions of Examples 1 to 9 and Comparative Examples 1 to 18 were prepared in the same manner without adding an ionic liquid.

시험예 1: 에테르기 치환된 이온성액체를 포함하는 전해액 조성물의 이온전도도 및 점도 분석Test Example 1: Analysis of ionic conductivity and viscosity of electrolyte composition containing ether group-substituted ionic liquid

<이온전도도><Ion conductivity>

상기에서 제조된 실시예, 비교예 및 참조 전해액 조성물들에 대하여 실온에서 전기화학적 임피던스 분광기 (electrochemical impedance spectroscopy (EIS), Zahner ennium)을 이용하여 저항을 측정하였고 (사용전극: PEEK + SUS 재질의 별도로 제작된 전극 홀더, 2 probes; Frequency: 1MHz ~ 1Hz (10 mV); 분석방법: Nyquist plot), 하기 계산식에 따라서 이온전도도(Z)를, 하기와 같은 STD 전도도를 이용하여 K값(L/A) 계산 후, 측정한 저항값을 대입하여 계산하였으며, 또한 참조 전해액 조성물의 이온전도도 대비, 각각의 실시예 전해액 조성물 및 비교예 전해액 조성물의 이온전도도 증감률을 계산하여, 그 결과들을 표 4 및 표 5와 도 2 ~ 도 7에 각각 나타내었다: For the Examples, Comparative Examples and Reference electrolyte compositions prepared above, the resistance was measured at room temperature using an electrochemical impedance spectroscopy (EIS), Zahner ennium) (electrode used: PEEK + SUS material separately Prepared electrode holder, 2 probes; Frequency: 1MHz ~ 1Hz (10 mV); Analysis method: Nyquist plot), ion conductivity (Z) according to the following formula, and K value (L/A) using the following STD conductivity ) after the calculation, the measured resistance value was substituted for the calculation, and the ionic conductivity increase/decrease rate of the electrolyte composition of each Example and the electrolyte composition of Comparative Example was calculated compared to the ionic conductivity of the reference electrolyte composition, and the results are shown in Tables 4 and Tables 5 and Figs. 2 to 7, respectively:

STD 전도도 = 1/저항 x (L/A) STD Conductivity = 1/Resistance x (L/A)

전도도 = 1/저항 x (L/A) Conductivity = 1/resistance x (L/A)

PC (1=v) 1M LiPF6, K값: 5.8 mS/cm (5.8 x 10-3 S/cm)PC (1=v) 1M LiPF 6 , K value: 5.8 mS/cm (5.8 x 10 -3 S/cm)

이온전도도ionic conductivity 참조(이온성액체 무첨가)Reference (without ionic liquid addition) 증감률(%)Increase/decrease rate (%) 실시예 1Example 1 5.485.48 5.07 5.07 7.94 7.94 실시예 2Example 2 5.275.27 5.07 5.07 3.87 3.87 실시예 3Example 3 5.225.22 5.07 5.07 2.83 2.83 실시예 4Example 4 7.307.30 6.916.91 5.72 5.72 실시예 5Example 5 6.986.98 6.916.91 1.01 1.01 실시예 6Example 6 7.207.20 6.916.91 4.21 4.21 실시예 7Example 7 6.996.99 6.686.68 4.71 4.71 실시예 8Example 8 6.786.78 6.686.68 1.60 1.60 실시예 9Example 9 6.746.74 6.686.68 1.02 1.02 비교예 1Comparative Example 1 4.244.24 4.544.54 -6.62-6.62 비교예 2Comparative Example 2 4.454.45 4.544.54 -2.05-2.05 비교예 3Comparative Example 3 4.524.52 4.544.54 -0.51-0.51 비교예 4Comparative Example 4 5.885.88 6.34 6.34 -7.19-7.19 비교예 5Comparative Example 5 6.126.12 6.34 6.34 -3.48-3.48 비교예 6Comparative Example 6 6.146.14 6.34 6.34 -3.19-3.19 비교예 7Comparative Example 7 5.655.65 6.22 6.22 -9.15-9.15 비교예 8Comparative Example 8 5.805.80 6.22 6.22 -6.69-6.69 비교예 9Comparative Example 9 5.945.94 6.22 6.22 -4.44-4.44

이온전도도ionic conductivity 참조(이온성액체 무첨가)Reference (without ionic liquid addition) 증감률(%)Increase/decrease rate (%) 비교예 10Comparative Example 10 4.834.83 5.07 5.07 -4.78-4.78 비교예 11Comparative Example 11 4.704.70 5.07 5.07 -7.29-7.29 비교예 12Comparative Example 12 4.384.38 5.07 5.07 -13.70-13.70 비교예 13Comparative Example 13 6.326.32 6.916.91 -8.54-8.54 비교예 14Comparative Example 14 6.266.26 6.916.91 -9.39-9.39 비교예 15Comparative Example 15 6.096.09 6.916.91 -11.80-11.80 비교예 16Comparative Example 16 6.496.49 6.686.68 -2.84-2.84 비교예 17Comparative Example 17 6.416.41 6.686.68 -.3.98-.3.98 비교예 18Comparative Example 18 6.116.11 6.686.68 -8.47-8.47

상기 표 4와 도 2 ~ 도 4에 나타낸 바와 같이, 유기용매 하에 활물질로서 TEMPO와 양이온이 [MeOC4TEA]이고 음이온이 [TFSI], [FSI] 또는 [PF6]인 에테르기 치환된 이온성 액체가 함께 포함된 전해액 조성물은 이온전도도가 7.94%까지 증가했고, 반면에 활물질로서 옥소-TEMPO가 첨가된 전해액 조성물의 이온전도도는 오히려 감소 (-9.15% 까지)하였음을 확인할 수 있다. As shown in Table 4 and FIGS. 2 to 4, as an active material in an organic solvent, TEMPO and a cation are [MeOC 4 TEA], and an anion is [TFSI], [FSI] or [PF 6 ] ether group-substituted ionic It can be seen that the ionic conductivity of the electrolyte composition including the liquid was increased to 7.94%, while the ionic conductivity of the electrolyte composition to which oxo-TEMPO was added as an active material was rather decreased (up to -9.15%).

따라서 유기용매 하에 TEMPO 활물질과 상기 에스테기 치환된 이온성 액체가 함께 사용되는 경우에만 이온전도도가 증진됨을 알 수 있다. 특히 이온성 액체가 MeOC4TEA-FSI인 경우가 이온전도도 증가율이 가장 높았다. Therefore, it can be seen that the ionic conductivity is enhanced only when the TEMPO active material and the ester group-substituted ionic liquid are used together in an organic solvent. In particular, when the ionic liquid was MeOC 4 TEA-FSI, the increase in ionic conductivity was the highest.

한편 상기 표 5와 도 5 ~ 도 7에 나타낸 바와 같이, 유기용매 하에 활물질로서 TEMPO를 사용할 경우에도, 이온성액체의 양이온이 [MeOC4MMor], [MeOC4MPyr], [MeOC4MPip], 또는 [MeOC4MIm]일 경우에는 음이온이 [TFSI], [FSI] 또는 [PF6]이어도 이온전도도가 감소(-8.47% 까지)하였음을 확인할 수 있다. On the other hand, as shown in Table 5 and FIGS. 5 to 7, even when TEMPO is used as an active material in an organic solvent, the cations of the ionic liquid are [MeOC 4 MMor], [MeOC 4 MPyr], [MeOC 4 MPip], Alternatively, in the case of [MeOC 4 MIm], it can be confirmed that the ionic conductivity is reduced (up to -8.47%) even if the anion is [TFSI], [FSI] or [PF 6 ].

따라서 TEMPO 활물질과 함께 사용시 에테르기 치환된 이온성 액체는 양이온이 [MeOC4TEA]인 경우에만 이온전도도가 증진됨을 알 수 있다.Therefore, it can be seen that the ionic conductivity of the ether group-substituted ionic liquid when used together with the TEMPO active material is improved only when the cation is [MeOC 4 TEA].

<점도><Viscosity>

상기 실시예 1~9의 전해액 조성물들에 대하여 점도계(Brookfield LVDV-11+Pro)를 이용하여 점도를 측정하였고 (Spindle: SC4-18, Sample chamber: SC4-13R, Chamber Temp. 24.6℃) 그 결과를 표 6에 나타냈다:For the electrolyte compositions of Examples 1 to 9, the viscosity was measured using a viscometer (Brookfield LVDV-11+Pro) (Spindle: SC4-18, Sample chamber: SC4-13R, Chamber Temp. 24.6°C). is shown in Table 6:

이온성 액체ionic liquid 용매menstruum Viscosity
(cP)
Viscosity
(cP)
Viscosity
(Pa·s)
Viscosity
(Pa s)
실시예 1Example 1 IL-1 (MeOC4TEA-FSI )IL-1 (MeOC 4 TEA-FSI) PCPC 9.049.04 0.009040.00904 실시예 2Example 2 IL-2 (MeOC4TEA-TFSI )IL-2 (MeOC 4 TEA-TFSI) 8.888.88 0.008880.00888 실시예 3Example 3 IL-3 (MeOC4TEA-PF6)IL-3 (MeOC 4 TEA-PF 6 ) 9.429.42 0.009420.00942 실시예 4Example 4 IL-1 (MeOC4TEA-FSI )IL-1 (MeOC 4 TEA-FSI) EC/DEC
(7/3)
EC/DEC
(7/3)
6.226.22 0.006220.00622
실시예 5Example 5 IL-2 (MeOC4TEA-TFSI )IL-2 (MeOC 4 TEA-TFSI) 6.136.13 0.006130.00613 실시예 6Example 6 IL-3 (MeOC4TEA-PF6)IL-3 (MeOC 4 TEA-PF 6 ) 6.496.49 0.006490.00649 실시예 7Example 7 IL-1 (MeOC4TEA-FSI )IL-1 (MeOC 4 TEA-FSI) EC/DEC
(1/1)
EC/DEC
(1/1)
5.465.46 0.005460.00546
실시예 8Example 8 IL-2 (MeOC4TEA-TFSI )IL-2 (MeOC 4 TEA-TFSI) 5.325.32 0.005320.00532 실시예 9Example 9 IL-3 (MeOC4TEA-PF6)IL-3 (MeOC 4 TEA-PF 6 ) 5.625.62 0.005620.00562

본 발명에 따른 실시예 1~9의 전해액 조성물의 점도는 5.32~9.42 cP (0.00532~0.00942 Pa·s)로 확인되었다. 따라서 본 발명에 따른 전해액 조성물은 저점도이어서 방전용량 및 가역효율을 증대시켜 충방전의 전지 효율을 향상시킬 수 있다.The viscosity of the electrolyte compositions of Examples 1 to 9 according to the present invention was confirmed to be 5.32 to 9.42 cP (0.00532 to 0.00942 Pa·s). Therefore, since the electrolyte composition according to the present invention has a low viscosity, it is possible to increase the discharge capacity and the reversible efficiency, thereby improving the battery efficiency of charging and discharging.

Claims (10)

활물질로서 2,2,6,6-테트라메틸피페리딘-1-옥실 (TEMPO), 에테르기 치환된 이온성 액체, 지지전해질, 및 유기용매를 포함하는 하이브리드 리튬 레독스 흐름전지용 전해액 조성물로,
상기 에테르기 치환된 이온성 액체는 양이온이 N,N,N-트리에틸-4-메톡시부탄-1-아미늄 [MeOC4TEA]이고, 음이온이 비스(플루오로설포닐)이미드 [FSI], 비스(트리플루오로메틸설포닐)이미드 [TFSI] 및 헥사플루오로포스페이트 [PF6]로 구성되는 군에서 선택되는 어느 하나인 것을 특징으로 하는 하이브리드 리튬 레독스 흐름전지용 전해액 조성물.
An electrolyte composition for a hybrid lithium redox flow battery comprising 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) as an active material, an ether group-substituted ionic liquid, a supporting electrolyte, and an organic solvent,
The ether group-substituted ionic liquid has a cation of N,N,N-triethyl-4-methoxybutan-1-aminium [MeOC 4 TEA], and an anion of bis(fluorosulfonyl)imide [FSI] ], bis (trifluoromethylsulfonyl) imide [TFSI] and hexafluorophosphate [PF 6 ] The electrolyte composition for a hybrid lithium redox flow battery, characterized in that any one selected from the group consisting of.
제1항에 있어서, 상기 TEMPO는 0.5 ~ 2.0M의 농도로 포함되는 것을 특징으로 하는 하이브리드 리튬 레독스 흐름전지용 전해액 조성물.
The electrolyte composition for a hybrid lithium redox flow battery according to claim 1, wherein the TEMPO is contained in a concentration of 0.5 to 2.0M.
삭제delete 제1항에 있어서, 상기 에테르기가 치환된 이온성 액체는 N,N,N-트리에틸-4-메톡시부탄-1-아미늄 비스(플루오로설포닐)이미드 [MeOC4TEA-FSI]인 것을 특징으로 하는 하이브리드 리튬 레독스 흐름전지용 전해액 조성물.
The method of claim 1, wherein the ionic liquid substituted with an ether group is N,N,N-triethyl-4-methoxybutan-1 -aminium bis(fluorosulfonyl)imide [MeOC 4 TEA-FSI] An electrolyte composition for a hybrid lithium redox flow battery, characterized in that
제1항에 있어서, 상기 에테르기가 치환된 이온성 액체는 1 ~ 15 중량%로 포함되는 것을 특징으로 하는 하이브리드 리튬 레독스 흐름전지용 전해액 조성물.
The electrolyte composition for a hybrid lithium redox flow battery according to claim 1, wherein the ionic liquid substituted with the ether group is included in an amount of 1 to 15 wt%.
제1항에 있어서, 지지전해질은 LiPF6, LiBF4, LiAsF6, LiClO4, LiCF3SO3, LiCF3SO3, LiC(SO2CF3)3, LiN(CF3SO2)2 및 LiCH(CF3SO2)2로 구성되는 군에서 선택되는 1종 이상인 것을 특징으로 하는 하이브리드 리튬 레독스 흐름전지용 전해액 조성물.
The method of claim 1, wherein the supporting electrolyte is LiPF 6 , LiBF 4 , LiAsF 6 , LiClO 4 , LiCF 3 SO 3 , LiCF 3 SO 3 , LiC(SO 2 CF 3 ) 3 , LiN(CF 3 SO 2 ) 2 and LiCH (CF 3 SO 2 ) 2 An electrolyte composition for a hybrid lithium redox flow battery, characterized in that at least one selected from the group consisting of.
제6항에 있어서, 상기 지지전해질은 LiPF6이고, 0.1 ~ 1.0M의 농도로 포함되는 것을 특징으로 하는 하이브리드 리튬 레독스 흐름전지용 전해액 조성물.
The electrolyte composition for a hybrid lithium redox flow battery according to claim 6, wherein the supporting electrolyte is LiPF 6 and is contained in a concentration of 0.1 to 1.0M.
제1항에 있어서, 상기 전해액 조성물은 이온전도도가 7.94%까지 증진되고, 점도가 5.32~9.42 cP의 저점도인 것을 특징으로 하는 하이브리드 리튬 레독스 흐름전지용 전해액 조성물.
The electrolyte composition for a hybrid lithium redox flow battery according to claim 1, wherein the electrolyte composition has an improved ionic conductivity up to 7.94% and a low viscosity of 5.32 to 9.42 cP.
제1항, 제2항 및 제4항 내지 제8항 중 어느 한 항에 따른 전해액 조성물을 포함하는 것을 특징으로 하는 하이브리드 리튬 레독스 흐름전지.
A hybrid lithium redox flow battery comprising the electrolyte composition according to any one of claims 1, 2 and 4 to 8.
제9항에 있어서, 상기 하이브리드 리튬 레독스 흐름전지는 양극 활물질은 액체의 유기 용매에 용해된 TEMPO이고, 음극 활물질은 고체인 산화환원 활성 리튬 금속인 것을 특징으로 하는 하이브리드 리튬 레독스 흐름전지.[10] The hybrid lithium redox flow battery according to claim 9, wherein in the hybrid lithium redox flow battery, the positive active material is TEMPO dissolved in a liquid organic solvent, and the negative active material is a solid redox active lithium metal.
KR1020200046062A 2020-04-16 2020-04-16 Electrolyte composition comprising ionic liquids substituted with ether group having improved ion conductivity for hybrid lithium-based redox flow battery KR102290292B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200046062A KR102290292B1 (en) 2020-04-16 2020-04-16 Electrolyte composition comprising ionic liquids substituted with ether group having improved ion conductivity for hybrid lithium-based redox flow battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200046062A KR102290292B1 (en) 2020-04-16 2020-04-16 Electrolyte composition comprising ionic liquids substituted with ether group having improved ion conductivity for hybrid lithium-based redox flow battery

Publications (1)

Publication Number Publication Date
KR102290292B1 true KR102290292B1 (en) 2021-08-19

Family

ID=77492310

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200046062A KR102290292B1 (en) 2020-04-16 2020-04-16 Electrolyte composition comprising ionic liquids substituted with ether group having improved ion conductivity for hybrid lithium-based redox flow battery

Country Status (1)

Country Link
KR (1) KR102290292B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230132103A (en) 2022-03-08 2023-09-15 현대자동차주식회사 An electrolyte for lithium secondary battery comprising an ionic liquid and lithium secondary battery comprising the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190135339A (en) * 2018-05-28 2019-12-06 주식회사 씨트리 Electrolyte composition having high ion conductivity for Lithium-based redox flow battery
KR20190135620A (en) * 2018-05-29 2019-12-09 주식회사 씨트리 Electrolyte composition having high ion conductivity for Lithium-based redox flow battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190135339A (en) * 2018-05-28 2019-12-06 주식회사 씨트리 Electrolyte composition having high ion conductivity for Lithium-based redox flow battery
KR20190135620A (en) * 2018-05-29 2019-12-09 주식회사 씨트리 Electrolyte composition having high ion conductivity for Lithium-based redox flow battery

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Georoge H. Lane et al. Journal of Physical Chemistry C. 2010, Vol. 114, pp. 21775-21785 *
J.S.Lee et al. Electrochemistry Communications. 2006, 8, pp.460-464 *
R.Barhdadi et al. Journal of Applied Electrochemistry. 2007, 37, pp.723-728 *
Xiaoliang Wei et al. Advanced Materials. 2014, 26, pp.7649-7653 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230132103A (en) 2022-03-08 2023-09-15 현대자동차주식회사 An electrolyte for lithium secondary battery comprising an ionic liquid and lithium secondary battery comprising the same

Similar Documents

Publication Publication Date Title
Hu et al. Cyclic-anion salt for high-voltage stable potassium-metal batteries
Agostini et al. Polysulfide-containing glyme-based electrolytes for lithium sulfur battery
EP2270917B1 (en) Non-aqueous electrolyte for secondary cell and secondary cell comprising the same
CN112271337A (en) Non-aqueous electrolyte and lithium ion battery
Knipping et al. Room temperature ionic liquids versus organic solvents as lithium–oxygen battery electrolytes
KR102157362B1 (en) Hybrid redox flow battery and use thereof
CN101087035A (en) An electrolyte for secondary lithium battery and secondary lithium battery using this electrolyte
Li et al. Catalytic redox mediators for non-aqueous Li-O2 battery
KR102082368B1 (en) Electrolyte composition having high ion conductivity for Lithium-based redox flow battery
CN101662030A (en) Electrolyte solution, preparation method thereof and use thereof
CN107293793A (en) Electrolyte and electrochemical cell
Wei et al. Progress and prospects of electrolyte chemistry of calcium batteries
CN112086683A (en) Lithium ion battery electrolyte, preparation method thereof, high-voltage lithium ion battery and battery module
KR102290292B1 (en) Electrolyte composition comprising ionic liquids substituted with ether group having improved ion conductivity for hybrid lithium-based redox flow battery
KR102082371B1 (en) Electrolyte composition having high ion conductivity for Lithium-based redox flow battery
Jiang et al. Rational Design of Functional Electrolytes Towards Commercial Dual‐Ion Batteries
CN113381074A (en) Low-temperature electrolyte and application thereof
KR102290299B1 (en) Electrolyte composition having improved ion conductivity for hybrid lithium-based redox flow battery
CN115966769A (en) Local high-concentration lithium metal battery electrolyte and preparation method and application thereof
KR102104375B1 (en) Electrolyte composition comprising ionic liquids substituted with ester group and mixed solvent having improved ion conductivity for hybride lithium-based redox flow battery
KR102104373B1 (en) Electrolyte composition having improved ion conductivity for hybride lithium-based redox flow battery
KR102104372B1 (en) Electrolyte composition comprising ionic liquids substituted with ester group having improved ion conductivity for hybride lithium-based redox flow battery
CN113206292B (en) Polymer-based composite solid electrolyte and preparation method and application thereof
Li et al. Single-oxygen linear ether (SOLE) based electrolytes for fast-charging and low-temperature Li-ion batteries
CN113851726B (en) Ionic liquid based ether lithium metal battery electrolyte and preparation method and application thereof

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant